1
|
Gómez Á, Reina R. Recombinant Sendai Virus Vectors as Novel Vaccine Candidates Against Animal Viruses. Viruses 2025; 17:737. [PMID: 40431748 PMCID: PMC12115985 DOI: 10.3390/v17050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2025] [Revised: 05/16/2025] [Accepted: 05/21/2025] [Indexed: 05/29/2025] Open
Abstract
Vaccination plays a pivotal role in the control and prevention of animal infectious diseases. However, no efficient and safe universal vaccines are currently registered for major pathogens such as influenza A virus, foot-and-mouth disease virus (FMDV), simian immunodeficiency virus (SIV), and small ruminant lentiviruses (SRLV). Here, we review the development of Sendai virus (SeV) vectors as a promising vaccine platform for animal diseases. Recombinant SeV vectors (rSeVv) possess several key features that make them highly suitable for developing vaccination strategies: (1) SeV has exclusively cytoplasmic replication cycle, therefore incapable of transforming host cells by integrating into the cellular genome, (2) rSeVv can accommodate large foreign gene/s inserts (~5 kb) with strong but adjustable transgene expression, (3) can be propagated to high titers in both embryonated chicken eggs and mammalian cell lines, (4) exhibits potent infectivity across a broad range of mammalian cells from different animals species, (5) undergo transient replication in the upper and lower respiratory tracts of non-natural hosts, (6) has not been associated with disease in pigs, non-humans primates, and small ruminants, ensuring a favorable safety profile, and (7) induce a robust innate and cellular immune responses. Preclinical and clinical studies using rSeVv-based vaccines against influenza A virus, FMDV, SIV, and SRLV have yielded promising results. Therefore, this review highlights the potential of rSeVv-based vaccine platforms as a valuable strategy for combating animal viruses.
Collapse
Affiliation(s)
- Álex Gómez
- Departamento de Patología Animal, Universidad de Zaragoza, 177 Calle de Miguel Sevet, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, 177 Calle de Miguel Sevet, 50013 Zaragoza, Spain
| | - Ramsés Reina
- Instituto de Agrobiotecnología (CSIC-Gobierno de Navarra), 123 Avenida Pamplona, 31192 Mutilva, Spain
| |
Collapse
|
2
|
Schaerlaekens S, Jacobs L, Stobbelaar K, Cos P, Delputte P. All Eyes on the Prefusion-Stabilized F Construct, but Are We Missing the Potential of Alternative Targets for Respiratory Syncytial Virus Vaccine Design? Vaccines (Basel) 2024; 12:97. [PMID: 38250910 PMCID: PMC10819635 DOI: 10.3390/vaccines12010097] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Respiratory Syncytial Virus (RSV) poses a significant global health concern as a major cause of lower respiratory tract infections (LRTIs). Over the last few years, substantial efforts have been directed towards developing vaccines and therapeutics to combat RSV, leading to a diverse landscape of vaccine candidates. Notably, two vaccines targeting the elderly and the first maternal vaccine have recently been approved. The majority of the vaccines and vaccine candidates rely solely on a prefusion-stabilized conformation known for its highly neutralizing epitopes. Although, so far, this antigen design appears to be successful for the elderly, our current understanding remains incomplete, requiring further improvement and refinement in this field. Pediatric vaccines still have a long journey ahead, and we must ensure that vaccines currently entering the market do not lose efficacy due to the emergence of mutations in RSV's circulating strains. This review will provide an overview of the current status of vaccine designs and what to focus on in the future. Further research into antigen design is essential, including the exploration of the potential of alternative RSV proteins to address these challenges and pave the way for the development of novel and effective vaccines, especially in the pediatric population.
Collapse
Affiliation(s)
- Sofie Schaerlaekens
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
| | - Lotte Jacobs
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
| | - Kim Stobbelaar
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Pediatrics Department, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium
| |
Collapse
|
3
|
Nath SC, Menendez L, Friedrich Ben-Nun I. Overcoming the Variability of iPSCs in the Manufacturing of Cell-Based Therapies. Int J Mol Sci 2023; 24:16929. [PMID: 38069252 PMCID: PMC10706975 DOI: 10.3390/ijms242316929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Various factors are known to contribute to the diversity of human induced pluripotent stem cells (hiPSCs). Among these are the donor's genetic background and family history, the somatic cell source, the iPSC reprogramming method, and the culture system of choice. Moreover, variability is seen even in iPSC clones, generated in a single reprogramming event, where the donor, somatic cell type, and reprogramming platform are the same. The diversity seen in iPSC lines often translates to epigenetic differences, as well as to differences in the expansion rate, iPSC line culture robustness, and their ability to differentiate into specific cell types. As such, the diversity of iPSCs presents a hurdle to standardizing iPSC-based cell therapy manufacturing. In this review, we will expand on the various factors that impact iPSC diversity and the strategies and tools that could be taken by the industry to overcome the differences amongst various iPSC lines, therefore enabling robust and reproducible iPSC-based cell therapy manufacturing processes.
Collapse
Affiliation(s)
- Suman C. Nath
- Cell Therapy Process Department, Lonza Inc., Houston, TX 77047, USA; (S.C.N.); (L.M.)
| | - Laura Menendez
- Cell Therapy Process Department, Lonza Inc., Houston, TX 77047, USA; (S.C.N.); (L.M.)
| | | |
Collapse
|
4
|
Dai L, Du L. Genes in pediatric pulmonary arterial hypertension and the most promising BMPR2 gene therapy. Front Genet 2022; 13:961848. [PMID: 36506323 PMCID: PMC9730536 DOI: 10.3389/fgene.2022.961848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but progressive and lethal vascular disease of diverse etiologies, mainly caused by proliferation of endothelial cells, smooth muscle cells in the pulmonary artery, and fibroblasts, which ultimately leads to right-heart hypertrophy and cardiac failure. Recent genetic studies of childhood-onset PAH report that there is a greater genetic burden in children than in adults. Since the first-identified pathogenic gene of PAH, BMPR2, which encodes bone morphogenetic protein receptor 2, a receptor in the transforming growth factor-β superfamily, was discovered, novel causal genes have been identified and substantially sharpened our insights into the molecular genetics of childhood-onset PAH. Currently, some newly identified deleterious genetic variants in additional genes implicated in childhood-onset PAH, such as potassium channels (KCNK3) and transcription factors (TBX4 and SOX17), have been reported and have greatly updated our understanding of the disease mechanism. In this review, we summarized and discussed the advances of genetic variants underlying childhood-onset PAH susceptibility and potential mechanism, and the most promising BMPR2 gene therapy and gene delivery approaches to treat childhood-onset PAH in the future.
Collapse
|
5
|
Bisserier M, Sun XQ, Fazal S, Turnbull IC, Bonnet S, Hadri L. Novel Insights into the Therapeutic Potential of Lung-Targeted Gene Transfer in the Most Common Respiratory Diseases. Cells 2022; 11:984. [PMID: 35326434 PMCID: PMC8947048 DOI: 10.3390/cells11060984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Over the past decades, a better understanding of the genetic and molecular alterations underlying several respiratory diseases has encouraged the development of new therapeutic strategies. Gene therapy offers new therapeutic alternatives for inherited and acquired diseases by delivering exogenous genetic materials into cells or tissues to restore physiological protein expression and/or activity. In this review, we review (1) different types of viral and non-viral vectors as well as gene-editing techniques; and (2) the application of gene therapy for the treatment of respiratory diseases and disorders, including pulmonary arterial hypertension, idiopathic pulmonary fibrosis, cystic fibrosis, asthma, alpha-1 antitrypsin deficiency, chronic obstructive pulmonary disease, non-small-cell lung cancer, and COVID-19. Further, we also provide specific examples of lung-targeted therapies and discuss the major limitations of gene therapy.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (M.B.); (S.F.); (I.C.T.)
| | - Xiao-Qing Sun
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Shahood Fazal
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (M.B.); (S.F.); (I.C.T.)
| | - Irene C. Turnbull
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (M.B.); (S.F.); (I.C.T.)
