1
|
Wu CH, Weng TF, Li JP, Wu KH. Biology and Therapeutic Properties of Mesenchymal Stem Cells in Leukemia. Int J Mol Sci 2024; 25:2527. [PMID: 38473775 DOI: 10.3390/ijms25052527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
This comprehensive review delves into the multifaceted roles of mesenchymal stem cells (MSCs) in leukemia, focusing on their interactions within the bone marrow microenvironment and their impact on leukemia pathogenesis, progression, and treatment resistance. MSCs, characterized by their ability to differentiate into various cell types and modulate the immune system, are integral to the BM niche, influencing hematopoietic stem cell maintenance and functionality. This review extensively explores the intricate relationship between MSCs and leukemic cells in acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia, and chronic lymphocytic leukemia. This review also addresses the potential clinical applications of MSCs in leukemia treatment. MSCs' role in hematopoietic stem cell transplantation, their antitumor effects, and strategies to disrupt chemo-resistance are discussed. Despite their therapeutic potential, the dual nature of MSCs in promoting and inhibiting tumor growth poses significant challenges. Further research is needed to understand MSCs' biological mechanisms in hematologic malignancies and develop targeted therapeutic strategies. This in-depth exploration of MSCs in leukemia provides crucial insights for advancing treatment modalities and improving patient outcomes in hematologic malignancies.
Collapse
Affiliation(s)
- Cheng-Hsien Wu
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Te-Fu Weng
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ju-Pi Li
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
2
|
Nachmias B, Zimran E, Avni B. Mesenchymal stroma/stem cells: Haematologists' friend or foe? Br J Haematol 2022; 199:175-189. [PMID: 35667616 PMCID: PMC9796884 DOI: 10.1111/bjh.18292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023]
Abstract
Mesenchymal stromal cells (MSCs) are non-haematopoietic cells found in fetal and adult organs, that play important roles in tissue repair, inflammation and immune modulation. MSCs residing in the bone marrow interact closely with haematopoietic cells and comprise an important component of the microenvironment supporting haematopoiesis, in both health and disease states. Since their identification in 1970, basic scientific and preclinical research efforts have shed light on the role of MSCs in the regulation of haematopoiesis and evoked interest in their clinical application in haematopoietic stem cell transplantation (HSCT) and malignant haematology. Over the last two decades, these research efforts have led to numerous clinical trials, which have established the safety of MSC therapy; however, the optimal mode of administration and the benefit remain inconclusive. In this paper, we will review the clinical experience with use of MSCs in HSCT for enhancement of engraftment, prevention and treatment of graft-versus-host disease and haemorrhagic cystitis. Then, we will discuss the contradictory evidence regarding tumour-promoting versus tumour-suppressing effects of MSCs in haematological malignancies, which may have relevance for future clinical applications.
Collapse
Affiliation(s)
- Boaz Nachmias
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Eran Zimran
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Batia Avni
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| |
Collapse
|
3
|
Anajafi S, Ranjbar A, Torabi-Rahvar M, Ahmadbeigi N. In vivo study of the angiogenesis potential of bone marrow-derived mesenchymal stem cell aggregates in their niche like environment. Int J Artif Organs 2021; 44:727-733. [PMID: 34250831 DOI: 10.1177/03913988211025538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sufficient blood vessel formation in bioengineered tissues is essential in order to keep the viability of the organs. Impaired development of blood vasculatures results in failure of the implanted tissue. The cellular source which is seeded in the scaffold is one of the crucial factors involved in tissue engineering methods. MATERIALS AND METHODS Considering the notable competence of Bone Marrow derived Mesenchymal Stem Cell aggregates for tissue engineering purposes, in this study BM-aggregates and expanded BM-MSCs were applied without any inductive agent or co-cultured cells, in order to investigate their own angiogenesis potency in vivo. BM-aggregates and BM-MSC were seeded in Poly-L Lactic acid (PLLA) scaffold and implanted in the peritoneal cavity of mice. RESULT Immunohistochemistry results indicated that there was a significant difference (p < 0.050) in CD31+ cells between PLLA scaffolds contained cultured BM-MSC; PLLA scaffolds contained BM-aggregates and empty PLLA. According to morphological evidence, obvious connections with recipient vasculature and acceptable integration with surroundings were established in MSC and aggregate-seeded scaffolds. CONCLUSION Our findings revealed cultured BM-MSC and BM-aggregates, capacity in order to develop numerous connections between PLLA scaffold and recipient's vasculature which is crucial to the survival of tissues, and considerable tendency to develop constructs containing CD31+ endothelial cells which can contribute in vessel's tube formation.
Collapse
Affiliation(s)
- Sara Anajafi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azam Ranjbar
- SABZ Biomedical Science-Based Company, Tehran, Iran
| | | | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Du Y, Li X, Yan W, Zeng Z, Han D, Ouyang H, Pan X, Luo B, Zhou B, Fu Q, Lu D, Huang Z, Li Z. Deciphering the in vivo Dynamic Proteomics of Mesenchymal Stem Cells in Critical Limb Ischemia. Front Cell Dev Biol 2021; 9:682476. [PMID: 34277623 PMCID: PMC8278824 DOI: 10.3389/fcell.2021.682476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/13/2021] [Indexed: 12/30/2022] Open
Abstract
Objective Regenerative therapy using mesenchymal stem cells (MSC) is a promising therapeutic method for critical limb ischemia (CLI). To understand how the cells are involved in the regenerative process of limb ischemia locally, we proposed a metabolic protein labeling method to label cell proteomes in situ and then decipher the proteome dynamics of MSCs in ischemic hind limb. Methods and Results In this study, we overexpressed mutant methionyl-tRNA synthetase (MetRS), which could utilize azidonorleucine (ANL) instead of methionine (Met) during protein synthesis in MSCs. Fluorescent non-canonical amino-acid tagging (FUNCAT) was performed to detect the utilization of ANL in mutant MSCs. Mice with hindlimb ischemia (HLI) or Sham surgery were treated with MetRSmut MSCs or PBS, followed by i.p. administration of ANL at days 0, 2 6, and 13 after surgery. FUNCAT was also performed in hindlimb tissue sections to demonstrate the incorporation of ANL in transplanted cells in situ. At days 1, 3, 7, and 14 after the surgery, laser doppler imaging were performed to detect the blood reperfusion of ischemic limbs. Ischemic tissues were also collected at these four time points for histological analysis including HE staining and vessel staining, and processed for click reaction based protein enrichment followed by mass spectrometry and bioinformatics analysis. The MetRSmut MSCs showed strong green signal in cell culture and in HLI muscles as well, indicating efficient incorporation of ANL in nascent protein synthesis. By 14 days post-treatment, MSCs significantly increased blood reperfusion and vessel density, while reducing inflammation in HLI model compared to PBS. Proteins enriched by click reaction were distinctive in the HLI group vs. the Sham group. 34, 31, 49, and 26 proteins were significantly up-regulated whereas 28, 32, 62, and 27 proteins were significantly down-regulated in HLI vs. Sham at days 1, 3, 7, and 14, respectively. The differentially expressed proteins were more pronounced in the pathways of apoptosis and energy metabolism. Conclusion In conclusion, mutant MetRS allows efficient and specific identification of dynamic cell proteomics in situ, which reflect the functions and adaptive changes of MSCs that may be leveraged to understand and improve stem cell therapy in critical limb ischemia.
Collapse
Affiliation(s)
- Yipeng Du
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoting Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenying Yan
- Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Zhaohua Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dunzheng Han
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hong Ouyang
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiudi Pan
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bihui Luo
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bohua Zhou
- Department of Cardiology, Pinghu Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Qiang Fu
- Department of Cardiology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Dongfeng Lu
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zheng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiliang Li
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Cardiology, Pinghu Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Xu L, Willumeit-Römer R, Luthringer-Feyerabend BJC. Mesenchymal Stem Cell and Oxygen Modulate the Cocultured Endothelial Cells in the Presence of Magnesium Degradation Products. ACS APPLIED BIO MATERIALS 2021; 4:2398-2407. [DOI: 10.1021/acsabm.0c01289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lei Xu
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht 21502, Germany
| | - Regine Willumeit-Römer
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht 21502, Germany
| | | |
Collapse
|
6
|
de Fátima Dos Santos Sampaio M, Santana Bastos Boechat M, Augusto Gusman Cunha I, Gonzaga Pereira M, Coimbra NC, Giraldi-Guimarães A. Neurotrophin-3 upregulation associated with intravenous transplantation of bone marrow mononuclear cells induces axonal sprouting and motor functional recovery in the long term after neocortical ischaemia. Brain Res 2021; 1758:147292. [PMID: 33516814 DOI: 10.1016/j.brainres.2021.147292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Bone marrow mononuclear cells (BMMCs) have been identified as a relevant therapeutic strategy for the treatment of several chronic diseases of the central nervous system. The aim of this work was to evaluate whether intravenous treatment with BMMCs facilitates the reconnection of lesioned cortico-cortical and cortico-striatal pathways, together with motor recovery, in injured adult Wistar rats using an experimental model of unilateral focal neocortical ischaemia. Animals with cerebral cortex ischaemia underwent neural tract tracing for axonal fibre analysis, differential expression analysis of genes involved in apoptosis and neuroplasticity by RT-qPCR, and motor performance assessment by the cylinder test. Quantitative and qualitative analyses of axonal fibres labelled by an anterograde neural tract tracer were performed. Ischaemic animals treated with BMMCs showed a significant increase in axonal sprouting in the ipsilateral neocortex and in the striatum contralateral to the injured cortical areas compared to untreated rodents. In BMMC-treated animals, there was a trend towards upregulation of the Neurotrophin-3 gene compared to the other genes, as well as modulation of apoptosis by BMMCs. On the 56th day after ischaemia, BMMC-treated animals showed significant improvement in motor performance compared to untreated rats. These results suggest that in the acute phase of ischaemia, Neurotrophin-3 is upregulated in response to the lesion itself. In the long run, therapy with BMMCs causes axonal sprouting, reconnection of damaged neuronal circuitry and a significant increase in motor performance.
