1
|
Kakish JE, Mehrani Y, Kodeeswaran A, Geronimo K, Clark ME, van Vloten JP, Karimi K, Mallard BA, Meng B, Bridle BW, Knapp JP. Investigating the effect of reduced temperatures on the efficacy of rhabdovirus-based viral vector platforms. J Gen Virol 2024; 105:002010. [PMID: 39172037 PMCID: PMC11340643 DOI: 10.1099/jgv.0.002010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
Rhabdoviral vectors can induce lysis of cancer cells. While studied almost exclusively at 37 °C, viruses are subject to a range of temperatures in vivo, including temperatures ≤31 °C. Despite potential implications, the effect of temperatures <37 °C on the performance of rhabdoviral vectors is unknown. We investigated the effect of low anatomical temperatures on two rhabdoviruses, vesicular stomatitis virus (VSV) and Maraba virus (MG1). Using a metabolic resazurin assay, VSV- and MG1-mediated oncolysis was characterized in a panel of cell lines at 28, 31, 34 and 37 °C. The oncolytic ability of both viruses was hindered at 31 and 28 °C. Cold adaptation of both viruses was attempted as a mitigation strategy. Viruses were serially passaged at decreasing temperatures in an attempt to induce mutations. Unfortunately, the cold-adaptation strategies failed to potentiate the oncolytic activity of the viruses at temperatures <37 °C. Interestingly, we discovered that viral replication was unaffected at low temperatures despite the abrogation of oncolytic activity. In contrast, the proliferation of cancer cells was reduced at low temperatures. Equivalent oncolytic effects could be achieved if cells at low temperatures were treated with viruses for longer times. This suggests that rhabdovirus-mediated oncolysis could be compromised at low temperatures in vivo where therapeutic windows are limited.
Collapse
Affiliation(s)
- Julia E. Kakish
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Yeganeh Mehrani
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Arthane Kodeeswaran
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Katrina Geronimo
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mary Ellen Clark
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jacob P. van Vloten
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Bonnie A. Mallard
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jason P. Knapp
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
2
|
Wallace R, Bliss CM, Parker AL. The Immune System-A Double-Edged Sword for Adenovirus-Based Therapies. Viruses 2024; 16:973. [PMID: 38932265 PMCID: PMC11209478 DOI: 10.3390/v16060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Pathogenic adenovirus (Ad) infections are widespread but typically mild and transient, except in the immunocompromised. As vectors for gene therapy, vaccine, and oncology applications, Ad-based platforms offer advantages, including ease of genetic manipulation, scale of production, and well-established safety profiles, making them attractive tools for therapeutic development. However, the immune system often poses a significant challenge that must be overcome for adenovirus-based therapies to be truly efficacious. Both pre-existing anti-Ad immunity in the population as well as the rapid development of an immune response against engineered adenoviral vectors can have detrimental effects on the downstream impact of an adenovirus-based therapeutic. This review focuses on the different challenges posed, including pre-existing natural immunity and anti-vector immunity induced by a therapeutic, in the context of innate and adaptive immune responses. We summarise different approaches developed with the aim of tackling these problems, as well as their outcomes and potential future applications.
Collapse
Affiliation(s)
- Rebecca Wallace
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
| | - Carly M. Bliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
3
|
Robert S, Roman Ortiz NI, LaRocca CJ, Ostrander JH, Davydova J. Oncolytic Adenovirus for the Targeting of Paclitaxel-Resistant Breast Cancer Stem Cells. Viruses 2024; 16:567. [PMID: 38675909 PMCID: PMC11054319 DOI: 10.3390/v16040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Adjuvant systemic therapies effectively reduce the risk of breast cancer recurrence and metastasis, but therapy resistance can develop in some patients due to breast cancer stem cells (BCSCs). Oncolytic adenovirus (OAd) represents a promising therapeutic approach as it can specifically target cancer cells. However, its potential to target BCSCs remains unclear. Here, we evaluated a Cox-2 promoter-controlled, Ad5/3 fiber-modified OAd designed to encode the human sodium iodide symporter (hNIS) in breast cancer models. To confirm the potential of OAds to target BCSCs, we employed BCSC-enriched estrogen receptor-positive (ER+) paclitaxel-resistant (TaxR) cells and tumorsphere assays. OAd-hNIS demonstrated significantly enhanced binding and superior oncolysis in breast cancer cells, including ER+ cells, while exhibiting no activity in normal mammary epithelial cells. We observed improved NIS expression as the result of adenovirus death protein deletion. OAd-hNIS demonstrated efficacy in targeting TaxR BCSCs, exhibiting superior killing and hNIS expression compared to the parental cells. Our vector was capable of inhibiting tumorsphere formation upon early infection and reversing paclitaxel resistance in TaxR cells. Importantly, OAd-hNIS also destroyed already formed tumorspheres seven days after their initiation. Overall, our findings highlight the promise of OAd-hNIS as a potential tool for studying and targeting ER+ breast cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Sacha Robert
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Christopher J. LaRocca
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Julie Hanson Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia Davydova
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Rao MFS, Ahmed B, Qadir MI. Oncolytic Virotherapy: An Advanced Microbial Approach for the Management of Cancer. Crit Rev Eukaryot Gene Expr 2024; 34:1-13. [PMID: 37824388 DOI: 10.1615/critreveukaryotgeneexpr.2023048962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Destruction of the tumor (cancerous) cells may be caused by live viruses, which have replicative ability and replicate selectively in tumor cells, known as oncolytic virotherapy. In comparison of conservative cancer therapy, tumor-selective replicating viruses have more advantages. These viruses have introduced new methodologies for the human cancer treatment. Numerous strategies are used in development of virotherapeutics. Virotherapy is not unusual concept, but modern advances in technology of genetic modification of oncolytic viruses have improved the ability of targeting tumor cells more specifically, it triggered the development of novel ammunition to fight cancer. An effective virotherapeutic approach with oncolytic viruses exhibits the feasibility and safety under clinical approach. New strategies are being explored to overcome basic obstacles and challenges in virotherapy. Administration of oncolytic viruses, logically, will successfully augment new treatments against many kinds of tumors. Some encouraging antitumor responses shown by combination therapy are provoking strong immunity against established cancer. Chief developments in oncolytic virotherapy have seen in past several years. Significant understandings have been provided by findings on the interface among immune comebacks and viruses, whereas potential results have shown in clinical trials.
Collapse
Affiliation(s)
| | - Bilal Ahmed
- University of Science And Technology of Fujairah, UAE; School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Muhammad Imran Qadir
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
5
|
Zhang H, Wang H, An Y, Chen Z. Construction and application of adenoviral vectors. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102027. [PMID: 37808925 PMCID: PMC10556817 DOI: 10.1016/j.omtn.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Adenoviral vectors have been widely used as vaccine candidates or potential vaccine candidates against infectious diseases due to the convenience of genome manipulation, their ability to accommodate large exogenous gene fragments, easy access of obtaining high-titer of virus, and high efficiency of transduction. At the same time, adenoviral vectors have also been used extensively in clinical research for cancer gene therapy and treatment of diseases caused by a single gene defect. However, application of adenovirus also faces a series of challenges such as poor targeting, strong immune response against the vector itself, and they cannot be used repeatedly. It is believed that these problems will be solved gradually with further research and technological development in related fields. Here, we review the construction methods of adenoviral vectors, including "gutless" adenovirus and discuss application of adenoviral vectors as prophylactic vaccines for infectious pathogens and their application prospects as therapeutic vaccines for cancer and other kinds of chronic infectious disease such as human papillomavirus, hepatitis B virus, and hepatitis C virus.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Hongdan Wang
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Youcai An
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Ze Chen
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| |
Collapse
|
6
|
Sarkar S, Panikker P, D’Souza S, Shetty R, Mohan RR, Ghosh A. Corneal Regeneration Using Gene Therapy Approaches. Cells 2023; 12:1280. [PMID: 37174680 PMCID: PMC10177166 DOI: 10.3390/cells12091280] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
One of the most remarkable advancements in medical treatments of corneal diseases in recent decades has been corneal transplantation. However, corneal transplants, including lamellar strategies, have their own set of challenges, such as graft rejection, delayed graft failure, shortage of donor corneas, repeated treatments, and post-surgical complications. Corneal defects and diseases are one of the leading causes of blindness globally; therefore, there is a need for gene-based interventions that may mitigate some of these challenges and help reduce the burden of blindness. Corneas being immune-advantaged, uniquely avascular, and transparent is ideal for gene therapy approaches. Well-established corneal surgical techniques as well as their ease of accessibility for examination and manipulation makes corneas suitable for in vivo and ex vivo gene therapy. In this review, we focus on the most recent advances in the area of corneal regeneration using gene therapy and on the strategies involved in the development of such therapies. We also discuss the challenges and potential of gene therapy for the treatment of corneal diseases. Additionally, we discuss the translational aspects of gene therapy, including different types of vectors, particularly focusing on recombinant AAV that may help advance targeted therapeutics for corneal defects and diseases.