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec, QC G1V4G5, Canada;
- Department of Medicine, Laval University, Québec, QC G1V4G5, Canada
| | - Lahouaria Hadri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; (M.B.); (S.F.); (I.C.T.)
| |
Collapse
|
6
|
Vu A, McCray PB. New Directions in Pulmonary Gene Therapy. Hum Gene Ther 2020; 31:921-939. [PMID: 32814451 PMCID: PMC7495918 DOI: 10.1089/hum.2020.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
The lung has long been a target for gene therapy, yet efficient delivery and phenotypic disease correction has remained challenging. Although there have been significant advancements in gene therapies of other organs, including the development of several ex vivo therapies, in vivo therapeutics of the lung have been slower to transition to the clinic. Within the past few years, the field has witnessed an explosion in the development of new gene addition and gene editing strategies for the treatment of monogenic disorders. In this review, we will summarize current developments in gene therapy for cystic fibrosis, alpha-1 antitrypsin deficiency, and surfactant protein deficiencies. We will explore the different gene addition and gene editing strategies under investigation and review the challenges of delivery to the lung.
Collapse
Affiliation(s)
- Amber Vu
- Stead Family Department of Pediatrics, Center for Gene Therapy, The University of Iowa, Iowa City, Iowa, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, Center for Gene Therapy, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Al Abbar A, Ngai SC, Nograles N, Alhaji SY, Abdullah S. Induced Pluripotent Stem Cells: Reprogramming Platforms and Applications in Cell Replacement Therapy. Biores Open Access 2020; 9:121-136. [PMID: 32368414 PMCID: PMC7194323 DOI: 10.1089/biores.2019.0046] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) from differentiated mature cells is one of the most promising technologies in the field of regenerative medicine. The ability to generate patient-specific iPSCs offers an invaluable reservoir of pluripotent cells, which could be genetically engineered and differentiated into target cells to treat various genetic and degenerative diseases once transplanted, hence counteracting the risk of graft versus host disease. In this context, we review the scientific research streams that lead to the emergence of iPSCs, the roles of reprogramming factors in reprogramming to pluripotency, and the reprogramming strategies. As iPSCs serve tremendous correction potentials for various diseases, we highlight the successes and challenges of iPSCs in cell replacement therapy and the synergy of iPSCs and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing tools in therapeutics research.
Collapse
Affiliation(s)
- Akram Al Abbar
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Nadine Nograles
- Newcastle University Medicine Malaysia, Educity, Iskandar Puteri, Johor, Malaysia
| | - Suleiman Yusuf Alhaji
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
8
|
Ieda M. Key Regulators of Cardiovascular Differentiation and Regeneration: Harnessing the Potential of Direct Reprogramming to Treat Heart Failure. J Card Fail 2019; 26:80-84. [PMID: 31541743 DOI: 10.1016/j.cardfail.2019.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/29/2022]
Abstract
Cardiovascular diseases remain a leading cause of death worldwide, with the number of patients with heart failure increasing rapidly in aging societies. As adult cardiomyocytes are terminally differentiated cells and opportunities for heart transplantation are very limited, regenerative medicine may become a game changer in heart failure treatment. To develop strategies for generating cardiomyocytes, vascular cells, and other supporting cells, it is necessary to understand the mechanism of cardiovascular differentiation during development and from pluripotent stem cells. Master regulators for cardiovascular differentiation can generate new cardiomyocytes and vascular cells directly from other differentiated cells such as fibroblasts. Fibroblasts can be directly reprogrammed into cardiomyocytes by overexpressing a combination of 3 cardiac-specific transcription factors (Gata4, Mef2c, Tbx5) both in vitro and in vivo, which restores cardiac function after myocardial infarction in mice. Moreover, a direct reprogramming-based approach can be used to identify new key regulators of the cardiovascular mesoderm, which can differentiate into all 3 types of cardiovascular cells including cardiomyocytes, endothelial cells, and smooth muscle cells. This review provides a perspective on how key regulators for cardiovascular differentiation and regeneration can be identified and used to develop new treatments for heart failure.
Collapse
Affiliation(s)
- Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
9
|
Haridhasapavalan KK, Borgohain MP, Dey C, Saha B, Narayan G, Kumar S, Thummer RP. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene 2018; 686:146-159. [PMID: 30472380 DOI: 10.1016/j.gene.2018.11.069] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Over a decade ago, a landmark study that reported derivation of induced Pluripotent Stem Cells (iPSCs) by reprogramming fibroblasts has transformed stem cell research attracting the interest of the scientific community worldwide. These cells circumvent the ethical and immunological concerns associated with embryonic stem cells, and the limited self-renewal ability and restricted differentiation potential linked to adult stem cells. iPSCs hold great potential for understanding basic human biology, in vitro disease modeling, high-throughput drug testing and discovery, and personalized regenerative medicine. The conventional reprogramming methods involving retro- and lenti-viral vectors to deliver reprogramming factors in somatic cells to generate iPSCs nullify the clinical applicability of these cells. Although these gene delivery systems are efficient and robust, they carry an enormous risk of permanent genetic modifications and are potentially tumorigenic. To evade these safety concerns and derive iPSCs for human therapy, tremendous technological advancements have resulted in the development of non-integrating viral- and non-viral approaches. These gene delivery techniques curtail or eliminate the risk of any genomic alteration and enhance the prospects of iPSCs from bench-to-bedside. The present review provides a comprehensive overview of non-integrating viral (adenoviral vectors, adeno-associated viral vectors, and Sendai virus vectors) and DNA-based, non-viral (plasmid transfection, minicircle vectors, transposon vectors, episomal vectors, and liposomal magnetofection) approaches that have the potential to generate transgene-free iPSCs. The understanding of these techniques could pave the way for the use of iPSCs for various biomedical applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Manash P Borgohain
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Bitan Saha
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India
| | - Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Sachin Kumar
- Viral Immunology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
10
|
Miyamoto K, Akiyama M, Tamura F, Isomi M, Yamakawa H, Sadahiro T, Muraoka N, Kojima H, Haginiwa S, Kurotsu S, Tani H, Wang L, Qian L, Inoue M, Ide Y, Kurokawa J, Yamamoto T, Seki T, Aeba R, Yamagishi H, Fukuda K, Ieda M. Direct In Vivo Reprogramming with Sendai Virus Vectors Improves Cardiac Function after Myocardial Infarction. Cell Stem Cell 2017; 22:91-103.e5. [PMID: 29276141 DOI: 10.1016/j.stem.2017.11.010] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/31/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
Direct cardiac reprogramming holds great promise for regenerative medicine. We previously generated directly reprogrammed induced cardiomyocyte-like cells (iCMs) by overexpression of Gata4, Mef2c, and Tbx5 (GMT) using retrovirus vectors. However, integrating vectors pose risks associated with insertional mutagenesis and disruption of gene expression and are inefficient. Here, we show that Sendai virus (SeV) vectors expressing cardiac reprogramming factors efficiently and rapidly reprogram both mouse and human fibroblasts into integration-free iCMs via robust transgene expression. SeV-GMT generated 100-fold more beating iCMs than retroviral-GMT and shortened the duration to induce beating cells from 30 to 10 days in mouse fibroblasts. In vivo lineage tracing revealed that the gene transfer of SeV-GMT was more efficient than retroviral-GMT in reprogramming resident cardiac fibroblasts into iCMs in mouse infarct hearts. Moreover, SeV-GMT improved cardiac function and reduced fibrosis after myocardial infarction. Thus, efficient, non-integrating SeV vectors may serve as a powerful system for cardiac regeneration.
