1
|
Wang Y, Lei F, Lin Y, Han Y, Yang L, Tan H. Peroxisome proliferator-activated receptors as therapeutic target for cancer. J Cell Mol Med 2024; 28:e17931. [PMID: 37700501 PMCID: PMC10902584 DOI: 10.1111/jcmm.17931] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor family. There are three subtypes of PPARs, including PPAR-α, PPAR-β/δ and PPAR-γ. They are expressed in different tissues and act by regulating the expression of target genes in the form of binding to ligands. Various subtypes of PPAR have been shown to have significant roles in a wide range of biological processes including lipid metabolism, body energy homeostasis, cell proliferation and differentiation, bone formation, tissue repair and remodelling. Recent studies have found that PPARs are closely related to tumours. They are involved in cancer cell growth, angiogenesis and tumour immune response, and are essential components in tumour progression and metastasis. As such, they have become a target for cancer therapy research. In this review, we discussed the current state of knowledge on the involvement of PPARs in cancer, including their role in tumourigenesis, the impact of PPARs in tumour microenvironment and the potential of using PPARs combinational therapy to treat cancer by targeting essential signal pathways, or as adjuvants to boost the effects of current chemo and immunotherapies. Our review highlights the complexity of PPARs in cancer and the need for a better understanding of the mechanism in order to design effective cancer therapies.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Internal MedicineMontefiore Medical Center, Wakefield CampusBronxNew YorkUSA
| | - Feifei Lei
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| | - Yiyun Lin
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuru Han
- Qinghai Provincial People's HospitalXiningChina
| | - Lei Yang
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Huabing Tan
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
2
|
Shi W, Scialdone AP, Emerson JI, Mei L, Wasson LK, Davies HA, Seidman CE, Seidman JG, Cook JG, Conlon FL. Missense Mutation in Human CHD4 Causes Ventricular Noncompaction by Repressing ADAMTS1. Circ Res 2023; 133:48-67. [PMID: 37254794 PMCID: PMC10284140 DOI: 10.1161/circresaha.122.322223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Left ventricular noncompaction (LVNC) is a prevalent cardiomyopathy associated with excessive trabeculation and thin compact myocardium. Patients with LVNC are vulnerable to cardiac dysfunction and at high risk of sudden death. Although sporadic and inherited mutations in cardiac genes are implicated in LVNC, understanding of the mechanisms responsible for human LVNC is limited. METHODS We screened the complete exome sequence database of the Pediatrics Cardiac Genomics Consortium and identified a cohort with a de novo CHD4 (chromodomain helicase DNA-binding protein 4) proband, CHD4M202I, with congenital heart defects. We engineered a humanized mouse model of CHD4M202I (mouse CHD4M195I). Histological analysis, immunohistochemistry, flow cytometry, transmission electron microscopy, and echocardiography were used to analyze cardiac anatomy and function. Ex vivo culture, immunopurification coupled with mass spectrometry, transcriptional profiling, and chromatin immunoprecipitation were performed to deduce the mechanism of CHD4M195I-mediated ventricular wall defects. RESULTS CHD4M195I/M195I mice developed biventricular hypertrabeculation and noncompaction and died at birth. Proliferation of cardiomyocytes was significantly increased in CHD4M195I hearts, and the excessive trabeculation was associated with accumulation of ECM (extracellular matrix) proteins and a reduction of ADAMTS1 (ADAM metallopeptidase with thrombospondin type 1 motif 1), an ECM protease. We rescued the hyperproliferation and hypertrabeculation defects in CHD4M195I hearts by administration of ADAMTS1. Mechanistically, the CHD4M195I protein showed augmented affinity to endocardial BRG1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 4). This enhanced affinity resulted in the failure of derepression of Adamts1 transcription such that ADAMTS1-mediated trabeculation termination was impaired. CONCLUSIONS Our study reveals how a single mutation in the chromatin remodeler CHD4, in mice or humans, modulates ventricular chamber maturation and that cardiac defects associated with the missense mutation CHD4M195I can be attenuated by the administration of ADAMTS1.
Collapse
Affiliation(s)
- Wei Shi
- Department of Biology and Genetics, McAllister Heart Institute (W.S., A.P.S., J.I.E., H.A.D., F.L.C.), the University of North Carolina at Chapel Hill
| | - Angel P. Scialdone
- Department of Biology and Genetics, McAllister Heart Institute (W.S., A.P.S., J.I.E., H.A.D., F.L.C.), the University of North Carolina at Chapel Hill
| | - James I. Emerson
- Department of Biology and Genetics, McAllister Heart Institute (W.S., A.P.S., J.I.E., H.A.D., F.L.C.), the University of North Carolina at Chapel Hill
| | - Liu Mei
- Department of Biochemistry & Biophysics (L.M., J.G.C.), the University of North Carolina at Chapel Hill
| | - Lauren K. Wasson
- Department of Genetics, Harvard Medical School, Boston, MA (L.K.W., C.E.S., J.G.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (L.K.W., C.E.S.)
| | - Haley A. Davies
- Department of Biology and Genetics, McAllister Heart Institute (W.S., A.P.S., J.I.E., H.A.D., F.L.C.), the University of North Carolina at Chapel Hill
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA (L.K.W., C.E.S., J.G.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (L.K.W., C.E.S.)
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
| | - Jonathan G. Seidman
- Department of Biochemistry & Biophysics (L.M., J.G.C.), the University of North Carolina at Chapel Hill
- Department of Genetics, Harvard Medical School, Boston, MA (L.K.W., C.E.S., J.G.S.)
| | - Jeanette G. Cook
- Department of Biology and Genetics, McAllister Heart Institute (W.S., A.P.S., J.I.E., H.A.D., F.L.C.), the University of North Carolina at Chapel Hill
- Department of Biochemistry & Biophysics (L.M., J.G.C.), the University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center (F.L.C.), the University of North Carolina at Chapel Hill
- Department of Genetics, Harvard Medical School, Boston, MA (L.K.W., C.E.S., J.G.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (L.K.W., C.E.S.)
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
| | - Frank L. Conlon
- Department of Biology and Genetics, McAllister Heart Institute (W.S., A.P.S., J.I.E., H.A.D., F.L.C.), the University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center (F.L.C.), the University of North Carolina at Chapel Hill
| |
Collapse
|
3
|
Sun J, Yu L, Qu X, Huang T. The role of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anticancer therapy. Front Pharmacol 2023; 14:1184794. [PMID: 37251321 PMCID: PMC10213337 DOI: 10.3389/fphar.2023.1184794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have been extensively studied for over 3 decades and consist of three isotypes, including PPARα, γ, and β/δ, that were originally considered key metabolic regulators controlling energy homeostasis in the body. Cancer has become a leading cause of human mortality worldwide, and the role of peroxisome proliferator-activated receptors in cancer is increasingly being investigated, especially the deep molecular mechanisms and effective cancer therapies. Peroxisome proliferator-activated receptors are an important class of lipid sensors and are involved in the regulation of multiple metabolic pathways and cell fate. They can regulate cancer progression in different tissues by activating endogenous or synthetic compounds. This review emphasizes the significance and knowledge of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anti-cancer treatment by summarizing recent research on peroxisome proliferator-activated receptors. In general, peroxisome proliferator-activated receptors either promote or suppress cancer in different types of tumor microenvironments. The emergence of this difference depends on various factors, including peroxisome proliferator-activated receptor type, cancer type, and tumor stage. Simultaneously, the effect of anti-cancer therapy based on drug-targeted PPARs differs or even opposes among the three peroxisome proliferator-activated receptor homotypes and different cancer types. Therefore, the current status and challenges of the use of peroxisome proliferator-activated receptors agonists and antagonists in cancer treatment are further explored in this review.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liyan Yu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Xueling Qu
- Dalian Women and Children’s Medical Center(Group), Dalian, Liaoning, China
| | - Tao Huang
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Zhang W, Xu Z, Hao X, He T, Li J, Shen Y, Liu K, Gao Y, Liu J, Edwards D, Muscarella AM, Wu L, Yu L, Xu L, Chen X, Wu YH, Bado IL, Ding Y, Aguirre S, Wang H, Gugala Z, Satcher RL, Wong ST, Zhang XHF. Bone Metastasis Initiation Is Coupled with Bone Remodeling through Osteogenic Differentiation of NG2+ Cells. Cancer Discov 2023; 13:474-495. [PMID: 36287038 PMCID: PMC9905315 DOI: 10.1158/2159-8290.cd-22-0220] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/06/2022] [Accepted: 10/21/2022] [Indexed: 02/07/2023]
Abstract
The bone microenvironment is dynamic and undergoes remodeling in normal and pathologic conditions. Whether such remodeling affects disseminated tumor cells (DTC) and bone metastasis remains poorly understood. Here, we demonstrated that pathologic fractures increase metastatic colonization around the injury. NG2+ cells are a common participant in bone metastasis initiation and bone remodeling in both homeostatic and fractured conditions. NG2+ bone mesenchymal stem/stromal cells (BMSC) often colocalize with DTCs in the perivascular niche. Both DTCs and NG2+ BMSCs are recruited to remodeling sites. Ablation of NG2+ lineage impaired bone remodeling and concurrently diminished metastatic colonization. In cocultures, NG2+ BMSCs, especially when undergoing osteodifferentiation, enhanced cancer cell proliferation and migration. Knockout of N-cadherin in NG2+ cells abolished these effects in vitro and phenocopied NG2+ lineage depletion in vivo. These findings uncover dual roles of NG2+ cells in metastasis and remodeling and indicate that osteodifferentiation of BMSCs promotes metastasis initiation via N-cadherin-mediated cell-cell interaction. SIGNIFICANCE The bone colonization of cancer cells occurs in an environment that undergoes constant remodeling. Our study provides mechanistic insights into how bone homeostasis and pathologic repair lead to the outgrowth of disseminated cancer cells, thereby opening new directions for further etiologic and epidemiologic studies of tumor recurrences. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhan Xu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoxin Hao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tiancheng He
- Department of Systems Medicine and Bioengineering and Translational Biophotonics Laboratory, Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Jiasong Li
- Department of Systems Medicine and Bioengineering and Translational Biophotonics Laboratory, Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Yichao Shen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kai Liu
- Department of Systems Medicine and Bioengineering and Translational Biophotonics Laboratory, Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Yang Gao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Edwards
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aaron M. Muscarella
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ling Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liqun Yu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Longyong Xu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Chen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Igor L. Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yunfeng Ding
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sergio Aguirre
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zbigniew Gugala
- Department of Orthopedic Surgery & Rehabilitation, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert L Satcher
- Department of Orthopedic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen T. Wong
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Systems Medicine and Bioengineering and Translational Biophotonics Laboratory, Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Xiang H.-F. Zhang, mailing address: One Baylor Plaza, BCM 600, Houston, TX 77030; ; TEL: 713-798-6239.