Collapse
Affiliation(s)
- Subhradeep Sarkar
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Priyalakshmi Panikker
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
| | - Sharon D’Souza
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore 560010, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore 560010, Karnataka, India
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine and Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, Karnataka, India
| |
Collapse
|
7
|
Lee N, Jeon YH, Yoo J, Shin SK, Lee S, Park MJ, Jung BJ, Hong YK, Lee DS, Oh K. Generation of novel oncolytic vaccinia virus with improved intravenous efficacy through protection against complement-mediated lysis and evasion of neutralization by vaccinia virus-specific antibodies. J Immunother Cancer 2023; 11:jitc-2022-006024. [PMID: 36717184 PMCID: PMC9887704 DOI: 10.1136/jitc-2022-006024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Oncolytic virus immunotherapy has revolutionized cancer immunotherapy by efficiently inducing both oncolysis and systemic immune activation. Locoregional administration has been used for oncolytic virus therapy, but its applications to deep-seated cancers have been limited. Although systemic delivery of the oncolytic virus would maximize viral immunotherapy's potential, this remains a hurdle due to the rapid removal of the administered virus by the complement and innate immune system. Infected cells produce some vaccinia viruses as extracellular enveloped virions, which evade complement attack and achieve longer survival by expressing host complement regulatory proteins (CRPs) on the host-derived envelope. Here, we generated SJ-600 series oncolytic vaccinia viruses that can mimic complement-resistant extracellular enveloped virions by incorporating human CRP CD55 on the intracellular mature virion (IMV) membrane. METHODS The N-terminus of the human CD55 protein was fused to the transmembrane domains of the six type I membrane proteins of the IMV; the resulting recombinant viruses were named SJ-600 series viruses. The SJ-600 series viruses also expressed human granulocyte-macrophage colony-stimulating factor (GM-CSF) to activate dendritic cells. The viral thymidine kinase (J2R) gene was replaced by genes encoding the CD55 fusion proteins and GM-CSF. RESULTS SJ-600 series viruses expressing human CD55 on the IMV membrane showed resistance to serum virus neutralization. SJ-607 virus, which showed the highest CD55 expression and the highest resistance to serum complement-mediated lysis, exhibited superior anticancer activity in three human cancer xenograft models, compared with the control Pexa-Vec (JX-594) virus, after single-dose intravenous administration. The SJ-607 virus administration elicited neutralizing antibody formation in two immunocompetent mouse strains like the control JX-594 virus. Remarkably, we found that the SJ-607 virus evades neutralization by vaccinia virus-specific antibodies. CONCLUSION Our new oncolytic vaccinia virus platform, which expresses human CD55 protein on its membrane, prolonged viral survival by protecting against complement-mediated lysis and by evading neutralization by vaccinia virus-specific antibodies; this may provide a continuous antitumor efficacy until a complete remission has been achieved. Such a platform may expand the target cancer profile to include deep-seated cancers and widespread metastatic cancers.
Collapse
Affiliation(s)
- Namhee Lee
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| | - Yun-Hui Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea,Wide River Institute of Immunology, Seoul National University, Gangwon, Republic of Korea
| | - Jiyoon Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea,Wide River Institute of Immunology, Seoul National University, Gangwon, Republic of Korea
| | - Suk-kyung Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea,Wide River Institute of Immunology, Seoul National University, Gangwon, Republic of Korea
| | - Songyi Lee
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| | - Mi-Ju Park
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| | - Byung-Jin Jung
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| | - Yun-Kyoung Hong
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea,Wide River Institute of Immunology, Seoul National University, Gangwon, Republic of Korea
| | - Keunhee Oh
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Diep YN, Kim TJ, Cho H, Lee LP. Nanomedicine for advanced cancer immunotherapy. J Control Release 2022; 351:1017-1037. [DOI: 10.1016/j.jconrel.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022]
|
9
|
Thambi T, Hong J, Yoon AR, Yun CO. Challenges and progress toward tumor-targeted therapy by systemic delivery of polymer-complexed oncolytic adenoviruses. Cancer Gene Ther 2022; 29:1321-1331. [PMID: 35444290 PMCID: PMC9576595 DOI: 10.1038/s41417-022-00469-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
Oncolytic adenovirus (oAd) elicits antitumor activity by preferential viral replication in cancer cells. However, poor systemic administrability or suboptimal intratumoral retainment of the virus remains a major challenge toward maximizing the antitumor activity of oAd in a clinical environment. To surmount these issues, a variety of non-immunogenic polymers has been used to modify the surface of oAds chemically or physically. Complexation of oAd with polymers can effectively evade the host immune response and reduces nonspecific liver sequestration. The tumor-specific delivery of these complexes can be further improved upon by inclusion of tumor-targeting moieties on the surface. Therefore, modification of the Ad surface using polymers is viewed as a potential strategy to enhance the delivery of Ad via systemic administration. This review aims to provide a comprehensive overview of polymer-complexed Ads, their progress, and future challenges in cancer treatment.
Collapse
Affiliation(s)
- Thavasyappan Thambi
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul, 04763, Korea
| | - JinWoo Hong
- GeneMedicine CO., Ltd., 222 Wangsimni-ro Seongdong-gu, Seoul, 04763, Seoul, Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul, 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, 04763, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul, 04763, Korea.
- GeneMedicine CO., Ltd., 222 Wangsimni-ro Seongdong-gu, Seoul, 04763, Seoul, Korea.
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, 04763, Korea.
- Institute of Nano Science and Technology (INST), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea.
| |
Collapse
|
10
|
Chen M, Wang H, Guo H, Zhang Y, Chen L. Systematic Investigation of Biocompatible Cationic Polymeric Nucleic Acid Carriers for Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2021; 14:85. [PMID: 35008249 PMCID: PMC8750096 DOI: 10.3390/cancers14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third-largest cause of cancer death worldwide, while immunotherapy is rapidly being developed to fight HCC with great potential. Nucleic acid drugs are the most important modulators in HCC immunotherapy. To boost the efficacy of therapeutics and amplify the efficiency of genetic materials, biocompatible polymers are commonly used. However, under the strong need of a summary for current developments of biocompatible polymeric nucleic acid carriers for immunotherapy of HCC, there is rare review article specific to this topic to our best knowledge. In this article, we will discuss the current progress of immunotherapy for HCC, biocompatible cationic polymers (BCPs) as nucleic acid carriers used (or potential) to fight HCC, the roles of biocompatible polymeric carriers for nucleic acid delivery, and nucleic acid delivery by biocompatible polymers for immunotherapy. At the end, we will conclude the review and discuss future perspectives. This article discusses biocompatible polymeric nucleic acid carriers for immunotherapy of HCC from multidiscipline perspectives and provides a new insight in this domain. We believe this review will be interesting to polymer chemists, pharmacists, clinic doctors, and PhD students in related disciplines.
Collapse
Affiliation(s)
- Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hao Wang
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hongying Guo
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Ying Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Liang Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| |
Collapse
|
11
|
Weklak D, Pembaur D, Koukou G, Jönsson F, Hagedorn C, Kreppel F. Genetic and Chemical Capsid Modifications of Adenovirus Vectors to Modulate Vector-Host Interactions. Viruses 2021; 13:1300. [PMID: 34372506 PMCID: PMC8310343 DOI: 10.3390/v13071300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Adenovirus-based vectors are playing an important role as efficacious genetic vaccines to fight the current COVID-19 pandemic. Furthermore, they have an enormous potential as oncolytic vectors for virotherapy and as vectors for classic gene therapy. However, numerous vector-host interactions on a cellular and noncellular level, including specific components of the immune system, must be modulated in order to generate safe and efficacious vectors for virotherapy or classic gene therapy. Importantly, the current widespread use of Ad vectors as vaccines against COVID-19 will induce antivector immunity in many humans. This requires the development of strategies and techniques to enable Ad-based vectors to evade pre-existing immunity. In this review article, we discuss the current status of genetic and chemical capsid modifications as means to modulate the vector-host interactions of Ad-based vectors.
Collapse
Affiliation(s)
| | | | | | | | | | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Street 10, 58453 Witten, Germany; (D.W.); (D.P.); (G.K.); (F.J.); (C.H.)
| |
Collapse
|
12
|
Hill C, Grundy M, Bau L, Wallington S, Balkaran J, Ramos V, Fisher K, Seymour L, Coussios C, Carlisle R. Polymer stealthing and mucin-1 retargeting for enhanced pharmacokinetics of an oncolytic vaccinia virus. Mol Ther Oncolytics 2021; 21:47-61. [PMID: 33869742 PMCID: PMC8026752 DOI: 10.1016/j.omto.2021.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 03/14/2021] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus (VV) is a powerful tool for cancer treatment with the potential for tumor tropism, efficient cell-to-cell spread, rapid replication in cancer cells, and stimulation of anti-tumor immunity. It has a well-defined safety profile and is being assessed in late-stage clinical trials. However, VV clinical utility is limited by rapid bloodstream neutralization and poor penetration into tumors. These factors have often restricted its route of delivery to intratumoral or intrahepatic artery injection and may impede repeat dosing. Chemical stealthing improves the pharmacokinetics of non-enveloped viruses, but it has not yet been applied to enveloped viruses such as VV. In the present study, amphiphilic polymer was used to coat VV, leading to reduced binding of a neutralizing anti-VV antibody (81.8% of polymer-coated VV [PCVV] staining positive versus 97.1% of VV [p = 0.0038]). Attachment of anti-mucin-1 (aMUC1) targeting antibody, to give aMUC1-PCVV, enabled binding of the construct to MUC1. In high MUC1 expressing CAPAN-2 cells, infection with PCVV was reduced compared to VV, while infection was restored with aMUC1-PCVV. Pharmacokinetics of aMUC1-PCVV, PCVV, and VV were evaluated. After intravenous (i.v.) injection of 1 × 108 viral genomes (VG) or 5 × 108 VG, circulation time for PCVV and aMUC1-PCVV was increased, with ~5-fold higher circulating dose at 5 min versus VV.
Collapse
Affiliation(s)
- Claudia Hill
- Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Megan Grundy
- Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Luca Bau
- Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Sheena Wallington
- Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Joel Balkaran
- Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Victor Ramos
- Grup d’Enginyeria de Materials, Institut Quimic de Sarria, Universitat Ramon Llull, Barcelona, Spain
| | - Kerry Fisher
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Len Seymour
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Constantin Coussios
- Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
13
|
Garofalo M, Bellato F, Magliocca S, Malfanti A, Kuryk L, Rinner B, Negro S, Salmaso S, Caliceti P, Mastrotto F. Polymer Coated Oncolytic Adenovirus to Selectively Target Hepatocellular Carcinoma Cells. Pharmaceutics 2021; 13:pharmaceutics13070949. [PMID: 34202714 PMCID: PMC8309094 DOI: 10.3390/pharmaceutics13070949] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 01/15/2023] Open
Abstract
Despite significant advances in chemotherapy, the overall prognosis of hepatocellular carcinoma (HCC) remains extremely poor. HCC targeting strategies were combined with the tumor cell cytotoxicity of oncolytic viruses (OVs) to develop a more efficient and selective therapeutic system. OVs were coated with a polygalactosyl-b-agmatyl diblock copolymer (Gal32-b-Agm29), with high affinity for the asialoglycoprotein receptor (ASGPR) expressed on the liver cell surface, exploiting the electrostatic interaction of the positively charged agmatine block with the negatively charged adenoviral capsid surface. The polymer coating altered the viral particle diameter (from 192 to 287 nm) and zeta-potential (from -24.7 to 23.3 mV) while hiding the peculiar icosahedral symmetrical OV structure, as observed by TEM. Coated OVs showed high potential therapeutic value on the human hepatoma cell line HepG2 (cytotoxicity of 72.4% ± 4.96), expressing a high level of ASGPRs, while a lower effect was attained with ASPGR-negative A549 cell line (cytotoxicity of 54.4% ± 1.59). Conversely, naked OVs showed very similar effects in both tested cell lines. Gal32-b-Agm29 OV coating enhanced the infectivity and immunogenic cell death program in HepG2 cells as compared to the naked OV. This strategy provides a rationale for future studies utilizing oncolytic viruses complexed with polymers toward effective treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (F.B.); (S.M.); (S.S.); (P.C.)