Collapse
Affiliation(s)
- Maria de Fátima Dos Santos Sampaio
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| | - Marcela Santana Bastos Boechat
- Laboratory of Plant Breeding of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Igor Augusto Gusman Cunha
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Messias Gonzaga Pereira
- Laboratory of Plant Breeding of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| | - Arthur Giraldi-Guimarães
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Hendriks M, Ramasamy SK. Blood Vessels and Vascular Niches in Bone Development and Physiological Remodeling. Front Cell Dev Biol 2020; 8:602278. [PMID: 33330496 PMCID: PMC7729063 DOI: 10.3389/fcell.2020.602278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Recent advances in our understanding of blood vessels and vascular niches in bone convey their critical importance in regulating bone development and physiology. The contribution of blood vessels in bone functions and remodeling has recently gained enormous interest because of their therapeutic potential. The mammalian skeletal system performs multiple functions in the body to regulate growth, homeostasis and metabolism. Blood vessels provide support to various cell types in bone and maintain functional niches in the bone marrow microenvironment. Heterogeneity within blood vessels and niches indicate the importance of specialized vascular niches in regulating skeletal functions. In this review, we discuss physiology of bone vasculature and their specialized niches for hematopoietic stem cells and mesenchymal progenitor cells. We provide clinical and experimental information available on blood vessels during physiological bone remodeling.
Collapse
Affiliation(s)
- Michelle Hendriks
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Saravana K. Ramasamy
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Uchikawa E, Yoshizawa M, Li X, Matsumura N, Li N, Chen K, Kagami H. Tooth transplantation with a β-tricalcium phosphate scaffold accelerates bone formation and periodontal tissue regeneration. Oral Dis 2020; 27:1226-1237. [PMID: 32881188 DOI: 10.1111/odi.13634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Although tooth transplantation is a useful treatment option as a substitute for a missing tooth, transplantation to a narrow alveolar ridge is not feasible. In this study, we tested a tissue engineering approach simultaneously with tooth transplantation using a scaffold or a combination with cells to accelerate bone formation and periodontal tissue regeneration. MATERIALS AND METHODS Bone marrow mononuclear cells (BM-MNCs) were harvested from C57BL/6J mice. The upper first or the second molar of 3-week-old C57BL/6J mice and a β-tricalcium phosphate (β-TCP) scaffold were transplanted with BM-MNCs (MNC group) or without BM-MNCs (β-TCP group) into the thigh muscle of syngeneic mice. The tooth alone was also transplanted (control group). After 4 weeks, the transplants were harvested and analyzed. RESULTS Bone volume was significantly larger in the MNC and the β-TCP groups than that in the control group, and the newly formed bone was observed on the lateral wall of the root. Compared with the control group, the MNC group showed a larger trabecular thickness and fractal dimension. CONCLUSION This study showed accelerated bone formation and periodontal tissue regeneration when tooth transplantation was performed with a β-TCP scaffold. BM-MNCs may accelerate bone maturation, while the effect on bone formation was limited.
Collapse
Affiliation(s)
- Eri Uchikawa
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Michiko Yoshizawa
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Xianqi Li
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Nahomi Matsumura
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Ni Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Kai Chen
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Hideaki Kagami
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Division of Hard Tissue Research, Institute of Oral Science, Matsumoto Dental University, Shiojiri, Japan.,Department of General Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Monsef F, Artimani T, Ramazani M, Alizadeh Z, Solgi G, Yavangi M, Soleimani Asl S. Effects of adipose- derived stromal vascular fraction on asherman syndrome model. Acta Histochem 2020; 122:151556. [PMID: 32622423 DOI: 10.1016/j.acthis.2020.151556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 04/28/2020] [Indexed: 01/13/2023]
Abstract
Asherman's syndrome (AS) is an endometrial damage that results in infertility in women. Although stem cell therapy has been introduced as a potential treatment for this syndrome, its use in clinical settings remains challenging because of the likelihood of contamination and cell differentiation. Herein, we investigated the effects of adipose-derived stromal vascular fraction (SVF) transplantation on proliferation and angiogenesis in the endometrium in an AS model. The AS model was induced using scratch method in adult male Wistar rats, and SVF (5 × 10 (Simsir et al., 2019) cells) was locally administered into the damaged horns. Two weeks after cell transplantation, endometrial thickness, fibrosis, and expression of vascular endothelial growth factor (VEGF) were assessed by Hematoxylin & Eosin, Masson's trichrome, and immunofluorescence staining, respectively. We found thin endometrium, increased fibrosis, and decreased VEGF following AS induction all of which were reversed after SVF transplantation. We concluded that the local injection of SVF may serve as an effective alternative therapy for AS.
Collapse
|
10
|
Rumney RMH, Lanham SA, Kanczler JM, Kao AP, Thiagarajan L, Dixon JE, Tozzi G, Oreffo ROC. In vivo delivery of VEGF RNA and protein to increase osteogenesis and intraosseous angiogenesis. Sci Rep 2019; 9:17745. [PMID: 31780671 PMCID: PMC6882814 DOI: 10.1038/s41598-019-53249-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Deficient bone vasculature is a key component in pathological conditions ranging from developmental skeletal abnormalities to impaired bone repair. Vascularisation is dependent upon vascular endothelial growth factor (VEGF), which drives both angiogenesis and osteogenesis. The aim of this study was to examine the efficacy of blood vessel and bone formation following transfection with VEGF RNA or delivery of recombinant human VEGF165 protein (rhVEGF165) across in vitro and in vivo model systems. To quantify blood vessels within bone, an innovative approach was developed using high-resolution X-ray computed tomography (XCT) to generate quantifiable three-dimensional reconstructions. Application of rhVEGF165 enhanced osteogenesis, as evidenced by increased human osteoblast-like MG-63 cell proliferation in vitro and calvarial bone thickness following in vivo administration. In contrast, transfection with VEGF RNA triggered angiogenic effects by promoting VEGF protein secretion from MG-63VEGF165 cells in vitro, which resulted in significantly increased angiogenesis in the chorioallantoic (CAM) assay in ovo. Furthermore, direct transfection of bone with VEGF RNA in vivo increased intraosseous vascular branching. This study demonstrates the importance of continuous supply as opposed to a single high dose of VEGF on angiogenesis and osteogenesis and, illustrates the potential of XCT in delineating in 3D, blood vessel connectivity in bone.
Collapse
Affiliation(s)
- Robin M H Rumney
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, Southampton University, Southampton, SO16 6YD, United Kingdom.
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, United Kingdom.
| | - Stuart A Lanham
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, Southampton University, Southampton, SO16 6YD, United Kingdom
| | - Janos M Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, Southampton University, Southampton, SO16 6YD, United Kingdom
| | - Alexander P Kao
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, United Kingdom
| | - Lalitha Thiagarajan
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - James E Dixon
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, United Kingdom
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, Southampton University, Southampton, SO16 6YD, United Kingdom
| |
Collapse
|
11
|
Cheng S, Nethi SK, Rathi S, Layek B, Prabha S. Engineered Mesenchymal Stem Cells for Targeting Solid Tumors: Therapeutic Potential beyond Regenerative Therapy. J Pharmacol Exp Ther 2019; 370:231-241. [PMID: 31175219 PMCID: PMC6640188 DOI: 10.1124/jpet.119.259796] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have previously demonstrated considerable promise in regenerative medicine based on their ability to proliferate and differentiate into cells of different lineages. More recently, there has been a significant interest in using MSCs as cellular vehicles for targeted cancer therapy by exploiting their tumor homing properties. Initial studies focused on using genetically modified MSCs for targeted delivery of various proapoptotic, antiangiogenic, and therapeutic proteins to a wide variety of tumors. However, their use as drug delivery vehicles has been limited by poor drug load capacity. This review discusses various strategies for the nongenetic modification of MSCs that allows their use in tumor-targeted delivery of small molecule chemotherapeutic agents. SIGNIFICANCE STATEMENT: There has been considerable interest in exploiting the tumor homing potential of MSCs to develop them as a vehicle for the targeted delivery of cytotoxic agents to tumor tissue. The inherent tumor-tropic and drug-resistant properties make MSCs ideal carriers for toxic payload. While significant progress has been made in the area of the genetic modification of MSCs, studies focused on identification of molecular mechanisms that contribute to the tumor tropism along with optimization of the engineering conditions can further improve their effectiveness as drug delivery vehicles.
Collapse
Affiliation(s)
- Shen Cheng
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| | - Susheel Kumar Nethi
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| | - Sneha Rathi
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| | - Buddhadev Layek
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| | - Swayam Prabha
- Departments of Experimental and Clinical Pharmacology (S.C., S.K.N., B.L., S.P.) and Pharmaceutics (S.R., S.P.), College of Pharmacy, University of Minnesota, Twin Cities, Minnesota
| |
Collapse
|
12
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
13
|
Park JS, Bae SH, Jung S, Lee M, Choi D. Enrichment of vascular endothelial growth factor secreting mesenchymal stromal cells enhances therapeutic angiogenesis in a mouse model of hind limb ischemia. Cytotherapy 2019; 21:433-443. [PMID: 30879964 DOI: 10.1016/j.jcyt.2018.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/20/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022]
Abstract
Critical limb ischemia, a severe manifestation of peripheral artery disease, is emerging as a major concern in aging societies worldwide. Notably, cell-based gene therapy to induce angiogenesis in ischemic tissue has been investigated as treatment. Despite many studies demonstrating the efficacy of this approach, better therapies are required to prevent serious sequelae such as claudication, amputation and other cardiovascular events. We have now established a simplified method to enhance the effects of therapeutic transgenes by selecting for and transplanting only transduced cells. Herein, mesenchymal stromal cells were transfected to co-express vascular endothelial growth factor as angiogenic factor and enhanced green fluorescent protein as marker. Transfected cells were then collected using flow cytometry based on green fluorescence and transplanted into ischemic hind limbs in mice. Compared with unsorted or untransfected cells, purified cells significantly improved blood perfusion within 21days, suggesting that transplanting only cells that overexpress vascular endothelial growth factor enhances therapeutic angiogenesis. Importantly, this approach may prove to be useful in cell-based gene therapy against a wide spectrum of diseases, simply by replacing the gene to be delivered or the cell to be transplanted.