Collapse
Affiliation(s)
- Kazutaka Miyamoto
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mizuha Akiyama
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Fumiya Tamura
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mari Isomi
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroyuki Yamakawa
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taketaro Sadahiro
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Naoto Muraoka
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hidenori Kojima
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sho Haginiwa
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shota Kurotsu
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Li Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Yoshinori Ide
- Pharmacological Evaluation Institute of Japan, Center for Pharmacological Science, 3-25-22-424 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Junko Kurokawa
- Department of Bio-informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Tsunehisa Yamamoto
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomohisa Seki
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ryo Aeba
- Division of Cardiovascular Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroyuki Yamagishi
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
11
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
12
|
Wiegand MA, Gori-Savellini G, Gandolfo C, Papa G, Kaufmann C, Felder E, Ginori A, Disanto MG, Spina D, Cusi MG. A Respiratory Syncytial Virus Vaccine Vectored by a Stable Chimeric and Replication-Deficient Sendai Virus Protects Mice without Inducing Enhanced Disease. J Virol 2017; 91:e02298-16. [PMID: 28250126 PMCID: PMC5411584 DOI: 10.1128/jvi.02298-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/21/2017] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe respiratory infections in children and elderly people, and no marketed vaccine exists. In this study, we generated and analyzed a subunit vaccine against RSV based on a novel genome replication-deficient Sendai virus (SeV) vector. We inserted the RSV F protein, known to be a genetically stable antigen, into our vector in a specific way to optimize the vaccine features. By exchanging the ectodomain of the SeV F protein for its counterpart from RSV, we created a chimeric vectored vaccine that contains the RSV F protein as an essential structural component. In this way, the antigen is actively expressed on the surfaces of vaccine particles in its prefusion conformation, and as recently reported for other vectored vaccines, the occurrence of silencing mutations of the transgene in the vaccine genome can be prevented. In addition, its active gene expression contributes to further stimulation of the immune response. In order to understand the best route of immunization, we compared vaccine efficacies after intranasal (i.n.) or intramuscular (i.m.) immunization of BALB/c mice. Via both routes, substantial RSV-specific immune responses were induced, consisting of serum IgG and neutralizing antibodies, as well as cytotoxic T cells. Moreover, i.n. immunization was also able to stimulate specific mucosal IgA in the upper and lower respiratory tract. In virus challenge experiments, animals were protected against RSV infection after both i.n. and i.m. immunization without inducing vaccine-enhanced disease. Above all, the replication-deficient SeV appeared to be safe and well tolerated.IMPORTANCE Respiratory syncytial virus (RSV) is a major cause of respiratory diseases in young children and elderly people worldwide. There is a great demand for a licensed vaccine. Promising existing vaccine approaches based on live-attenuated vaccines or viral vectors have suffered from unforeseen drawbacks related to immunogenicity and attenuation. We provide a novel RSV vaccine concept based on a genome replication-deficient Sendai vector that has many favorable vaccine characteristics. The specific vaccine design guarantees genetic stability of the transgene; furthermore, it supports a favorable presentation of the antigen, activating the adaptive response, features that other vectored vaccine approaches have often had difficulties with. Wide immunological and pathological analyses in mice confirmed the validity and efficacy of this approach after both parenteral and mucosal administration. Above all, this concept is suitable for initiating clinical studies, and it could also be applied to other infectious diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Female
- Genetic Vectors
- Immunization
- Immunoglobulin A/immunology
- Immunoglobulin G/blood
- Mice
- Mice, Inbred BALB C
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus Vaccines/chemistry
- Respiratory Syncytial Virus Vaccines/genetics
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/physiology
- Sendai virus/genetics
- Sendai virus/immunology
- Vaccines, Attenuated
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/immunology
- Virus Replication
Collapse
Affiliation(s)
| | - Gianni Gori-Savellini
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Siena, Italy
| | - Claudia Gandolfo
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Siena, Italy
| | - Guido Papa
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Siena, Italy
| | | | - Eva Felder
- AmVac Research GmbH, Martinsried, Germany
| | - Alessandro Ginori
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maria Giulia Disanto
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Donatella Spina
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maria Grazia Cusi
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Siena, Italy
| |
Collapse
|
13
|
Yan Z, Feng Z, Sun X, Zhang Y, Zou W, Wang Z, Jensen-Cody C, Liang B, Park SY, Qiu J, Engelhardt JF. Human Bocavirus Type-1 Capsid Facilitates the Transduction of Ferret Airways by Adeno-Associated Virus Genomes. Hum Gene Ther 2017; 28:612-625. [PMID: 28490200 DOI: 10.1089/hum.2017.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human bocavirus type-1 (HBoV1) has a high tropism for the apical membrane of human airway epithelia. The packaging of a recombinant adeno-associated virus 2 (rAAV2) genome into HBoV1 capsid produces a chimeric vector (rAAV2/HBoV1) that also efficiently transduces human airway epithelia. As such, this vector is attractive for use in gene therapies to treat lung diseases such as cystic fibrosis. However, preclinical development of rAAV2/HBoV1 vectors has been hindered by the fact that humans are the only known host for HBoV1 infection. This study reports that rAAV2/HBoV1 vector is capable of efficiently transducing the lungs of both newborn (3- to 7-day-old) and juvenile (29-day-old) ferrets, predominantly in the distal airways. Analyses of in vivo, ex vivo, and in vitro models of the ferret proximal airway demonstrate that infection of this particular region is less effective than it is in humans. Studies of vector binding and endocytosis in polarized ferret proximal airway epithelial cultures revealed that a lack of effective vector endocytosis is the main cause of inefficient transduction in vitro. While transgene expression declined proportionally with growth of the ferrets following infection at 7 days of age, reinfection of ferrets with rAAV2/HBoV1 at 29 days gave rise to approximately 5-fold higher levels of transduction than observed in naive infected 29-day-old animals. The findings presented here lay the foundation for clinical development of HBoV1 capsid-based vectors for lung gene therapy in cystic fibrosis using ferret models.
Collapse
Affiliation(s)
- Ziying Yan
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa , Iowa City, Iowa
| | - Zehua Feng
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Xingshen Sun
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Yulong Zhang
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Wei Zou
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center , Kansas City, Kansas
| | - Zekun Wang
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center , Kansas City, Kansas
| | | | - Bo Liang
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Soo-Yeun Park
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Jianming Qiu
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center , Kansas City, Kansas
| | - John F Engelhardt
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa , Iowa City, Iowa
| |
Collapse
|
14
|
Liu Y, Zheng Y, Li S, Xue H, Schmitt K, Hergenroeder GW, Wu J, Zhang Y, Kim DH, Cao Q. Human neural progenitors derived from integration-free iPSCs for SCI therapy. Stem Cell Res 2017; 19:55-64. [PMID: 28073086 PMCID: PMC5629634 DOI: 10.1016/j.scr.2017.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/19/2016] [Accepted: 01/03/2017] [Indexed: 01/16/2023] Open
Abstract
As a potentially unlimited autologous cell source, patient induced pluripotent stem cells (iPSCs) provide great capability for tissue regeneration, particularly in spinal cord injury (SCI). However, despite significant progress made in translation of iPSC-derived neural progenitor cells (NPCs) to clinical settings, a few hurdles remain. Among them, non-invasive approach to obtain source cells in a timely manner, safer integration-free delivery of reprogramming factors, and purification of NPCs before transplantation are top priorities to overcome. In this study, we developed a safe and cost-effective pipeline to generate clinically relevant NPCs. We first isolated cells from patients' urine and reprogrammed them into iPSCs by non-integrating Sendai viral vectors, and carried out experiments on neural differentiation. NPCs were purified by A2B5, an antibody specifically recognizing a glycoganglioside on the cell surface of neural lineage cells, via fluorescence activated cell sorting. Upon further in vitro induction, NPCs were able to give rise to neurons, oligodendrocytes and astrocytes. To test the functionality of the A2B5+ NPCs, we grafted them into the contused mouse thoracic spinal cord. Eight weeks after transplantation, the grafted cells survived, integrated into the injured spinal cord, and differentiated into neurons and glia. Our specific focus on cell source, reprogramming, differentiation and purification method purposely addresses timing and safety issues of transplantation to SCI models. It is our belief that this work takes one step closer on using human iPSC derivatives to SCI clinical settings.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; The Senator Lloyd & B.A. Bentsen Center for Stroke Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yiyan Zheng