| |
Collapse
|
5
|
Wagner N, Wagner KD. Pharmacological Utility of PPAR Modulation for Angiogenesis in Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24032345. [PMID: 36768666 PMCID: PMC9916802 DOI: 10.3390/ijms24032345] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Peroxisome proliferator activated receptors, including PPARα, PPARβ/δ, and PPARγ, are ligand-activated transcription factors belonging to the nuclear receptor superfamily. They play important roles in glucose and lipid metabolism and are also supposed to reduce inflammation and atherosclerosis. All PPARs are involved in angiogenesis, a process critically involved in cardiovascular pathology. Synthetic specific agonists exist for all PPARs. PPARα agonists (fibrates) are used to treat dyslipidemia by decreasing triglyceride and increasing high-density lipoprotein (HDL) levels. PPARγ agonists (thiazolidinediones) are used to treat Type 2 diabetes mellitus by improving insulin sensitivity. PPARα/γ (dual) agonists are supposed to treat both pathological conditions at once. In contrast, PPARβ/δ agonists are not in clinical use. Although activators of PPARs were initially considered to have favorable effects on the risk factors for cardiovascular disease, their cardiovascular safety is controversial. Here, we discuss the implications of PPARs in vascular biology regarding cardiac pathology and focus on the outcomes of clinical studies evaluating their benefits in cardiovascular diseases.
Collapse
|
6
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
7
|
Diagnostic value of PPARδ and miRNA-17 expression levels in patients with non-small cell lung cancer. Sci Rep 2021; 11:24136. [PMID: 34921177 PMCID: PMC8683395 DOI: 10.1038/s41598-021-03312-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
The PPARδ gene codes protein that belongs to the peroxisome proliferator-activated receptor (PPAR) family engaged in a variety of biological processes, including carcinogenesis. Specific biological and clinical roles of PPARδ in non-small cell lung cancer (NSCLC) is not fully explained. The association of PPARα with miRNA regulators (e.g. miRNA-17) has been documented, suggesting the existence of a functional relationship of all PPARs with epigenetic regulation. The aim of the study was to determine the PPARδ and miR-17 expression profiles in NSCLC and to assess their diagnostic value in lung carcinogenesis. PPARδ and miR-17 expressions was assessed by qPCR in NSCLC tissue samples (n = 26) and corresponding macroscopically unchanged lung tissue samples adjacent to the primary lesions served as control (n = 26). PPARδ and miR-17 expression were significantly lower in NSCLC than in the control (p = 0.0001 and p = 0.0178; respectively). A receiver operating characteristic (ROC) curve analysis demonstrated the diagnostic potential in discriminating NSCLC from the control with an area under the curve (AUC) of 0.914 for PPARδ and 0.692 for miR-17. Significant increase in PPARδ expression in the control for current smokers vs. former smokers (p = 0.0200) and increase in miR-17 expression in control tissue adjacent to adenocarcinoma subtype (p = 0.0422) were observed. Overexpression of miR-17 was observed at an early stage of lung carcinogenesis, which may suggest that it acts as a putative oncomiR. PPARδ and miR-17 may be markers differentiating tumour tissue from surgical margin and miR-17 may have diagnostic role in NSCLC histotypes differentiation.
Collapse
|
8
|
Dixit G, Prabhu A. The pleiotropic peroxisome proliferator activated receptors: Regulation and therapeutics. Exp Mol Pathol 2021; 124:104723. [PMID: 34822814 DOI: 10.1016/j.yexmp.2021.104723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
The Peroxisome proliferator-activated receptors (PPARs) are key regulators of metabolic events in our body. Owing to their implication in maintenance of homeostasis, both PPAR agonists and antagonists assume therapeutic significance. Understanding the molecular mechanisms of each of the PPAR isotypes in the healthy body and during disease is crucial to exploiting their full therapeutic potential. This article is an attempt to present a rational analysis of the multifaceted therapeutic effects and underlying mechanisms of isotype-specific PPAR agonists, dual PPAR agonists, pan PPAR agonists as well as PPAR antagonists. A holistic understanding of the mechanistic dimensions of these key metabolic regulators will guide future efforts to identify novel molecules in the realm of metabolic, inflammatory and immunotherapeutic diseases.
Collapse
Affiliation(s)
- Gargi Dixit
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
9
|
Luo W, He D, Zhang J, Ma Z, Chen K, Lv Z, Fan C, Yang L, Li Y, Zhou Z. Knockdown of PPARδ Induces VEGFA-Mediated Angiogenesis via Interaction With ERO1A in Human Colorectal Cancer. Front Oncol 2021; 11:713892. [PMID: 34712608 PMCID: PMC8546184 DOI: 10.3389/fonc.2021.713892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023] Open
Abstract
Angiogenesis is an important mechanism underlying the development and metastasis of colorectal cancer (CRC) and has emerged as a therapeutic target for metastatic CRC (mCRC). Our recent studies found that Peroxisome proliferator-activated receptor β/δ/D (PPARδ) regulates vascular endothelial growth factor A(VEGFA) secretion and the sensitivity to bevacizumab in CRC. However, its exact effect and underlying mechanisms remain unidentified. In this study, we showed that PPARδ expression was inversely associated with the microvascular density in human CRC tissues. Knockdown of PPARδ enhanced VEGFA expression in HCT116 cells and HUVEC angiogenesis in vitro; these phenomena were replicated in the experimental in vivo studies. By tandem mass tag (TMT)-labeling proteomics and chromatin immunoprecipitation sequencing (ChIP-seq) analyses, endoplasmic reticulum oxidoreductase 1 alpha (ERO1A) was screened and predicted as a target gene of PPARδ. This was verified by exploring the effect of coregulation of PPARδ and ERO1A on the VEGFA expression in HCT116 cells. The results revealed that PPARδ induced VEGFA by interacting with ERO1A. In conclusion, our results suggest that knockdown of PPARδ can promote CRC angiogenesis by upregulating VEGFA through ERO1A. This pathway may be a potential target for mCRC treatment.
Collapse
Affiliation(s)
- Wenjun Luo
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China.,Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Diao He
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhao Zhang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zida Ma
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Keling Chen
- Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaoying Lv
- Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanwen Fan
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lie Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China.,Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Li
- Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China.,Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Cheng HS, Yip YS, Lim EKY, Wahli W, Tan NS. PPARs and Tumor Microenvironment: The Emerging Roles of the Metabolic Master Regulators in Tumor Stromal-Epithelial Crosstalk and Carcinogenesis. Cancers (Basel) 2021; 13:2153. [PMID: 33946986 PMCID: PMC8125182 DOI: 10.3390/cancers13092153] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have been extensively studied for more than three decades. Consisting of three isotypes, PPARα, γ, and β/δ, these nuclear receptors are regarded as the master metabolic regulators which govern many aspects of the body energy homeostasis and cell fate. Their roles in malignancy are also increasingly recognized. With the growing interest in crosstalk between tumor stroma and epithelium, this review aims to highlight the current knowledge on the implications of PPARs in the tumor microenvironment. PPARγ plays a crucial role in the metabolic reprogramming of cancer-associated fibroblasts and adipocytes, coercing the two stromal cells to become substrate donors for cancer growth. Fibroblast PPARβ/δ can modify the risk of tumor initiation and cancer susceptibility. In endothelial cells, PPARβ/δ and PPARα are pro- and anti-angiogenic, respectively. Although the angiogenic role of PPARγ remains ambiguous, it is a crucial regulator in autocrine and paracrine signaling of cancer-associated fibroblasts and tumor-associated macrophages/immune cells. Of note, angiopoietin-like 4 (ANGPTL4), a secretory protein encoded by a target gene of PPARs, triggers critical oncogenic processes such as inflammatory signaling, extracellular matrix derangement, anoikis resistance and metastasis, making it a potential drug target for cancer treatment. To conclude, PPARs in the tumor microenvironment exhibit oncogenic activities which are highly controversial and dependent on many factors such as stromal cell types, cancer types, and oncogenesis stages. Thus, the success of PPAR-based anticancer treatment potentially relies on innovative strategies to modulate PPAR activity in a cell type-specific manner.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (Y.S.Y.); (W.W.)
| | - Yun Sheng Yip
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (Y.S.Y.); (W.W.)
| | - Eldeen Kai Yi Lim
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore;
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (Y.S.Y.); (W.W.)
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, 31300 Toulouse, France
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (Y.S.Y.); (W.W.)
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore;
| |
Collapse
|
11
|
Font-Díaz J, Jiménez-Panizo A, Caelles C, Vivanco MDM, Pérez P, Aranda A, Estébanez-Perpiñá E, Castrillo A, Ricote M, Valledor AF. Nuclear receptors: Lipid and hormone sensors with essential roles in the control of cancer development. Semin Cancer Biol 2020; 73:58-75. [PMID: 33309851 DOI: 10.1016/j.semcancer.2020.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that act as biological sensors and use a combination of mechanisms to modulate positively and negatively gene expression in a spatial and temporal manner. The highly orchestrated biological actions of several NRs influence the proliferation, differentiation, and apoptosis of many different cell types. Synthetic ligands for several NRs have been the focus of extensive drug discovery efforts for cancer intervention. This review summarizes the roles in tumour growth and metastasis of several relevant NR family members, namely androgen receptor (AR), estrogen receptor (ER), glucocorticoid receptor (GR), thyroid hormone receptor (TR), retinoic acid receptors (RARs), retinoid X receptors (RXRs), peroxisome proliferator-activated receptors (PPARs), and liver X receptors (LXRs). These studies are key to develop improved therapeutic agents based on novel modes of action with reduced side effects and overcoming resistance.