- Correspondence: (M.G.); (F.M.); Tel.: +39-04-9827-5710 (M.G.); +39-04-9827-5708 (F.M.)
| | - Federica Bellato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (F.B.); (S.M.); (S.S.); (P.C.)
| | - Salvatore Magliocca
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (F.B.); (S.M.); (S.S.); (P.C.)
| | - Alessio Malfanti
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1 73.12, 1200 Brussels, Belgium;
| | - Lukasz Kuryk
- Department of Virology, National Institute of Public Health—National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland;
- Clinical Science, Targovax Oy, Saukonpaadenranta 2, 00180 Helsinki, Finland
| | - Beate Rinner
- Division of Biomedical Research, Medical University of Graz, Roseggerweg 48, 8036 Graz, Austria;
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (F.B.); (S.M.); (S.S.); (P.C.)
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (F.B.); (S.M.); (S.S.); (P.C.)
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (F.B.); (S.M.); (S.S.); (P.C.)
- Correspondence: (M.G.); (F.M.); Tel.: +39-04-9827-5710 (M.G.); +39-04-9827-5708 (F.M.)
| |
Collapse
|
14
|
Abstract
Abstract
The rapid development of nanotechnology paved the way for further expansion of polymer chemistry and the fabrication of advanced polymeric membranes. Such modifications allowed enhancing or adding some unique properties, including mechanical strength, excellent biocompatibility, easily controlled degradability, and biological activity. This chapter discusses various applications of polymeric membranes in three significant areas of biomedicine, including tissue engineering, drug delivery systems, and diagnostics. It is intended to highlight here possible ways of improvement the properties of polymeric membranes, by modifying with other polymers, functional groups, compounds, drugs, bioactive components, and nanomaterials.
Collapse
Affiliation(s)
- Marta J. Woźniak-Budych
- NanoBioMedical Centre , Adam Mickiewicz University , Wszechnicy Piastowskiej 3 , Poznań 61-614 , Poland
| |
Collapse
|
15
|
Kang G, Hu M, Ren H, Wang J, Cheng X, Li R, Yuan B, Balan Y, Bai Z, Huang H. VHH212 nanobody targeting the hypoxia-inducible factor 1α suppresses angiogenesis and potentiates gemcitabine therapy in pancreatic cancer in vivo. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0568. [PMID: 33830713 PMCID: PMC8330535 DOI: 10.20892/j.issn.2095-3941.2020.0568] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE We aimed to develop a novel anti-HIF-1α intrabody to decrease gemcitabine resistance in pancreatic cancer patients. METHODS Surface plasmon resonance and glutathione S-transferase pull-down assays were conducted to identify the binding affinity and specificity of anti-HIF-1α VHH212 [a single-domain antibody (nanobody)]. Molecular dynamics simulation was used to determine the protein-protein interactions between hypoxia-inducible factor-1α (HIF-1α) and VHH212. The real-time polymerase chain reaction (PCR) and Western blot analyses were performed to identify the expressions of HIF-1α and VEGF-A in pancreatic ductal adenocarcinoma cell lines. The efficiency of the VHH212 nanobody in inhibiting the HIF-1 signaling pathway was measured using a dual-luciferase reporter assay. Finally, a PANC-1 xenograft model was developed to evaluate the anti-tumor efficiency of combined treatment. Immunohistochemistry analysis was conducted to detect the expressions of HIF-1α and VEGF-A in tumor tissues. RESULTS VHH212 was stably expressed in tumor cells with low cytotoxicity, high affinity, specific subcellular localization, and neutralization of HIF-1α in the cytoplasm or nucleus. The binding affinity between VHH212 and the HIF-1α PAS-B domain was 42.7 nM. Intrabody competitive inhibition of the HIF-1α heterodimer with an aryl hydrocarbon receptor nuclear translocator was used to inhibit the HIF-1/VEGF pathway in vitro. Compared with single agent gemcitabine, co-treatment with gemcitabine and a VHH212-encoding adenovirus significantly suppressed tumor growth in the xenograft model with 80.44% tumor inhibition. CONCLUSIONS We developed an anti-HIF-1α nanobody and showed the function of VHH212 in a preclinical murine model of PANC-1 pancreatic cancer. The combination of VHH212 and gemcitabine significantly inhibited tumor development. These results suggested that combined use of anti-HIF-1α nanobodies with first-line treatment may in the future be an effective treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Min Hu
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - He Ren
- Department of Gastroenterology, Center of Tumor Immunology and Cytotherapy, Medical Research Center of The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jiewen Wang
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xin Cheng
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Ruowei Li
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Bo Yuan
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yasmine Balan
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Zixuan Bai
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Podshivalova ES, Semkina AS, Kravchenko DS, Frolova EI, Chumakov SP. Efficient delivery of oncolytic enterovirus by carrier cell line NK-92. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:110-118. [PMID: 33981827 PMCID: PMC8065264 DOI: 10.1016/j.omto.2021.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Many members of the enterovirus family are considered as promising oncolytic agents; however, their systemic administration is largely inefficient due to the rapid neutralization of the virus in the circulation and the barrier functions of the endothelium. We aimed to evaluate natural killer cells as carriers for the delivery of oncolytic enteroviruses, which would combine the effects of cell immunotherapy with virotherapy. We tested four strains of nonpathogenic enteroviruses against the glioblastoma cell line panel and evaluated the produced infectious titers. Next, we explored whether these virus strains could be delivered to the tumor by natural killer cell line NK-92, which is being actively evaluated as a clinically acceptable therapeutic. Several strains of enteroviruses demonstrated oncolytic properties, but only coxsackievirus A7 (CVA7) could replicate in NK-92 cells efficiently. We compared the delivery efficiency of CVA7 in vivo, using NK-92 cells and direct intravenous administration, and found significant advantages of cell delivery even after a single injection. This suggests that the NK-92 cell line can be utilized as a vehicle for the delivery of the oncolytic strain of CVA7, which would improve the clinical potential of this viral oncolytic for the treatment of glioblastoma multiforme and other forms of cancer.
Collapse
Affiliation(s)
| | - Alevtina Sergeevna Semkina
- Department of Medical Nanobiotechnologies, Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow 117997, Russia.,Department of Basic and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Kropotkinskiy 23, Moscow 119991, Russia
| | - Dmitry Sergeevich Kravchenko
- Department of Peptide and Protein Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Elena Ivanovna Frolova
- Department of Peptide and Protein Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Stepan Petrovich Chumakov
- Department of Peptide and Protein Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| |
Collapse
|
17
|
Capsid and Genome Modification Strategies to Reduce the Immunogenicity of Adenoviral Vectors. Int J Mol Sci 2021; 22:ijms22052417. [PMID: 33670859 PMCID: PMC7957472 DOI: 10.3390/ijms22052417] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 01/01/2023] Open
Abstract
Adenovirus-based gene transfer vectors are the most frequently used vector type in gene therapy clinical trials to date, and they play an important role as genetic vaccine candidates during the ongoing SARS-CoV-2 pandemic. Immediately upon delivery, adenovirus-based vectors exhibit multiple complex vector-host interactions and induce innate and adaptive immune responses. This can severely limit their safety and efficacy, particularly after delivery through the blood stream. In this review article we summarize two strategies to modulate Ad vector-induced immune responses: extensive genomic and chemical capsid modifications. Both strategies have shown beneficial effects in a number of preclinical studies while potential synergistic effects warrant further investigations.
Collapse
|
18
|
Fusciello M, Ylösmäki E, Cerullo V. Viral Nanoparticles: Cancer Vaccines and Immune Modulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:317-325. [PMID: 33543466 DOI: 10.1007/978-3-030-58174-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last decades, viruses have gained great interest in the field of immuno-oncology (I-O) for their ability of interacting both with the immune system and the tumour microenvironment. Those pathogens have naturally evolved and been evolutionary to specifically infect hosts, replicate, deliver their genome, and spread. These properties, initially considered a disadvantage, have been investigated and edited to turn viruses into precious allies for molecular biology serving as gene therapy vectors, adjuvants for the immune system, drug cargos, and, lately, anticancer therapeutics. As anticancer drug, one interesting option is viral engineering. Modification of either the viral genome or the outer shell of viruses can change infectivity and tissue targeting and add new functions to the viral particle. Remarkably, in the field of cancer virotherapy, scientists realized that a specific viral genomic depletion would turn the normal tropism of viruses to conditionally replicate in cancer cells only. This category of viruses, named 'Oncolytic viruses', have been investigated and used for cancer treatment in the past decades resulting in the approval of the first oncolytic virus, a herpes simplex virus expressing a stimulating factor, named T-Vec, in 2015. As such, oncolytic viruses achieved positive outcome but still are not able to completely eradicate the disease. This has brought the scientific community to edit those agents, adding to their ability to directly lysate cancer cells, few modifications to mainly boost their interaction with the immune system. Viruses experienced then a renaissance not only as infecting agent but as nanoparticle and cancer vaccines too. These strategies bring new life to the concept of using viruses as viral particles for therapeutic applications.