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shenglan Li
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Haipeng Xue
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Karl Schmitt
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Georgene W Hergenroeder
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jiaqian Wu
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; The Senator Lloyd & B.A. Bentsen Center for Stroke Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest Health Sciences, 391 Technology Way, Winston-Salem, NC 27101, USA
| | - Dong H Kim
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Qilin Cao
- Department of Neurosurgery, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; The Senator Lloyd & B.A. Bentsen Center for Stroke Research, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
15
|
Alton EWFW, Beekman JM, Boyd AC, Brand J, Carlon MS, Connolly MM, Chan M, Conlon S, Davidson HE, Davies JC, Davies LA, Dekkers JF, Doherty A, Gea-Sorli S, Gill DR, Griesenbach U, Hasegawa M, Higgins TE, Hironaka T, Hyndman L, McLachlan G, Inoue M, Hyde SC, Innes JA, Maher TM, Moran C, Meng C, Paul-Smith MC, Pringle IA, Pytel KM, Rodriguez-Martinez A, Schmidt AC, Stevenson BJ, Sumner-Jones SG, Toshner R, Tsugumine S, Wasowicz MW, Zhu J. Preparation for a first-in-man lentivirus trial in patients with cystic fibrosis. Thorax 2016; 72:137-147. [PMID: 27852956 PMCID: PMC5284333 DOI: 10.1136/thoraxjnl-2016-208406] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 01/03/2023]
Abstract
We have recently shown that non-viral gene therapy can stabilise the decline of lung function in patients with cystic fibrosis (CF). However, the effect was modest, and more potent gene transfer agents are still required. Fuson protein (F)/Hemagglutinin/Neuraminidase protein (HN)-pseudotyped lentiviral vectors are more efficient for lung gene transfer than non-viral vectors in preclinical models. In preparation for a first-in-man CF trial using the lentiviral vector, we have undertaken key translational preclinical studies. Regulatory-compliant vectors carrying a range of promoter/enhancer elements were assessed in mice and human air–liquid interface (ALI) cultures to select the lead candidate; cystic fibrosis transmembrane conductance receptor (CFTR) expression and function were assessed in CF models using this lead candidate vector. Toxicity was assessed and ‘benchmarked’ against the leading non-viral formulation recently used in a Phase IIb clinical trial. Integration site profiles were mapped and transduction efficiency determined to inform clinical trial dose-ranging. The impact of pre-existing and acquired immunity against the vector and vector stability in several clinically relevant delivery devices was assessed. A hybrid promoter hybrid cytosine guanine dinucleotide (CpG)- free CMV enhancer/elongation factor 1 alpha promoter (hCEF) consisting of the elongation factor 1α promoter and the cytomegalovirus enhancer was most efficacious in both murine lungs and human ALI cultures (both at least 2-log orders above background). The efficacy (at least 14% of airway cells transduced), toxicity and integration site profile supports further progression towards clinical trial and pre-existing and acquired immune responses do not interfere with vector efficacy. The lead rSIV.F/HN candidate expresses functional CFTR and the vector retains 90–100% transduction efficiency in clinically relevant delivery devices. The data support the progression of the F/HN-pseudotyped lentiviral vector into a first-in-man CF trial in 2017.
Collapse
Affiliation(s)
- Eric W F W Alton
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College London, London, UK.,UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK
| | - Jeffery M Beekman
- Department of Pediatric Pulmonology, Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - A Christopher Boyd
- Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, UK.,UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK
| | - June Brand
- Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, UK.,Lung Pathology Unit, Department of Airway Disease Infection, NHLI, Imperial College London, London, UK
| | - Marianne S Carlon
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Brussels, Belgium
| | - Mary M Connolly
- UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK.,Gene Medicine Research Group, NDCLS, John Radcliffe Hospital, Oxford, UK
| | - Mario Chan
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College London, London, UK.,UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK
| | - Sinead Conlon
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College London, London, UK.,UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK
| | - Heather E Davidson
- UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK.,Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, UK
| | - Jane C Davies
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College London, London, UK.,UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK
| | - Lee A Davies
- UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK.,Gene Medicine Research Group, NDCLS, John Radcliffe Hospital, Oxford, UK
| | - Johanna F Dekkers
- Department of Pediatric Pulmonology, Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Ann Doherty
- UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK.,Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, UK
| | - Sabrina Gea-Sorli
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College London, London, UK.,UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK
| | - Deborah R Gill
- UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK.,Gene Medicine Research Group, NDCLS, John Radcliffe Hospital, Oxford, UK
| | - Uta Griesenbach
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College London, London, UK.,UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK
| | | | - Tracy E Higgins
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College London, London, UK.,UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK
| | | | - Laura Hyndman
- UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK.,Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, UK
| | - Gerry McLachlan
- UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK.,Roslin Institute & R(D)SVS, University of Edinburgh, Midlothian, UK
| | - Makoto Inoue
- ID Pharme Co. Ltd. (DNAVEC Center), Tsukuba, Japan
| | - Stephen C Hyde
- UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK.,Gene Medicine Research Group, NDCLS, John Radcliffe Hospital, Oxford, UK
| | - J Alastair Innes
- UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK.,Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, UK
| | - Toby M Maher
- Fibrosis Research Group, Inflammation, Repair & Development Section, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College, London, UK
| | - Caroline Moran
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College London, London, UK.,UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK
| | - Cuixiang Meng
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College London, London, UK.,UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK
| | - Michael C Paul-Smith
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College London, London, UK.,UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK
| | - Ian A Pringle
- UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK.,Gene Medicine Research Group, NDCLS, John Radcliffe Hospital, Oxford, UK
| | - Kamila M Pytel
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College London, London, UK.,UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK
| | - Andrea Rodriguez-Martinez
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College London, London, UK.,UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK
| | | | - Barbara J Stevenson
- UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK.,Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, UK
| | - Stephanie G Sumner-Jones
- UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK.,Gene Medicine Research Group, NDCLS, John Radcliffe Hospital, Oxford, UK
| | - Richard Toshner
- Fibrosis Research Group, Inflammation, Repair & Development Section, National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College, London, UK
| | | | - Marguerite W Wasowicz
- Department of Gene Therapy, National Heart and Lung Institute, Imperial College London, London, UK.,UK Cystic Fibrosis Gene Therapy Consortium, Oxford, UK
| | - Jie Zhu
- Lung Pathology Unit, Department of Airway Disease Infection, NHLI, Imperial College London, London, UK
| |
Collapse
|
16
|
Schott JW, Morgan M, Galla M, Schambach A. Viral and Synthetic RNA Vector Technologies and Applications. Mol Ther 2016; 24:1513-27. [PMID: 27377044 DOI: 10.1038/mt.2016.143] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/30/2016] [Indexed: 12/21/2022] Open
Abstract
Use of RNA is an increasingly popular method to transiently deliver genetic information for cell manipulation in basic research and clinical therapy. In these settings, viral and nonviral RNA platforms are employed for delivery of small interfering RNA and protein-coding mRNA. Technological advances allowing RNA modification for increased stability, improved translation and reduced immunogenicity have led to increased use of nonviral synthetic RNA, which is delivered in naked form or upon formulation. Alternatively, highly efficient viral entry pathways are exploited to transfer genes of interest as RNA incorporated into viral particles. Current viral RNA transfer technologies are derived from Retroviruses, nonsegmented negative-strand RNA viruses or positive-stranded Alpha- and Flaviviruses. In retroviral particles, the genes of interest can either be incorporated directly into the viral RNA genome or as nonviral RNA. Nonsegmented negative-strand virus-, Alpha- and Flavivirus-derived vectors support prolonged expression windows through replication of viral RNA encoding genes of interest. Mixed technologies combining viral and nonviral components are also available. RNA transfer is ideal for all settings that do not require permanent transgene expression and excludes potentially detrimental DNA integration into the target cell genome. Thus, RNA-based technologies are successfully applied for reprogramming, transdifferentiation, gene editing, vaccination, tumor therapy, and gene therapy.