Collapse
Affiliation(s)
- Jin Sil Park
- Severance Integrative Research Institute for Cerebral & Cardiovascular Disease, Yonsei University Health System, Seoul, South Korea
| | - Seong-Ho Bae
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA.
| | - Subin Jung
- Severance Integrative Research Institute for Cerebral & Cardiovascular Disease, Yonsei University Health System, Seoul, South Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Donghoon Choi
- Severance Integrative Research Institute for Cerebral & Cardiovascular Disease, Yonsei University Health System, Seoul, South Korea; Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
14
|
Salgueiro M, Stribos M, Zhang LF, Stevens M, Awad ME, Elsalanty M. Value of pre-operative CTX serum levels in the prediction of medication-related osteonecrosis of the jaw (MRONJ): a retrospective clinical study. EPMA J 2019; 10:21-29. [PMID: 30984311 PMCID: PMC6459452 DOI: 10.1007/s13167-019-0160-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The low incidence yet severe presentation of medication-related osteonecrosis of the jaw (MRONJ) makes it necessary to develop reliable predictive and preventive strategies. This study explored the value of pre-operative carboxy-terminal collagen crosslinks (CTX) serum level in the prediction of osteonecrosis-related complications in patients on bisphosphonate therapy. PATIENTS AND METHODS We examined patient records over 4 years (a total of 137 patients). Biometric data were extracted, in addition to type of treatment, CTX levels, drug holiday, procedure, complications, and co-morbidities. Non-parametric Wilcoxon two-sample tests were used to test the effect of initial CTX level in IV or PO and whether it was predictive of complications. Two independent proportion tests were used for testing the two different complication incident rates before or after the drug holiday. RESULTS A total of 93 patients were included in the study, of whom 88.17% were female. A total of 11 patients were receiving IV bisphosphonates at the time of initial presentation, 82 oral bisphosphonates. Out of 64 patients who underwent invasive dental procedure (IDP) before a drug holiday, eight were on IV bisphosphonates. Three patients in this group experienced osteonecrosis-related complications (37.5%). Out of the remaining 56 patients on oral bisphosphonates, four (7.14%) developed complications, significantly lower than the IV bisphosphonate group (p = 0.0364). On the other hand, of the 34 patients placed on a drug holiday prior to IDP, only one subject developed complications related to osteonecrosis. Five subjects who had operations both before and after drug holiday did not experience any complications. No statistical difference was detected in complication rates based on initial CTX level (above versus below 150 pg/ml), gender, comorbidities, or total duration of bisphosphonate treatment (p = 0.2675). The sensitivity and specificity of CTX cutoff of 150 pg/ml in predicting osteonecrosis were 37.5% and 57.7, respectively. CONCLUSIONS Serum levels of CTX by itself are not reliable as a predictive or preventive measure for such complications. Our data also suggested that a drug holiday of 5 months was not helpful in preventing osteonecrosis-related complications in patients on intravenous bisphosphonates. Further studies are urgently needed to develop adequate predictive and preventive strategies of MRONJ.
Collapse
Affiliation(s)
- Martin Salgueiro
- Oral and Maxillofacial Surgery Department, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Michael Stribos
- Medical Student, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Li Fang Zhang
- Department of Biostatistics and Epidemiology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Mark Stevens
- Oral and Maxillofacial Surgery Department, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Mohamed E. Awad
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Mohammed Elsalanty
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
- Department of Oral Biology, Dental College of Dentistry, Augusta University, 1120 15th Street, Room #2404E, Augusta, GA 30809 USA
| |
Collapse
|
15
|
Mesenchymal stem cells in suppression or progression of hematologic malignancy: current status and challenges. Leukemia 2019; 33:597-611. [PMID: 30705410 PMCID: PMC6756083 DOI: 10.1038/s41375-018-0373-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells (MSCs) are known for being multi-potent. However, they also possess anticancer properties, which has prompted efforts to adapt MSCs for anticancer therapies. However, MSCs have also been widely implicated in pathways that contribute to tumor growth. Numerous studies have been conducted to adapt MSCs for further clinical use; however, the results have been inconclusive, possibly due to the heterogeneity of MSC populations. Moreover, the conflicting roles of MSCs in tumor inhibition and tumor growth impede their adaptation for anticancer therapies. Antitumorigenic and protumorigenic properties of MSCs in hematologic malignancies are not as well established as they are for solid malignancies, and data comparing them are still limited. Herein the effect of MSCs on hematologic malignancies, such as leukemia and lymphoma, their mechanisms, sources of MSCs, and their effects on different types of cancer, have been discussed. This review describes how MSCs preserve both antitumorigenic and protumorigenic effects, as they tend to not only inhibit tumor growth by suppressing tumor cell proliferation but also promote tumor growth by suppressing tumor cell apoptosis. Thus clinical studies trying to adapt MSCs for anticancer therapies should consider that MSCs could actually promote hematologic cancer progression. It is necessary to take extreme care while developing MSC-based cell therapies in order to boost anticancer properties while eliminating tumor-favoring effects. This review emphasizes that research on the therapeutic applications of MSCs must consider that they exert both antitumorigenic and protumorigenic effects on hematologic malignancies.
Collapse
|
16
|
Vasculogenic Stem and Progenitor Cells in Human: Future Cell Therapy Product or Liquid Biopsy for Vascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:215-237. [PMID: 31898789 DOI: 10.1007/978-3-030-31206-0_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New blood vessel formation in adults was considered to result exclusively from sprouting of preexisting endothelial cells, a process referred to angiogenesis. Vasculogenesis, the formation of new blood vessels from endothelial progenitor cells, was thought to occur only during embryonic life. Discovery of adult endothelial progenitor cells (EPCs) in 1997 opened the door for cell therapy in vascular disease. Endothelial progenitor cells contribute to vascular repair and are now well established as postnatal vasculogenic cells in humans. It is now admitted that endothelial colony-forming cells (ECFCs) are the vasculogenic subtype. ECFCs could be used as a cell therapy product and also as a liquid biopsy in several vascular diseases or as vector for gene therapy. However, despite a huge interest in these cells, their tissue and molecular origin is still unclear. We recently proposed that endothelial progenitor could come from very small embryonic-like stem cells (VSELs) isolated in human from CD133 positive cells. VSELs are small dormant stem cells related to migratory primordial germ cells. They have been described in bone marrow and other organs. This chapter discusses the reported findings from in vitro data and also preclinical studies that aimed to explore stem cells at the origin of vasculogenesis in human and then explore the potential use of ECFCs to promote newly formed vessels or serve as liquid biopsy to understand vascular pathophysiology and in particular pulmonary disease and haemostasis disorders.
Collapse
|
17
|
Steiner D, Lingens L, Fischer L, Köhn K, Detsch R, Boccaccini AR, Fey T, Greil P, Weis C, Beier JP, Horch RE, Arkudas A. Encapsulation of Mesenchymal Stem Cells Improves Vascularization of Alginate-Based Scaffolds. Tissue Eng Part A 2018; 24:1320-1331. [DOI: 10.1089/ten.tea.2017.0496] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Dominik Steiner
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lara Lingens
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Plastic Surgery, Hand and Burn Surgery, University Hospital of Aachen, RWTH University of Aachen, Aachen, Germany
| | - Laura Fischer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katrin Köhn
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Detsch
- Department of Materials Science and Engineering, Institute for Biomaterials, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute for Biomaterials, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Fey
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Peter Greil
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian Weis
- Center for Medical Physics and Technology. Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Siemens Healthcare GmbH, Sales In Vivo, Stuttgart, Germany
| | - Justus P. Beier
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Plastic Surgery, Hand and Burn Surgery, University Hospital of Aachen, RWTH University of Aachen, Aachen, Germany
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
18
|
Current Perspectives Regarding Stem Cell-Based Therapy for Liver Cirrhosis. Can J Gastroenterol Hepatol 2018; 2018:4197857. [PMID: 29670867 PMCID: PMC5833156 DOI: 10.1155/2018/4197857] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis is a major cause of mortality and a common end of various progressive liver diseases. Since the effective treatment is currently limited to liver transplantation, stem cell-based therapy as an alternative has attracted interest due to promising results from preclinical and clinical studies. However, there is still much to be understood regarding the precise mechanisms of action. A number of stem cells from different origins have been employed for hepatic regeneration with different degrees of success. The present review presents a synopsis of stem cell research for the treatment of patients with liver cirrhosis according to the stem cell type. Clinical trials to date are summarized briefly. Finally, issues to be resolved and future perspectives are discussed with regard to clinical applications.
Collapse
|
19
|
Comparative Therapeutic Effects of Minocycline Treatment and Bone Marrow Mononuclear Cell Transplantation following Striatal Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1976191. [PMID: 28713482 PMCID: PMC5497656 DOI: 10.1155/2017/1976191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/27/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
Abstract
We explored the comparative effects of minocycline treatment and intrastriatal BMMC transplantation after experimental striatal stroke in adult rats. Male Wistar adult rats were divided as follows: saline-treated (N = 5), minocycline-treated (N = 5), and BMMC-transplanted (N = 5) animals. Animals received intrastriatal microinjections of 80 pmol of endothelin-1 (ET-1). Behavioral tests were performed at 1, 3, and 7 days postischemia. Animals were treated with minocycline (50 mg/kg, i.p.) or intrastriatal transplants of 106 BMMCs at 24 h postischemia. Animals were perfused at 7 days after ischemic induction. Coronal sections were stained with cresyl violet for gross histopathological analysis and immunolabeled for the identification of neuronal bodies (NeuN), activated microglia/macrophages (ED1), and apoptotic cells (active caspase-3). BMMC transplantation and minocycline reduced the number of ED1+ cells (p < 0.05, ANOVA-Tukey), but BMMC afforded better results. Both treatments afforded comparable levels of neuronal preservation compared to control (p > 0.05). BMMC transplantation induced a higher decrease in the number of apoptotic cells compared to control and minocycline treatment. Both therapeutic approaches improved functional recovery in ischemic animals. The results suggest that BMMC transplantation is more effective in modulating microglial activation and reducing apoptotic cell death than minocycline, although both treatments are equally efficacious on improving neuronal preservation.