Collapse
Affiliation(s)
- Manlio Fusciello
- Drug Research Program, Division of Pharmaceutical Biosciences and Digital Precision Cancer Medicine Flagship (iCAN), Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Erkko Ylösmäki
- Drug Research Program, Division of Pharmaceutical Biosciences and Digital Precision Cancer Medicine Flagship (iCAN), Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Drug Research Program, Division of Pharmaceutical Biosciences and Digital Precision Cancer Medicine Flagship (iCAN), Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. .,Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University Federico II, Naples, Italy.
| |
Collapse
|
19
|
Wang Y, Bruggeman KF, Franks S, Gautam V, Hodgetts SI, Harvey AR, Williams RJ, Nisbet DR. Is Viral Vector Gene Delivery More Effective Using Biomaterials? Adv Healthc Mater 2021; 10:e2001238. [PMID: 33191667 DOI: 10.1002/adhm.202001238] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/03/2020] [Indexed: 12/16/2022]
Abstract
Gene delivery has been extensively investigated for introducing foreign genetic material into cells to promote expression of therapeutic proteins or to silence relevant genes. This approach can regulate genetic or epigenetic disorders, offering an attractive alternative to pharmacological therapy or invasive protein delivery options. However, the exciting potential of viral gene therapy has yet to be fully realized, with a number of clinical trials failing to deliver optimal therapeutic outcomes. Reasons for this include difficulty in achieving localized delivery, and subsequently lower efficacy at the target site, as well as poor or inconsistent transduction efficiency. Thus, ongoing efforts are focused on improving local viral delivery and enhancing its efficiency. Recently, biomaterials have been exploited as an option for more controlled, targeted and programmable gene delivery. There is a growing body of literature demonstrating the efficacy of biomaterials and their potential advantages over other delivery strategies. This review explores current limitations of gene delivery and the progress of biomaterial-mediated gene delivery. The combination of biomaterials and gene vectors holds the potential to surmount major challenges, including the uncontrolled release of viral vectors with random delivery duration, poorly localized viral delivery with associated off-target effects, limited viral tropism, and immune safety concerns.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Stephanie Franks
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Vini Gautam
- Department of Biomedical Engineering The University of Melbourne Melbourne Victoria 3010 Australia
| | - Stuart I. Hodgetts
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Alan R. Harvey
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Richard J. Williams
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT) School of Medicine Deakin University Waurn Ponds VIC 3216 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| |
Collapse
|
20
|
Oncolytic Viruses and Hematological Malignancies: A New Class of Immunotherapy Drugs. ACTA ACUST UNITED AC 2020; 28:159-183. [PMID: 33704184 PMCID: PMC7816176 DOI: 10.3390/curroncol28010019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The use of viruses for tumour treatment has been imagined more than one hundred years ago, when it was reported that viral diseases were occasionally leading to a decrease in neoplastic lesions. Oncolytic viruses (OVs) seem to have a specific tropism for tumour cells. Previously, it was hypothesised that OVs’ antineoplastic actions were mainly due to their ability to contaminate, proliferate and destroy tumour cells and the immediate destructive effect on cells was believed to be the single mechanism of action of OVs’ action. Instead, it has been established that oncolytic viruses operate via a multiplicity of systems, including mutation of tumour milieu and a composite change of the activity of immune effectors. Oncolytic viruses redesign the tumour environment towards an antitumour milieu. The aim of our work is to evaluate the findings present in the literature about the use of OVs in the cure of haematological neoplastic pathologies such as multiple myeloma, acute and chronic myeloid leukaemia, and lymphoproliferative diseases. Further experimentations are essential to recognize the most efficient virus or treatment combinations for specific haematological diseases, and the combinations able to induce the strongest immune response.
Collapse
|
21
|
Cook M, Chauhan A. Clinical Application of Oncolytic Viruses: A Systematic Review. Int J Mol Sci 2020; 21:ijms21207505. [PMID: 33053757 PMCID: PMC7589713 DOI: 10.3390/ijms21207505] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
Leveraging the immune system to thwart cancer is not a novel strategy and has been explored via cancer vaccines and use of immunomodulators like interferons. However, it was not until the introduction of immune checkpoint inhibitors that we realized the true potential of immunotherapy in combating cancer. Oncolytic viruses are one such immunotherapeutic tool that is currently being explored in cancer therapeutics. We present the most comprehensive systematic review of all oncolytic viruses in Phase 1, 2, and 3 clinical trials published to date. We performed a systematic review of all published clinical trials indexed in PubMed that utilized oncolytic viruses. Trials were reviewed for type of oncolytic virus used, method of administration, study design, disease type, primary outcome, and relevant adverse effects. A total of 120 trials were found; 86 trials were available for our review. Included were 60 phase I trials, five phase I/II combination trials, 19 phase II trials, and two phase III clinical trials. Oncolytic viruses are feverously being evaluated in oncology with over 30 different types of oncolytic viruses being explored either as a single agent or in combination with other antitumor agents. To date, only one oncolytic virus therapy has received an FDA approval but advances in bioengineering techniques and our understanding of immunomodulation to heighten oncolytic virus replication and improve tumor kill raises optimism for its future drug development.
Collapse
Affiliation(s)
- Mary Cook
- Department of Internal Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, 22 S. Greene Street, Baltimore, MD 21201, USA;
| | - Aman Chauhan
- Department of Internal Medicine-Medical Oncology, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +504-278-0134
| |
Collapse
|
22
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
23
|
Surface Modification of Adenovirus Vector to Improve Immunogenicity and Tropism. Methods Mol Biol 2020. [PMID: 32959253 DOI: 10.1007/978-1-0716-0795-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Although adenovirus is a popular vector for delivering genes, there are several drawbacks that limit its effectiveness, including tropism and both the innate and adaptive immune responses. One approach that has been used to ameliorate these drawbacks is PEGylation of the virus with subsequent modification to add functional moieties for the purpose of cell targeting or enhancing infection. Here, we describe a general approach for PEGylating adenovirus and conjugating cell-penetrating peptides to the surface of the virus to impart the ability to transduce CAR-negative cells.
Collapse
|
24
|
Barry MA, Rubin JD, Lu SC. Retargeting adenoviruses for therapeutic applications and vaccines. FEBS Lett 2020; 594:1918-1946. [PMID: 31944286 PMCID: PMC7311308 DOI: 10.1002/1873-3468.13731] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022]
Abstract
Adenoviruses (Ads) are robust vectors for therapeutic applications and vaccines, but their use can be limited by differences in their in vitro and in vivo pharmacologies. This review emphasizes that there is not just one Ad, but a whole virome of diverse viruses that can be used as therapeutics. It discusses that true vector targeting involves not only retargeting viruses, but importantly also detargeting the viruses from off-target cells.
Collapse
Affiliation(s)
- Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey D Rubin
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| | - Shao-Chia Lu
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
25
|
Goradel NH, Negahdari B, Ghorghanlu S, Jahangiri S, Arashkia A. Strategies for enhancing intratumoral spread of oncolytic adenoviruses. Pharmacol Ther 2020; 213:107586. [PMID: 32479843 DOI: 10.1016/j.pharmthera.2020.107586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Oncolytic viruses, effectively replicate viruses within malignant cells to lyse them without affecting normal ones, have recently shown great promise in developing therapeutic options for cancer. Adenoviruses (Ads) are one of the candidates in oncolytic virotheraoy due to its easily manipulated genomic DNA and expression of wide rane of its receptors on the various cancers. Although systematic delivery of oncolytic adenoviruses can target both primary and metastatic tumors, there are some drawbacks in the effective systematic delivery of oncolytic adenoviruses, including pre-existing antibodies and liver tropism. To overcome these limitations, intratumural (IT) administration of oncolytic viruses have been proposed. However, IT injection of Ads leaves much of the tumor mass unaffected and Ads are not able to disperse more in the tumor microenvironment (TME). To this end, various strategies have been developed to enhance the IT spread of oncolytic adenoviruses, such as using extracellular matrix degradation enzymes, junction opening peptides, and fusogenic proteins. In the present paper, we reviewed different oncolytic adenoviruses, their application in the clinical trials, and strategies for enhancing their IT spread.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sajjad Ghorghanlu
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Jahangiri
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
26
|
Sato-Dahlman M, LaRocca CJ, Yanagiba C, Yamamoto M. Adenovirus and Immunotherapy: Advancing Cancer Treatment by Combination. Cancers (Basel) 2020; 12:cancers12051295. [PMID: 32455560 PMCID: PMC7281656 DOI: 10.3390/cancers12051295] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/03/2023] Open
Abstract
Gene therapy with viral vectors has significantly advanced in the past few decades, with adenovirus being one of the most commonly employed vectors for cancer gene therapy. Adenovirus vectors can be divided into 2 groups: (1) replication-deficient viruses; and (2) replication-competent, oncolytic (OVs) viruses. Replication-deficient adenoviruses have been explored as vaccine carriers and gene therapy vectors. Oncolytic adenoviruses are designed to selectively target, replicate, and directly destroy cancer cells. Additionally, virus-mediated cell lysis releases tumor antigens and induces local inflammation (e.g., immunogenic cell death), which contributes significantly to the reversal of local immune suppression and development of antitumor immune responses ("cold" tumor into "hot" tumor). There is a growing body of evidence suggesting that the host immune response may provide a critical boost for the efficacy of oncolytic virotherapy. Additionally, genetic engineering of oncolytic viruses allows local expression of immune therapeutics, thereby reducing related toxicities. Therefore, the combination of oncolytic virus and immunotherapy is an attractive therapeutic strategy for cancer treatment. In this review, we focus on adenovirus-based vectors and discuss recent progress in combination therapy of adenoviruses with immunotherapy in preclinical and clinical studies.
