1
|
Shen L, Tian Q, Ran Q, Gan Q, Hu Y, Du D, Qin Z, Duan X, Zhu X, Huang W. Z-Ligustilide: A Potential Therapeutic Agent for Atherosclerosis Complicating Cerebrovascular Disease. Biomolecules 2024; 14:1623. [PMID: 39766330 DOI: 10.3390/biom14121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Atherosclerosis (AS) is one of the major catalysts of ischemic cerebrovascular disease, and the death and disease burden from AS and its cerebrovascular complications are increasing. Z-ligustilide (Z-LIG) is a key active ingredient in Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort. In this paper, we first introduced LIG's physicochemical properties and pharmacokinetics. Then, we reviewed Z-LIG's intervention and therapeutic mechanisms on AS and its cerebrovascular complications. The mechanisms of Z-LIG intervention in AS include improving lipid metabolism, antioxidant and anti-inflammatory effects, protecting vascular endothelium, and inhibiting vascular endothelial fibrosis, pathological thickening, and plaque calcification. In ischemic cerebrovascular diseases complicated by AS, Z-LIG exerts practical neuroprotective effects in ischemic stroke (IS), transient ischemic attack (TIA), and vascular dementia (VaD) through anti-neuroinflammatory, anti-oxidation, anti-neuronal apoptosis, protection of the blood-brain barrier, promotion of mitochondrial division and angiogenesis, improvement of cholinergic activity, inhibition of astrocyte proliferation, and endoplasmic reticulum stress. This paper aims to provide a basis for subsequent studies of Z-LIG in the prevention and treatment of AS and its cerebrovascular complications and, thus, to promote the development of interventional drugs for AS.
Collapse
Affiliation(s)
- Longyu Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Qiqi Ran
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qianrong Gan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Donglian Du
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zehua Qin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyi Duan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyun Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
2
|
Yang X, Pan Y, Cai L, Wang W, Zhai X, Zhang Y, Wu Q, Chen J, Zhang C, Wang Y. Calycosin Ameliorates Neuroinflammation via TLR4-Mediated Signal Following Cerebral Ischemia/Reperfusion Injury in vivo and in vitro. J Inflamm Res 2024; 17:10711-10727. [PMID: 39677283 PMCID: PMC11645956 DOI: 10.2147/jir.s480262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024] Open
Abstract
Background Cerebral ischemia-reperfusion injury (CIRI) is a key pathophysiological process that leads to stroke mortality, with TLR4-mediated inflammation playing a crucial role. Our previous research highlighted the neuroprotective effects of the phytoestrogen calycosin on CIRI, although the precise mechanism remains unclear. This study aimed to explore the effects of calycosin on the HMGB1/TLR4/NF-κB signaling pathway in rat models of CIRI, both in vivo and in vitro. Methods In vivo, a rat CIRI model was established using middle cerebral artery occlusion (MCAO), inducing ischemia for 1.5 h followed by 24 h of reperfusion. Calycosin was administered intraperitoneally 1 h after ischemia. Neurological deficits and brain infarct volumes were evaluated. Histological changes and key protein expressions around the ischemic penumbra were assessed by H&E staining and immunofluorescence. In vitro, primary neurons and PC12 cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic CIRI. Cell viability was measured using a CCK8 assay, and alterations in HMGB1/TLR4/NF-κB pathway components were analyzed using qRT-PCR, Western blotting, and ELISA. Results In the MCAO rat model, calycosin significantly reduced neurological deficits and infarct sizes, and improved brain tissue damage following reperfusion. Similarly, in the OGD/R model, calycosin attenuated neuronal injury in PC12 cells and in primary neurons. Additionally, calycosin inhibited LPS-induced activation of the HMGB1/TLR4/NF-κB signaling pathway in PC12 cells. Both in vitro and in vivo studies have shown that calycosin effectively downregulates HMGB1 and TLR4 expression, decreases NF-κB and IκB phosphorylation, and reduces the secretion of inflammatory cytokines such as IL-6 and IL-18. Conclusion These findings suggest that calycosin mitigates cerebral ischemia-reperfusion injury and neuroinflammation by inhibiting the HMGB1/TLR4/NF-κB signaling pathway, thereby providing neuroprotection.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Yanjin Pan
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Le Cai
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Wenbo Wang
- Department of Neurosurgery, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541002, People’s Republic of China
| | - Xiaoya Zhai
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Yuhui Zhang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Qiguang Wu
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Jian Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Chong Zhang
- Department of Neurology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, People’s Republic of China
- Guangxi Medical and Health Key Cultivation Discipline Construction Project, Guilin, 541199, People’s Republic of China