Collapse
Affiliation(s)
- Juliane W Schott
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) gene was identified in 1989. This opened the door for the development of cystic fibrosis (CF) gene therapy, which has been actively pursued for the last 20 years. Although 26 clinical trials involving approximately 450 patients have been carried out, the vast majority of these trials were short and included small numbers of patients; they were not designed to assess clinical benefit, but to establish safety and proof-of-concept for gene transfer using molecular end points such as the detection of recombinant mRNA or correction of the ion transport defect. The only currently published trial designed and powered to assess clinical efficacy (defined as improvement in lung function) administered AAV2-CFTR to the lungs of patients with CF. The U.K. Cystic Fibrosis Gene Therapy Consortium completed, in the autumn of 2014, the first nonviral gene therapy trial designed to answer whether repeated nonviral gene transfer (12 doses over 12 months) can lead to clinical benefit. The demonstration that the molecular defect in CFTR can be corrected with small-molecule drugs, and the success of gene therapy in other monogenic diseases, is boosting interest in CF gene therapy. Developments are discussed here.
Collapse
Affiliation(s)
- Uta Griesenbach
- Department of Gene Therapy and the U.K. Cystic Fibrosis Gene Therapy Consortium, Imperial College, London SW3 6LR, United Kingdom
| | - Kamila M Pytel
- Department of Gene Therapy and the U.K. Cystic Fibrosis Gene Therapy Consortium, Imperial College, London SW3 6LR, United Kingdom
| | - Eric W F W Alton
- Department of Gene Therapy and the U.K. Cystic Fibrosis Gene Therapy Consortium, Imperial College, London SW3 6LR, United Kingdom
| |
Collapse
|
18
|
Lieu PT. Reprogramming of Human Fibroblasts with Non-integrating RNA Virus on Feeder-Free or Xeno-Free Conditions. Methods Mol Biol 2015; 1330:47-54. [PMID: 26621588 DOI: 10.1007/978-1-4939-2848-4_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent advances in generating induced pluripotent stem cells have radically advanced the field of regenerative medicine by making possible the production of patient-specific pluripotent stem cells from somatic cells. However, a major obstacle to the use of iPSC for therapeutic applications is the potential genomic modifications resulted from viral insertion of transgenes in the cellular genome. Second, the culture of iPSCs and adult cells often requires the use of animal products, which hinder the generation of clinical-grade iPSCs. We report here the generation of iPSCs by an RNA Sendai virus vector that does not integrate transgenes into the cell's genome. In addition, reprogramming can be performed on a feeder-free or xeno-free condition without containing animal products. Generation of an integrant-free iPSCs in these conditions will facilitate the studies of iPSCs in cell-based therapies.
Collapse
Affiliation(s)
- Pauline T Lieu
- Global R&D, Life Technologies Corporation, 5781 Van Allen Way, Carlsbad, CA, 92008, USA.
| |
Collapse
|
19
|
Griesenbach U, Alton EWFW. Cystic fibrosis gene therapy: successes, failures and hopes for the future. Expert Rev Respir Med 2014; 3:363-71. [DOI: 10.1586/ers.09.25] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Aarbiou J, Copreni E, Buijs-Offerman RM, van der Wegen P, Castellani S, Carbone A, Tilesi F, Fradiani P, Hiemstra PS, Yueksekdag G, Diana A, Rosenecker J, Ascenzioni F, Conese M, Scholte BJ. Lentiviral small hairpin RNA delivery reduces apical sodium channel activity in differentiated human airway epithelial cells. J Gene Med 2013; 14:733-45. [PMID: 23074129 DOI: 10.1002/jgm.2672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/27/2012] [Accepted: 10/07/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Epithelial sodium channel (ENaC) hyperactivity has been implicated in the pathogenesis of cystic fibrosis (CF) by dysregulation of fluid and electrolytes in the airways. In the present study, we show proof-of-principle for ENaC inhibition by lentiviral-mediated RNA interference. METHODS Immortalized normal (H441) and CF mutant (CFBE) airway cells, and differentiated human bronchial epithelial cells in air liquid interface culture (HBEC-ALI) were transduced with a vesicular stomatitis virus G glycoprotein pseudotyped lentiviral (LV) vector expressing a short hairpin RNA (shRNA) targeting the α subunit of ENaC (ENaCα), and a marker gene. Efficacy of ENaCα down-regulation was assayed by the real-time polymerase chain reaction (PCR), membrane potential assay, western blotting, short-circuit currents and fluid absorption. Off-target effects were investigated by a lab-on-a-chip quantitative PCR array. RESULTS Transduction to near one hundred percentage efficiency of H441, CFBE and HBEC-ALI was achieved by the addition of the LV vector before differentiation and polarization. Transduction resulted in the inhibition of ENaCα mRNA and antigen expression, and a proportional decrease in ENaC-dependent short circuit current and fluid transport. No effect on transepithelial resistance or cAMP-induced secretion responses was observed in HBEC-ALI. The production of interferon α and pro-inflammatory cytokine mRNA, indicating Toll-like receptor 3 or RNA-induced silencing complex mediated off-target effects, was not observed in HBEC-ALI transduced with this vector. CONCLUSIONS We have established a generic method for studying the effect of RNA interference in HBEC-ALI using standard lentiviral vectors. Down-regulation of ENaCα by lentiviral shRNA expression vectors as shown in the absence off-target effects has potential therapeutic value in the treatment of cystic fibrosis.
Collapse
Affiliation(s)
- Jamil Aarbiou
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lu J, Liu H, Huang CTL, Chen H, Du Z, Liu Y, Sherafat MA, Zhang SC. Generation of integration-free and region-specific neural progenitors from primate fibroblasts. Cell Rep 2013; 3:1580-91. [PMID: 23643533 DOI: 10.1016/j.celrep.2013.04.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 02/12/2013] [Accepted: 04/03/2013] [Indexed: 01/09/2023] Open
Abstract
Postnatal and adult human and monkey fibroblasts were infected with Sendai virus containing the Yamanaka factors for 24 hr, then they were cultured in a chemically defined medium containing leukemia inhibitory factor (LIF), transforming growth factor (TGF)-β inhibitor SB431542, and glycogen synthase kinase (GSK)-3β inhibitor CHIR99021 at 39°C for inactivation of the virus. Induced neural progenitor (iNP) colonies appeared as early as day 13 and can be expanded for >20 passages. Under the same defined condition, no induced pluripotent stem cell (iPSC) colonies formed at either 37°C or 39°C. The iNPs predominantly express hindbrain genes and differentiate into hindbrain neurons, and when caudalized, they produced an enriched population of spinal motor neurons. Following transplantation into the forebrain, the iNP-derived cells retained the hindbrain identity. The ability to generate defined, integration-free iNPs from adult primate fibroblasts under a defined condition with predictable fate choices will facilitate disease modeling and therapeutic development.
Collapse
Affiliation(s)
- Jianfeng Lu
- Department of Neuroscience, School of Medicine and Public Health, Waisman Center, University of Wisconsin, Madison, Madison, WI 53705, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Griesenbach U, Wilson KM, Farley R, Meng C, Munkonge FM, Cheng SH, Scheule RK, Alton EWFW. Assessment of the nuclear pore dilating agent trans-cyclohexane-1,2-diol in differentiated airway epithelium. J Gene Med 2012; 14:491-500. [PMID: 22711445 DOI: 10.1002/jgm.2643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The nuclear membrane of differentiated airway epithelial cells is a significant barrier for nonviral vectors. Trans-cyclohexane-1,2-diol (TCHD) is an amphipathic alcohol that has been shown to collapse nuclear pore cores and allow the uptake of macromolecules that would otherwise be too large for nuclear entry. Previous studies have shown that TCHD can increase lipid-mediated transfection in vitro. METHODS We aimed to reproduce these in vitro studies using the cationic lipid GL67A, which we are currently assessing in cystic fibrosis trials and, more importantly, we assessed the effects of TCHD on transfection efficiency in differentiated airway epithelium ex vivo and in mouse lung in vivo using three different drug delivery protocols (nebulisation and bolus administration of TCHD to the mouse lung, as well as perfusion of TCHD to the nasal epithelium, which prolongs contact time between the airway epithelium and drug). RESULTS TCHD (0.5-2%) dose-dependently increased Lipofectamine 2000 and GL67A-mediated transfection of 293T cells by up to 2 logs. Encouragingly, exposure to 8% TCHD (but not 0.5% or 2.0%) increased gene expression in fully differentiated human air liquid interface cultures by approximately 20-fold, although this was accompanied by significant cell damage. However, none of the TCHD treated mice in any of the three protocols had higher gene expression compared to no TCHD controls. CONCLUSIONS Although TCHD significantly increases gene transfer in cell lines and differentiated airway epithelium ex vivo, this effect is lost in vivo and further highlights that promising in vitro findings often cannot be translated into in vivo applications.