Collapse
|
20
|
Lim PN, Feng J, Wang Z, Chong M, Konishi T, Tan LG, Chan J, Thian ES. In-vivo evaluation of subcutaneously implanted cell-loaded apatite microcarriers for osteogenic potency. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:86. [PMID: 28470444 DOI: 10.1007/s10856-017-5897-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/22/2017] [Indexed: 06/07/2023]
Abstract
Cell-loaded apatite microcarriers present as potential scaffolds for direct in-vivo delivery of cells post-expansion to promote bone regeneration. The objective of this study was to evaluate the osteogenic potency of human foetal mesenchymal stem cells (hfMSC)-loaded apatite microcarriers when implanted subcutaneously in a mouse model. This was done by examining for ectopic bone formation at 2 weeks, 1 month and 2 months, which were intended to coincide with the inflammation, healing and remodelling phases, respectively. Three histological examinations including haematoxylin and eosin staining to examine general tissue morphology, Masson's trichrome staining to identify tissue type, and Von Kossa staining to examine extent of tissue mineralisation were performed. In addition, immunohistochemistry assay of osteopontin was conducted to confirm active bone formation by the seeded hfMSCs. Results showed a high level of tissue organisation and new bone formation, with active bone remodelling being observed at the end of 2 months, and an increase in tissue density, organisation, and mineralisation could also be observed for hfMSC-loaded apatite microcarriers. Various cell morphology resembling that of osteoblasts and osteoclasts could be seen on the surfaces of the hfMSC-loaded apatite microcarriers, with presence of woven bone tissue formation being observed at the intergranular space. These observations were consistent with evidence of ectopic bone formation, which were absent in group containing apatite microcarriers only. Overall, results suggested that hfMSC-loaded apatite microcarriers retained their osteogenic potency after implantation, and provided an effective platform for bone tissue regeneration.
Collapse
Affiliation(s)
- Poon Nian Lim
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117 576, Singapore
| | - Jason Feng
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117 576, Singapore
| | - Zuyong Wang
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117 576, Singapore
- College of Materials Science and Engineering, Hunan University, Changsha, 410 082, China
| | - Mark Chong
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637 459, Singapore
| | - Toshiisa Konishi
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117 576, Singapore
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700 8530, Japan
| | - Lay Geok Tan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119 228, Singapore
| | - Jerry Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119 228, Singapore
- Department of Reproductive Medicine, Division of Obstetrics & Gynaecology, KK Women's and Children's Hospital, Singapore, 229 899, Singapore
| | - Eng San Thian
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117 576, Singapore.
| |
Collapse
|
21
|
El-Badawy A, Amer M, Abdelbaset R, Sherif SN, Abo-Elela M, Ghallab YH, Abdelhamid H, Ismail Y, El-Badri N. Adipose Stem Cells Display Higher Regenerative Capacities and More Adaptable Electro-Kinetic Properties Compared to Bone Marrow-Derived Mesenchymal Stromal Cells. Sci Rep 2016; 6:37801. [PMID: 27883074 PMCID: PMC5121630 DOI: 10.1038/srep37801] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
Adipose stem cells (ASCs) have recently emerged as a more viable source for clinical applications, compared to bone-marrow mesenchymal stromal cells (BM-MSCs) because of their abundance and easy access. In this study we evaluated the regenerative potency of ASCs compared to BM-MSCs. Furthermore, we compared the dielectric and electro-kinetic properties of both types of cells using a novel Dielectrophoresis (DEP) microfluidic platform based on a printed circuit board (PCB) technology. Our data show that ASCs were more effective than BM-MSCs in promoting neovascularization in an animal model of hind-limb ischemia. When compared to BM-MSCs, ASCs displayed higher resistance to hypoxia-induced apoptosis, and to oxidative stress-induced senescence, and showed more potent proangiogenic activity. mRNA expression analysis showed that ASCs had a higher expression of Oct4 and VEGF than BM-MSCs. Furthermore, ASCs showed a remarkably higher telomerase activity. Analysis of the electro-kinetic properties showed that ASCs displayed different traveling wave velocity and rotational speed compared to BM-MSCs. Interestingly, ASCs seem to develop an adaptive response when exposed to repeated electric field stimulation. These data provide new insights into the physiology of ASCs, and evidence to their potential superior potency compared to marrow MSCs as a source of stem cells.
Collapse
Affiliation(s)
- Ahmed El-Badawy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Egypt
| | - Marwa Amer
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Egypt
| | - Reda Abdelbaset
- Center of Nanoelectronics and Devices (CND), Zewail City of Science and Technology/American University in Cairo, Cairo, Egypt.,Department of Biomedical Engineering, Helwan University, Cairo, Egypt
| | - Sameh N Sherif
- Center of Nanoelectronics and Devices (CND), Zewail City of Science and Technology/American University in Cairo, Cairo, Egypt.,Department of Biomedical Engineering, Helwan University, Cairo, Egypt
| | - Marwan Abo-Elela
- Center of Nanoelectronics and Devices (CND), Zewail City of Science and Technology/American University in Cairo, Cairo, Egypt
| | - Yehya H Ghallab
- Center of Nanoelectronics and Devices (CND), Zewail City of Science and Technology/American University in Cairo, Cairo, Egypt.,Department of Biomedical Engineering, Helwan University, Cairo, Egypt
| | - Hamdy Abdelhamid
- Center of Nanoelectronics and Devices (CND), Zewail City of Science and Technology/American University in Cairo, Cairo, Egypt
| | - Yehea Ismail
- Center of Nanoelectronics and Devices (CND), Zewail City of Science and Technology/American University in Cairo, Cairo, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Egypt
| |
Collapse
|
22
|
Shi Y, Du L, Lin L, Wang Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov 2016; 16:35-52. [PMID: 27811929 DOI: 10.1038/nrd.2016.193] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells, also known as mesenchymal stromal cells (MSCs), exist in many tissues and are known to actively migrate to sites of tissue injury, where they participate in wound repair. Tumours can be considered "wounds that never heal" and, in response to cues from a tumour, MSCs are continuously recruited to and become integral components of the tumour microenvironment. Recently, it has become apparent that such tumour-associated MSCs (TA-MSCs) have an active role in tumour initiation, promotion, progression and metastasis. In this Review, we discuss recent advances in our understanding of the pathogenic role of TA-MSCs in regulating the survival, proliferation, migration and drug resistance of tumour cells, as well as the influence of MSCs on the immune status of the tumour microenvironment. Moreover, we discuss therapeutic approaches that target TA-MSC upstream or downstream modulators or use MSCs as vehicles for the delivery of tumoricidal agents. It is anticipated that new insights into the functions of TA-MSCs will lead to the development of novel therapeutic strategies against tumours.
Collapse
Affiliation(s)
- Yufang Shi
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.,Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Liming Du
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Liangyu Lin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China.,Shanghai Jiao Tong University School of Medicine, 280 Chongqing Road, Shanghai 200025, China
| | - Ying Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| |
Collapse
|
23
|
Marfy‐Smith SJ, Clarkin CE. Are Mesenchymal Stem Cells So Bloody Great After All? Stem Cells Transl Med 2016; 6:3-6. [PMID: 28170195 PMCID: PMC5442748 DOI: 10.5966/sctm.2016-0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/15/2016] [Indexed: 12/26/2022] Open
Abstract
This Perspective discusses some activities of mesenchymal stem cells (MSCs) in the context of angiogenesis, focusing on contrasting effects that could call into question the extent to which MSCs can be used clinically in the future. We report on the antiangiogenic/antiproliferative effects of specific MSC populations (including bone marrow MSCs), their paracrine activity, tissue heterogeneity, and endothelial cell interactions. Also discussed are what could lead to contrasting effects of the influence of MSCs in regulating angiogenesis, pointing to some negative effects of these cells. In conclusion, this article highlights important aspects of MSC behavior within the perspective of translational medicine applications. Stem Cells Translational Medicine2017;6:3–6
Collapse
Affiliation(s)
| | - Claire E. Clarkin
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
24
|
Chung TH, Hsieh CC, Hsiao JK, Hsu SC, Yao M, Huang DM. Dextran-coated iron oxide nanoparticles turn protumor mesenchymal stem cells (MSCs) into antitumor MSCs. RSC Adv 2016. [DOI: 10.1039/c6ra03453e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
dex-IO NPs can activate the antitumor mechanism (tumor tropism) but inactivate protumor mechanisms to transform protumor MSCs (pT-MSCs) into antitumor MSCs (aT-MSCs).