| | - Yong Wang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, People’s Republic of China
- Guangxi Medical and Health Key Cultivation Discipline Construction Project, Guilin, 541199, People’s Republic of China
- Department of Physiology, Guilin Medical University, Guilin, 541199, People’s Republic of China
| |
Collapse
|
3
|
Ruggieri E, Di Domenico E, Locatelli AG, Isopo F, Damanti S, De Lorenzo R, Milan E, Musco G, Rovere-Querini P, Cenci S, Vénéreau E. HMGB1, an evolving pleiotropic protein critical for cellular and tissue homeostasis: Role in aging and age-related diseases. Ageing Res Rev 2024; 102:102550. [PMID: 39427887 DOI: 10.1016/j.arr.2024.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Aging is a universal biological process characterized by a progressive, cumulative decline in homeostatic capabilities and physiological functions, which inevitably increases vulnerability to diseases. A number of molecular pathomechanisms and hallmarks of aging have been recognized, yet we miss a thorough understanding of their complex interconnectedness. This review explores the molecular and cellular mechanisms underlying human aging, with a focus on the multiple roles of high mobility group Box 1 protein (HMGB1), the archetypal damage-associated molecular pattern (DAMP) molecule. In the nucleus, this non-histone chromatin-associated protein functions as a DNA chaperone and regulator of gene transcription, influencing DNA structure and gene expression. Moreover, this versatile protein can translocate to the cytoplasm to orchestrate other processes, such as autophagy, or be unconventionally secreted into the extracellular environment, where it acts as a DAMP, combining inflammatory and regenerative properties. Notably, lower expression of HMGB1 within the cell and its heightened extracellular release have been associated with diverse age-associated traits, making it a suitable candidate as a universal biomarker of aging. In this review, we outline the evidence implicating HMGB1 in aging, also in light of an evolutionary perspective on its functional pleiotropy, and propose critical issues that need to be addressed to gauge the value of HMGB1 as a potential biomarker across age-related diseases and therapeutic target to promote healthy longevity.
Collapse
Affiliation(s)
- Elena Ruggieri
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Erika Di Domenico
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Flavio Isopo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Enrico Milan
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Patrizia Rovere-Querini
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| | - Emilie Vénéreau
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| |
Collapse
|
4
|
Zeng J, Cao J, Yang H, Wang X, Liu T, Chen Z, Shi F, Xu Z, Lin X. Overview of mechanism of electroacupuncture pretreatment for prevention and treatment of cardiovascular and cerebrovascular diseases. CNS Neurosci Ther 2024; 30:e14920. [PMID: 39361504 PMCID: PMC11448663 DOI: 10.1111/cns.14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 10/05/2024] Open
Abstract
Cardio-cerebrovascular disease (CCVD) is a serious threat to huma strategy to prevent the occurrence and development of disease by giving electroacupuncture intervention before the disease occurs. EAP has been shown in many preclinical studies to relieve ischemic symptoms and improve damage from ischemia-reperfusion, with no comprehensive review of its mechanisms in cardiovascular disease yet. In this paper, we first systematically discussed the meridian and acupoint selection law of EAP for CCVD and focused on the progress of the mechanism of action of EAP for the prevention and treatment of CCVD. As a result, in preclinical studies, AMI and MCAO models are commonly used to simulate ischemic injury in CCVD, while MIRI and CI/RI models are used to simulate reperfusion injury caused by blood flow recovery after focal tissue ischemia. According to the meridian matching rules of EAP for CCVD, PC6 in the pericardial meridian is the most commonly used acupoint in cardiovascular diseases, while GV20 in the Du meridian is the most commonly used acupoint in cerebrovascular diseases. In terms of intervention parameters, EAP intervention generally lasts for 30 min, with acupuncture depths mostly between 1.5 and 5 mm, stimulation intensities mostly at 1 mA, and commonly used frequencies being low frequencies. In terms of molecular mechanisms, the key pathways of EAP in preventing and treating cardiovascular and cerebrovascular diseases are partially similar. EAP can play a protective role in cardiovascular and cerebrovascular diseases by promoting autophagy, regulating Ca2+ overload, and promoting vascular regeneration through anti-inflammatory reactions, antioxidant stress, and anti-apoptosis. Of course, both pathways involved have their corresponding specificities. When using EAP to prevent and treat cardiovascular diseases, it involves the metabolic pathway of glutamate, while when using EAP to prevent and treat cerebrovascular diseases, it involves the homeostasis of the blood-brain barrier and the release of neurotransmitters and nutritional factors. I hope these data can provide experimental basis and reference for the clinical promotion and application of EAP in CCVD treatment.