Collapse
Affiliation(s)
- Joan Font-Díaz
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain
| | - Alba Jiménez-Panizo
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Carme Caelles
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, Spain
| | - María dM Vivanco
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Derio, 48160, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, Valencia, 46010, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - Eva Estébanez-Perpiñá
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain; Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, 28029, Spain; Unidad de Biomedicina, (Unidad Asociada al CSIC), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Universidad de Las Palmas, Gran Canaria, 35001, Spain
| | - Mercedes Ricote
- Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Annabel F Valledor
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain.
| |
Collapse
|
12
|
The Emerging Role of PPAR Beta/Delta in Tumor Angiogenesis. PPAR Res 2020; 2020:3608315. [PMID: 32855630 PMCID: PMC7443046 DOI: 10.1155/2020/3608315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
PPARs are ligand-activated transcriptional factors that belong to the nuclear receptor superfamily. Among them, PPAR alpha and PPAR gamma are prone to exert an antiangiogenic effect, whereas PPAR beta/delta has an opposite effect in physiological and pathological conditions. Angiogenesis has been known as a hallmark of cancer, and our recent works also demonstrate that vascular-specific PPAR beta/delta overexpression promotes tumor angiogenesis and progression in vivo. In this review, we will mainly focus on the role of PPAR beta/delta in tumor angiogenesis linked to the tumor microenvironment to further facilitate tumor progression and metastasis. Moreover, the crosstalk between PPAR beta/delta and its downstream key signal molecules involved in tumor angiogenesis will also be discussed, and the network of interplay between them will further be established in the review.
Collapse
|
13
|
Wagner N, Wagner KD. PPARs and Angiogenesis-Implications in Pathology. Int J Mol Sci 2020; 21:ijms21165723. [PMID: 32785018 PMCID: PMC7461101 DOI: 10.3390/ijms21165723] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the family of ligand-activated nuclear receptors. The PPAR family consists of three subtypes encoded by three separate genes: PPARα (NR1C1), PPARβ/δ (NR1C2), and PPARγ (NR1C3). PPARs are critical regulators of metabolism and exhibit tissue and cell type-specific expression patterns and functions. Specific PPAR ligands have been proposed as potential therapies for a variety of diseases such as metabolic syndrome, cancer, neurogenerative disorders, diabetes, cardiovascular diseases, endometriosis, and retinopathies. In this review, we focus on the knowledge of PPAR function in angiogenesis, a complex process that plays important roles in numerous pathological conditions for which therapeutic use of PPAR modulation has been suggested.
Collapse
|
14
|
Wagner N, Wagner KD. PPAR Beta/Delta and the Hallmarks of Cancer. Cells 2020; 9:cells9051133. [PMID: 32375405 PMCID: PMC7291220 DOI: 10.3390/cells9051133] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family. Three different isoforms, PPAR alpha, PPAR beta/delta and PPAR gamma have been identified. They all form heterodimers with retinoic X receptors to activate or repress downstream target genes dependent on the presence/absence of ligands and coactivators or corepressors. PPARs differ in their tissue expression profile, ligands and specific agonists and antagonists. PPARs attract attention as potential therapeutic targets for a variety of diseases. PPAR alpha and gamma agonists are in clinical use for the treatment of dyslipidemias and diabetes. For both receptors, several clinical trials as potential therapeutic targets for cancer are ongoing. In contrast, PPAR beta/delta has been suggested as a therapeutic target for metabolic syndrome. However, potential risks in the settings of cancer are less clear. A variety of studies have investigated PPAR beta/delta expression or activation/inhibition in different cancer cell models in vitro, but the relevance for cancer growth in vivo is less well documented and controversial. In this review, we summarize critically the knowledge of PPAR beta/delta functions for the different hallmarks of cancer biological capabilities, which interplay to determine cancer growth.
Collapse
|
15
|
Yaghoubizadeh M, Pishkar L, Basati G. Aberrant Expression of Peroxisome Proliferator-Activated Receptors in Colorectal Cancer and Their Association with Cancer Progression and Prognosis. Gastrointest Tumors 2020; 7:11-20. [PMID: 32399461 PMCID: PMC7206611 DOI: 10.1159/000503995] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Peroxisome proliferator-activated receptors (PPARs), PPARα, PPARγ, and PPARδ, are nuclear ligand-activated transcription factors which presumably contribute to a broad range of pathophysiological processes, such as tumorigenesis. Nevertheless, their exact role as tumor suppressors or promoters is not straightforward in colorectal cancer (CRC). Therefore, expression values of these PPARs and their relation with tumor progression and prognosis were examined in CRC patients. METHODS In this work, the relative expression values of the PPARs were measured by real-time polymerase chain reaction in 100 CRC tumor tissues paired with adjacent normal tissues. After that, the association between relative expression values of the PPARs in tumor tissues and the cancer progression-related clinicopathological characteristics as well as overall survival of patients were assessed. RESULTS While PPARα and PPARδ seemed to be overexpressed, PPARγ was suppressed in CRC tumor tissues compared with paired adjacent normal tissues (p = 0.0001). The relative expressions of PPARα and PPARδ were negatively associated with tumor size, tumor grade, TNM stage, metastasis, lymphatic invasion, and decreased overall survival time (p < 0.05). The same associations, but in reverse direction, were found for PPARγ. CONCLUSIONS It was found that PPARα and PPARδ were overexpressed while PPARγ was suppressed in CRC tumor tissues, and these deregulations are associated with cancer progression and poor prognosis.
Collapse
Affiliation(s)
- Musa Yaghoubizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Pishkar
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Gholam Basati
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- *Gholam Basati, Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Banganjab Street, Ilam 693917143 (Iran), E-Mail
| |
Collapse
|
16
|
Wagner KD, Du S, Martin L, Leccia N, Michiels JF, Wagner N. Vascular PPARβ/δ Promotes Tumor Angiogenesis and Progression. Cells 2019; 8:cells8121623. [PMID: 31842402 PMCID: PMC6952835 DOI: 10.3390/cells8121623] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 01/20/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors, which function as transcription factors. Among them, PPARβ/δ is highly expressed in endothelial cells. Pharmacological activation with PPARβ/δ agonists had been shown to increase their angiogenic properties. PPARβ/δ has been suggested to be involved in the regulation of the angiogenic switch in tumor progression. However, until now, it is not clear to what extent the expression of PPARβ/δ in tumor endothelium influences tumor progression and metastasis formation. We addressed this question using transgenic mice with an inducible conditional vascular-specific overexpression of PPARβ/δ. Following specific over-expression of PPARβ/δ in endothelial cells, we induced syngenic tumors. We observed an enhanced tumor growth, a higher vessel density, and enhanced metastasis formation in the tumors of animals with vessel-specific overexpression of PPARβ/δ. In order to identify molecular downstream targets of PPARβ/δ in the tumor endothelium, we sorted endothelial cells from the tumors and performed RNA sequencing. We identified platelet-derived growth factor receptor beta (Pdgfrb), platelet-derived growth factor subunit B (Pdgfb), and the tyrosinkinase KIT (c-Kit) as new PPARβ/δ -dependent molecules. We show here that PPARβ/δ activation, regardless of its action on different cancer cell types, leads to a higher tumor vascularization which favors tumor growth and metastasis formation.
Collapse
Affiliation(s)
- Kay-Dietrich Wagner
- Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France; (K.-D.W.); (S.D.); (L.M.)
| | - Siyue Du
- Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France; (K.-D.W.); (S.D.); (L.M.)
| | - Luc Martin
- Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France; (K.-D.W.); (S.D.); (L.M.)
| | - Nathalie Leccia
- Department of Pathology, CHU Nice, 06107 Nice, France; (N.L.); (J.-F.M.)
| | | | - Nicole Wagner
- Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France; (K.-D.W.); (S.D.); (L.M.)
- Correspondence: ; Tel.: +33-493-377665
| |
Collapse
|
17
|
Guo C, Chen S, Liu W, Ma Y, Li J, Fisher PB, Fang X, Wang XY. Immunometabolism: A new target for improving cancer immunotherapy. Adv Cancer Res 2019; 143:195-253. [PMID: 31202359 DOI: 10.1016/bs.acr.2019.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fundamental metabolic pathways are essential for mammalian cells to provide energy, precursors for biosynthesis of macromolecules, and reducing power for redox regulation. While dysregulated metabolism (e.g., aerobic glycolysis also known as the Warburg effect) has long been recognized as a hallmark of cancer, recent discoveries of metabolic reprogramming in immune cells during their activation and differentiation have led to an emerging concept of "immunometabolism." Considering the recent success of cancer immunotherapy in the treatment of several cancer types, increasing research efforts are being made to elucidate alterations in metabolic profiles of cancer and immune cells during their interplays in the setting of cancer progression and immunotherapy. In this review, we summarize recent advances in studies of metabolic reprogramming in cancer as well as differentiation and functionality of various immune cells. In particular, we will elaborate how distinct metabolic pathways in the tumor microenvironment cause functional impairment of immune cells and contribute to immune evasion by cancer. Lastly, we highlight the potential of metabolically reprogramming the tumor microenvironment to promote effective and long-lasting antitumor immunity for improved immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Chunqing Guo
- Department of Human & Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Shixian Chen
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenjie Liu
- Department of Human & Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Yibao Ma
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Juan Li
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Paul B Fisher
- Department of Human & Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Xianjun Fang
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Xiang-Yang Wang
- Department of Human & Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
18
|
PPAR δ: A Potential Therapeutic Target for the Treatment of Metabolic Hypertension. Int J Hypertens 2019; 2019:7809216. [PMID: 31073415 PMCID: PMC6470447 DOI: 10.1155/2019/7809216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/17/2019] [Indexed: 12/20/2022] Open
Abstract
High blood pressure and its associated cardiovascular diseases have been major risks for public health. Multiple metabolic risk factors can cause the vascular dysfunction and vascular lesion, and the hypertension due to metabolic disturbances was defined as metabolic hypertension. The members of a subfamily of the nuclear receptors, peroxisome proliferator-activated receptors (PPARs), were found to be key regulators of metabolism and vascular function. We provide up-to-date knowledge on the role of subtype PPARδ in the regulation of metabolism and vascular function and the effect of its intervention on the metabolic hypertension management. We hope to give some insights into the development of more effective treatments of metabolic hypertension and its main complications.