Collapse
Affiliation(s)
- Tsai-Hua Chung
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
- Miaoli County 35053
- Taiwan
| | - Chia-Chu Hsieh
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
- Miaoli County 35053
- Taiwan
- Institute of Molecular Medicine
| | - Jong-Kai Hsiao
- Department of Medical Imaging
- Taipei Tzu Chi General Hospital
- Buddhist Tzu Chi Medical Foundation & School of Medicine
- Tzu Chi University
- New Taipei City 23142
| | - Szu-Chun Hsu
- Department of Laboratory Medicine
- National Taiwan University Hospital and College of Medicine
- National Taiwan University
- Taipei 10002
- Taiwan
| | - Ming Yao
- Department of Internal Medicine
- National Taiwan University Hospital and College of Medicine
- National Taiwan University
- Taipei 10002
- Taiwan
| | - Dong-Ming Huang
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
- Miaoli County 35053
- Taiwan
| |
Collapse
|
25
|
Khosravi-Maharlooei M, Hajizadeh-Saffar E, Tahamtani Y, Basiri M, Montazeri L, Khalooghi K, Kazemi Ashtiani M, Farrokhi A, Aghdami N, Sadr Hashemi Nejad A, Larijani MB, De Leu N, Heimberg H, Luo X, Baharvand H. THERAPY OF ENDOCRINE DISEASE: Islet transplantation for type 1 diabetes: so close and yet so far away. Eur J Endocrinol 2015; 173:R165-83. [PMID: 26036437 DOI: 10.1530/eje-15-0094] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 06/02/2015] [Indexed: 12/12/2022]
Abstract
Over the past decades, tremendous efforts have been made to establish pancreatic islet transplantation as a standard therapy for type 1 diabetes. Recent advances in islet transplantation have resulted in steady improvements in the 5-year insulin independence rates for diabetic patients. Here we review the key challenges encountered in the islet transplantation field which include islet source limitation, sub-optimal engraftment of islets, lack of oxygen and blood supply for transplanted islets, and immune rejection of islets. Additionally, we discuss possible solutions for these challenges.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Leila Montazeri
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Keynoosh Khalooghi
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Ali Farrokhi
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Anavasadat Sadr Hashemi Nejad
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Mohammad-Bagher Larijani
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Nico De Leu
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Harry Heimberg
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Xunrong Luo
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran Department of Stem Cells and Developmental Biology at Cell Science Research CenterDepartment of Regenerative Medicine at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IranEndocrinology and Metabolism Research InstituteTehran University of Medical Sciences, Tehran, IranDiabetes Research CenterVrije Universiteit Brussel, Laarbeeklaan 103, Brussels, BelgiumDivision of Nephrology and HypertensionDepartment of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USADepartment of Developmental BiologyUniversity of Science and Culture, ACECR, Tehran 148-16635, Iran
| |
Collapse
|
26
|
Kim N, Nam YS, Im KI, Lim JY, Lee ES, Jeon YW, Cho SG. IL-21-Expressing Mesenchymal Stem Cells Prevent Lethal B-Cell Lymphoma Through Efficient Delivery of IL-21, Which Redirects the Immune System to Target the Tumor. Stem Cells Dev 2015; 24:2808-21. [PMID: 26415081 DOI: 10.1089/scd.2015.0103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interleukin (IL)-21, a proinflammatory cytokine, has been developed as an immunotherapeutic approach due to its effects on various lymphocytes, including natural killer (NK) cells and T cells; however, the clinical success in cancer patients has been limited. Recently, mesenchymal stem cells (MSCs) have emerged as vehicles for cancer gene therapy due to their inherent migratory abilities toward tumors. In the present study, we hypothesized that MSCs, genetically modified to express high levels of IL-21 (IL-21/MSCs), can enhance antitumor responses through localized delivery of IL-21. For tumor induction, BALB/c mice were injected intravenously with syngeneic A20 B-cell lymphoma cells to develop a disseminated B-cell lymphoma model. Then, 6 days following tumor induction, the tumor-bearing mice were treated with IL-21/MSCs weekly, four times. Systemic infusion of A20 cells led to hind-leg paralysis as well as severe liver metastasis in the control group. The IL-21/MSC-treated group showed delayed tumor incidence as well as improved survival, whereas the MSC- and recombinant adenovirus-expressing IL-21 (rAD/IL-21)-treated groups did not show significant differences from the untreated mice. These therapeutic effects were associated with high levels of IL-21 delivered to the liver, which prevented the formation of tumor nodules. Furthermore, the infusion of IL-21/MSCs led to induction of effector T and NK cells, while potently inhibiting immune suppressor cells. Our findings demonstrate that IL-21-expressing MSCs have the therapeutic potential to induce potent antitumor effects against disseminated B-cell lymphoma through localized IL-21 delivery and induction of systemic antitumor immunity.
Collapse
Affiliation(s)
- Nayoun Kim
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea
| | - Young-Sun Nam
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea
| | - Keon-Il Im
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea
| | - Jung-Yeon Lim
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea
| | - Eun-Sol Lee
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea
| | - Young-Woo Jeon
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,3 Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine , Seoul, Korea
| | - Seok-Goo Cho
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea.,3 Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine , Seoul, Korea
| |
Collapse
|
27
|
Characterisation of insulin-producing cells differentiated from tonsil derived mesenchymal stem cells. Differentiation 2015; 90:27-39. [DOI: 10.1016/j.diff.2015.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/25/2015] [Accepted: 08/30/2015] [Indexed: 01/22/2023]
|
28
|
Stem cells rejuvenate radiation-impaired vasculogenesis in murine distraction osteogenesis. Plast Reconstr Surg 2015; 135:799-806. [PMID: 25415276 DOI: 10.1097/prs.0000000000001024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Radiotherapy is known to be detrimental to bone and soft-tissue repair. Bone marrow stromal cells have been shown to enhance bone regeneration during distraction osteogenesis following radiation therapy. The authors posit that transplanted bone marrow stromal cells will significantly augment the mandibular vascularity devastated by radiation therapy. METHODS Nineteen male Lewis rats were split randomly into three groups: distraction osteogenesis only (n = 5), radiation therapy plus distraction osteogenesis (n = 7), and radiation therapy plus distraction osteogenesis with intraoperative placement of 2 million bone marrow stromal cells (n = 7). A mandibular osteotomy was performed, and an external fixator device was installed. From postoperative days 4 through 12, rats underwent a gradual 5.1-mm distraction followed by a 28-day consolidation period. On postoperative day 40, Microfil was perfused into the vasculature and imaging commenced. Vascular radiomorphometric values were calculated for regions of interest. An analysis of variance with post hoc Tukey or Games-Howell tests was used, dependent on data homogeneity. RESULTS Stereologic analysis indicated significant remediation in vasculature in the bone marrow stromal cell group compared with the radiation therapy/distraction osteogenesis group. Each of five metrics idicated significant improvements from radiation therapy/distraction osteogenesis to the bone marrow stromal cell group, with no difference between the bone marrow stromal cell group and the distraction osteogenesis group. CONCLUSIONS Bone marrow stromal cells used together with distraction osteogenesis can rejuvenate radiation-impaired vasculogenesis in the mandible, reversing radiation therapy-induced isotropy and creating a robust vascular network. Bone marrow stromal cells may offer clinicians an alternative reconstructive modality that could improve the lifestyle of patients with hypovascular bone.
Collapse
|
29
|
Guerin CL, Loyer X, Vilar J, Cras A, Mirault T, Gaussem P, Silvestre JS, Smadja DM. Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: evidence of vasculogenic potential. Thromb Haemost 2015; 113:1084-94. [PMID: 25608764 DOI: 10.1160/th14-09-0748] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/07/2014] [Indexed: 12/21/2022]
Abstract
Very small embryonic-like stem cells (VSELs) are multipotent stem cells localised in adult bone marrow (BM) that may be mobilised into peripheral blood (PB) in response to tissue injury. We aimed to quantify VSELs in BM and PB of patients with critical limb ischaemia (CLI) and to test their angiogenic potential in vitro as well as their therapeutic capacity in mouse model of CLI. We isolated BM VSELs from patients with CLI and studied their potential to differentiate into vascular lineages. Flow and imaging cytometry showed that VSEL counts were lower in BM (p< 0.001) and higher (p< 0.001) in PB from CLI patients compared to healthy controls, suggesting that ischaemia may trigger VSELs mobilisation in this patient population. Sorted BM-VSELs cultured in angiogenic media acquired a mesenchymal phenotype (CD90+, Thy-1 gene positive expression). VSEL-derived cells had a pattern of secretion similar to that of endothelial progenitor cells, as they released low levels of VEGF-A and inflammatory cytokines. Noteworthy, VSELs triggered post-ischaemic revascularisation in immunodeficient mice (p< 0.05 vs PBS treatment), and acquired an endothelial phenotype either in vitro when cultured in the presence of VEGF-B (Cdh-5 gene positive expression), or in vivo in Matrigel implants (human CD31+ staining in neo-vessels from plug sections). In conclusion, VSELs are a potential new source of therapeutic cells that may give rise to cells of the endothelial lineage in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David M Smadja
- Prof. David Smadja, European Georges Pompidou Hospital, Hematology Department, 20 rue Leblanc, 75015 Paris, France, Tel.: +31 56093933, Fax: +31 56093393, E-mail:
| |
Collapse
|
30
|
Abstract
Lymphedema is a medically irreversible condition for which currently conservative and surgical therapies are either ineffective or impractical. The potential use of progenitor and stem cell-based therapies has offered a paradigm that may provide alternative treatment options for lymphatic disorders. Moreover, basic research, preclinical studies, as well as clinical trials have evaluated the therapeutic potential of various cell therapies in the field of lymphatic regeneration medicine. Among the available cell approaches, mesenchymal stem cells (MSCs) seem to be the most promising candidate mainly due to their abundant sources and easy availability as well as evitable ethical and immunological issues confronted with embryonic stem cells and induced pluripotent stem cells. In this context, the purpose of this review is to summarize various cell-based therapies for lymphedema, along with strengths and weaknesses of these therapies in the clinical application for lymphedema treatment. Particularly, we will highlight the use of MSCs for lymphatic regeneration medicine. In addition, the future perspectives of MSCs in the field of lymphatic regeneration will be discussed.
Collapse
Affiliation(s)
- Shuqun Qi
- 1 State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University , Chengdu, China
| | | |
Collapse
|
31
|
Hernanda PY, Pedroza-Gonzalez A, Sprengers D, Peppelenbosch MP, Pan Q. Multipotent mesenchymal stromal cells in liver cancer: implications for tumor biology and therapy. Biochim Biophys Acta Rev Cancer 2014; 1846:439-45. [PMID: 25204853 DOI: 10.1016/j.bbcan.2014.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/01/2014] [Accepted: 08/30/2014] [Indexed: 02/08/2023]
Abstract
Remodeling of tumor microenvironment is a hallmark in the pathogenesis of liver cancer. Being a pivotal part of tumor stroma, multipotent mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells (MSCs), are recruited and enriched in liver tumors. Owing to their tumor tropism, MSCs are now emerging as vehicles for anticancer drug/gene delivery against liver cancer. However, the exact impact of MSCs on liver cancer remains elusive, as a variety of effects of these cells that have been reported included a plethora of tumor-promoting effects and anti-oncogenic properties. This review aims to dissect the mechanistic insight regarding this observed discrepancy in different experimental settings of liver cancer. Furthermore, we call for caution using MSCs to treat liver cancer or even premalignant liver diseases, before conclusive evidence for safety and efficacy having been obtained.