Collapse
Affiliation(s)
- Jiaming Zeng
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiaojiao Cao
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Haitao Yang
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xue Wang
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tingting Liu
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhihan Chen
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Fangyuan Shi
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, School of Acupuncture‐Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
5
|
Ximenes JLS, Rocha-Filho JA, Galvão FHF, Lanchotte C, Kubrusly MS, Leitão RMC, Jukemura J, Moscoso AV, Abdo EE, D’Albuquerque LAC, Figueira ERR. The Effect of Ascorbic Acid on Hepatic Ischaemia-Reperfusion Injury in Wistar Rats: An Experimental Study. Int J Mol Sci 2024; 25:8833. [PMID: 39201519 PMCID: PMC11354593 DOI: 10.3390/ijms25168833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 09/02/2024] Open
Abstract
Liver ischaemia-reperfusion (IR) during hepatic surgeries can lead to liver cell death via oxidative stress and the activation of immune cells, the release of cytokines, and damage-associated molecular patterns. Ascorbic acid has been shown to confer potential protective effects against IR injury, mainly due to its antioxidant properties. This study evaluated the effect of ascorbic acid infusion at different time points during hepatic IR in rats. Thirty-six male Wistar rats were divided into control and experimental groups that received the same total ascorbic acid dose at three different infusion times: before ischaemia, before reperfusion, or before both ischaemia and reperfusion. All of the animals experienced hepatic IR injury. We measured the hepatic enzymes, cytokines, and portal blood flow. Animals receiving ascorbic acid before both ischaemia and reperfusion had lower liver enzyme levels, reduced inflammation, and better portal venous flow than other animals. Divided doses of ascorbic acid before IR may be beneficial for reducing liver injury associated with IR.
Collapse
Affiliation(s)
- Jorge Luiz Saraiva Ximenes
- Laboratório de Investigação Medica 37, Departamento de Gastroenterologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil; (J.L.S.X.); (J.A.R.-F.); (F.H.F.G.); (C.L.); (M.S.K.); (R.M.C.L.); (J.J.); (E.E.A.); (L.A.C.D.)
- Disciplina de Anestesiologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil
| | - Joel Avancini Rocha-Filho
- Laboratório de Investigação Medica 37, Departamento de Gastroenterologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil; (J.L.S.X.); (J.A.R.-F.); (F.H.F.G.); (C.L.); (M.S.K.); (R.M.C.L.); (J.J.); (E.E.A.); (L.A.C.D.)
- Disciplina de Anestesiologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil
| | - Flavio Henrique Ferreira Galvão
- Laboratório de Investigação Medica 37, Departamento de Gastroenterologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil; (J.L.S.X.); (J.A.R.-F.); (F.H.F.G.); (C.L.); (M.S.K.); (R.M.C.L.); (J.J.); (E.E.A.); (L.A.C.D.)
- Serviço de Transplante de Fígado e Órgãos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil
| | - Cinthia Lanchotte
- Laboratório de Investigação Medica 37, Departamento de Gastroenterologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil; (J.L.S.X.); (J.A.R.-F.); (F.H.F.G.); (C.L.); (M.S.K.); (R.M.C.L.); (J.J.); (E.E.A.); (L.A.C.D.)
| | - Marcia Saldanha Kubrusly
- Laboratório de Investigação Medica 37, Departamento de Gastroenterologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil; (J.L.S.X.); (J.A.R.-F.); (F.H.F.G.); (C.L.); (M.S.K.); (R.M.C.L.); (J.J.); (E.E.A.); (L.A.C.D.)
| | - Regina Maria Cubero Leitão
- Laboratório de Investigação Medica 37, Departamento de Gastroenterologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil; (J.L.S.X.); (J.A.R.-F.); (F.H.F.G.); (C.L.); (M.S.K.); (R.M.C.L.); (J.J.); (E.E.A.); (L.A.C.D.)
| | - Jose Jukemura
- Laboratório de Investigação Medica 37, Departamento de Gastroenterologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil; (J.L.S.X.); (J.A.R.-F.); (F.H.F.G.); (C.L.); (M.S.K.); (R.M.C.L.); (J.J.); (E.E.A.); (L.A.C.D.)
- Divisão de Cirurgia do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil
| | | | - Emilio Elias Abdo
- Laboratório de Investigação Medica 37, Departamento de Gastroenterologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil; (J.L.S.X.); (J.A.R.-F.); (F.H.F.G.); (C.L.); (M.S.K.); (R.M.C.L.); (J.J.); (E.E.A.); (L.A.C.D.)
- Divisão de Cirurgia do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil
| | - Luiz Augusto Carneiro D’Albuquerque
- Laboratório de Investigação Medica 37, Departamento de Gastroenterologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil; (J.L.S.X.); (J.A.R.-F.); (F.H.F.G.); (C.L.); (M.S.K.); (R.M.C.L.); (J.J.); (E.E.A.); (L.A.C.D.)
- Serviço de Transplante de Fígado e Órgãos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil
| | - Estela Regina Ramos Figueira
- Laboratório de Investigação Medica 37, Departamento de Gastroenterologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil; (J.L.S.X.); (J.A.R.-F.); (F.H.F.G.); (C.L.); (M.S.K.); (R.M.C.L.); (J.J.); (E.E.A.); (L.A.C.D.)