Collapse
Affiliation(s)
- Mizuho Sato-Dahlman
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St SE, Minneapolis, MN 55455, USA; (M.S.-D.); (C.J.L.); (C.Y.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher J. LaRocca
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St SE, Minneapolis, MN 55455, USA; (M.S.-D.); (C.J.L.); (C.Y.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Surgical Oncology, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chikako Yanagiba
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St SE, Minneapolis, MN 55455, USA; (M.S.-D.); (C.J.L.); (C.Y.)
| | - Masato Yamamoto
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, MMC 195, 420 Delaware St SE, Minneapolis, MN 55455, USA; (M.S.-D.); (C.J.L.); (C.Y.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Surgical Oncology, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: ; Tel.: +1-612-624-9131
| |
Collapse
|
27
|
Investigating the Effect of Encapsulation Processing Parameters on the Viability of Therapeutic Viruses in Electrospraying. Pharmaceutics 2020; 12:pharmaceutics12040388. [PMID: 32344667 PMCID: PMC7238258 DOI: 10.3390/pharmaceutics12040388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
The ability of viruses to introduce genetic material into cells can be usefully exploited in a variety of therapies and also vaccination. Encapsulating viruses to limit inactivation by the immune system before reaching the desired target and allowing for controlled release is a promising strategy of delivery. Conventional encapsulation methods, however, can significantly reduce infectivity. The aim of this study was to investigate electrospraying as an alternative encapsulation technique. Two commonly used therapeutic viruses, adenovirus (Ad) and modified vaccinia Ankara (MVA), were selected. First, solutions containing the viruses were electrosprayed in a single needle configuration at increasing voltages to examine the impact of the electric field. Second, the effect of exposing the viruses to pure organic solvents was investigated and compared to that occurring during coaxial electrospraying. Infectivity was determined by measuring the luminescence produced from lysed A549 cells after incubation with treated virus. Neither Ad nor MVA exhibited any significant loss in infectivity when electrosprayed within the range of electrospraying parameters relevant for encapsulation. A significant decrease in infectivity was only observed when MVA was electrosprayed at the highest voltage, 24 kV, and when MVA and Ad were exposed to selected pure organic solvents. Thus, it was concluded that electrospraying would be a viable method for virus encapsulation.
Collapse
|
28
|
Lemos de Matos A, Franco LS, McFadden G. Oncolytic Viruses and the Immune System: The Dynamic Duo. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:349-358. [PMID: 32071927 PMCID: PMC7015832 DOI: 10.1016/j.omtm.2020.01.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oncolytic viruses (OVs) constitute a new and promising immunotherapeutic approach toward cancer treatment. This therapy takes advantage of the natural propensity of most tumor cells to be infected by specific OVs. Besides the direct killing potential (oncolysis), what makes OV administration attractive for the present cancer immunotherapeutic scenario is the capacity to induce two new overlapping, but distinct, immunities: anti-tumoral and anti-viral. OV infection and oncolysis naturally elicit both innate and adaptive immune responses (required for long-term anti-tumoral immunity); at the same time, the viral infection prompts an anti-viral response. In this review, we discuss the dynamic interaction between OVs and the triggered responses of the immune system. The anti-OV immunological events that lead to viral clearance and the strategies to deal with such potential loss of the therapeutic virus are discussed. Additionally, we review the immune stimulatory actions induced by OVs through different inherent strategies, such as modulation of the tumor microenvironment, the role of immunogenic cell death, and the consequences of genetically modifying OVs by arming them with therapeutic transgenes. An understanding of the balance between the OV-induced anti-tumoral versus anti-viral immunities will provide insight when choosing the appropriate virotherapy for any specific cancer.
Collapse
Affiliation(s)
- Ana Lemos de Matos
- Biodesign Center for Immunotherapy, Vaccines, and Virotherapy (B-CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Lina S Franco
- Biodesign Center for Immunotherapy, Vaccines, and Virotherapy (B-CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Grant McFadden
- Biodesign Center for Immunotherapy, Vaccines, and Virotherapy (B-CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
29
|
Abstract
The optimal clinical exploitation of viruses as gene therapy or oncolytic vectors will require them to be administered intravenously. Strategies must therefore be deployed to enable viruses to survive the harsh neutralizing environment of the bloodstream and achieve deposition within and throughout target tissues or tumor deposits. This chapter describes the genetic and chemical engineering approaches that are being developed to overcome these challenges.
Collapse
Affiliation(s)
- Claudia A P Hill
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Luca Bau
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
| |
Collapse
|
30
|
Zheng M, Huang J, Tong A, Yang H. Oncolytic Viruses for Cancer Therapy: Barriers and Recent Advances. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:234-247. [PMID: 31872046 PMCID: PMC6911943 DOI: 10.1016/j.omto.2019.10.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oncolytic viruses (OVs) are powerful new therapeutic agents in cancer therapy. With the first OV (talimogene laherparepvec [T-vec]) obtaining US Food and Drug Administration approval, interest in OVs has been boosted greatly. Nevertheless, despite extensive research, oncolytic virotherapy has shown limited efficacy against solid tumors. Recent advances in viral retargeting, genetic editing, viral delivery platforms, tracking strategies, OV-based gene therapy, and combination strategies have the potential to broaden the applications of oncolytic virotherapy in oncology. In this review, we present several insights into the limitations and challenges of oncolytic virotherapy, describe the strategies mentioned above, provide a summary of recent preclinical and clinical trials in the field of oncolytic virotherapy, and highlight the need to optimize current strategies to improve clinical outcomes.
Collapse
Affiliation(s)
- Meijun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Jianhan Huang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Hui Yang
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, P.R. China
| |
Collapse
|
31
|
Sun Y, Lv X, Ding P, Wang L, Sun Y, Li S, Zhang H, Gao Z. Exploring the functions of polymers in adenovirus-mediated gene delivery: Evading immune response and redirecting tropism. Acta Biomater 2019; 97:93-104. [PMID: 31386928 DOI: 10.1016/j.actbio.2019.06.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
Adenovirus (Ad) is a promising viral carrier in gene therapy because of its unique attribution. However, clinical applications of Ad vectors are currently restricted by their immunogenicity and broad native tropism. To address these obstacles, a variety of nonimmunogenic polymers are utilized to modify Ad vectors chemically or physically. In this review, we systemically discuss the functions of polymers in Ad-mediated gene delivery from two aspects: evading the host immune responses to Ads and redirecting Ad tropism. With polyethylene glycol (PEG) first in order, a variety of polymers have been developed to shield the surface of Ad vectors and well accomplished to evade the host immune response, block CAR-dependant cellular uptake, and reduce accumulation in the liver. In addition, shielding Ad vectors with targeted polymers (including targeting ligand-conjugated polymers and bio-responsive polymers) can also efficiently retarget Ad vectors to tumor tissues and reduce their distribution in nontargeted tissues. With its potential to evade the immune response and retarget Ad vectors, modification with polymers has been generally regarded as a promising strategy to facilitate the clinical applications of Ad vectors for virotherapy. STATEMENT OF SIGNIFICANCE: There is no doubt that Adenovirus (Ads) are attractive vectors for gene therapy, with high sophistication and effectiveness in overcoming both extra- and intracellular barriers, which cannot be exceeded by any other nonviral gene vectors. Unfortunately, their clinical applications are still restricted by some critical hurdles, including immunogenicity and native broad tropism. Therefore, a variety of elegant strategies have been developed from various angles to address these hurdles. Among these various strategies, coating Ads with nonimmunogenic polymers has attracted much attention. In this review, we systemically discuss the functions of polymers in Ad-mediated gene delivery from two aspects: evading the host immune responses to Ads and redirecting Ad tropism. In addition, the key factors in Ad modification with polymers have been highlighted and summarized to provide guiding theory for the design of more effective and safer polymer-Ad hybrid gene vectors.
Collapse
Affiliation(s)
- Yanping Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China; State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiaoqian Lv
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Long Wang
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China; Department of Family and Consumer Sciences, California State University, Long Beach, CA 90840, USA
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shuo Li
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Huimin Zhang
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China; State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
32
|
Niemann J, Woller N, Brooks J, Fleischmann-Mundt B, Martin NT, Kloos A, Knocke S, Ernst AM, Manns MP, Kubicka S, Wirth TC, Gerardy-Schahn R, Kühnel F. Molecular retargeting of antibodies converts immune defense against oncolytic viruses into cancer immunotherapy. Nat Commun 2019; 10:3236. [PMID: 31324774 PMCID: PMC6642145 DOI: 10.1038/s41467-019-11137-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 06/18/2019] [Indexed: 01/06/2023] Open
Abstract
Virus-neutralizing antibodies are a severe obstacle in oncolytic virotherapy. Here, we present a strategy to convert this unfavorable immune response into an anticancer immunotherapy via molecular retargeting. Application of a bifunctional adapter harboring a tumor-specific ligand and the adenovirus hexon domain DE1 for engaging antiadenoviral antibodies, attenuates tumor growth and prolongs survival in adenovirus-immunized mice. The therapeutic benefit achieved by tumor retargeting of antiviral antibodies is largely due to NK cell-mediated triggering of tumor-directed CD8 T-cells. We further demonstrate that antibody-retargeting (Ab-retargeting) is a feasible method to sensitize tumors to PD-1 immune checkpoint blockade. In therapeutic settings, Ab-retargeting greatly improves the outcome of intratumor application of an oncolytic adenovirus and facilitates long-term survival in treated animals when combined with PD-1 checkpoint inhibition. Tumor-directed retargeting of preexisting or virotherapy-induced antiviral antibodies therefore represents a promising strategy to fully exploit the immunotherapeutic potential of oncolytic virotherapy and checkpoint inhibition.