Collapse
|
19
|
Cheng HS, Lee JXT, Wahli W, Tan NS. Exploiting vulnerabilities of cancer by targeting nuclear receptors of stromal cells in tumor microenvironment. Mol Cancer 2019; 18:51. [PMID: 30925918 PMCID: PMC6441226 DOI: 10.1186/s12943-019-0971-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/21/2019] [Indexed: 12/27/2022] Open
Abstract
The tumor microenvironment is a complex and dynamic cellular community comprising the tumor epithelium and various tumor-supporting cells such as immune cells, fibroblasts, immunosuppressive cells, adipose cells, endothelial cells, and pericytes. The interplay between the tumor microenvironment and tumor cells represents a key contributor to immune evasiveness, physiological hardiness and the local and systemic invasiveness of malignant cells. Nuclear receptors are master regulators of physiological processes and are known to play pro-/anti-oncogenic activities in tumor cells. However, the actions of nuclear receptors in tumor-supporting cells have not been widely studied. Given the excellent druggability and extensive regulatory effects of nuclear receptors, understanding their biological functionality in the tumor microenvironment is of utmost importance. Therefore, the present review aims to summarize recent evidence about the roles of nuclear receptors in tumor-supporting cells and their implications for malignant processes such as tumor proliferation, evasion of immune surveillance, angiogenesis, chemotherapeutic resistance, and metastasis. Based on findings derived mostly from cell culture studies and a few in vivo animal cancer models, the functions of VDR, PPARs, AR, ER and GR in tumor-supporting cells are relatively well-characterized. Evidence for other receptors, such as RARβ, RORγ, and FXR, is limited yet promising. Hence, the nuclear receptor signature in the tumor microenvironment may harbor prognostic value. The clinical prospects of a tumor microenvironment-oriented cancer therapy exploiting the nuclear receptors in different tumor-supporting cells are also encouraging. The major challenge, however, lies in the ability to develop a highly specific drug delivery system to facilitate precision medicine in cancer therapy.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Jeannie Xue Ting Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore, 308232, Singapore.,INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, France.,Center for Integrative Genomics, University of Lausanne, Le Génopode, CH-1015, Lausanne, Switzerland
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore. .,Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
20
|
The Role of PPAR-δ in Metabolism, Inflammation, and Cancer: Many Characters of a Critical Transcription Factor. Int J Mol Sci 2018; 19:ijms19113339. [PMID: 30373124 PMCID: PMC6275063 DOI: 10.3390/ijms19113339] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor-delta (PPAR-δ), one of three members of the PPAR group in the nuclear receptor superfamily, is a ligand-activated transcription factor. PPAR-δ regulates important cellular metabolic functions that contribute to maintaining energy balance. PPAR-δ is especially important in regulating fatty acid uptake, transport, and β-oxidation as well as insulin secretion and sensitivity. These salutary PPAR-δ functions in normal cells are thought to protect against metabolic-syndrome-related diseases, such as obesity, dyslipidemia, insulin resistance/type 2 diabetes, hepatosteatosis, and atherosclerosis. Given the high clinical burden these diseases pose, highly selective synthetic activating ligands of PPAR-δ were developed as potential preventive/therapeutic agents. Some of these compounds showed some efficacy in clinical trials focused on metabolic-syndrome-related conditions. However, the clinical development of PPAR-δ agonists was halted because various lines of evidence demonstrated that cancer cells upregulated PPAR-δ expression/activity as a defense mechanism against nutritional deprivation and energy stresses, improving their survival and promoting cancer progression. This review discusses the complex relationship between PPAR-δ in health and disease and highlights our current knowledge regarding the different roles that PPAR-δ plays in metabolism, inflammation, and cancer.
Collapse
|
21
|
The Role of PPARβ/δ in Melanoma Metastasis. Int J Mol Sci 2018; 19:ijms19102860. [PMID: 30241392 PMCID: PMC6213649 DOI: 10.3390/ijms19102860] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Peroxisome proliferator⁻activated receptor (PPAR) β/δ, a ligand-activated transcription factor, is involved in diverse biological processes including cell proliferation, cell differentiation, inflammation and energy homeostasis. Besides its well-established roles in metabolic disorders, PPARβ/δ has been linked to carcinogenesis and was reported to inhibit melanoma cell proliferation, anchorage-dependent clonogenicity and ectopic xenograft tumorigenicity. However, PPARβ/δ's role in tumour progression and metastasis remains controversial. METHODS In the present studies, the consequence of PPARβ/δ inhibition either by global genetic deletion or by a specific PPARβ/δ antagonist, 10h, on malignant transformation of melanoma cells and melanoma metastasis was examined using both in vitro and in vivo models. RESULTS Our study showed that 10h promotes epithelial-mesenchymal transition (EMT), migration, adhesion, invasion and trans-endothelial migration of mouse melanoma B16/F10 cells. We further demonstrated an increased tumour cell extravasation in the lungs of wild-type mice subjected to 10h treatment and in Pparβ/δ-/- mice in an experimental mouse model of blood-borne pulmonary metastasis by tail vein injection. This observation was further supported by an increased tumour burden in the lungs of Pparβ/δ-/- mice as demonstrated in the same animal model. CONCLUSION These results indicated a protective role of PPARβ/δ in melanoma progression and metastasis.
Collapse
|
22
|
PPARβ/δ: Linking Metabolism to Regeneration. Int J Mol Sci 2018; 19:ijms19072013. [PMID: 29996502 PMCID: PMC6073704 DOI: 10.3390/ijms19072013] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 01/10/2023] Open
Abstract
In contrast to the general belief that regeneration is a rare event, mainly occurring in simple organisms, the ability of regeneration is widely distributed in the animal kingdom. Yet, the efficiency and extent of regeneration varies greatly. Humans can recover from blood loss as well as damage to tissues like bone and liver. Yet damage to the heart and brain cannot be reversed, resulting in scaring. Thus, there is a great interest in understanding the molecular mechanisms of naturally occurring regeneration and to apply this knowledge to repair human organs. During regeneration, injury-activated immune cells induce wound healing, extracellular matrix remodeling, migration, dedifferentiation and/or proliferation with subsequent differentiation of somatic or stem cells. An anti-inflammatory response stops the regenerative process, which ends with tissue remodeling to achieve the original functional state. Notably, many of these processes are associated with enhanced glycolysis. Therefore, peroxisome proliferator-activated receptor (PPAR) β/δ—which is known to be involved for example in lipid catabolism, glucose homeostasis, inflammation, survival, proliferation, differentiation, as well as mammalian regeneration of the skin, bone and liver—appears to be a promising target to promote mammalian regeneration. This review summarizes our current knowledge of PPARβ/δ in processes associated with wound healing and regeneration.
Collapse
|
23
|
PPAR Agonists for the Prevention and Treatment of Lung Cancer. PPAR Res 2017; 2017:8252796. [PMID: 28316613 PMCID: PMC5337885 DOI: 10.1155/2017/8252796] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common and most fatal of all malignancies worldwide. Furthermore, with more than half of all lung cancer patients presenting with distant metastases at the time of initial diagnosis, the overall prognosis for the disease is poor. There is thus a desperate need for new prevention and treatment strategies. Recently, a family of nuclear hormone receptors, the peroxisome proliferator-activated receptors (PPARs), has attracted significant attention for its role in various malignancies including lung cancer. Three PPARs, PPARα, PPARβ/δ, and PPARγ, display distinct biological activities and varied influences on lung cancer biology. PPARα activation generally inhibits tumorigenesis through its antiangiogenic and anti-inflammatory effects. Activated PPARγ is also antitumorigenic and antimetastatic, regulating several functions of cancer cells and controlling the tumor microenvironment. Unlike PPARα and PPARγ, whether PPARβ/δ activation is anti- or protumorigenic or even inconsequential currently remains an open question that requires additional investigation. This review of current literature emphasizes the multifaceted effects of PPAR agonists in lung cancer and discusses how they may be applied as novel therapeutic strategies for the disease.
Collapse
|
24
|
Zuo X, Xu W, Xu M, Tian R, Moussalli MJ, Mao F, Zheng X, Wang J, Morris JS, Gagea M, Eng C, Kopetz S, Maru DM, Rashid A, Broaddus R, Wei D, Hung MC, Sood AK, Shureiqi I. Metastasis regulation by PPARD expression in cancer cells. JCI Insight 2017; 2:e91419. [PMID: 28097239 DOI: 10.1172/jci.insight.91419] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptor-δ (PPARD) is upregulated in many major human cancers, but the role that its expression in cancer cells has in metastasis remains poorly understood. Here, we show that specific PPARD downregulation or genetic deletion of PPARD in cancer cells significantly repressed metastasis in various cancer models in vivo. Mechanistically, PPARD promoted angiogenesis via interleukin 8 in vivo and in vitro. Analysis of transcriptome profiling of HCT116 colon cancer cells with or without genetic deletion of PPARD and gene expression patterns in The Cancer Genome Atlas colorectal adenocarcinoma database identified novel pro-metastatic genes (GJA1, VIM, SPARC, STC1, SNCG) as PPARD targets. PPARD expression in cancer cells drastically affected epithelial-mesenchymal transition, migration, and invasion, further underscoring its necessity for metastasis. Clinically, high PPARD expression in various major human cancers (e.g., colorectal, lung, breast) was associated with significantly reduced metastasis-free survival. Our results demonstrate that PPARD, a druggable protein, is an important molecular target in metastatic cancer.
Collapse
Affiliation(s)
- Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Weiguo Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Surgical Oncology, Affiliated Hospital of Hebei United University, Tangshan, China
| | - Min Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rui Tian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Fei Mao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Jing Wang
- Department of Bioinformatics and Computational Biology
| | | | - Mihai Gagea
- Department of Veterinary Medicine and Surgery
| | - Cathy Eng
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, and.,Department of Cancer Biology and.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Imad Shureiqi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
25
|
Müller R. PPARβ/δ in human cancer. Biochimie 2016; 136:90-99. [PMID: 27916645 DOI: 10.1016/j.biochi.2016.10.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/06/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022]
Abstract
The nuclear receptor factor peroxisome proliferator-activated receptor (PPARβ/δ) can regulate its target genes by transcriptional activation or repression through both ligand-dependent and independent mechanism as well as by interactions with other transcription factors. PPARβ/δ exerts essential regulatory functions in intermediary metabolism that have been elucidated in detail, but clearly also plays a role in inflammation, differentiation, apoptosis and other cancer-associated processes, which is, however, mechanistically only partly understood. Consistent with these functions clinical associations link the expression of PPARβ/δ and its target genes to an unfavorable outcome of several human cancers. However, the available data do not yield a clear picture of PPARβ/δ's role in cancer-associated processes and are in fact partly controversial. This article provides an overview of this research area and discusses the role of PPARβ/δ in cancer in light of the complex mechanisms of its transcriptional regulation and its potential as a druggable anti-cancer target.