- Divisão de Cirurgia do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil
| |
Collapse
|
6
|
Li J, Wang Z, Li J, Zhao H, Ma Q. HMGB1: A New Target for Ischemic Stroke and Hemorrhagic Transformation. Transl Stroke Res 2024:10.1007/s12975-024-01258-5. [PMID: 38740617 DOI: 10.1007/s12975-024-01258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Stroke in China is distinguished by its high rates of morbidity, recurrence, disability, and mortality. The ultra-early administration of rtPA is essential for restoring perfusion in acute ischemic stroke, though it concurrently elevates the risk of hemorrhagic transformation. High-mobility group box 1 (HMGB1) emerges as a pivotal player in neuroinflammation after brain ischemia and ischemia-reperfusion. Released passively by necrotic cells and actively secreted, including direct secretion of HMGB1 into the extracellular space and packaging of HMGB1 into intracellular vesicles by immune cells, glial cells, platelets, and endothelial cells, HMGB1 represents a prototypical damage-associated molecular pattern (DAMP). It is intricately involved in the pathogenesis of atherosclerosis, thromboembolism, and detrimental inflammation during the early phases of ischemic stroke. Moreover, HMGB1 significantly contributes to neurovascular remodeling and functional recovery in later stages. Significantly, HMGB1 mediates hemorrhagic transformation by facilitating neuroinflammation, directly compromising the integrity of the blood-brain barrier, and enhancing MMP9 secretion through its interaction with rtPA. As a systemic inflammatory factor, HMGB1 is also implicated in post-stroke depression and an elevated risk of stroke-associated pneumonia. The role of HMGB1 extends to influencing the pathogenesis of ischemia by polarizing various subtypes of immune and glial cells. This includes mediating excitotoxicity due to excitatory amino acids, autophagy, MMP9 release, NET formation, and autocrine trophic pathways. Given its multifaceted role, HMGB1 is recognized as a crucial therapeutic target and prognostic marker for ischemic stroke and hemorrhagic transformation. In this review, we summarize the structure and redox properties, secretion and pathways, regulation of immune cell activity, the role of pathophysiological mechanisms in stroke, and hemorrhage transformation for HMGB1, which will pave the way for developing new neuroprotective drugs, reduction of post-stroke neuroinflammation, and expansion of thrombolysis time window.
Collapse
Affiliation(s)
- Jiamin Li
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Zixin Wang
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Jiameng Li
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Haiping Zhao
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China.
| | - Qingfeng Ma
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China.
| |
Collapse
|
7
|
Liu Z, Yang W, Chen J, Wang Q. Circulating HMGB1 in acute ischemic stroke and its association with post-stroke cognitive impairment. PeerJ 2024; 12:e17309. [PMID: 38708343 PMCID: PMC11067911 DOI: 10.7717/peerj.17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Background Ischemic stroke frequently leads to a condition known as post-stroke cognitive impairment (PSCI). Timely recognition of individuals susceptible to developing PSCI could facilitate the implementation of personalized strategies to mitigate cognitive deterioration. High mobility group box 1 (HMGB1) is a protein released by ischemic neurons and implicated in inflammation after stroke. Circulating levels of HMGB1 could potentially serve as a prognostic indicator for the onset of cognitive impairment following ischemic stroke. Objective To investigate the predictive value of circulating HMGB1 concentrations in the acute phase of ischemic stroke for the development of cognitive dysfunction at the 3-month follow-up. Methods A total of 192 individuals experiencing their initial episode of acute cerebral infarction were prospectively recruited for this longitudinal investigation. Concentrations of circulating HMGB1 were quantified using an enzyme-linked immunosorbent assay (ELISA) technique within the first 24 hours following hospital admission. Patients underwent neurological evaluation including NIHSS scoring. Neuropsychological evaluation was conducted at the 3-month follow-up after the cerebrovascular event, employing the Montreal Cognitive Assessment (MoCA) as the primary tool for assessing cognitive performance. Multivariable logistic regression models were employed to investigate the relationship between circulating HMGB1 concentrations and cognitive dysfunction following stroke, which was operationalized as a MoCA score below 26, while controlling for potential confounders including demographic characteristics, stroke severity, vascular risk factors, and laboratory parameters. Results Of 192 patients, 84 (44%) developed PSCI. Circulating HMGB1 concentrations were significantly elevated in individuals who developed cognitive dysfunction following stroke compared to those who maintained cognitive integrity (8.4 ± 1.2 ng/mL vs 4.6 ± 0.5 ng/mL, respectively; p < 0.001). The prevalence of PSCI showed a dose-dependent increase with higher HMGB1 quartiles. After controlling for potential confounders such as demographic factors (age, gender, and education), stroke severity, vascular risk factors, and laboratory parameters in a multivariable logistic regression model, circulating HMGB1 concentrations emerged as a significant independent predictor of cognitive dysfunction following stroke (regression coefficient = 0.236, p < 0.001). Conclusion Circulating HMGB1 concentrations quantified within the first 24 hours following acute cerebral infarction are significantly and independently correlated with the likelihood of developing cognitive dysfunction at the 3-month follow-up, even after accounting for potential confounding factors. HMGB1 may be a novel biomarker to identify patients likely to develop post-stroke cognitive impairment for targeted preventive interventions.