Collapse
Affiliation(s)
- Julia Niemann
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Norman Woller
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Jennifer Brooks
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Bettina Fleischmann-Mundt
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Nikolas T Martin
- Institute for Clinical Biochemistry, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, Canada
| | - Arnold Kloos
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
- Department of Experimental Hemato-Oncology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Sarah Knocke
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Amanda M Ernst
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Stefan Kubicka
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
- Cancer Center Reutlingen, District Hospital, Reutlingen, Germany
| | - Thomas C Wirth
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Rita Gerardy-Schahn
- Institute for Clinical Biochemistry, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
33
|
Barry MA. Recent advances towards gene therapy for propionic acidemia: translation to the clinic. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1635883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Michael A. Barry
- Department of Internal Medicine, Division of Infectious Diseases, Department of Immunology, and Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
34
|
Affiliation(s)
- Claudia Hill
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Chen MY, Butler SS, Chen W, Suh J. Physical, chemical, and synthetic virology: Reprogramming viruses as controllable nanodevices. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1545. [PMID: 30411529 PMCID: PMC6461522 DOI: 10.1002/wnan.1545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/03/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023]
Abstract
The fields of physical, chemical, and synthetic virology work in partnership to reprogram viruses as controllable nanodevices. Physical virology provides the fundamental biophysical understanding of how virus capsids assemble, disassemble, display metastability, and assume various configurations. Chemical virology considers the virus capsid as a chemically addressable structure, providing chemical pathways to modify the capsid exterior, interior, and subunit interfaces. Synthetic virology takes an engineering approach, modifying the virus capsid through rational, combinatorial, and bioinformatics-driven design strategies. Advances in these three subfields of virology aim to develop virus-based materials and tools that can be applied to solve critical problems in biomedicine and biotechnology, including applications in gene therapy and drug delivery, diagnostics, and immunotherapy. Examples discussed include mammalian viruses, such as adeno-associated virus (AAV), plant viruses, such as cowpea mosaic virus (CPMV), and bacterial viruses, such as Qβ bacteriophage. Importantly, research efforts in physical, chemical, and synthetic virology have further unraveled the design principles foundational to the form and function of viruses. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | - Susan S Butler
- Department of Bioengineering, Rice University, Houston, Texas
| | - Weitong Chen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, Texas
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, Texas
| |
Collapse
|
36
|
Francini N, Cochrane D, Illingworth S, Purdie L, Mantovani G, Fisher K, Seymour LW, Spain SG, Alexander C. Polyvalent Diazonium Polymers Provide Efficient Protection of Oncolytic Adenovirus Enadenotucirev from Neutralizing Antibodies while Maintaining Biological Activity In Vitro and In Vivo. Bioconjug Chem 2019; 30:1244-1257. [PMID: 30874432 DOI: 10.1021/acs.bioconjchem.9b00189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oncolytic viruses offer many advantages for cancer therapy when administered directly to confined solid tumors. However, the systemic delivery of these viruses is problematic because of the host immune response, undesired interactions with blood components, and inherent targeting to the liver. Efficacy of systemically administered viruses has been improved by masking viral surface proteins with polymeric materials resulting in modulation of viral pharmacokinetic profile and accumulation in tumors in vivo. Here we describe a new class of polyvalent reactive polymer based on poly( N-(2-hydroxypropyl)methacrylamide) (polyHPMA) with diazonium reactive groups and their application in the modification of the chimeric group B oncolytic virus enadenotucirev (EnAd). A series of six copolymers with different chain lengths and density of reactive groups was synthesized and used to coat EnAd. Polymer coating was found to be extremely efficient with concentrations as low as 1 mg/mL resulting in complete (>99%) ablation of neutralizing antibody binding. Coating efficiency was found to be dependent on both chain length and reactive group density. Coated viruses were found to have reduced transfection activity both in vitro and in vivo, with greater protection against neutralizing antibodies resulting in lower transgene production. However, in the presence of neutralizing antibodies, some in vivo transgene expression was maintained for coated virus compared to the uncoated control. The decrease in transgene expression was found not to be solely due to lower cellular uptake but due to reduced unpackaging of the virus within the cells and reduced replication, indicating that the polymer coating does not cause permanent inactivation of the virus. These data suggest that virus activity may be modulated by the appropriate design of coating polymers while retaining protection against neutralizing antibodies.
Collapse
Affiliation(s)
- Nora Francini
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Daniel Cochrane
- PsiOxus Therapeutics Limited , 4-10, The Quadrant, Abingdon Science Park , Abingdon , Oxfordshire OX14 3YS , U.K
| | - Sam Illingworth
- PsiOxus Therapeutics Limited , 4-10, The Quadrant, Abingdon Science Park , Abingdon , Oxfordshire OX14 3YS , U.K
| | - Laura Purdie
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Giuseppe Mantovani
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Kerry Fisher
- PsiOxus Therapeutics Limited , 4-10, The Quadrant, Abingdon Science Park , Abingdon , Oxfordshire OX14 3YS , U.K
- Department of Oncology , Old Road Campus Research Building , Roosevelt Drive , Oxford OX3 7DQ , U.K
| | - Leonard W Seymour
- Department of Oncology , Old Road Campus Research Building , Roosevelt Drive , Oxford OX3 7DQ , U.K
| | - Sebastian G Spain
- Department of Chemistry , University of Sheffield , Sheffield S3 7HF , U.K
| | - Cameron Alexander
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| |
Collapse
|
37
|
Ebara M. Apoptotic Cell-Mimetic Polymers for Anti-Inflammatory Therapy. Chonnam Med J 2019; 55:1-7. [PMID: 30740334 PMCID: PMC6351328 DOI: 10.4068/cmj.2019.55.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 11/25/2022] Open
Abstract
The field of biomaterials has seen a strong rejuvenation due to the new potential to modulate immune system in our body. This special class of materials is called "immunomodulatory biomaterials". Generally, three fundamental strategies are followed in the design of immunomodulatory biomaterials: (1) immuno-inert biomaterials, (2) immuno-activating biomaterials, and (3) immuno-tolerant biomaterials. While many applications of immuno-inert biomaterials such as biocompatible medical implants have been already proposed in the past decades, the ability to engineer biological activity into synthetic materials greatly increases the number of their potential uses and improves their performance in more traditional applications. The major focus of researchers is now set on developing immuno-tolerant biomaterials for anti-inflammatory therapies. In this review, we therefore introduce recent developments of immuno-tolerant biomaterials. Especially we introduce an apoptotic cell membrane-inspired polymer and its post-inflammatory effects on immune cells in this article.
Collapse
Affiliation(s)
- Mitsuhiro Ebara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
- Graduate School of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
38
|
Forbes NS, Coffin RS, Deng L, Evgin L, Fiering S, Giacalone M, Gravekamp C, Gulley JL, Gunn H, Hoffman RM, Kaur B, Liu K, Lyerly HK, Marciscano AE, Moradian E, Ruppel S, Saltzman DA, Tattersall PJ, Thorne S, Vile RG, Zhang HH, Zhou S, McFadden G. White paper on microbial anti-cancer therapy and prevention. J Immunother Cancer 2018; 6:78. [PMID: 30081947 PMCID: PMC6091193 DOI: 10.1186/s40425-018-0381-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
In this White Paper, we discuss the current state of microbial cancer therapy. This paper resulted from a meeting ('Microbial Based Cancer Therapy') at the US National Cancer Institute in the summer of 2017. Here, we define 'Microbial Therapy' to include both oncolytic viral therapy and bacterial anticancer therapy. Both of these fields exploit tumor-specific infectious microbes to treat cancer, have similar mechanisms of action, and are facing similar challenges to commercialization. We designed this paper to nucleate this growing field of microbial therapeutics and increase interactions between researchers in it and related fields. The authors of this paper include many primary researchers in this field. In this paper, we discuss the potential, status and opportunities for microbial therapy as well as strategies attempted to date and important questions that need to be addressed. The main areas that we think will have the greatest impact are immune stimulation, control of efficacy, control of delivery, and safety. There is much excitement about the potential of this field to treat currently intractable cancer. Much of the potential exists because these therapies utilize unique mechanisms of action, difficult to achieve with other biological or small molecule drugs. By better understanding and controlling these mechanisms, we will create new therapies that will become integral components of cancer care.
Collapse
Affiliation(s)
- Neil S Forbes
- grid.266683.f0000 0001 2184 9220Department of Chemical EngineeringUniversity of Massachusetts 159 Goessmann Hall 01003 Amherst MA USA
| | | | - Liang Deng
- 0000 0001 2171 9952grid.51462.34Department of Medicine, Memorial Sloan Kettering Cancer Center 10065 New York NY USA
| | - Laura Evgin
- 0000 0004 0459 167Xgrid.66875.3aMayo Clinic Rochester USA
| | - Steve Fiering
- 0000 0001 2179 2404grid.254880.3Geisel School of Medicine at Dartmouth Hanover USA
| | | | - Claudia Gravekamp
- 0000000121791997grid.251993.5Albert Einstein College of Medicine Bronx USA
| | - James L Gulley
- 0000 0004 1936 8075grid.48336.3aNational Cancer Institute, National Institutes of Health Bethesda USA
| | | | - Robert M Hoffman
- 0000 0001 2107 4242grid.266100.3UC, San Diego San Diego USA
- 0000 0004 0461 1271grid.417448.aAntiCancer Inc. San Diego USA
| | - Balveen Kaur
- 0000000121548364grid.55460.32University of Texas Austin USA
| | - Ke Liu
- 0000 0001 2243 3366grid.417587.8Center for Biologics Evaluation and ResearchUS Food and Drug Administration Silver Spring USA
| | | | - Ariel E Marciscano
- 0000 0004 1936 8075grid.48336.3aNational Cancer Institute, National Institutes of Health Bethesda USA
| | | | - Sheryl Ruppel
- 0000 0004 4665 8158grid.419407.fLeidos Biomedical Research, Inc. Frederick USA
| | - Daniel A Saltzman
- 0000000419368657grid.17635.36University of Minnesota Minneapolis USA
| | | | - Steve Thorne
- 0000 0004 1936 9000grid.21925.3dUniversity of Pittsburgh Pittsburgh USA
| | - Richard G Vile
- 0000 0004 0459 167Xgrid.66875.3aMayo Clinic Rochester USA
| | | | - Shibin Zhou
- 0000 0001 2171 9311grid.21107.35Johns Hopkins University Baltimore USA
| | - Grant McFadden
- 0000 0001 2151 2636grid.215654.1Center for Immunotherapy, Vaccines and Virotherapy , Biodesign InstituteArizona State University 727 E Tyler Street, Room A330E 85281 Tempe AZ USA
| |
Collapse
|
39
|
Hagedorn C, Kreppel F. Capsid Engineering of Adenovirus Vectors: Overcoming Early Vector-Host Interactions for Therapy. Hum Gene Ther 2018; 28:820-832. [PMID: 28854810 DOI: 10.1089/hum.2017.139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adenovirus-based vectors comprise the most frequently used vector type in clinical studies to date. Both intense lab research and insights from the clinical trials reveal the importance of a comprehensive understanding of vector-host interactions. Especially for systemic intravenous adenovirus vector delivery, it is paramount to develop safe and efficacious vectors. Very early vector-host interactions that take place in blood long before the first cell is being transduced are phenomena triggered by the surface, shape, and size of the adenovirus vector particles. Not surprisingly, a multitude of different technologies ranging from genetics to chemistry has been developed to alter the adenovirus vector surface. In this review, we discuss the most important technologies and evaluate them for their suitability to overcome hurdles imposed by early vector-host interactions.