Collapse
|
23
|
Burney TJ, Davies JC. Gene therapy for the treatment of cystic fibrosis. APPLICATION OF CLINICAL GENETICS 2012; 5:29-36. [PMID: 23776378 PMCID: PMC3681190 DOI: 10.2147/tacg.s8873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy is being developed as a novel treatment for cystic fibrosis (CF), a condition that has hitherto been widely-researched yet for which no treatment exists that halts the progression of lung disease. Gene therapy involves the transfer of correct copies of cystic fibrosis transmembrane conductance regulator (CFTR) DNA to the epithelial cells in the airways. The cloning of the CFTR gene in 1989 led to proof-of-principle studies of CFTR gene transfer in vitro and in animal models. The earliest clinical trials in CF patients were conducted in 1993 and used viral and non-viral gene transfer agents in both the nasal and bronchial airway epithelium. To date, studies have focused largely on molecular or bioelectric (chloride secretion) outcome measures, many demonstrating evidence of CFTR expression, but few have attempted to achieve clinical efficacy. As CF is a lifelong disease, turnover of the airway epithelium necessitates repeat administration. To date, this has been difficult to achieve with viral gene transfer agents due to host recognition leading to loss of expression. The UK Cystic Fibrosis Gene Therapy Consortium (Imperial College London, University of Edinburgh and University of Oxford) is currently working on a large and ambitious program to establish the clinical benefits of CF gene therapy. Wave 1, which has reached the clinic, uses a non-viral vector. A single-dose safety trial is nearing completion and a multi-dose clinical trial is shortly due to start; this will be powered for clinically-relevant changes. Wave 2, more futuristically, will look at the potential of lentiviruses, which have long-lasting expression. This review will summarize the current status of translational research in CF gene therapy.
Collapse
Affiliation(s)
- Tabinda J Burney
- Department of Gene Therapy, Imperial College London ; UK CF Gene Therapy Consortium London
| | | |
Collapse
|
24
|
Generation of human-induced pluripotent stem cells by a nonintegrating RNA Sendai virus vector in feeder-free or xeno-free conditions. Stem Cells Int 2012; 2012:564612. [PMID: 22550511 PMCID: PMC3328201 DOI: 10.1155/2012/564612] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 01/04/2012] [Indexed: 01/19/2023] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) from somatic cells has enabled the possibility of providing unprecedented access to patient-specific iPSC cells for drug screening, disease modeling, and cell therapy applications. However, a major obstacle to the use of iPSC for therapeutic applications is the potential of genomic modifications caused by insertion of viral transgenes in the cellular genome. A second concern is that reprogramming often requires the use of animal feeder layers and reagents that contain animal origin products, which hinder the generation of clinical-grade iPSCs. Here, we report the generation of iPSCs by an RNA Sendai virus vector that does not integrate into the cells genome, providing transgene-free iPSC line. In addition, reprogramming can be performed in feeder-free condition with StemPro hESC SFM medium and in xeno-free (XF) conditions. Generation of an integrant-free iPSCs generated in xeno-free media should facilitate the safe downstream applications of iPSC-based cell therapies.
Collapse
|
25
|
Cao H, Molday RS, Hu J. Gene therapy: light is finally in the tunnel. Protein Cell 2012; 2:973-89. [PMID: 22231356 DOI: 10.1007/s13238-011-1126-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 11/27/2011] [Indexed: 01/23/2023] Open
Abstract
After two decades of ups and downs, gene therapy has recently achieved a milestone in treating patients with Leber's congenital amaurosis (LCA). LCA is a group of inherited blinding diseases with retinal degeneration and severe vision loss in early infancy. Mutations in several genes, including RPE65, cause the disease. Using adeno-associated virus as a vector, three independent teams of investigators have recently shown that RPE65 can be delivered to retinal pigment epithelial cells of LCA patients by subretinal injections resulting in clinical benefits without side effects. However, considering the whole field of gene therapy, there are still major obstacles to clinical applications for other diseases. These obstacles include innate and immune barriers to vector delivery, toxicity of vectors and the lack of sustained therapeutic gene expression. Therefore, new strategies are needed to overcome these hurdles for achieving safe and effective gene therapy. In this article, we shall review the major advancements over the past two decades and, using lung gene therapy as an example, discuss the current obstacles and possible solutions to provide a roadmap for future gene therapy research.
Collapse
Affiliation(s)
- Huibi Cao
- Programme in Physiology and Experimental Medicine, Hospital for Sick Children, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5G, 1X8, Canada
| | | | | |
Collapse
|
26
|
Conese M, Ascenzioni F, Boyd AC, Coutelle C, De Fino I, De Smedt S, Rejman J, Rosenecker J, Schindelhauer D, Scholte BJ. Gene and cell therapy for cystic fibrosis: from bench to bedside. J Cyst Fibros 2011; 10 Suppl 2:S114-28. [PMID: 21658631 DOI: 10.1016/s1569-1993(11)60017-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Clinical trials in cystic fibrosis (CF) patients established proof-of-principle for transfer of the wild-type cystic fibrosis transmembrane conductance regulator (CFTR) gene to airway epithelial cells. However, the limited efficacy of gene transfer vectors as well as extra- and intracellular barriers have prevented the development of a gene therapy-based treatment for CF. Here, we review the use of new viral and nonviral gene therapy vectors, as well as human artificial chromosomes, to overcome barriers to successful CFTR expression. Pre-clinical studies will surely benefit from novel animal models, such as CF pigs and ferrets. Prenatal gene therapy is a potential alternative to gene transfer to fully developed lungs. However, unresolved issues, including the possibility of adverse effects on pre- and postnatal development, the risk of initiating oncogenic or degenerative processes and germ line transmission require further investigation. Finally, we discuss the therapeutic potential of stem cells for CF lung disease.
Collapse
Affiliation(s)
- Massimo Conese
- Institute for the Experimental Treatment of Cystic Fibrosis, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Griesenbach U, Alton EW. Current Status and Future Directions of Gene and Cell Therapy for Cystic Fibrosis. BioDrugs 2011; 25:77-88. [DOI: 10.2165/11586960-000000000-00000] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
28
|
A respiratory syncytial virus replicon that is noncytotoxic and capable of long-term foreign gene expression. J Virol 2011; 85:4792-801. [PMID: 21389127 DOI: 10.1128/jvi.02399-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection of most cultured cell lines causes cell-cell fusion and death. Cell fusion is caused by the fusion (F) glycoprotein and is clearly cytopathic, but other aspects of RSV infection may also contribute to cytopathology. To investigate this possibility, we generated an RSV replicon that lacks all three of its glycoprotein genes and so cannot cause cell-cell fusion or virus spread. This replicon includes a green fluorescent protein gene and an antibiotic resistance gene to enable detection and selection of replicon-containing cells. Adaptive mutations in the RSV replicon were not required for replicon maintenance. Cells containing the replicon could be cloned and passaged many times in the absence of antibiotic selection, with 99% or more of the cells retaining the replicon after each cell division. Transient expression of the F and G (attachment) glycoproteins supported the production of virions that could transfer the replicon into most cell lines tested. Since the RSV replicon is not toxic to these cultured cells and does not affect their rate of cell division, none of the 8 internal viral proteins, the viral RNA transcripts, or the host response to these molecules or their activities is cytopathic. However, the level of replicon genome and gene expression is controlled in some manner well below that of complete virus and, as such, might avoid cytotoxicity. RSV replicons could be useful for cytoplasmic gene expression in vitro and in vivo and for screening for compounds active against the viral polymerase.