Collapse
Affiliation(s)
- Zhenbao Liu
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weixia Yang
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianxin Chen
- Department of Critical Care Medicine, Jinan First People’s Hospital, Shandong Traditional Chinese Medicine University, Jinan, Shandong, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| |
Collapse
|
8
|
Rojas A, Lindner C, Schneider I, Gonzalez I, Uribarri J. The RAGE Axis: A Relevant Inflammatory Hub in Human Diseases. Biomolecules 2024; 14:412. [PMID: 38672429 PMCID: PMC11048448 DOI: 10.3390/biom14040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
In 1992, a transcendental report suggested that the receptor of advanced glycation end-products (RAGE) functions as a cell surface receptor for a wide and diverse group of compounds, commonly referred to as advanced glycation end-products (AGEs), resulting from the non-enzymatic glycation of lipids and proteins in response to hyperglycemia. The interaction of these compounds with RAGE represents an essential element in triggering the cellular response to proteins or lipids that become glycated. Although initially demonstrated for diabetes complications, a growing body of evidence clearly supports RAGE's role in human diseases. Moreover, the recognizing capacities of this receptor have been extended to a plethora of structurally diverse ligands. As a result, it has been acknowledged as a pattern recognition receptor (PRR) and functionally categorized as the RAGE axis. The ligation to RAGE leads the initiation of a complex signaling cascade and thus triggering crucial cellular events in the pathophysiology of many human diseases. In the present review, we intend to summarize basic features of the RAGE axis biology as well as its contribution to some relevant human diseases such as metabolic diseases, neurodegenerative, cardiovascular, autoimmune, and chronic airways diseases, and cancer as a result of exposure to AGEs, as well as many other ligands.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile; (A.R.); (I.G.)
| | - Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile;
| | - Ivan Schneider
- Centre of Primary Attention, South Metropolitan Health Service, Santiago 3830000, Chile;
| | - Ileana Gonzalez
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile; (A.R.); (I.G.)
| | - Jaime Uribarri
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| |
Collapse
|
9
|
Chen S, Pan J, Gong Z, Wu M, Zhang X, Chen H, Yang D, Qi S, Peng Y, Shen J. Hypochlorous acid derived from microglial myeloperoxidase could mediate high-mobility group box 1 release from neurons to amplify brain damage in cerebral ischemia-reperfusion injury. J Neuroinflammation 2024; 21:70. [PMID: 38515139 PMCID: PMC10958922 DOI: 10.1186/s12974-023-02991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/11/2023] [Indexed: 03/23/2024] Open
Abstract
Myeloperoxidase (MPO) plays critical role in the pathology of cerebral ischemia-reperfusion (I/R) injury via producing hypochlorous acid (HOCl) and inducing oxidative modification of proteins. High-mobility group box 1 (HMGB1) oxidation, particularly disulfide HMGB1 formation, facilitates the secretion and release of HMGB1 and activates neuroinflammation, aggravating cerebral I/R injury. However, the cellular sources of MPO/HOCl in ischemic brain injury are unclear yet. Whether HOCl could promote HMGB1 secretion and release remains unknown. In the present study, we investigated the roles of microglia-derived MPO/HOCl in mediating HMGB1 translocation and secretion, and aggravating the brain damage and blood-brain barrier (BBB) disruption in cerebral I/R injury. In vitro, under the co-culture conditions with microglia BV cells but not the single culture conditions, oxygen-glucose deprivation/reoxygenation (OGD/R) significantly increased MPO/HOCl expression in PC12 cells. After the cells were exposed to OGD/R, MPO-containing exosomes derived from BV2 cells were released and transferred to PC12 cells, increasing MPO/HOCl in the PC12 cells. The HOCl promoted disulfide HMGB1 translocation and secretion and aggravated OGD/R-induced apoptosis. In vivo, SD rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) plus different periods of reperfusion. Increased MPO/HOCl production was observed at the reperfusion stage, accomplished with enlarged infarct volume, aggravated BBB disruption and neurological dysfunctions. Treatment of MPO inhibitor 4-aminobenzoic acid hydrazide (4-ABAH) and HOCl scavenger taurine reversed those changes. HOCl was colocalized with cytoplasm transferred HMGB1, which was blocked by taurine in rat I/R-injured brain. We finally performed a clinical investigation and found that plasma HOCl concentration was positively correlated with infarct volume and neurological deficit scores in ischemic stroke patients. Taken together, we conclude that ischemia/hypoxia could activate microglia to release MPO-containing exosomes that transfer MPO to adjacent cells for HOCl production; Subsequently, the production of HOCl could mediate the translocation and secretion of disulfide HMGB1 that aggravates cerebral I/R injury. Furthermore, plasma HOCl level could be a novel biomarker for indexing brain damage in ischemic stroke patients.