Collapse
Affiliation(s)
- Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University, Hans-Meerwein-Str. 3, 35043 Marburg, Germany.
| |
Collapse
|
26
|
Inducible Conditional Vascular-Specific Overexpression of Peroxisome Proliferator-Activated Receptor Beta/Delta Leads to Rapid Cardiac Hypertrophy. PPAR Res 2016; 2016:7631085. [PMID: 27057154 PMCID: PMC4794587 DOI: 10.1155/2016/7631085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/10/2016] [Indexed: 01/20/2023] Open
Abstract
Peroxisome proliferator-activated receptors are nuclear receptors which function as ligand-activated transcription factors. Among them, peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in the heart and thought to have cardioprotective functions due to its beneficial effects in metabolic syndrome. As we already showed that PPARβ/δ activation resulted in an enhanced cardiac angiogenesis and growth without impairment of heart function, we were interested to determine the effects of a specific activation of PPARβ/δ in the vasculature on cardiac performance under normal and in chronic ischemic heart disease conditions. We analyzed the effects of a specific PPARβ/δ overexpression in endothelial cells on the heart using an inducible conditional vascular-specific mouse model. We demonstrate that vessel-specific overexpression of PPARβ/δ induces rapid cardiac angiogenesis and growth with an increase in cardiomyocyte size. Upon myocardial infarction, vascular overexpression of PPARβ/δ, despite the enhanced cardiac vessel formation, does not protect against chronic ischemic injury. Our results suggest that the proper balance of PPARβ/δ activation in the different cardiac cell types is required to obtain beneficial effects on the outcome in chronic ischemic heart disease.
Collapse
|
27
|
Vattulainen-Collanus S, Akinrinade O, Li M, Koskenvuo M, Li CG, Rao SP, de Jesus Perez V, Yuan K, Sawada H, Koskenvuo JW, Alvira C, Rabinovitch M, Alastalo TP. Loss of PPARγ in endothelial cells leads to impaired angiogenesis. J Cell Sci 2016; 129:693-705. [PMID: 26743080 DOI: 10.1242/jcs.169011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022] Open
Abstract
Tie2-promoter-mediated loss of peroxisome proliferator-activated receptor gamma (PPARγ, also known as PPARG) in mice leads to osteopetrosis and pulmonary arterial hypertension. Vascular disease is associated with loss of PPARγ in pulmonary microvascular endothelial cells (PMVEC); we evaluated the role of PPARγ in PMVEC functions, such as angiogenesis and migration. The role of PPARγ in angiogenesis was evaluated in Tie2CrePPARγ(flox/flox) and wild-type mice, and in mouse and human PMVECs. RNA sequencing and bioinformatic approaches were utilized to reveal angiogenesis-associated targets for PPARγ. Tie2CrePPARγ(flox/flox) mice showed an impaired angiogenic capacity. Analysis of endothelial progenitor-like cells using bone marrow transplantation combined with evaluation of isolated PMVECs revealed that loss of PPARγ attenuates the migration and angiogenic capacity of mature PMVECs. PPARγ-deficient human PMVECs showed a similar migration defect in culture. Bioinformatic and experimental analyses newly revealed E2F1 as a target of PPARγ in the regulation of PMVEC migration. Disruption of the PPARγ-E2F1 axis was associated with a dysregulated Wnt pathway related to the GSK3B interacting protein (GSKIP). In conclusion, PPARγ plays an important role in sustaining angiogenic potential in mature PMVECs through E2F1-mediated gene regulation.
Collapse
Affiliation(s)
- Sanna Vattulainen-Collanus
- Children's Hospital Helsinki, Pediatric Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Oyediran Akinrinade
- Children's Hospital Helsinki, Pediatric Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland Institute of Biomedicine, University of Helsinki, Helsinki 00290, Finland
| | - Molong Li
- The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland
| | - Minna Koskenvuo
- Children's Hospital Helsinki, Division of Hematology-Oncology and Stem Cell Transplantation, University of Helsinki and Helsinki University Central Hospital, 00290 Helsinki, Finland
| | - Caiyun Grace Li
- Department of Pediatrics, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute Stanford University, Stanford, CA 94305, USA
| | - Shailaja P Rao
- Department of Pediatrics, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute Stanford University, Stanford, CA 94305, USA
| | - Vinicio de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
| | - Hirofumi Sawada
- Department of Pediatrics, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute Stanford University, Stanford, CA 94305, USA Department of Pediatrics, Mie University Graduate School of Medicine, Mie 5148507, Japan
| | - Juha W Koskenvuo
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland Department of Clinical Physiology and Nuclear Medicine, HUS Medical Imaging Center, Helsinki University Central Hospital and University of Helsinki, 00290 Helsinki, Finland
| | - Cristina Alvira
- Department of Pediatrics, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute Stanford University, Stanford, CA 94305, USA
| | - Marlene Rabinovitch
- Department of Pediatrics, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute Stanford University, Stanford, CA 94305, USA
| | - Tero-Pekka Alastalo
- Children's Hospital Helsinki, Pediatric Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| |
Collapse
|
28
|
Yu CW, Liang X, Lipsky S, Karaaslan C, Kozakewich H, Hotamisligil GS, Bischoff J, Cataltepe S. Dual role of fatty acid-binding protein 5 on endothelial cell fate: a potential link between lipid metabolism and angiogenic responses. Angiogenesis 2015; 19:95-106. [PMID: 26625874 DOI: 10.1007/s10456-015-9491-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/23/2015] [Indexed: 11/26/2022]
Abstract
Fatty acid-binding proteins (FABP) are small molecular mass intracellular lipid chaperones that are expressed in a tissue-specific manner with some overlaps. FABP4 and FABP5 share ~55 % amino acid sequence homology and demonstrate synergistic effects in regulation of metabolic and inflammatory responses in adipocytes and macrophages. Recent studies have shown that FABP4 and FABP5 are also co-expressed in a subset of endothelial cells (EC). FABP4, which has a primarily microvascular distribution, enhances angiogenic responses of ECs, including proliferation, migration, and survival. However, the vascular expression of FABP5 has not been well characterized, and the role of FABP5 in regulation of angiogenic responses in ECs has not been studied to date. Herein we report that while FABP4 and FABP5 are co-expressed in microvascular ECs in several tissues, FABP5 expression is also detected in ECs of larger blood vessels. In contrast to FABP4, EC-FABP5 levels are not induced by VEGF-A or bFGF. FABP5 deficiency leads to a profound impairment in EC proliferation and chemotactic migration. These effects are recapitulated in an ex vivo assay of angiogenesis, the aortic ring assay. Interestingly, in contrast to FABP4-deficient ECs, FABP5-deficient ECs are significantly more resistant to apoptotic cell death. The effect of FABP5 on EC proliferation and survival is mediated, only in part, by PPARδ-dependent pathways. Collectively, these findings demonstrate that EC-FABP5, similar to EC-FABP4, promotes angiogenic responses under certain conditions, but it can also exert opposing effects on EC survival as compared to EC-FABP4. Thus, the balance between FABP4 and FABP5 in ECs may be important in regulation of angiogenic versus quiescent phenotypes in blood vessels.
Collapse
Affiliation(s)
- Chen-Wei Yu
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| | - Xiaoliang Liang
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samantha Lipsky
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cagatay Karaaslan
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Hacettepe University, Beytepe, Ankara, Turkey
| | - Harry Kozakewich
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gokhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Sule Cataltepe
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Peters JM, Gonzalez FJ, Müller R. Establishing the Role of PPARβ/δ in Carcinogenesis. Trends Endocrinol Metab 2015; 26:595-607. [PMID: 26490384 PMCID: PMC4631629 DOI: 10.1016/j.tem.2015.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 12/16/2022]
Abstract
The role of the nuclear hormone receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in carcinogenesis is controversial because conflicting studies indicate that it both inhibits and promotes tumorigenesis. In this review, we focus on recent studies on PPARβ/δ including the significance of increased or decreased PPARβ/δ expression in cancers; a range of opposing mechanisms describing how PPARβ/δ agonists, antagonists, and inverse agonists regulate tumorigenesis and/or whether there may be cell context-specific mechanisms; and whether activating or inhibiting PPARβ/δ is feasible for cancer chemoprevention and/or therapy. Research questions that need to be addressed are highlighted to establish whether PPARβ/δ can be effectively targeted for cancer chemoprevention.
Collapse
Affiliation(s)
- Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD 20892, USA
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| |
Collapse
|
30
|
Expression of Prostacyclin-Synthase in Human Breast Cancer: Negative Prognostic Factor and Protection against Cell Death In Vitro. Mediators Inflamm 2015; 2015:864136. [PMID: 26265889 PMCID: PMC4526217 DOI: 10.1155/2015/864136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/08/2015] [Accepted: 07/01/2015] [Indexed: 12/11/2022] Open
Abstract
Endogenously formed prostacyclin (PGI2) and synthetic PGI2 analogues have recently been shown to regulate cell survival in various cell lines. To elucidate the significance of PGI2 in human breast cancer, we performed immunohistochemistry to analyze expression of prostacyclin-synthase (PGIS) in 248 human breast cancer specimens obtained from surgical pathology files. We examined patients' 10-year survival retrospectively by sending a questionnaire to their general practitioners and performed univariate analysis to determine whether PGIS expression correlated with patient survival. Lastly, the effects of PGI2 and its analogues on cell death were examined in a human breast cancer cell line (MCF-7) and a human T-cell leukemia cell line (CCRF-CEM). PGIS expression was observed in tumor cells in 48.7% of samples and was associated with a statistically significant reduction in 10-year survival (P = 0.038; n = 193). Transient transfection of PGIS into MCF-7 cells exposed to sulindac increased cell viability by 50% and exposure to carbaprostacyclin protected against sulindac sulfone induced apoptosis in CCRF-CEM cells. Expression of PGIS is correlated with a reduced patient survival and protects against cell death in vitro, suggesting that PGIS is a potential therapeutic target in breast cancer.
Collapse
|
31
|
Wawrzyniak M, Pich C, Gross B, Schütz F, Fleury S, Quemener S, Sgandurra M, Bouchaert E, Moret C, Mury L, Rommens C, Mottaz H, Dombrowicz D, Michalik L. Endothelial, but not smooth muscle, peroxisome proliferator-activated receptor β/δ regulates vascular permeability and anaphylaxis. J Allergy Clin Immunol 2015; 135:1625-35.e5. [DOI: 10.1016/j.jaci.2014.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 10/21/2014] [Accepted: 11/04/2014] [Indexed: 01/07/2023]
|
32
|
Giordano Attianese GMP, Desvergne B. Integrative and systemic approaches for evaluating PPARβ/δ (PPARD) function. NUCLEAR RECEPTOR SIGNALING 2015; 13:e001. [PMID: 25945080 PMCID: PMC4419664 DOI: 10.1621/nrs.13001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptors that function as transcription factors regulating the expression of genes involved in cellular differentiation, development, metabolism and also tumorigenesis. Three PPAR isotypes (α, β/δ and γ) have been identified, among which PPARβ/δ is the most difficult to functionally examine due to its tissue-specific diversity in cell fate determination, energy metabolism and housekeeping activities. PPARβ/δ acts both in a ligand-dependent and -independent manner. The specific type of regulation, activation or repression, is determined by many factors, among which the type of ligand, the presence/absence of PPARβ/δ-interacting corepressor or coactivator complexes and PPARβ/δ protein post-translational modifications play major roles. Recently, new global approaches to the study of nuclear receptors have made it possible to evaluate their molecular activity in a more systemic fashion, rather than deeply digging into a single pathway/function. This systemic approach is ideally suited for studying PPARβ/δ, due to its ubiquitous expression in various organs and its overlapping and tissue-specific transcriptomic signatures. The aim of the present review is to present in detail the diversity of PPARβ/δ function, focusing on the different information gained at the systemic level, and describing the global and unbiased approaches that combine a systems view with molecular understanding.