Collapse
|
29
|
Zhang L, Limberis MP, Thompson C, Antunes MB, Luongo C, Wilson JM, Collins PL, Pickles RJ. α-Fetoprotein gene delivery to the nasal epithelium of nonhuman primates by human parainfluenza viral vectors. Hum Gene Ther 2010; 21:1657-64. [PMID: 20735256 DOI: 10.1089/hum.2010.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the last two decades, enormous effort has been focused on developing virus-based gene delivery vectors to target the respiratory airway epithelium as a potential treatment for cystic fibrosis (CF) lung disease. However, amongst other problems, the efficiency of gene delivery to the differentiated airway epithelial cells of the lung has been too low for clinical benefit. Although not a target for CF therapy, the nasal epithelium exhibits cellular morphology and composition similar to that of the lower airways, thus representing an accessible and relevant tissue target for evaluating novel and improved gene delivery vectors. We previously reported that replication-competent human parainfluenza virus (PIV)-based vectors efficiently deliver the cystic fibrosis transmembrane conductance regulator gene to sufficient numbers of cultured CF airway epithelial cells to completely correct the bioelectric function of CF cells to normal levels, resulting in restoration of mucus transport. Here, using an in vitro model of rhesus airway epithelium, we demonstrate that PIV mediates efficient gene transfer in rhesus epithelium as in the human counterpart. Naive rhesus macaques were inoculated intranasally with a PIV vector expressing rhesus macaque α-fetoprotein (rhAFP), and expression was monitored longitudinally. rhAFP was detected in nasal lavage fluid and in serum samples, indicating that PIV-mediated gene transfer was effective and that rhAFP was secreted into both mucosal and serosal compartments. Although expression was transient, lasting up to 10 days, it paralleled virus replication, suggesting that as PIV was cleared, rhAFP expression was lost. No adverse reactions or signs of discomfort were noted, and only mild, transient elevations of a small number of inflammatory cytokines were measured at the peak of virus replication. In summary, rhAFP proved suitable for monitoring in vivo gene delivery over time, and PIV vectors appear to be promising airway-specific gene transfer vehicles that warrant further development.
Collapse
Affiliation(s)
- Liqun Zhang
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, 27759, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Flotte TR. Sendai virus vectors. Pushing the envelope in the lung. Gene Ther 2010; 18:107-8. [PMID: 20927135 DOI: 10.1038/gt.2010.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Cytopathogenesis of Sendai virus in well-differentiated primary pediatric bronchial epithelial cells. J Virol 2010; 84:11718-28. [PMID: 20810726 DOI: 10.1128/jvi.00798-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sendai virus (SeV) is a murine respiratory virus of considerable interest as a gene therapy or vaccine vector, as it is considered nonpathogenic in humans. However, little is known about its interaction with the human respiratory tract. To address this, we developed a model of respiratory virus infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs). These physiologically authentic cultures are comprised of polarized pseudostratified multilayered epithelium containing ciliated, goblet, and basal cells and intact tight junctions. To facilitate our studies, we rescued a replication-competent recombinant SeV expressing enhanced green fluorescent protein (rSeV/eGFP). rSeV/eGFP infected WD-PBECs efficiently and progressively and was restricted to ciliated and nonciliated cells, not goblet cells, on the apical surface. Considerable cytopathology was evident in the rSeV/eGFP-infected cultures postinfection. This manifested itself by ciliostasis, cell sloughing, apoptosis, and extensive degeneration of WD-PBEC cultures. Syncytia were also evident, along with significant basolateral secretion of proinflammatory chemokines, including IP-10, RANTES, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), interleukin 6 (IL-6), and IL-8. Such deleterious responses are difficult to reconcile with a lack of pathogenesis in humans and suggest that caution may be required in exploiting replication-competent SeV as a vaccine vector. Alternatively, such robust responses might constitute appropriate normal host responses to viral infection and be a prerequisite for the induction of efficient immune responses.
Collapse
|
33
|
Griesenbach U, Sumner-Jones SG, Holder E, Munkonge FM, Wodehouse T, Smith SN, Wasowicz MY, Pringle I, Casamayor I, Chan M, Coles R, Cornish N, Dewar A, Doherty A, Farley R, Green AM, Jones BL, Larsen MDB, Lawton AE, Manvell M, Painter H, Singh C, Somerton L, Stevenson B, Varathalingam A, Siegel C, Scheule RK, Cheng SH, Davies JC, Porteous DJ, Gill DR, Boyd AC, Hyde SC, Alton EWFW. Limitations of the Murine Nose in the Development of Nonviral Airway Gene Transfer. Am J Respir Cell Mol Biol 2010; 43:46-54. [DOI: 10.1165/rcmb.2009-0075oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
Respiratory syncytial virus engineered to express the cystic fibrosis transmembrane conductance regulator corrects the bioelectric phenotype of human cystic fibrosis airway epithelium in vitro. J Virol 2010; 84:7770-81. [PMID: 20504917 DOI: 10.1128/jvi.00346-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cystic fibrosis (CF) is the most common lethal recessive genetic disease in the Caucasian population. It is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that is normally expressed in ciliated airway epithelial cells and the submucosal glands of the lung. Since the CFTR gene was first characterized in 1989, a major goal has been to develop an effective gene therapy for CF lung disease, which has the potential to ameliorate morbidity and mortality. Respiratory syncytial virus (RSV) naturally infects the ciliated cells in the human airway epithelium. In addition, the immune response mounted against an RSV infection does not prevent subsequent infections, suggesting that an RSV-based vector might be effectively readministered. To test whether the large 4.5-kb CFTR gene could be expressed by a recombinant RSV and whether infectious virus could be used to deliver CFTR to ciliated airway epithelium derived from CF patients, we inserted the CFTR gene into four sites in a recombinant green fluorescent protein-expressing RSV (rgRSV) genome to generate virus expressing four different levels of CFTR protein. Two of these four rgRSV-CFTR vectors were capable of expressing CFTR with little effect on viral replication. rgRSV-CFTR infection of primary human airway epithelial cultures derived from CF patients resulted in expression of CFTR protein that was properly localized at the luminal surface and corrected the chloride ion channel defect in these cells.
Collapse
|
35
|
Mitomo K, Griesenbach U, Inoue M, Somerton L, Meng C, Akiba E, Tabata T, Ueda Y, Frankel GM, Farley R, Singh C, Chan M, Munkonge F, Brum A, Xenariou S, Escudero-Garcia S, Hasegawa M, Alton EWFW. Toward gene therapy for cystic fibrosis using a lentivirus pseudotyped with Sendai virus envelopes. Mol Ther 2010; 18:1173-82. [PMID: 20332767 DOI: 10.1038/mt.2010.13] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gene therapy for cystic fibrosis (CF) is making encouraging progress into clinical trials. However, further improvements in transduction efficiency are desired. To develop a novel gene transfer vector that is improved and truly effective for CF gene therapy, a simian immunodeficiency virus (SIV) was pseudotyped with envelope proteins from Sendai virus (SeV), which is known to efficiently transduce unconditioned airway epithelial cells from the apical side. This novel vector was evaluated in mice in vivo and in vitro directed toward CF gene therapy. Here, we show that (i) we can produce relevant titers of an SIV vector pseudotyped with SeV envelope proteins for in vivo use, (ii) this vector can transduce the respiratory epithelium of the murine nose in vivo at levels that may be relevant for clinical benefit in CF, (iii) this can be achieved in a single formulation, and without the need for preconditioning, (iv) expression can last for 15 months, (v) readministration is feasible, (vi) the vector can transduce human air-liquid interface (ALI) cultures, and (vii) functional CF transmembrane conductance regulator (CFTR) chloride channels can be generated in vitro. Our data suggest that this lentiviral vector may provide a step change in airway transduction efficiency relevant to a clinical programme of gene therapy for CF.
Collapse
|
36
|
Abstract
Cystic fibrosis (CF) is characterised by respiratory and pancreatic deficiencies that stem from the loss of fully functional CFTR (CF transmembrane conductance regulator) at the membrane of epithelial cells. Current treatment modalities aim to delay the deterioration in lung function, Which is mostly responsible for the relatively short life expectancy of CF sufferers; however none have so far successfully dealt with the underlying molecular defect. Novel pharmacological approaches to ameliorate the lack of active CFTR in respiratory epithelial cells are beginning to address more of the pathophysiological defects caused by CFTR mutations. However, CFTR gene replacement by gene therapy remains the most likely option for addressing the basic defects, including ion transport and inflammatory functions of CFTR. In this chapter, We will review the latest preclinical and clinical advances in pharmacotherapy and gene therapy for CF lung disease.