Collapse
Affiliation(s)
- Shuang Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jingrui Pan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhe Gong
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaoni Zhang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hansen Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dan Yang
- Department of Chemistry, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Suhua Qi
- Medical and Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China.
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China.
- Medical and Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
10
|
Yao Y, Liu F, Gu Z, Wang J, Xu L, Yu Y, Cai J, Ren R. Emerging diagnostic markers and therapeutic targets in post-stroke hemorrhagic transformation and brain edema. Front Mol Neurosci 2023; 16:1286351. [PMID: 38178909 PMCID: PMC10764516 DOI: 10.3389/fnmol.2023.1286351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024] Open
Abstract
Stroke is a devastating condition that can lead to significant morbidity and mortality. The aftermath of a stroke, particularly hemorrhagic transformation (HT) and brain edema, can significantly impact the prognosis of patients. Early detection and effective management of these complications are crucial for improving outcomes in stroke patients. This review highlights the emerging diagnostic markers and therapeutic targets including claudin, occludin, zonula occluden, s100β, albumin, MMP-9, MMP-2, MMP-12, IL-1β, TNF-α, IL-6, IFN-γ, TGF-β, IL-10, IL-4, IL-13, MCP-1/CCL2, CXCL2, CXCL8, CXCL12, CCL5, CX3CL1, ICAM-1, VCAM-1, P-selectin, E-selectin, PECAM-1/CD31, JAMs, HMGB1, vWF, VEGF, ROS, NAC, and AQP4. The clinical significance and implications of these biomarkers were also discussed.
Collapse
Affiliation(s)
- Ying Yao
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaowen Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lintao Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yue Yu
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Cai
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Reng Ren
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Hu T, Li D, Fan T, Zhao X, Chen Z. CircCRIM1/microRNA-141-3p/thioredoxin-binding protein axis mediates neuronal apoptosis after cerebral ischemia-reperfusion. ENVIRONMENTAL TOXICOLOGY 2023; 38:2845-2856. [PMID: 37565716 DOI: 10.1002/tox.23916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Numerous studies have indicated enrichment of circular RNA (circRNA) in the brain takes on a momentous role in cerebral ischemia-reperfusion (CIR) injury. A recent study discovered a novel circCRIM1, was highly expressed in the middle cerebral artery occlusion-reperfusion (MCAO/R) model. Nevertheless, its specific biological function remained unknown. The study was to explore circCRIM1 in CIR-induced neuronal apoptosis. As measured, circCRIM1 and TXNIP were up-regulated, while miR-141-3p was down-regulated in MCAO/R mouse model and OGD/R SH-SY5Y cells. Depleting circCRIM1 reduced the number of apoptotic neurons in MCAO/R rats, increased the number of Nissl bodies, prevented reactive oxygen species production and oxidative stress imbalance in brain tissues, repressed cleaved caspase-3, Bax, and Cyto C protein levels and increased Bcl-2 levels. Overexpression of circCRIM1 further repressed neuronal activity and accelerated apoptosis in OGD/R model, disrupted redox balance. Depleting circCRIM1 had the opposite effect in OGD/R model. Knocking down miR-141-3p or TXNIP weakened the effects of knocking down circCRIM1 or overexpressing circCRIM1, separately. Mechanistically, circCRIM1 exerted an active role in CIR injury via miR-141-3p to mediate TXNIP. All in all, the circCRIM1/miR-141-3p/TXNIP axis might be a latent therapeutic target for CIR injury.