Collapse
|
33
|
Park J, Lee S, Hur J, Hong E, Choi JI, Yang JM, Kim JY, Kim YC, Cho HJ, Peters J, Ryoo SB, Kim Y, Kim HS. M-CSF from Cancer Cells Induces Fatty Acid Synthase and PPARβ/δ Activation in Tumor Myeloid Cells, Leading to Tumor Progression. Cell Rep 2015; 10:1614-1625. [DOI: 10.1016/j.celrep.2015.02.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 01/06/2015] [Accepted: 02/04/2015] [Indexed: 12/12/2022] Open
|
34
|
The Antifibrosis Effects of Peroxisome Proliferator-Activated Receptor δ on Rat Corneal Wound Healing after Excimer Laser Keratectomy. PPAR Res 2014; 2014:464935. [PMID: 25477952 PMCID: PMC4248330 DOI: 10.1155/2014/464935] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/17/2014] [Indexed: 12/16/2022] Open
Abstract
Corneal stromal fibrosis characterized by myofibroblasts and abnormal extracellular matrix (ECM) is usually the result of inappropriate wound healing. The present study tested the hypothesis that the ligand activation of peroxisome proliferator-activated receptor (PPAR) δ had antifibrosis effects in a rat model of corneal damage. Adult Sprague-Dawley rats underwent bilateral phototherapeutic keratectomy (PTK). The eyes were randomized into four groups: PBS, GW501516 (a selective agonist of PPARδ), GSK3787 (a selective antagonist of PPARδ), or GW501516 combined with GSK3787. The agents were subconjunctivally administered twice a week until sacrifice. The cellular aspects of corneal wound healing were evaluated with in vivo confocal imaging and postmortem histology. A myofibroblast marker (α-smooth muscle actin) and ECM production (fibronectin, collagen type III and collagen type I) were examined by immunohistochemistry and RT-PCR. At the early stages of wound healing, GW501516 inhibited reepithelialization and promoted angiogenesis. During the remodeling phase of wound healing, GW501516 attenuated the activation and proliferation of keratocytes, which could be reversed by GSK3787. GW501516 decreased transdifferentiation from keratocytes into myofibroblasts, ECM synthesis, and corneal haze. These results demonstrate that GW501516 controls corneal fibrosis and suggest that PPARδ may potentially serve as a therapeutic target for treating corneal scars.
Collapse
|
35
|
Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev 2014; 94:795-858. [PMID: 24987006 DOI: 10.1152/physrev.00027.2013] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.
Collapse
Affiliation(s)
- Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
36
|
Yang Y, Burke RV, Jeon CY, Chang SC, Chang PY, Morgenstern H, Tashkin DP, Mao J, Cozen W, Mack TM, Rao J, Zhang ZF. Polymorphisms of peroxisome proliferator-activated receptors and survival of lung cancer and upper aero-digestive tract cancers. Lung Cancer 2014; 85:449-56. [PMID: 25043640 PMCID: PMC4143535 DOI: 10.1016/j.lungcan.2014.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) are transcriptional factors involved in several biological processes such as inflammation, cancer growth, progression and apoptosis that are important in lung and upper aero-digestive tract (UADT) cancer outcomes. Nonetheless, there are no published studies of the relationship between PPARs gene polymorphisms and survival of patients with lung cancer or UADT cancers. METHODS 1212 cancer patients (611 lung, 303 oral, 100 pharyngeal, 90 laryngeal, and 108 esophageal) were followed for a median duration of 11 years. We genotyped three potentially functional single nucleotide polymorphisms (SNPs) using Taqman - rs3734254 of the gene PPARD and rs10865710 and rs1801282 of the gene PPARG - and investigated their associations with lung and UADT cancer survival using Cox regression. A semi-Bayesian shrinkage approach was used to reduce the potential for false positive findings when examining multiple associations. RESULTS The variant homozygote CC (vs. TT) of PPARD rs3734254 was inversely associated with mortality of both lung cancer (adjusted hazard ratio [aHR]=0.63, 95% confidence interval [CI]=0.42, 0.96) and UADT cancers (aHR=0.51, 95% CI=0.27, 0.99). Use of the semi-Bayesian shrinkage approach yielded a posterior aHR for lung cancer of 0.66 (95% posterior limits=0.44, 0.98) and a posterior aHR for UADT cancers of 0.58 (95% posterior limits=0.33, 1.03). CONCLUSION Our findings suggest that lung-cancer patients with the CC variant of PPARD rs3734254 may have a survival advantage over lung-cancer patients with other gene variants.
Collapse
Affiliation(s)
- Ying Yang
- Department of Epidemiology, University of California, Los Angeles (UCLA) School of Public Health, Los Angeles, CA, USA
| | - Rita V Burke
- Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA; Division of Pediatric Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christie Y Jeon
- Cancer Prevention and Genetics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shen-Chih Chang
- Department of Epidemiology, University of California, Los Angeles (UCLA) School of Public Health, Los Angeles, CA, USA
| | - Po-Yin Chang
- Department of Epidemiology, University of California, Los Angeles (UCLA) School of Public Health, Los Angeles, CA, USA; Division of Endocrinology, Gerontology, & Metabolism, School of Medicine, Stanford University, Stanford, CA, USA; VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Hal Morgenstern
- Departments of Epidemiology, Environmental Health Sciences, and Urology, Schools of Public Health and Medicine, and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Donald P Tashkin
- Division of Pulmonary and Critical Care Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jenny Mao
- Pulmonary and Critical Care Section, New Mexico VA Healthcare System, Albuquerque, NM, USA
| | - Wendy Cozen
- Department of Preventive Medicine, USC Keck School of Medicine at University of Southern California, Los Angeles, CA, USA
| | - Thomas M Mack
- Department of Preventive Medicine, USC Keck School of Medicine at University of Southern California, Los Angeles, CA, USA
| | - Jianyu Rao
- Department of Epidemiology, University of California, Los Angeles (UCLA) School of Public Health, Los Angeles, CA, USA; Department of Pathology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Zuo-Feng Zhang
- Department of Epidemiology, University of California, Los Angeles (UCLA) School of Public Health, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
37
|
Montagner A, Delgado MB, Tallichet-Blanc C, Chan JSK, Sng MK, Mottaz H, Degueurce G, Lippi Y, Moret C, Baruchet M, Antsiferova M, Werner S, Hohl D, Al Saati T, Farmer PJ, Tan NS, Michalik L, Wahli W. Src is activated by the nuclear receptor peroxisome proliferator-activated receptor β/δ in ultraviolet radiation-induced skin cancer. EMBO Mol Med 2014; 6:80-98. [PMID: 24203162 PMCID: PMC3936491 DOI: 10.1002/emmm.201302666] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 02/04/2023] Open
Abstract
Although non-melanoma skin cancer (NMSC) is the most common human cancer and its incidence continues to rise worldwide, the mechanisms underlying its development remain incompletely understood. Here, we unveil a cascade of events involving peroxisome proliferator-activated receptor (PPAR) β/δ and the oncogene Src, which promotes the development of ultraviolet (UV)-induced skin cancer in mice. UV-induced PPARβ/δ activity, which directly stimulated Src expression, increased Src kinase activity and enhanced the EGFR/Erk1/2 signalling pathway, resulting in increased epithelial-to-mesenchymal transition (EMT) marker expression. Consistent with these observations, PPARβ/δ-null mice developed fewer and smaller skin tumours, and a PPARβ/δ antagonist prevented UV-dependent Src stimulation. Furthermore, the expression of PPARβ/δ positively correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma (SCC), and critically, linear models applied to several human epithelial cancers revealed an interaction between PPARβ/δ and SRC and TGFβ1 transcriptional levels. Taken together, these observations motivate the future evaluation of PPARβ/δ modulators to attenuate the development of several epithelial cancers.
Collapse
Affiliation(s)
- Alexandra Montagner
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
| | - Maria B Delgado
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
| | - Corinne Tallichet-Blanc
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
| | - Jeremy S K Chan
- School of Biological Sciences, Nanyang Technological UniversityNanyang Drive, Singapore, Singapore
| | - Ming K Sng
- School of Biological Sciences, Nanyang Technological UniversityNanyang Drive, Singapore, Singapore
| | - Hélène Mottaz
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
| | - Gwendoline Degueurce
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
| | - Yannick Lippi
- GeT-TRiX Facility, INRA ToxAlim, UMR1331Chemin de Tournefeuille, Toulouse Cedex, France
| | - Catherine Moret
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
| | - Michael Baruchet
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
| | - Maria Antsiferova
- Department of Biology, Institute of Molecular Health Sciences, ETH ZurichSchafmattstrasse, Zurich, Switzerland
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH ZurichSchafmattstrasse, Zurich, Switzerland
| | - Daniel Hohl
- Department of Dermatology, University Hospital of Lausanne (CHUV)Lausanne, Switzerland
| | - Talal Al Saati
- INSERM/UPS, US006/CREFRE, Histopathology Facility, Place du Docteur BaylacCHU Purpan, Toulouse Cedex, France
| | - Pierre J Farmer
- Exploratory Biomarker Analysis, Biomarker Technologies, Bioinformatics, Non Clinical Development, Merck Serono International S.A. SwitzerlandChemin des Mines, Geneva, Switzerland
| | - Nguan S Tan
- School of Biological Sciences, Nanyang Technological UniversityNanyang Drive, Singapore, Singapore
- Institute of Molecular and Cell Biology, Biopolis DriveProteos, Singapore, Singapore
| | - Liliane Michalik
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
- *Corresponding author: Tel: +41 21 692 41 10; Fax: +41 21 692 41 15; E-mail:
| | - Walter Wahli
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of LausanneLe Genopode, Lausanne, Switzerland
- Lee Kong Chian School of Medicine, Imperial College London, Nanyang Technological UniversitySingapore, Singapore
- **Corresponding author: Tel: +41 21 692 41 10; Fax: +41 21 692 41 15; E-mail:
| |
Collapse
|
38
|
The prognostic significance of peroxisome proliferator-activated receptor β expression in the vascular endothelial cells of colorectal cancer. J Gastroenterol 2014; 49:436-45. [PMID: 23821017 DOI: 10.1007/s00535-013-0845-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/04/2013] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Currently, little is known regarding the role of peroxisome proliferator-activated receptor-β (PPAR β) in the vascular endothelial cells (VECs) of colorectal cancers (CRCs). The aim of this study was to investigate the relationship of PPAR β expression in the VECs of CRCs in terms of the prognosis and clinicopathological features of CRC patients. DESIGN The expression and localization of PPAR β in the primary cancers and the matched normal mucosal samples of 141 Swedish CRC patients were analyzed in terms of its correlation with clinicopathological features and the expression of angiogenesis-related genes. This study also included 92 Chinese CRC patients. RESULTS PPAR β was predominantly localized in the cytoplasm and was significantly downregulated in the VECs of CRC compared to that of the normal mucosa. The low expression levels of PPAR β in the VECs of CRC were statistically correlated with enhanced differentiation, early staging and favorable overall survival and were associated with the increased expression of VEGF and D2-40. The patients exhibiting elevated expression of PPAR β in CRC cells but reduced expression in VECs exhibited more favorable survival compared with the other patients, whereas the patients with reduced expression of PPAR β in CRC cells but increased expression in VECs exhibited less favorable prognosis. CONCLUSIONS PPAR β might play a tumor suppressor role in CRC cells in contrast to a tumor promoter role in the VECs of CRCs.