Collapse
|
37
|
The use of carboxymethylcellulose gel to increase non-viral gene transfer in mouse airways. Biomaterials 2009; 31:2665-72. [PMID: 20022367 DOI: 10.1016/j.biomaterials.2009.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 12/01/2009] [Indexed: 11/21/2022]
Abstract
We have assessed whether viscoelastic gels known to inhibit mucociliary clearance can increase lipid-mediated gene transfer. Methylcellulose or carboxymethylcellulose (0.25-1.5%) was mixed with complexes of the cationic lipid GL67A and plasmids encoding luciferase and perfused onto the nasal epithelium of mice. Survival after perfusion with 1% CMC or 1% MC was 90 and 100%, respectively. In contrast 1.5% CMC was uniformly lethal likely due to the viscous solution blocking the airways. Perfusion with 0.5% CMC containing lipid/DNA complexes reproducibly increased gene expression by approximately 3-fold (n=16, p<0.05). Given this benefit, likely related to increased duration of contact, we also assessed the effect of prolonging contact time of the liposome/DNA complexes by delivering our standard 80 microg DNA dose over either approximately 22 or 60 min of perfusion. This independently increased gene transfer by 6-fold (n=8, p<0.05) and could be further enhanced by the addition of 0.5% CMC, leading to an overall 25-fold enhancement (n=8, p<0.001) in gene expression. As a result of these interventions CFTR transgene mRNA transgene levels were increased several logs above background. Interestingly, this did not lead to correction of the ion transport defects in the nasal epithelium of cystic fibrosis mice nor for immunohistochemical quantification of CFTR expression. To assess if 0.5% CMC also increased gene transfer in the mouse lung, we used whole body nebulisation chambers. CMC was nebulised for 1h immediately before, or simultaneously with GL67A/pCIKLux. The former did not increase gene transfer, whereas co-administration significantly increased gene transfer by 4-fold (p<0.0001, n=18). This study suggests that contact time of non-viral gene transfer agents is a key factor for gene delivery, and suggests two methods which may be translatable for use in man.
Collapse
|
38
|
Ignáth I, Hegyi P, Venglovecz V, Székely CA, Carr G, Hasegawa M, Inoue M, Takács T, Argent BE, Gray MA, Rakonczay Z. CFTR expression but not Cl- transport is involved in the stimulatory effect of bile acids on apical Cl-/HCO3- exchange activity in human pancreatic duct cells. Pancreas 2009; 38:921-929. [PMID: 19752774 DOI: 10.1097/mpa.0b013e3181b65d34] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Low doses of chenodeoxycholate (CDC) stimulate apical anion exchange and HCO3(-) secretion in guinea pig pancreatic duct cells (Gut. 2008;57:1102-1112). We examined the effects of CDC on intracellular pH (pHi), intracellular Ca(2+) concentration ([Ca(2+)]i), and apical Cl(-)/HCO3(-) exchange activity in human pancreatic duct cells and determined whether any effects were dependent on cystic fibrosis transmembrane conductance regulator (CFTR) expression and Cl(-) channel activity. METHODS Polarized CFPAC-1 cells (expressing F508del CFTR) were transduced with Sendai virus constructs containing complementary DNAs for either wild-type CFTR or beta-galactosidase. Microfluorimetry was used to record pHi and [Ca(2+)]i and apical Cl(-)/HCO3(-) exchange activity. Patch clamp experiments were performed on isolated guinea pig duct cells. RESULTS Chenodeoxycholate induced a dose-dependent intracellular acidification and a marked increase in [Ca(2+)]i in CFPAC-1 cells. CFTR expression slightly reduced the rate of acidification but did not affect the [Ca(2+)]i changes. Luminal administration of 0.1 mmol/L of CDC significantly elevated apical Cl(-)/HCO3(-) exchange activity but only in cells that expressed CFTR. However, CDC did not activate CFTR Cl(-) conductance. CONCLUSIONS Bile salts modulate pHi, [Ca(2+)]i, and apical anion exchange activity in human pancreatic duct cells. The stimulatory effect of CDC on anion exchangers requires CFTR expression but not CFTR channel activity.
Collapse
Affiliation(s)
- Imre Ignáth
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Vectors for pulmonary gene therapy. Int J Pharm 2009; 390:84-8. [PMID: 19825403 DOI: 10.1016/j.ijpharm.2009.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 09/08/2009] [Accepted: 10/03/2009] [Indexed: 11/22/2022]
Abstract
The success of gene transfer in preclinical animal models and proof of principle clinical studies has made gene therapy an attractive concept for disease treatment. A variety of diseases affecting the lung are candidates for gene therapy. Delivery of genes to the lungs seems to be straightforward, because of the easy accessibility of epithelial cells via the airways. However, efficient delivery and expression of the therapeutic transgene at levels sufficient to result in phenotypic correction of the diseased state have proven elusive. This review presents a brief summary about current status and future prospects in the development of viral and non-viral strategies for pulmonary gene therapy.
Collapse
|
40
|
Aneja MK, Geiger JP, Himmel A, Rudolph C. Targeted gene delivery to the lung. Expert Opin Drug Deliv 2009; 6:567-83. [DOI: 10.1517/17425240902927841] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Yamamoto A, Kormann M, Rosenecker J, Rudolph C. Current prospects for mRNA gene delivery. Eur J Pharm Biopharm 2009; 71:484-9. [DOI: 10.1016/j.ejpb.2008.09.016] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 07/21/2008] [Accepted: 09/02/2008] [Indexed: 12/26/2022]
|
42
|
Griesenbach U, Alton EWFW. Gene transfer to the lung: lessons learned from more than 2 decades of CF gene therapy. Adv Drug Deliv Rev 2009; 61:128-39. [PMID: 19138713 DOI: 10.1016/j.addr.2008.09.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/22/2008] [Indexed: 11/30/2022]
Abstract
Gene therapy is currently being developed for a wide range of acute and chronic lung diseases. The target cells, and to a degree the extra and intra-cellular barriers, are disease-specific and over the past decade the gene therapy community has recognized that no one vector is good for all applications, but that the gene transfer agent (GTA) has to be carefully matched to the specific disease target. Gene therapy is particularly attractive for diseases that currently do not have satisfactory treatment options and probably easier for monogenic disorders than for complex diseases. Cystic fibrosis (CF) fulfils these criteria and is, therefore, a good candidate for gene therapy-based treatment. This review will focus on CF as an example for lung gene therapy, but lessons learned may be applicable to other target diseases.
Collapse
Affiliation(s)
- Uta Griesenbach
- Department of Gene Therapy, Faculty of Medicine at the National Heart and Lung Institute, Imperial College London, Manresa Road, London SW36LR, UK.
| | | |
Collapse
|
43
|
Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2009; 85:348-62. [PMID: 19838014 PMCID: PMC3621571 DOI: 10.2183/pjab.85.348] [Citation(s) in RCA: 962] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Induced pluripotent stem cells (iPSC) have been generated from somatic cells by introducing reprogramming factors. Integration of foreign genes into the host genome is a technical hurdle for the clinical application. Here, we show that Sendai virus (SeV), an RNA virus and carries no risk of altering host genome, is an efficient solution for generating safe iPSC. Sendai-viral human iPSC expressed pluripotency genes, showed demethylation characteristic of reprogrammed cells. SeV-derived transgenes were decreased during cell division. Moreover, viruses were able to be easily removed by antibody-mediated negative selection utilizing cell surface marker HN that is expressed on SeV-infected cells. Viral-free iPSC differentiated to mature cells of the three embryonic germ layers in vivo and in vitro including beating cardiomyocytes, neurons, bone and pancreatic cells. Our data demonstrated that highly-efficient, non-integrating SeV-based vector system provides a critical solution for reprogramming somatic cells and will accelerate the clinical application.
Collapse
Affiliation(s)
- Noemi Fusaki
- DNAVEC Corporation, Tsukuba city, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
44
|
|