Collapse
Affiliation(s)
- Pratika Y Hernanda
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alexander Pedroza-Gonzalez
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
32
|
Vainshtein JM, Kabarriti R, Mehta KJ, Roy-Chowdhury J, Guha C. Bone marrow-derived stromal cell therapy in cirrhosis: clinical evidence, cellular mechanisms, and implications for the treatment of hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2014; 89:786-803. [PMID: 24969793 DOI: 10.1016/j.ijrobp.2014.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/09/2014] [Accepted: 02/12/2014] [Indexed: 01/18/2023]
Abstract
Current treatment options for hepatocellular carcinoma (HCC) are often limited by the presence of underlying liver disease. In patients with liver cirrhosis, surgery, chemotherapy, and radiation therapy all carry a high risk of hepatic complications, ranging from ascites to fulminant liver failure. For patients receiving radiation therapy, cirrhosis dramatically reduces the already limited radiation tolerance of the liver and represents the most important clinical risk factor for the development of radiation-induced liver disease. Although improvements in conformal radiation delivery techniques have improved our ability to safely irradiate confined areas of the liver to increasingly higher doses with excellent local disease control, patients with moderate-to-severe liver cirrhosis continue to face a shortage of treatment options for HCC. In recent years, evidence has emerged supporting the use of bone marrow-derived stromal cells (BMSCs) as a promising treatment for liver cirrhosis, with several clinical studies demonstrating sustained improvement in clinical parameters of liver function after autologous BMSC infusion. Three predominant populations of BMSCs, namely hematopoietic stem cells, mesenchymal stem cells, and endothelial progenitor cells, seem to have therapeutic potential in liver injury and cirrhosis. Preclinical studies of BMSC transplantation have identified a range of mechanisms through which these cells mediate their therapeutic effects, including hepatocyte transdifferentiation and fusion, paracrine stimulation of hepatocyte proliferation, inhibition of activated hepatic stellate cells, enhancement of fibrolytic matrix metalloproteinase activity, and neovascularization of regenerating liver. By bolstering liver function in patients with underlying Child's B or C cirrhosis, autologous BMSC infusion holds great promise as a therapy to improve the safety, efficacy, and utility of surgery, chemotherapy, and hepatic radiation therapy in the treatment of HCC.
Collapse
Affiliation(s)
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Keyur J Mehta
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
33
|
McFerrin HE, Olson SD, Gutschow MV, Semon JA, Sullivan DE, Prockop DJ. Rapidly self-renewing human multipotent marrow stromal cells (hMSC) express sialyl Lewis X and actively adhere to arterial endothelium in a chick embryo model system. PLoS One 2014; 9:e105411. [PMID: 25144321 PMCID: PMC4140774 DOI: 10.1371/journal.pone.0105411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/23/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND There have been conflicting observations regarding the receptors utilized by human multipotent mesenchymal bone marrow stromal cells (hMSC) to adhere to endothelial cells (EC). To address the discrepancies, we performed experiments with cells prepared with a standardized, low-density protocol preserving a sub-population of small cells that are rapidly self-renewing. METHODS Sialyl Lewis X (SLeX) and α4 integrin expression were determined by flow cytometry. Fucosyltransferase expression was determined by quantitative realtime RT-PCR. Cell adhesion assays were carried out with a panel of endothelial cells from arteries, veins and the microvasculature in vitro. In vivo experiments were performed to determine single cell interactions in the chick embryo chorioallantoic membrane (CAM). The CAM is a well-characterized respiratory organ allowing for time-lapse image acquisition of large numbers of cells treated with blocking antibodies against adhesion molecules expressed on hMSC. RESULTS hMSC expressed α4 integrin, SLeX and fucosyltransferase 4 and adhered to human EC from arteries, veins and the microvasculature under static conditions in vitro. In vivo, hMSC rolled on and adhered to arterioles in the chick embryo CAM, whereas control melanoma cells embolized. Inhibition of α4 integrin and/or SLeX with blocking antibodies reduced rolling and adhesion in arterioles and increased embolism of hMSC. CONCLUSIONS The results demonstrated that rapidly self-renewing hMSC were retained in the CAM because they rolled on and adhered to respiratory arteriolar EC in an α4 integrin- and SLeX-dependent manner. It is therefore important to select cells based on their cell adhesion receptor profile as well as size depending on the intended target of the cell and the injection route.
Collapse
Affiliation(s)
- Harris E. McFerrin
- Xavier University of Louisiana, Biology Department, New Orleans, Louisiana, United States of America
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Scott D. Olson
- Program in Regenerative Medicine, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Miriam V. Gutschow
- Stanford Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Julie A. Semon
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Deborah E. Sullivan
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Darwin J. Prockop
- Texas A & M Health Science Center College of Medicine Institute for Regenerative Medicine at Scott & White, Temple, Texas, United States of America
| |
Collapse
|
34
|
Kim H, Han JW, Lee JY, Choi YJ, Sohn YD, Song M, Yoon YS. Diabetic Mesenchymal Stem Cells Are Ineffective for Improving Limb Ischemia Due to Their Impaired Angiogenic Capability. Cell Transplant 2014; 24:1571-84. [PMID: 25008576 DOI: 10.3727/096368914x682792] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to investigate the effects of diabetes on mesenchymal stem cells (MSCs) in terms of their angiogenic and therapeutic potential for repairing tissue ischemia. We culture-isolated MSCs from streptozotocin-induced diabetic rats (D-MSCs) and compared their proliferation, differentiation, and angiogenic effects with those from normal rats (N-MSCs). The angiogenic effects of MSCs were evaluated by real-time PCR, in vitro tube formation assay, and transplantation of the MSCs into a hindlimb ischemia model followed by laser Doppler perfusion imaging. The number of MSCs derived from diabetic rats was smaller, and their proliferation rate was slower than N-MSCs. Upon induction of differentiation, the osteogenic and angiogenic differentiation of D-MSCs were aberrant compared to N-MSCs. The expression of angiogenic factors was lower in D-MSCs than N-MSCs. D-MSCs cocultured with endothelial cells resulted in decreased tube formation compared to N-MSCs. D-MSCs were ineffective to improve hindlimb ischemia and showed lower capillary density and angiogenic gene expression in ischemic limbs than N-MSCs. D-MSCs have defective proliferation and angiogenic activities and are ineffective for repairing hindlimb ischemia. Newer measures are needed before MSCs can be employed as a source for autologous cell therapy.
Collapse
Affiliation(s)
- Hyongbum Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Phinney DG, Isakova IA. Mesenchymal stem cells as cellular vectors for pediatric neurological disorders. Brain Res 2014; 1573:92-107. [PMID: 24858930 DOI: 10.1016/j.brainres.2014.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/07/2014] [Accepted: 05/16/2014] [Indexed: 12/15/2022]
Abstract
Lysosomal storage diseases are a heterogeneous group of hereditary disorders characterized by a deficiency in lysosomal function. Although these disorders differ in their etiology and phenotype those that affect the nervous system generally manifest as a profound deterioration in neurologic function with age. Over the past several decades implementation of various treatment regimens including bone marrow and cord blood cell transplantation, enzyme replacement, and substrate reduction therapy have proved effective for managing some clinical manifestations of these diseases but their ability to ameliorate neurologic complications remains unclear. Consequently, there exists a need to develop alternative therapies that more effectively target the central nervous system. Recently, direct intracranial transplantation of tissue-specific stem and progenitor cells has been explored as a means to reconstitute metabolic deficiencies in the CNS. In this chapter we discuss the merits of bone marrow-derived mesenchymal stem cells (MSCs) for this purpose. Originally identified as progenitors of connective tissue cell lineages, recent findings have revealed several novel aspects of MSC biology that make them attractive as therapeutic agents in the CNS. We relate these advances in MSC biology to their utility as cellular vectors for treating neurologic sequelae associated with pediatric neurologic disorders.
Collapse
Affiliation(s)
- Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, A213, Jupiter, FL 33458, USA.
| | - Iryna A Isakova
- Division of Clinical Laboratory Diagnostics, Biology Department, National Dnepropetrovsk University, Dnepropetrovsk, Ukraine
| |
Collapse
|
36
|
Pacini S, Petrini I. Are MSCs angiogenic cells? New insights on human nestin-positive bone marrow-derived multipotent cells. Front Cell Dev Biol 2014; 2:20. [PMID: 25364727 PMCID: PMC4207020 DOI: 10.3389/fcell.2014.00020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/30/2014] [Indexed: 01/09/2023] Open
Abstract
Recent investigations have made considerable progress in the understanding of tissue regeneration driven by mesenchymal stromal cells (MSCs). Data indicate the anatomical location of MSC as residing in the “perivascular” space of blood vessels dispersed across the whole body. This histological localization suggests that MSCs contribute to the formation of new blood vessels in vivo. Indeed, MSCs can release angiogenic factors and protease to facilitate blood vessel formation and in vitro are able to promote/support angiogenesis. However, the direct differentiation of MCSs into endothelial cells is still matter of debate. Most of the conflicting data might arise from the presence of multiple subtypes of cells with heterogeneous morpho functional features within the MSC cultures. According to this scenario, we hypothesize that the presence of the recently described Mesodermal Progenitor Cells (MPCs) within the MSCs cultures is responsible for their variable angiogenic potential. Indeed, MPCs are Nestin-positive CD31-positive cells exhibiting angiogenic potential that differentiate in MSC upon proper stimuli. The ISCT criteria do not account for the presence of MPC within MSC culture generating confusion in the interpretation of MSC angiogenic potential. In conclusion, the discovery of MPC gives new insight in defining MSC ancestors in human bone marrow, and indicates the tunica intima as a further, and previously overlooked, possible additional source of MSC.