Collapse
Affiliation(s)
- Claudia Hagedorn
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University , Witten, Germany
| | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University , Witten, Germany
| |
Collapse
|
40
|
Rajagopal P, Duraiswamy S, Sethuraman S, Giridhara Rao J, Krishnan UM. Polymer-coated viral vectors: hybrid nanosystems for gene therapy. J Gene Med 2018; 20:e3011. [PMID: 29423922 DOI: 10.1002/jgm.3011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 12/30/2022] Open
Abstract
The advantages and critical aspects of nanodimensional polymer-coated viral vector systems potentially applicable for gene delivery are reviewed. Various viral and nonviral vectors have been explored for gene therapy. Viral gene transfer methods, although highly efficient, are limited by their immunogenicity. Nonviral vectors have a lower transfection efficiency as a result of their inability to escape from the endosome. To overcome these drawbacks, novel nanotechnology-mediated interventions that involve the coating or modification of virus using polymers have emerged as a new paradigm in gene therapy. These alterations not only modify the tropism of the virus, but also reduce their undesirable interactions with the biological system. Also, co-encapsulation of other therapeutic agents in the polymeric coating may serve to augment the treatment efficacy. The viral particles can aid endosomal escape, as well as nuclear targeting, thereby enhancing the transfection efficiency. The integration of the desirable properties of both viral and nonviral vectors has been found beneficial for gene therapy by enhancing the transduction efficiency and minimizing the immune response. However, it is essential to ensure that these attempts should not compromise on the inherent ability of viruses to target and internalize into the cells and escape the endosomes.
Collapse
Affiliation(s)
- Pratheppa Rajagopal
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, India
| | - Sowmiya Duraiswamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, India
| | - Jayandharan Giridhara Rao
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, India
| |
Collapse
|
41
|
Yokoda R, Nagalo BM, Vernon B, Oklu R, Albadawi H, DeLeon TT, Zhou Y, Egan JB, Duda DG, Borad MJ. Oncolytic virus delivery: from nano-pharmacodynamics to enhanced oncolytic effect. Oncolytic Virother 2017; 6:39-49. [PMID: 29184854 PMCID: PMC5687448 DOI: 10.2147/ov.s145262] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
With the advancement of a growing number of oncolytic viruses (OVs) to clinical development, drug delivery is becoming an important barrier to overcome for optimal therapeutic benefits. Host immunity, tumor microenvironment and abnormal vascularity contribute to inefficient vector delivery. A number of novel approaches for enhanced OV delivery are under evaluation, including use of nanoparticles, immunomodulatory agents and complex viral–particle ligands along with manipulations of the tumor microenvironment. This field of OV delivery has quickly evolved to bioengineering of complex nanoparticles that could be deposited within the tumor using minimal invasive image-guided delivery. Some of the strategies include ultrasound (US)-mediated cavitation-enhanced extravasation, magnetic viral complexes delivery, image-guided infusions with focused US and targeting photodynamic virotherapy. In addition, strategies that modulate tumor microenvironment to decrease extracellular matrix deposition and increase viral propagation are being used to improve tumor penetration by OVs. Some involve modification of the viral genome to enhance their tumoral penetration potential. Here, we highlight the barriers to oncolytic viral delivery, and discuss the challenges to improving it and the perspectives of establishing new modes of active delivery to achieve enhanced oncolytic effects.
Collapse
Affiliation(s)
- Raquel Yokoda
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Bolni M Nagalo
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Brent Vernon
- Department of Biomedical Engineering, Arizona State University, Tempe
| | - Rahmi Oklu
- Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, AZ
| | - Hassan Albadawi
- Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, AZ
| | - Thomas T DeLeon
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Yumei Zhou
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Jan B Egan
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Dan G Duda
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Mitesh J Borad
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| |
Collapse
|
42
|
Nguyen TV, Barry ME, Turner MA, Crosby CM, Trujillo MA, Morris JC, Barry MA. Comparison of Liver Detargeting Strategies for Systemic Therapy with Oncolytic Adenovirus Serotype 5. Biomedicines 2017; 5:E46. [PMID: 28796161 PMCID: PMC5618304 DOI: 10.3390/biomedicines5030046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 12/01/2022] Open
Abstract
Oncolytic viruses would ideally be of use for systemic therapy to treat disseminated cancer. To do this safely, this may require multiple layers of cancer specificity. The pharmacology and specificity of oncolytic adenoviruses can be modified by (1) physical retargeting, (2) physical detargeting, (3) chemical shielding, or (4) by modifying the ability of viral early gene products to selectively activate in cancer versus normal cells. We explored the utility of these approaches with oncolytic adenovirus serotype 5 (Ad5) in immunocompetent Syrian hamsters bearing subcutaneous HaK tumors. After a single intravenous injection to reach the distant tumors, the physically hepatocyte-detargeted virus Ad5-hexon-BAP was more effective than conditionally replicating Ad5-dl1101/07 with mutations in its E1A protein. When these control or Ad5 treated animals were treated a second time by intratumoral injection, prior exposure to Ad5 did not affect tumor growth, suggesting that anti-Ad immunity neither prevented treatment nor amplified anti-tumor immune responses. Ad5-dl1101/07 was next chemically shielded with polyethylene glycol (PEG). While 5 kDa of PEG blunted pro-inflammatory IL-6 production induced by Ad5-dl1101/07, this shielding reduced Ad oncolytic activity.
Collapse
Affiliation(s)
- Tien V Nguyen
- Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902, USA.
| | - Mary E Barry
- Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902, USA.
| | - Mallory A Turner
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN 55902, USA.
| | - Catherine M Crosby
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN 55902, USA.
| | | | - John C Morris
- Department of Endocrinology, Mayo Clinic, Rochester, MN 55902, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902, USA.
| | - Michael A Barry
- Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN 55902, USA.
| |
Collapse
|
43
|
Barriers to systemic application of virus-based vectors in gene therapy: lessons from adenovirus type 5. Virus Genes 2017; 53:692-699. [PMID: 28755290 DOI: 10.1007/s11262-017-1498-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/22/2017] [Indexed: 01/01/2023]
Abstract
Currently, virus-based vectors, namely derivatives of the adenovirus, are frequently used in a wide variety of ex vivo or local gene therapeutic applications. However, the efficacy of virus-based vectors in systemic applications is presently still extremely limited. Complex interactions of the various vector types with the patient's organism hinder successful vector deployment. Exemplary, here we summarize barriers to systemic application of Adenovirus-based vectors leading either to acute toxic effects or rapid vector neutralization and discuss strategies to overcome these barriers aiming to develop more efficient vector types.
Collapse
|
44
|
Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 2016; 45:4074-126. [PMID: 27152673 PMCID: PMC5068136 DOI: 10.1039/c5cs00287g] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.
Collapse
Affiliation(s)
- Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. and Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
45
|
Ma YY, Wang XJ, Han Y, Li G, Wang HJ, Wang SB, Chen XY, Liu FL, He XL, Tong XM, Mou XZ. Loss of coxsackie and adenovirus receptor expression in human colorectal cancer: A potential impact on the efficacy of adenovirus-mediated gene therapy in Chinese Han population. Mol Med Rep 2016; 14:2541-7. [PMID: 27485384 PMCID: PMC4991754 DOI: 10.3892/mmr.2016.5536] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 05/11/2016] [Indexed: 01/05/2023] Open
Abstract
The coxsackie and adenovirus receptor (CAR) is considered a tumor suppressor and critical factor for the efficacy of therapeutic strategies that employ the adenovirus. However, data on CAR expression levels in colorectal cancer are conflicting and its clinical relevance remains to be elucidated. Immunohistochemistry was performed on tissue microarrays containing 251 pairs of colon cancer and adjacent normal tissue samples from Chinese Han patients to assess the expression levels of CAR. Compared with healthy mucosa, decreased CAR expression (40.6% vs. 95.6%; P<0.001) was observed in colorectal cancer samples. The CAR immunopositivity in tumor tissues was not significantly associated with gender, age, tumor size, differentiation, TNM stage, lymph node metastasis or distant metastasis in patients with colon cancer. However, expression of CAR is present in 83.3% of the tumor tissues from patient with colorectal liver metastasis, which was significantly higher than those without liver metastasis (39.6%; P=0.042). At the plasma membrane, CAR was observed in 29.5% normal mucosa samples, which was significantly higher than in colorectal cancer samples (4.0%; P<0.001). In addition, the survival analysis demonstrated that the expression level of CAR has no association with the prognosis of colorectal cancer. CAR expression was observed to be downregulated in colorectal cancer, and it exerts complex effects during colorectal carcinogenesis, potentially depending on the stage of the cancer development and progression. High CAR expression may promote liver metastasis. With regard to oncolytic therapy, CAR expression analysis should be performed prior to adenoviral oncolytic treatment to stratify Chinese Han patients for treatment.