Collapse
Affiliation(s)
- Teng Hu
- Department of Neurological Intervention, Dalian Municipal Central Hospital, Dalian City, China
| | - Di Li
- Department of Neurological Intervention, Dalian Municipal Central Hospital, Dalian City, China
| | - TiePing Fan
- Department of Neurological Intervention, Dalian Municipal Central Hospital, Dalian City, China
| | - XuSheng Zhao
- Department of Neurological Intervention, Dalian Municipal Central Hospital, Dalian City, China
| | - ZhongJun Chen
- Department of Neurological Intervention, Dalian Municipal Central Hospital, Dalian City, China
| |
Collapse
|
12
|
Wu Z, Liang L, Huang Q. Potential significance of high-mobility group protein box 1 in cerebrospinal fluid. Heliyon 2023; 9:e21926. [PMID: 38027583 PMCID: PMC10661089 DOI: 10.1016/j.heliyon.2023.e21926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/27/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
High-mobility group protein box 1 (HMGB1) is a cytokine with multiple functions (according to its subcellular location) that serves a marker of inflammation. CSF HMGB1 could be the part of pathological mechanisms that underlie the complications associated with CNS diseases. HMGB1 actively or passively released into the CSF is detected in the CSF in many diseases of the central nervous system (CNS) and thus may be useful as a biomarker. Pathological alterations in distant areas were observed due to lesions in a specific region, and the level of HMGB1 in the CSF was found to be elevated. Reducing the HMGB1 level via intraventricular injection of anti-HMGB1 neutralizing antibodies can improve the outcomes of CNS diseases. The results indicated that CSF HMGB1 could serve as a biomarker for predicting disease progression and may also act as a pathogenic factor contributing to pathological alterations in distant areas following focal lesions in the CNS. In this mini-review, the characteristics of HMGB1 and progress in research on CSF HMGB1 as a biomarker of CNS diseases were discussed. CSF HMGB1 is useful not only as a biomarker of CNS diseases but may also be involved in interactions between different brain regions and the spinal cord.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| | - Liping Liang
- Department of Science and Education, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| | - Qianliang Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital, Southern Hospital of Southern Medical University), 16th Meiguan Road, Ganzhou 341000, China
| |
Collapse
|
13
|
Koide H, Kiyokawa C, Okishima A, Saito K, Yoshimatsu K, Fukuta T, Hoshino Y, Asai T, Nishimura Y, Miura Y, Oku N, Shea KJ. Design of an Anti-HMGB1 Synthetic Antibody for In Vivo Ischemic/Reperfusion Injury Therapy. J Am Chem Soc 2023; 145:23143-23151. [PMID: 37844138 PMCID: PMC10603801 DOI: 10.1021/jacs.3c06799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 10/18/2023]
Abstract
High-mobility group box 1 (HMGB1) is a multifunctional protein. Upon injury or infection, HMGB1 is passively released from necrotic and activated dendritic cells and macrophages, where it functions as a cytokine, acting as a ligand for RAGE, a major receptor of innate immunity stimulating inflammation responses including the pathogenesis of cerebral ischemia/reperfusion (I/R) injury. Blocking the HMGB1/RAGE axis offers a therapeutic approach to treating these inflammatory conditions. Here, we describe a synthetic antibody (SA), a copolymer nanoparticle (NP) that binds HMGB1. A lightly cross-linked N-isopropylacrylamide (NIPAm) hydrogel copolymer with nanomolar affinity for HMGB1 was selected from a small library containing trisulfated 3,4,6S-GlcNAc and hydrophobic N-tert-butylacrylamide (TBAm) monomers. Competition binding experiments with heparin established that the dominant interaction between SA and HMGB1 occurs at the heparin-binding domain. In vitro studies established that anti-HMGB1-SA inhibits HMGB1-dependent ICAM-1 expression and ERK phosphorylation of HUVECs, confirming that SA binding to HMGB1 inhibits the proteins' interaction with the RAGE receptor. Using temporary middle cerebral artery occlusion (t-MCAO) model rats, anti-HMGB1-SA was found to accumulate in the ischemic brain by crossing the blood-brain barrier. Significantly, administration of anti-HMGB1-SA to t-MCAO rats dramatically reduced brain damage caused by cerebral ischemia/reperfusion. These results establish that a statistical copolymer, selected from a small library of candidates synthesized using an "informed" selection of functional monomers, can yield a functional synthetic antibody. The knowledge gained from these experiments can facilitate the discovery, design, and development of a new category of drug.
Collapse
Affiliation(s)
- Hiroyuki Koide
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Chiaki Kiyokawa
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Anna Okishima
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kaito Saito
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keiichi Yoshimatsu
- Department
of Chemistry, Missouri State University, 901 South National Avenue, Springfield, Missouri 65897, United States
| | - Tatsuya Fukuta
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yu Hoshino
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Tomohiro Asai
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuri Nishimura
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Yoshiko Miura
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Naoto Oku
- Department
of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenneth J. Shea
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
14
|
Xu SY, Jia JQ, Sun M, Bao XY, Xia SN, Shu S, Liu PY, Ji SL, Ye L, Cao X, Xu Y. QHRD106 ameliorates ischemic stroke injury as a long-acting tissue kallikrein preparation. iScience 2023; 26:107268. [PMID: 37496671 PMCID: PMC10366503 DOI: 10.1016/j.isci.2023.107268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/07/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
Abstract
Ischemic stroke is the second leading cause of death worldwide, and there are limited effective treatment strategies. QHRD106, a polyethyleneglycol (PEG)-modified long-acting tissue kallikrein preparation, has not been reported previously. In this study, we aimed to investigate the therapeutic effect of QHRD106 in ischemic stroke and its possible mechanism. We found that QHRD106 treatment alleviated brain injury after stroke via bradykinin (BK) receptor B2 (B2R) instead of BK receptor B1 (B1R). Mechanistically, QHRD106 reduced high-mobility group box 1 (HMGB1)-induced apoptosis and inflammation after ischemic stroke in vivo and in vitro. Moreover, we confirmed that QHRD106 reduced the level of acetylated HMGB1 and reduced the binding between heat shock protein 90 alpha family class A member 1 (HSP90AA1) and HMGB1, thus inhibiting the translocation and release of HMGB1. In summary, these findings indicate that QHRD106 treatment has therapeutic potential for cerebral ischemic stroke.