Collapse
Affiliation(s)
- Simone Pacini
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| | - Iacopo Petrini
- Department of Clinical and Experimental Medicine, University of Pisa Pisa, Italy
| |
Collapse
|
37
|
Yoo SM, Jang J, Yoo C, Lee MS. Kaposi’s sarcoma-associated herpesvirus infection of human bone-marrow-derived mesenchymal stem cells and their angiogenic potential. Arch Virol 2014; 159:2377-86. [DOI: 10.1007/s00705-014-2094-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/16/2014] [Indexed: 12/14/2022]
|
38
|
Bronckaers A, Hilkens P, Martens W, Gervois P, Ratajczak J, Struys T, Lambrichts I. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol Ther 2014; 143:181-96. [PMID: 24594234 DOI: 10.1016/j.pharmthera.2014.02.013] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/30/2013] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells or multipotent stromal cells (MSCs) have initially captured attention in the scientific world because of their differentiation potential into osteoblasts, chondroblasts and adipocytes and possible transdifferentiation into neurons, glial cells and endothelial cells. This broad plasticity was originally hypothesized as the key mechanism of their demonstrated efficacy in numerous animal models of disease as well as in clinical settings. However, there is accumulating evidence suggesting that the beneficial effects of MSCs are predominantly caused by the multitude of bioactive molecules secreted by these remarkable cells. Numerous angiogenic factors, growth factors and cytokines have been discovered in the MSC secretome, all have been demonstrated to alter endothelial cell behavior in vitro and induce angiogenesis in vivo. As a consequence, MSCs have been widely explored as a promising treatment strategy in disorders caused by insufficient angiogenesis such as chronic wounds, stroke and myocardial infarction. In this review, we will summarize into detail the angiogenic factors found in the MSC secretome and their therapeutic mode of action in pathologies caused by limited blood vessel formation. Also the application of MSC as a vehicle to deliver drugs and/or genes in (anti-)angiogenesis will be discussed. Furthermore, the literature describing MSC transdifferentiation into endothelial cells will be evaluated critically.
Collapse
Affiliation(s)
- Annelies Bronckaers
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium.
| | - Petra Hilkens
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Wendy Martens
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Pascal Gervois
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Jessica Ratajczak
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Tom Struys
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Ivo Lambrichts
- Group of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
39
|
Hong IS, Lee HY, Kang KS. Mesenchymal stem cells and cancer: friends or enemies? Mutat Res 2014; 768:98-106. [PMID: 24512984 DOI: 10.1016/j.mrfmmm.2014.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 12/21/2022]
Abstract
There is increasing evidence that mesenchymal stem cells (MSCs) have the ability to migrate and engraft into tumor sites and exert stimulatory effects on cancer cell growth, invasion and even metastasis through direct and/or indirect interaction with tumor cells. However, these pro-tumorigenic effects of MSCs are still being discovered and may even involve opposing effects. MSCs can be friends or enemies of cancer cells: they may stimulate tumor development by regulating immune surveillance, growth, and angiogenesis. On the other hand, they may inhibit tumor growth by inhibiting survival signaling such as Wnt and Akt pathway. MSCs have also been proposed as an attractive candidate for the delivery of anti-tumor agents, owing to their ability to home into tumor sites and to secrete cytokines. Detailed information about the mutual interactions between tumor cells and MSCs will undoubtedly lead to safer and more effective clinical therapy for tumors. In this article, we summarize a number of findings to provide current information on the potential roles of MSCs in tumor development; we then discuss the therapeutic potential of engineered MSCs to reveal any meaningful clinical applications.
Collapse
Affiliation(s)
- In-Sun Hong
- Department of Molecular Medicine, Gachon University, Incheon, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Hwa-Yong Lee
- Industry-academic cooperation foundation, Jungwon University, Chungbuk, Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, Seoul National University, Seoul, Republic of Korea; Department of Veterinary Public Health, Laboratory of Stem Cell and Tumor Biology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Moniri MR, Dai LJ, Warnock GL. The challenge of pancreatic cancer therapy and novel treatment strategy using engineered mesenchymal stem cells. Cancer Gene Ther 2014; 21:12-23. [PMID: 24384772 DOI: 10.1038/cgt.2013.83] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/09/2013] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSCs) have attracted significant attention in cancer research as a result of their accessibility, tumor-oriented homing capacity, and the feasibility of auto-transplantation. This review provides a comprehensive overview of current challenges in pancreatic cancer therapy, and we propose a novel strategy for using MSCs as means of delivering anticancer genes to the site of pancreas. We aim to provide a practical platform for the development of MSC-based therapy for pancreatic cancer.
Collapse
Affiliation(s)
- M R Moniri
- Department of Surgery, University of British Columbia, Vancouver BC, Canada
| | - L-J Dai
- 1] Department of Surgery, University of British Columbia, Vancouver BC, Canada [2] Hubei Key Laboratory of Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - G L Warnock
- Department of Surgery, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
41
|
Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, Fan X, Jiang Y, Stetler RA, Liu G, Chen J. Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol 2013; 115:92-115. [PMID: 24333397 DOI: 10.1016/j.pneurobio.2013.11.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/11/2013] [Accepted: 11/26/2013] [Indexed: 12/20/2022]
Abstract
Cell therapy is emerging as a viable therapy to restore neurological function after stroke. Many types of stem/progenitor cells from different sources have been explored for their feasibility and efficacy for the treatment of stroke. Transplanted cells not only have the potential to replace the lost circuitry, but also produce growth and trophic factors, or stimulate the release of such factors from host brain cells, thereby enhancing endogenous brain repair processes. Although stem/progenitor cells have shown a promising role in ischemic stroke in experimental studies as well as initial clinical pilot studies, cellular therapy is still at an early stage in humans. Many critical issues need to be addressed including the therapeutic time window, cell type selection, delivery route, and in vivo monitoring of their migration pattern. This review attempts to provide a comprehensive synopsis of preclinical evidence and clinical experience of various donor cell types, their restorative mechanisms, delivery routes, imaging strategies, future prospects and challenges for translating cell therapies as a neurorestorative regimen in clinical applications.
Collapse
Affiliation(s)
- Xinfeng Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Tao Yan
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Neurology, Tianjin General Hospital, Tianjin University School of Medicine, Tianjin, China
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xinying Fan
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yongjun Jiang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - R Anne Stetler
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - George Liu
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| |
Collapse
|
42
|
Kuo YC, Li YSJ, Zhou J, Shih YRV, Miller M, Broide D, Lee OKS, Chien S. Human mesenchymal stem cells suppress the stretch-induced inflammatory miR-155 and cytokines in bronchial epithelial cells. PLoS One 2013; 8:e71342. [PMID: 23967196 PMCID: PMC3742760 DOI: 10.1371/journal.pone.0071342] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/30/2013] [Indexed: 12/31/2022] Open
Abstract
Current research in pulmonary pathology has focused on inflammatory reactions initiated by immunological responses to allergens and irritants. In addition to these biochemical stimuli, physical forces also play an important role in regulating the structure, function, and metabolism of the lung. Hyperstretch of lung tissues can contribute to the inflammatory responses in asthma, but the mechanisms of mechanically induced inflammation in the lung remain unclear. Our results demonstrate that excessive stretch increased the secretion of inflammatory cytokines by human bronchial epithelial cells (hBECs), including IL-8. This increase of IL-8 secretion was due to an elevated microRNA-155 (miR-155) expression, which caused the suppression of Src homology 2 domain–containing inositol 5-phosphatase 1 (SHIP1) production and the subsequent activation of JNK signaling. In vivo studies in our asthmatic mouse model also showed such changes in miR-155, IL-8, and SHIP1 expressions that reflect inflammatory responses. Co-culture with human mesenchymal stem cells (hMSCs) reversed the stretch-induced hBEC inflammatory responses as a result of IL-10 secretion by hMSCs to down-regulate miR-155 expression in hBECs. In summary, we have demonstrated that mechanical stretch modulates the homeostasis of the hBEC secretome involving miR-155 and that hMSCs can be used as a potential therapeutic approach to reverse bronchial epithelial inflammation in asthma.
Collapse
Affiliation(s)
- Yi-Chun Kuo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yi-Shuan Julie Li
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jing Zhou
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yu-Ru Vernon Shih
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Marina Miller
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - David Broide
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (OK-SL); (SC)
| | - Shu Chien
- Department of Bioengineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (OK-SL); (SC)
| |
Collapse
|
43
|
Cunha FF, Martins L, Martin PKM, Stilhano RS, Han SW. A comparison of the reparative and angiogenic properties of mesenchymal stem cells derived from the bone marrow of BALB/c and C57/BL6 mice in a model of limb ischemia. Stem Cell Res Ther 2013; 4:86. [PMID: 23890057 PMCID: PMC3856613 DOI: 10.1186/scrt245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/23/2013] [Indexed: 11/10/2022] Open
Abstract
Introduction BALB/c mice and C57/BL6 mice have different abilities to recover from ischemia. C57/BL6 mice display increased vessel collateralization and vascular endothelial growth factor expression with a consequent rapid recovery from ischemia compared with BALB/c mice. Mesenchymal stem cells (MSCs) are one of the main cell types that contribute to the recovery from ischemia because, among their biological activities, they produce several proangiogenic paracrine factors and differentiate into endothelial cells. The objective of this study was to evaluate whether the MSCs of these two mouse strains have different inductive capacities for recovering ischemic limbs. Methods MSCs from these two strains were obtained from the bone marrow, purified and characterized before being used for in vivo experiments. Limb ischemia was surgically induced in BALB/c mice, and MSCs were injected on the fifth day. The evolution of limb necrosis was evaluated over the subsequent month. Muscle strength was assessed on the 30th day after the injection, and then the animals were sacrificed to determine the muscle mass and perform histological analyses to detect cellular infiltration, capillary and microvessel densities, fibrosis, necrosis and tissue regeneration. Results The MSCs from both strains promoted high level of angiogenesis similarly, resulting in good recovery from ischemia. However, BALB/c MSCs promoted more muscle regeneration (57%) than C57/BL6 MSCs (44%), which was reflected in the increased muscle strength (0.79 N versus 0.45 N). Conclusion The different genetic background of MSCs from BALB/c mice and C57/BL6 mice was not a relevant factor in promoting angiogenesis of limb ischemia, because both cells showed a similar angiogenic activity. These cells also showed a potential myogenic effect, but the stronger effect promoted by BALB/c MSCs indicates that the different genetic background of MSCs was more relevant in myogenesis than angiogesis.