Collapse
Affiliation(s)
- Ying-Yu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiao-Jun Wang
- Department of Anus, Rectum and Colon Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310014, P.R. China
| | - Yong Han
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Gang Li
- Colorectal Department of Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Hui-Ju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Shi-Bing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiao-Yi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Fan-Long Liu
- Department of Anus, Rectum and Colon Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiang-Lei He
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiang-Min Tong
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
46
|
Li X, Wang P, Li H, Du X, Liu M, Huang Q, Wang Y, Wang S. The Efficacy of Oncolytic Adenovirus Is Mediated by T-cell Responses against Virus and Tumor in Syrian Hamster Model. Clin Cancer Res 2016; 23:239-249. [PMID: 27435398 DOI: 10.1158/1078-0432.ccr-16-0477] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/23/2016] [Accepted: 06/25/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Oncolytic adenoviruses (Ad) represent an innovative approach to cancer therapy. Its efficacy depends on multiple actions, including direct tumor lysis and stimulation of antiviral and antitumor immune responses. In this study, we investigated the roles of T-cell responses in oncolytic adenoviral therapy. EXPERIMENTAL DESIGN An immunocompetent and viral replication-permissive Syrian hamster tumor model was used. The therapeutic mechanisms of oncolytic Ad were investigated by T-cell deletion, immunohistochemical staining, and CTL assay. RESULTS Deletion of T cells with an anti-CD3 antibody completely demolished the antitumor efficacy of oncolytic Ad. Intratumoral injection of Ad induced strong virus- and tumor-specific T-cell responses, as well as antiviral antibody response. Both antiviral and antitumor T-cell responses contributed to the efficacy of oncolytic Ad. Deletion of T cells increased viral replication and extended the persistence of infectious virus within tumors but almost abrogated the antitumor efficacy. Preexisting antiviral immunity promoted the clearance of injected oncolytic Ad from tumors but had no effect on antitumor efficacy. Strikingly, the repeated treatment with oncolytic Ad has strong therapeutic effect on relapsed tumors or tumors insensitive to the primary viral therapy. CONCLUSIONS These results demonstrate that T cell-mediated immune responses outweigh the direct oncolysis in mediating antitumor efficacy of oncolytic Ad. Our data have a high impact on redesigning the regimen of oncolytic Ad for cancer treatment. Clin Cancer Res; 23(1); 239-49. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaozhu Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pengju Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou, China
| | - Hang Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuexiang Du
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Mingyue Liu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qibin Huang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Center for Molecular Oncology, Zhengzhou University, Zhengzhou, China.,Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Shengdian Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
47
|
Krutzke L, Prill JM, Engler T, Schmidt CQ, Xu Z, Byrnes AP, Simmet T, Kreppel F. Substitution of blood coagulation factor X-binding to Ad5 by position-specific PEGylation: Preventing vector clearance and preserving infectivity. J Control Release 2016; 235:379-392. [PMID: 27302248 DOI: 10.1016/j.jconrel.2016.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/19/2023]
Abstract
The biodistribution of adenovirus type 5 (Ad5) vector particles is heavily influenced by interaction of the particles with plasma proteins, including coagulation factor X (FX), which binds specifically to the major Ad5 capsid protein hexon. FX mediates hepatocyte transduction by intravenously-injected Ad5 vectors and shields vector particles from neutralization by natural antibodies and complement. In mice, mutant Ad5 vectors that are ablated for FX-binding become detargeted from hepatocytes, which is desirable for certain applications, but unfortunately such FX-nonbinding vectors also become sensitive to neutralization by mouse plasma proteins. To improve the properties of Ad5 vectors for systemic delivery, we developed a strategy to replace the natural FX shield by a site-specific chemical polyethylene glycol shield. Coupling of polyethylene glycol to a specific site in hexon hypervariable region 1 yielded vector particles that were protected from neutralization by natural antibodies and complement although they were unable to bind FX. These vector particles evaded macrophages in vitro and showed significantly improved pharmacokinetics and hepatocyte transduction in vivo. Thus, site-specific shielding of Ad5 vectors with polyethylene glycol rendered vectors FX-independent and greatly improved their properties for systemic gene therapy.
Collapse
Affiliation(s)
- L Krutzke
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | - J M Prill
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | - T Engler
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | - C Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Z Xu
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - A P Byrnes
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - T Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - F Kreppel
- Department of Gene Therapy, Ulm University, Ulm, Germany.
| |
Collapse
|
48
|
Uusi-Kerttula H, Legut M, Davies J, Jones R, Hudson E, Hanna L, Stanton RJ, Chester JD, Parker AL. Incorporation of Peptides Targeting EGFR and FGFR1 into the Adenoviral Fiber Knob Domain and Their Evaluation as Targeted Cancer Therapies. Hum Gene Ther 2016; 26:320-9. [PMID: 25919378 PMCID: PMC4442602 DOI: 10.1089/hum.2015.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oncolytic virotherapies based on adenovirus 5 (Ad5) hold promise as adjunctive cancer therapies; however, their efficacy when delivered systemically is hampered by poor target cell specificity and preexisting anti-Ad5 immunity. Ovarian cancer represents a promising target for virotherapy, since the virus can be delivered locally into the peritoneal cavity. Both epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor 1 (FGFR1) are overexpressed in the majority of human tumors, including ovarian cancer. To generate adenoviral vectors with improved tumor specificity, we generated a panel of Ad5 vectors with altered tropism for EGFR and FGFR, rather than the natural Ad5 receptor, hCAR. We have included mutations within AB loop of the viral fiber knob (KO1 mutation) to preclude interaction with hCAR, combined with insertions in the HI loop to incorporate peptides that bind either EGFR (peptide YHWYGYTPQNVI, GE11) or FGFR1 (peptides MQLPLAT, M*, and LSPPRYP, LS). Viruses were produced to high titers, and the integrity of the fiber protein was validated by Western blotting. The KO1 mutation efficiently ablated hCAR interactions, and significantly increased transduction was observed in hCARlow/EGFRhigh cell lines using Ad5.GE11, while transduction levels using Ad5.M* or Ad5.LS were not increased. In the presence of physiological concentrations of human blood clotting factor X (hFX), significantly increased levels of transduction via the hFX-mediated pathway were observed in cell lines, but not in primary tumor cells derived from epithelial ovarian cancer (EOC) ascites samples. Ad5-mediated transduction of EOC cells was completely abolished by the presence of 2.5% serum from patients, while, surprisingly, incorporation of the GE11 peptide resulted in significant evasion of neutralization in the same samples. We thus speculate that incorporation of the YHWYGYTPQNVI dodecapeptide within the fiber knob domain may provide a novel means of circumventing preexisting Ad5 immunity that warrants further investigation.
Collapse
Affiliation(s)
- Hanni Uusi-Kerttula
- 1Institutes of Cancer and Genetics, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Mateusz Legut
- 1Institutes of Cancer and Genetics, Cardiff University, Cardiff CF14 4XN, United Kingdom.,2Institutes of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - James Davies
- 1Institutes of Cancer and Genetics, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Rachel Jones
- 3Velindre Cancer Centre, Cardiff CF14 2TL, United Kingdom
| | - Emma Hudson
- 3Velindre Cancer Centre, Cardiff CF14 2TL, United Kingdom
| | - Louise Hanna
- 3Velindre Cancer Centre, Cardiff CF14 2TL, United Kingdom
| | - Richard J Stanton
- 2Institutes of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - John D Chester
- 1Institutes of Cancer and Genetics, Cardiff University, Cardiff CF14 4XN, United Kingdom.,3Velindre Cancer Centre, Cardiff CF14 2TL, United Kingdom
| | - Alan L Parker
- 1Institutes of Cancer and Genetics, Cardiff University, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
49
|
Pol J, Buqué A, Aranda F, Bloy N, Cremer I, Eggermont A, Erbs P, Fucikova J, Galon J, Limacher JM, Preville X, Sautès-Fridman C, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch-Oncolytic viruses and cancer therapy. Oncoimmunology 2016; 5:e1117740. [PMID: 27057469 PMCID: PMC4801444 DOI: 10.1080/2162402x.2015.1117740] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy relies on the administration of non-pathogenic viral strains that selectively infect and kill malignant cells while favoring the elicitation of a therapeutically relevant tumor-targeting immune response. During the past few years, great efforts have been dedicated to the development of oncolytic viruses with improved specificity and potency. Such an intense wave of investigation has culminated this year in the regulatory approval by the US Food and Drug Administration (FDA) of a genetically engineered oncolytic viral strain for use in melanoma patients. Here, we summarize recent preclinical and clinical advances in oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan Pol
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Norma Bloy
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | | | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers, Paris, France
| | | | | | - Catherine Sautès-Fridman
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1015, CICBT507, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France
- Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
50
|
Zan T, Wu F, Pei X, Jia S, Zhang R, Wu S, Niu Z, Zhang Z. Into the polymer brush regime through the "grafting-to" method: densely polymer-grafted rodlike viruses with an unusual nematic liquid crystal behavior. SOFT MATTER 2016; 12:798-805. [PMID: 26531814 DOI: 10.1039/c5sm02015h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The current work reports an intriguing discovery of how the force exerted on protein complexes like filamentous viruses by the strong interchain repulsion of polymer brushes can induce subtle changes of the constituent subunits at the molecular scale. Such changes transform into the macroscopic rearrangement of the chiral ordering of the rodlike virus in three dimensions. For this, a straightforward "grafting-to" PEGylation method has been developed to densely graft a filamentous virus with poly(ethylene glycol) (PEG). The grafting density is so high that PEG is in the polymer brush regime, resulting in straight and thick rodlike particles with a thin viral backbone. Scission of the densely PEGylated viruses into fragments was observed due to the steric repulsion of the PEG brush, as facilitated by adsorption onto a mica surface. The high grafting density of PEG endows the virus with an isotropic-nematic (I-N) liquid crystal (LC) phase transition that is independent of the ionic strength and the densely PEGylated viruses enter into the nematic LC phase at much lower virus concentrations. Most importantly, while the intact virus and the one grafted with PEG of low grafting density can form a chiral nematic LC phase, the densely PEGylated viruses only form a pure nematic LC phase. This can be traced back to the secondary to tertiary structural change of the major coat protein of the virus, driven by the steric repulsion of the PEG brush. Quantitative parameters characterising the conformation of the grafted PEG derived from the grafting density or the I-N LC transition are elegantly consistent with the theoretical prediction.
Collapse
Affiliation(s)
- Tingting Zan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | | | |
Collapse
|