Collapse
|
39
|
Roche E, Lascombe I, Bittard H, Mougin C, Fauconnet S. The PPARβ agonist L-165041 promotes VEGF mRNA stabilization in HPV18-harboring HeLa cells through a receptor-independent mechanism. Cell Signal 2013; 26:433-43. [PMID: 24172859 DOI: 10.1016/j.cellsig.2013.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/11/2013] [Accepted: 10/21/2013] [Indexed: 01/03/2023]
Abstract
Peroxisome Proliferator-Activated Receptor-β (PPARβ) is a ligand-inducible transcription factor activated by both natural (fatty acids and derivatives) and high affinity synthetic agonists. It is thought to play a role in angiogenesis development and Vascular Endothelial Growth Factor (VEGF) regulation but its contribution remains unclear. Until now, the PPARβ agonism effect on VEGF expression in cervical cancer cells was unknown. This led to our interest in assessing the effect of PPARβ activation on the regulation of different VEGF isoforms mRNA expression and the impact of E6 viral oncoprotein and its target p53 on this regulation in cervical cancer cells. Here, we showed that the PPARβ agonist L-165041 induces VEGF(121), VEGF(165) and VEGF(189) expression in HPV (Human Papillomavirus) positive HeLa cells but not in HPV negative cells. The underlying mechanisms did involve neither E6 oncoprotein nor p53. We highlighted a novel mode of PPARβ ligand action including a post-transcriptional regulation of VEGF mRNA expression through the p38 MAPK signaling pathway and the activation of the mRNA-stabilizing factor HuR. But most importantly, we clearly demonstrated that L-165041 acts independently of PPARβ since its effect was not reversed by a chemical inhibition with a specific antagonist and the siRNA-mediated knockdown of the nuclear receptor. As VEGF is crucial for cancer development, the impact of PPARβ ligands on VEGF production is of high importance. Thus, the molecular mechanism of their action has to be elucidated and as a result, PPARβ agonists currently in clinical trials should be carefully monitored.
Collapse
Affiliation(s)
- Emmanuelle Roche
- University of Franche - Comte, F-25000 Besançon, France; EA 3181 - SFR FED 4234, F-25000 Besançon, France
| | - Isabelle Lascombe
- University of Franche - Comte, F-25000 Besançon, France; EA 3181 - SFR FED 4234, F-25000 Besançon, France
| | - Hugues Bittard
- University of Franche - Comte, F-25000 Besançon, France; EA 3181 - SFR FED 4234, F-25000 Besançon, France; Department of Urology, CHRU Besançon, F-25000 Besançon, France
| | - Christiane Mougin
- University of Franche - Comte, F-25000 Besançon, France; EA 3181 - SFR FED 4234, F-25000 Besançon, France; Department of Cell and Molecular Biology, CHRU Besançon, F-25000 Besançon, France
| | - Sylvie Fauconnet
- University of Franche - Comte, F-25000 Besançon, France; EA 3181 - SFR FED 4234, F-25000 Besançon, France; Department of Urology, CHRU Besançon, F-25000 Besançon, France.
| |
Collapse
|
40
|
Ehrenborg E, Skogsberg J. Peroxisome proliferator-activated receptor delta and cardiovascular disease. Atherosclerosis 2013; 231:95-106. [PMID: 24125418 DOI: 10.1016/j.atherosclerosis.2013.08.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 08/16/2013] [Accepted: 08/27/2013] [Indexed: 12/20/2022]
Abstract
Recent reports have shown that peroxisome proliferator-activated receptor delta (PPARD) plays an important role in different vascular processes suggesting that PPARD is a significant modulator of cardiovascular disease. This review will focus on PPARD in relation to cardiovascular risk factors based on cell, animal and human data. Mouse studies suggest that Ppard is an important metabolic modulator that may have implications for cardiovascular disease (CVD). Specific human PPARD gene variants show no clear association with CVD but interactions between variants and lifestyle factors might influence disease risk. During recent years, development of specific and potent PPARD agonists has also made it possible to study the effects of PPARD activation in humans. PPARD agonists seem to exert beneficial effects on dyslipidemia and insulin-resistant syndromes but safety issues have been raised due to the role that PPARD plays in cell proliferation. Thus, large long term outcome as well as detailed safety and tolerability studies are needed to evaluate whether PPARD agonists could be used to treat CVD in humans.
Collapse
Affiliation(s)
- Ewa Ehrenborg
- Atherosclerosis Research Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| | | |
Collapse
|
41
|
Capozzi ME, McCollum GW, Savage SR, Penn JS. Peroxisome proliferator-activated receptor-β/δ regulates angiogenic cell behaviors and oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 2013; 54:4197-207. [PMID: 23716627 DOI: 10.1167/iovs.13-11608] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To develop new therapies against ocular neovascularization (NV), we tested the effect of peroxisome proliferator-activated receptor-β/δ (PPAR-β/δ) agonism and antagonism on angiogenic behaviors and in human retinal microvascular endothelial cells (HRMEC) and on preretinal NV in rat oxygen-induced retinopathy (OIR). METHODS HRMECs were treated with the PPAR-β/δ agonist GW0742 and the antagonist GSK0660. Messenger RNA levels of a PPAR-β/δ target gene, angiopoietin-like-4 (angptl4) were assayed by qRT-PCR. HRMEC proliferation and tube formation were assayed according to standard protocols. OIR was induced in newborn rats by exposing them to alternating 24-hour episodes of 50% and 10% oxygen for 14 days. OIR rats were treated with GW0742 or GSK0660. Angptl4 protein levels were assessed by ELISA and preretinal NV was quantified by adenosine diphosphatase staining. RESULTS GW0742 significantly increased angptl4 mRNA, and GSK0660 significantly decreased angptl4 mRNA. GW0742 had no effect on HRMEC proliferation, but caused a significant and dose-responsive increase in tube formation. GSK0660 significantly reduced serum-induced HRMEC proliferation and tube formation in a dose-dependent manner. Intravitreal injection of GW0742 significantly increased total retinal Angptl4 protein, but intravitreal injection of GSK0660 had no effect. Intravitreal injection of GW0742 significantly increased retinal NV, as did GW0742 administered by oral gavage. Conversely, both intravitreal injection and intraperitoneal injection of GSK0660 significantly reduced retinal NV. CONCLUSIONS PPAR-β/δ activation exacerbates, and its inhibition reduces, preretinal NV. PPAR-β/δ may regulate preretinal NV through a prodifferentiation/maturation mechanism that depends on Angptl4. Pharmacologic inhibition of PPAR-β/δ may provide a rational basis for therapeutic targeting of ocular NV.
Collapse
Affiliation(s)
- Megan E Capozzi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | |
Collapse
|
42
|
Stockert J, Wolf A, Kaddatz K, Schnitzer E, Finkernagel F, Meissner W, Müller-Brüsselbach S, Kracht M, Müller R. Regulation of TAK1/TAB1-mediated IL-1β signaling by cytoplasmic PPARβ/δ. PLoS One 2013; 8:e63011. [PMID: 23646170 PMCID: PMC3639976 DOI: 10.1371/journal.pone.0063011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/27/2013] [Indexed: 11/19/2022] Open
Abstract
The peroxisome proliferator-activated receptor subtypes PPARα, PPARβ/δ, PPARγ are members of the steroid hormone receptor superfamily with well-established functions in transcriptional regulation. Here, we describe an unexpected cytoplasmic function of PPARβ/δ. Silencing of PPARβ/δ expression interferes with the expression of a large subset of interleukin-1β (IL-1β)-induced target genes in HeLa cells, which is preceded by an inhibition of the IL-1β-induced phosphorylation of TAK1 and its downstream effectors, including the NFκBα inhibitor IκBα (NFKBIA) and the NFκBα subunit p65 (RELA). PPARβ/δ enhances the interaction between TAK1 and the small heat-shock protein HSP27, a known positive modulator of TAK1-mediated IL-1β signaling. Consistent with these findings, PPARβ/δ physically interacts with both the endogenous cytoplasmic TAK1/TAB1 complex and HSP27, and PPARβ/δ overexpression increases the TAK1-induced transcriptional activity of NFκB. These observations suggest that PPARβ/δ plays a role in the assembly of a cytoplasmic multi-protein complex containing TAK1, TAB1, HSP27 and PPARβ/δ, and thereby participates in the NFκB response to IL-1β.