Collapse
|
44
|
Cunha FFD, Martins L, Martin PKM, Stilhano RS, Paredes Gamero EJ, Han SW. Comparison of treatments of peripheral arterial disease with mesenchymal stromal cells and mesenchymal stromal cells modified with granulocyte and macrophage colony-stimulating factor. Cytotherapy 2013; 15:820-9. [DOI: 10.1016/j.jcyt.2013.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 01/26/2023]
|
45
|
Hernanda PY, Pedroza-Gonzalez A, van der Laan LJW, Bröker MEE, Hoogduijn MJ, Ijzermans JNM, Bruno MJ, Janssen HLA, Peppelenbosch MP, Pan Q. Tumor promotion through the mesenchymal stem cell compartment in human hepatocellular carcinoma. Carcinogenesis 2013; 34:2330-40. [PMID: 23740837 PMCID: PMC3786382 DOI: 10.1093/carcin/bgt210] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although the infiltration of mesenchymal stem (stromal) cells (MSCs) into different tumors is widely recognized in animal models, the question whether these MSCs have a positive or negative effect on disease progression remains unanswered. The aim of this study is to investigate whether human hepatocellular carcinoma (HCC) harbors MSCs and whether these MSCs affect tumor growth. We observed that cells capable of differentiation into both adipocyte and osteocyte lineages and expressing MSC markers can be cultured from surgically resected HCC tissues. In situ staining of human HCC tissues with a STRO-1 antibody showed that the tumor and tumor-stromal region are significantly enriched with candidate MSCs compared with adjacent tissue (n = 12, P < 0.01). In mice, coengraftment of a human HCC cell line (Huh7) with MSCs resulted in substantially larger tumors compared with paired engraftment of Huh7 alone (n = 8, P < 0.01). Consistently, coculturing Huh7 with irradiated MSCs significantly increased the number and the size of colonies formed. This enhancement of Huh7 colony formation was also observed by treatment of MSC-conditioned medium (MSC-CM), suggesting that secreted trophic factors contribute to the growth-promoting effects. Genome-wide gene expression array and pathway analysis confirmed the upregulation of cell growth and proliferation-related processes and downregulation of cell death-related pathways by treatment of MSC-CM in Huh7 cells. In conclusion, these results show that MSCs are enriched in human HCC tumor compartment and could exert trophic effects on tumor cells. Thus, targeting of HCC tumor MSCs may represent a new avenue for therapeutic intervention.
Collapse
|
46
|
Hung PS, Kuo YC, Chen HG, Chiang HHK, Lee OKS. Detection of osteogenic differentiation by differential mineralized matrix production in mesenchymal stromal cells by Raman spectroscopy. PLoS One 2013; 8:e65438. [PMID: 23734254 PMCID: PMC3667172 DOI: 10.1371/journal.pone.0065438] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/24/2013] [Indexed: 11/21/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) hold great potential in skeletal tissue engineering and regenerative medicine. However, conventional methods that are used in molecular biology to evaluate osteogenic differentiation of MSCs require a relatively large amount of cells. Cell lysis and cell fixation are also required and all these steps are time-consuming. Therefore, it is imperative to develop a facile technique which can provide real-time information with high sensitivity and selectivity to detect the osteogenic maturation of MSCs. In this study, we use Raman spectroscopy as a biosensor to monitor the production of mineralized matrices during osteogenic induction of MSCs. In summary, Raman spectroscopy is an excellent biosensor to detect the extent of maturation level during MSCs-osteoblast differentiation with a non-disruptive, real-time and label free manner. We expect that this study will promote further investigation of stem cell research and clinical applications.
Collapse
Affiliation(s)
- Pei-San Hung
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chun Kuo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - He-Guei Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Hui-Hua Kenny Chiang
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Oscar Kuang-Sheng Lee
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Stem cell Research Center, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
47
|
Yanai G, Hayashi T, Zhi Q, Yang KC, Shirouzu Y, Shimabukuro T, Hiura A, Inoue K, Sumi S. Electrofusion of mesenchymal stem cells and islet cells for diabetes therapy: a rat model. PLoS One 2013; 8:e64499. [PMID: 23724055 PMCID: PMC3665804 DOI: 10.1371/journal.pone.0064499] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/14/2013] [Indexed: 01/22/2023] Open
Abstract
Islet transplantation is a minimally invasive treatment for severe diabetes. However, it often requires multiple donors to accomplish insulin-independence and the long-term results are not yet satisfying. Therefore, novel ways to overcome these problems have been explored. Isolated islets are fragile and susceptible to pro-apoptotic factors and poorly proliferative. In contrast, mesenchymal stem cells (MSCs) are highly proliferative, anti-apoptotic and pluripotent to differentiate toward various cell types, promote angiogenesis and modulate inflammation, thereby studied as an enhancer of islet function and engraftment. Electrofusion is an efficient method of cell fusion and nuclear reprogramming occurs in hybrid cells between different cell types. Therefore, we hypothesized that electrofusion between MSC and islet cells may yield robust islet cells for diabetes therapy. We establish a method of electrofusion between dispersed islet cells and MSCs in rats. The fusion cells maintained glucose-responsive insulin release for 20 days in vitro. Renal subcapsular transplantation of fusion cells prepared from suboptimal islet mass (1,000 islets) that did not correct hyperglycemia even if co-transplanted with MSCs, caused slow but consistent lowering of blood glucose with significant weight gain within the observation period in streptozotocin-induced diabetic rats. In the fusion cells between rat islet cells and mouse MSCs, RT-PCR showed new expression of both rat MSC-related genes and mouse β-cell-related genes, indicating bidirectional reprogramming of both β-cell and MSCs nuclei. Moreover, decreased caspase3 expression and new expression of Ki-67 in the islet cell nuclei suggested alleviated apoptosis and gain of proliferative capability, respectively. These results show that electrofusion between MSCs and islet cells yield special cells with β-cell function and robustness of MSCs and seems feasible for novel therapeutic strategy for diabetes mellitus.
Collapse
Affiliation(s)
- Goichi Yanai
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Qi Zhi
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, China
| | - Kai-Chiang Yang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yasumasa Shirouzu
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Akihito Hiura
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Shoichiro Sumi
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
48
|
Kéramidas M, de Fraipont F, Karageorgis A, Moisan A, Persoons V, Richard MJ, Coll JL, Rome C. The dual effect of mesenchymal stem cells on tumour growth and tumour angiogenesis. Stem Cell Res Ther 2013; 4:41. [PMID: 23628074 PMCID: PMC3706993 DOI: 10.1186/scrt195] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/11/2013] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Understanding the multiple biological functions played by human mesenchymal stem cells (hMSCs) as well as their development as therapeutics in regenerative medicine or in cancer treatment are major fields of research. Indeed, it has been established that hMSCs play a central role in the pathogenesis and progression of tumours, but their impact on tumour growth remains controversial. METHODS In this study, we investigated the influence of hMSCs on the growth of pre-established tumours. We engrafted nude mice with luciferase-positive mouse adenocarcinoma cells (TSA-Luc+) to obtain subcutaneous or lung tumours. When tumour presence was confirmed by non-invasive bioluminescence imaging, hMSCs were injected into the periphery of the SC tumours or delivered by systemic intravenous injection in mice bearing either SC tumours or lung metastasis. RESULTS Regardless of the tumour model and mode of hMSC injection, hMSC administration was always associated with decreased tumour growth due to an inhibition of tumour cell proliferation, likely resulting from deep modifications of the tumour angiogenesis. Indeed, we established that although hMSCs can induce the formation of new blood vessels in a non-tumoural cellulose sponge model in mice, they do not modify the overall amount of haemoglobin delivered into the SC tumours or lung metastasis. We observed that these tumour vessels were reduced in number but were longer. CONCLUSIONS Our results suggest that hMSCs injection decreased solid tumour growth in mice and modified tumour vasculature, which confirms hMSCs could be interesting to use for the treatment of pre-established tumours.
Collapse
|
49
|
Li Y, Fan L, Liu S, Liu W, Zhang H, Zhou T, Wu D, Yang P, Shen L, Chen J, Jin Y. The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a. Biomaterials 2013; 34:5048-58. [PMID: 23578559 DOI: 10.1016/j.biomaterials.2013.03.052] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/15/2013] [Indexed: 01/29/2023]
Abstract
Bone is highly vascularized tissue reliant on coordinated coupling between angiogenesis and osteogenesis to regenerate. Delivery of a combination of growth factors involved in the coupling has to some extent enhanced bone regeneration. However, the stimulation may interrupt the balance of bone and vessel remodeling leading to the excessive bone formation or vascular leakage. MicroRNAs function as potent molecular managers that may simultaneously regulate multiple endogenous signaling pathways. Delivery of microRNA may provide a way to maximally mimic the native bone development environment. In this work, we identified an miRNA, miR-26a in vitro assays that positively regulates angiogenesis-osteogenesis coupling. This resulted in enhanced bone formation coordinated with vascularization in mouse subcutaneous assay. Furthermore, we constructed an miRNA enhancer delivery system to enhance miR-26a expression in a localized and sustained manner in vivo. We found that the system led to complete repair of the critical-size calvarial bone defect and increased vascularization accordingly. Host specific real-time PCR test of the neo-formed bone demonstrated that miR-26a optimized bone regeneration mainly due to simultaneously regulating endogenous angiogenesis-osteogenesis coupling. We anticipated our assay providing evidence that miRNA-based therapy can be a valuable tool to promote bone regeneration.
Collapse
Affiliation(s)
- Yan Li
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yuan L, Sakamoto N, Song G, Sato M. High-level Shear Stress Stimulates Endothelial Differentiation and VEGF Secretion by Human Mesenchymal Stem Cells. Cell Mol Bioeng 2013. [DOI: 10.1007/s12195-013-0275-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|