Collapse
Affiliation(s)
- Josefine Stockert
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | - Alexander Wolf
- Rudolf Buchheim Institute for Pharmacology, Giessen, Germany
| | - Kerstin Kaddatz
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | - Evelyn Schnitzer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | - Wolfgang Meissner
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | | | - Michael Kracht
- Rudolf Buchheim Institute for Pharmacology, Giessen, Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
- * E-mail:
| |
Collapse
|
43
|
Fluckiger JU, Loveless ME, Barnes SL, Lepage M, Yankeelov TE. A diffusion-compensated model for the analysis of DCE-MRI data: theory, simulations and experimental results. Phys Med Biol 2013; 58:1983-98. [PMID: 23458745 DOI: 10.1088/0031-9155/58/6/1983] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Accurate quantification of pharmacokinetic parameters in dynamic contrast-enhanced (DCE) MRI may be affected by the passive diffusion of contrast agent (CA) within the tissue. By introducing an additional term into the standard Tofts-Kety (STK) model, we correct for the effects of CA diffusion. We first develop the theory describing a CA diffusion corrected STK model (DTK). The model is then tested in simulation with simple models of diffusion. The DTK model is also fit to 18 in vivo DCE-MRI acquisitions from murine models of cancer and results are compared to those from the STK model. The DTK model returned estimates with significantly lower error than the STK model (p ≪ 0.001). In poorly perfused (i.e., K(trans) ≤ 0.05 min(-1)) regions the STK model returned unphysical ve values, while the DTK model estimated ve with less than 7% error in noise-free simulations. Results in vivo data revealed similar trends. For voxels with low K(trans) values and late peak concentration times the STK model returned ve estimates >1.0 in 40% of the voxels as compared to only 16% for the DTK model. The DTK model presented here shows promise in estimating accurate kinetic parameters in the presence of passive contrast agent diffusion.
Collapse
Affiliation(s)
- Jacob U Fluckiger
- Department of Radiology, Northwestern University Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
44
|
Shiue YL, Chen LR, Tsai CJ, Yeh CY, Huang CT. Emerging roles of peroxisome proliferator-activated receptors in the pituitary gland in female reproduction. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.gmbhs.2013.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Tian XY, Wong WT, Wang N, Lu Y, Cheang WS, Liu J, Liu L, Liu Y, Lee SST, Chen ZY, Cooke JP, Yao X, Huang Y. PPARδ activation protects endothelial function in diabetic mice. Diabetes 2012; 61:3285-93. [PMID: 22933110 PMCID: PMC3501853 DOI: 10.2337/db12-0117] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent evidence highlights the therapeutic potential of peroxisome proliferator-activated receptor-δ (PPARδ) agonists to increase insulin sensitivity in diabetes. However, the role of PPARδ in regulating vascular function is incompletely characterized. We investigate whether PPARδ activation improves endothelial function in diabetic and obese mice. PPARδ knockout (KO) and wild-type (WT) mice fed with high-fat diet and db/db mice were used as diabetic mouse models, compared with PPARδ KO and WT mice on normal diet and db/m(+) mice. Endothelium-dependent relaxation (EDR) was measured by wire myograph. Flow-mediated vasodilatation (FMD) was measured by pressure myograph. Nitric oxide (NO) production was examined in primary endothelial cells from mouse aortae. PPARδ agonist GW1516 restored EDRs in mouse aortae under high-glucose conditions or in db/db mouse aortae ex vivo. After oral treatment with GW1516, EDRs in aortae and FMDs in mesenteric resistance arteries were improved in obese mice in a PPARδ-specific manner. The effects of GW1516 on endothelial function were mediated through phosphatidylinositol 3-kinase (PI3K) and Akt with a subsequent increase of endothelial nitric oxide synthase (eNOS) activity and NO production. The current study demonstrates an endothelial-protective effect of PPARδ agonists in diabetic mice through PI3K/Akt/eNOS signaling, suggesting the therapeutic potential of PPARδ agonists for diabetic vasculopathy.
Collapse
Affiliation(s)
- Xiao Yu Tian
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Wing Tak Wong
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Nanping Wang
- Cardiovascular Research Center, Xi’an Jiaotong University, Xi’an, China
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
- Corresponding author: Yu Huang, , or Nanping Wang,
| | - Ye Lu
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Wai San Cheang
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jian Liu
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Limei Liu
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Yahan Liu
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | | | - Zhen Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - John P. Cooke
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Xiaoqiang Yao
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
- Corresponding author: Yu Huang, , or Nanping Wang,
| |
Collapse
|
46
|
Vamecq J, Colet JM, Vanden Eynde JJ, Briand G, Porchet N, Rocchi S. PPARs: Interference with Warburg' Effect and Clinical Anticancer Trials. PPAR Res 2012; 2012:304760. [PMID: 22654896 PMCID: PMC3357561 DOI: 10.1155/2012/304760] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/15/2012] [Accepted: 02/19/2012] [Indexed: 02/07/2023] Open
Abstract
The metabolic/cell signaling basis of Warburg's effect ("aerobic glycolysis") and the general metabolic phenotype adopted by cancer cells are first reviewed. Several bypasses are adopted to provide a panoramic integrated view of tumoral metabolism, by attributing a central signaling role to hypoxia-induced factor (HIF-1) in the expression of aerobic glycolysis. The cancer metabolic phenotype also results from alterations of other routes involving ras, myc, p53, and Akt signaling and the propensity of cancer cells to develop signaling aberrances (notably aberrant surface receptor expression) which, when present, offer unique opportunities for therapeutic interventions. The rationale for various emerging strategies for cancer treatment is presented along with mechanisms by which PPAR ligands might interfere directly with tumoral metabolism and promote anticancer activity. Clinical trials using PPAR ligands are reviewed and followed by concluding remarks and perspectives for future studies. A therapeutic need to associate PPAR ligands with other anticancer agents is perhaps an important lesson to be learned from the results of the clinical trials conducted to date.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, HMNO, CBP, CHRU Lille, 59037 Lille, France
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Jean-Marie Colet
- Department of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, UMons, 7000 Mons, Belgium
| | | | - Gilbert Briand
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Nicole Porchet
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Stéphane Rocchi
- Inserm U1065, IFR 50, Mediterranean Center of Molecular Medicine, 06204 Nice, France
| |
Collapse
|
47
|
Abstract
The PPAR (peroxisome-proliferator-activated receptor) family consists of three ligand-activated nuclear receptors: PPARα, PPARβ/δ and PPARγ. These PPARs have important roles in the regulation of glucose and fatty acid metabolism, cell differentiation and immune function, but were also found to be expressed in endothelial cells in the late 1990s. The early endothelial focus of PPARs was PPARγ, the molecular target for the insulin-sensitizing thiazolidinedione/glitazone class of drugs. Activation of PPARγ was shown to inhibit angiogenesis in vitro and in models of retinopathy and cancer, whereas more recent data point to a critical role in the development of the vasculature in the placenta. Similarly, PPARα, the molecular target for the fibrate class of drugs, also has anti-angiogenic properties in experimental models. In contrast, unlike PPARα or PPARγ, activation of PPARβ/δ induces angiogenesis, in vitro and in vivo, and has been suggested to be a critical component of the angiogenic switch in pancreatic cancer. Moreover, PPARβ/δ is an exercise mimetic and appears to contribute to the angiogenic remodelling of cardiac and skeletal muscle induced by exercise. This evidence and the emerging mechanisms by which PPARs act in endothelial cells are discussed in more detail.
Collapse
|
48
|
Khazaei M, Salehi E, Rashidi B, Javanmard SH, Fallahzadeh AR. Role of peroxisome proliferator-activated receptor β agonist on angiogenesis in hindlimb ischemic diabetic rats. J Diabetes Complications 2012; 26:137-40. [PMID: 22464549 DOI: 10.1016/j.jdiacomp.2012.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 02/19/2012] [Accepted: 02/21/2012] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Studies indicated that PPARβ agonists play a role in modulation of angiogenesis. In this study, we evaluated the effect of specific PPARβ agonist, GW0742, on angiogenesis and serum vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2), and nitrite concentrations in hindlimb ischemia in normal and diabetic rats. METHODS Hindlimb ischemic rats were divided into four groups: control, diabetic, control, and diabetic treated with GW0742 (n=7 each). Diabetes was induced by injection of streptozotocin (55mg/kg, ip). GW0742 was injected 1day after surgery (1mg/kg, sc). After 21days, blood samples were taken, and gastrocnemius muscles were harvested for immunohistochemistry. RESULTS GW0742 significantly increased serum nitrite and VEGFR-2 concentrations and VEGF-to-VEGFR-2 ratio in control and diabetic rats. Capillary density was lower in diabetic animals compared to the control, and GW0742 significantly restored the capillary density in the control and diabetic hindlimb ischemic rats. CONCLUSION PPARβ agonists restore skeletal muscle angiogenesis and can be considered for prevention and/or treatment of peripheral vascular complications in diabetic subjects.
Collapse
Affiliation(s)
- M Khazaei
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | | | | | | |
Collapse
|
49
|
Peters JM, Shah YM, Gonzalez FJ. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer 2012; 12:181-95. [PMID: 22318237 PMCID: PMC3322353 DOI: 10.1038/nrc3214] [Citation(s) in RCA: 362] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that are involved in regulating glucose and lipid homeostasis, inflammation, proliferation and differentiation. Although all of these functions might contribute to the influence of PPARs in carcinogenesis, there is a distinct need for a review of the literature and additional experimentation to determine the potential for targeting PPARs for cancer therapy and cancer chemoprevention. As PPAR agonists include drugs that are used for the treatment of metabolic diseases, a more complete understanding of the roles of PPARs in cancer will aid in determining any increased cancer risk for patients undergoing therapy with PPAR agonists.
Collapse
Affiliation(s)
- Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
50
|
Toth PM, Naruhn S, Pape VFS, Dörr SMA, Klebe G, Müller R, Diederich WE. Development of improved PPARβ/δ inhibitors. ChemMedChem 2011; 7:159-70. [PMID: 22025402 DOI: 10.1002/cmdc.201100408] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Indexed: 11/08/2022]
Abstract
GSK0660 (1) is the first peroxisome proliferator-activated receptor (PPAR) β/δ-selective inhibitory ligand described in the literature. Based on its structure, we designed and synthesized a series of modified compounds to establish preliminary structure-activity relationships. Most beneficial for increased binding affinity towards the PPARβ/δ ligand binding domain was the replacement of the 4'-aminophenyl substituent by medium-length n-alkyl chains, such as n-butyl or iso-pentyl. These compounds show activity down to the one-digit nanomolar range, thus possessing up to a tenfold higher binding affinity compared with GSK0660. Additionally, the subtype-specific inhibition of PPARβ/δ was confirmed in a cell-based assay making these compounds invaluable tools for the further exploration of the functions of PPARβ/δ.
Collapse
Affiliation(s)
- Philipp M Toth
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|