Collapse
Affiliation(s)
- Si-Yi Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu 210008, P.R. China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jun-Qiu Jia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Min Sun
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xin-Yu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu 210008, P.R. China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Sheng-Nan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu 210008, P.R. China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Shu Shu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu 210008, P.R. China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Pin-yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu 210008, P.R. China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Sen-lin Ji
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu 210008, P.R. China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Lei Ye
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu 210008, P.R. China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu 210008, P.R. China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu 210008, P.R. China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu 210008, P.R. China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
15
|
Huang X, Wang B, Yang J, Lian YJ, Yu HZ, Wang YX. HMGB1 in depression: An overview of microglial HMBG1 in the pathogenesis of depression. Brain Behav Immun Health 2023; 30:100641. [PMID: 37288063 PMCID: PMC10242493 DOI: 10.1016/j.bbih.2023.100641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Depression is a prevalent psychiatric disorder with elusive pathogenesis. Studies have proposed that enhancement and persistence of aseptic inflammation in the central nervous system (CNS) may be closely associated with the development of depressive disorder. High mobility group box 1 (HMGB1) has obtained significant attention as an evoking and regulating factor in various inflammation-related diseases. It is a non-histone DNA-binding protein that can be released as a pro-inflammatory cytokine by glial cells and neurons in the CNS. Microglia, as the immune cell of the brain, interacts with HMGB1 and induces neuroinflammation and neurodegeneration in the CNS. Therefore, in the current review, we aim to investigate the role of microglial HMGB1 in the pathogenetic process of depression.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
- Department of Anaesthesiology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Bo Wang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing Yang
- Department of Anaesthesiology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Yong-Jie Lian
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Hong-Zhang Yu
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Yun-Xia Wang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
16
|
Dzyubenko E, Hermann DM. Role of glia and extracellular matrix in controlling neuroplasticity in the central nervous system. Semin Immunopathol 2023:10.1007/s00281-023-00989-1. [PMID: 37052711 DOI: 10.1007/s00281-023-00989-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
Neuronal plasticity is critical for the maintenance and modulation of brain activity. Emerging evidence indicates that glial cells actively shape neuroplasticity, allowing for highly flexible regulation of synaptic transmission, neuronal excitability, and network synchronization. Astrocytes regulate synaptogenesis, stabilize synaptic connectivity, and preserve the balance between excitation and inhibition in neuronal networks. Microglia, the brain-resident immune cells, continuously monitor and sculpt synapses, allowing for the remodeling of brain circuits. Glia-mediated neuroplasticity is driven by neuronal activity, controlled by a plethora of feedback signaling mechanisms and crucially involves extracellular matrix remodeling in the central nervous system. This review summarizes the key findings considering neurotransmission regulation and metabolic support by astrocyte-neuronal networks, and synaptic remodeling mediated by microglia. Novel data indicate that astrocytes and microglia are pivotal for controlling brain function, indicating the necessity to rethink neurocentric neuroplasticity views.
Collapse
Affiliation(s)
- Egor Dzyubenko
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
17
|
Shichita T, Ooboshi H, Yoshimura A. Neuroimmune mechanisms and therapies mediating post-ischaemic brain injury and repair. Nat Rev Neurosci 2023; 24:299-312. [PMID: 36973481 DOI: 10.1038/s41583-023-00690-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 03/29/2023]
Abstract
The nervous and immune systems control whole-body homeostasis and respond to various types of tissue injury, including stroke, in a coordinated manner. Cerebral ischaemia and subsequent neuronal cell death activate resident or infiltrating immune cells, which trigger neuroinflammation that affects functional prognosis after stroke. Inflammatory immune cells exacerbate ischaemic neuronal injury after the onset of brain ischaemia; however, some of the immune cells thereafter change their function to neural repair. The recovery processes after ischaemic brain injury require additional and close interactions between the nervous and immune systems through various mechanisms. Thus, the brain controls its own inflammation and repair processes after injury via the immune system, which provides a promising therapeutic opportunity for stroke recovery.
Collapse
Affiliation(s)
- Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
- Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
- Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| | - Hiroaki Ooboshi
- Section of Internal Medicine, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
18
|
Boissady E, Abi Zeid Daou Y, Faucher E, Kohlhauer M, Lidouren F, El Hedjaj C, Chateau‐Joubert S, Hocini H, Hue S, Ghaleh B, Tissier R. High-Mobility Group Box 1-Signaling Inhibition With Glycyrrhizin Prevents Cerebral T-Cell Infiltration After Cardiac Arrest. J Am Heart Assoc 2023; 12:e027749. [PMID: 36734353 PMCID: PMC9973651 DOI: 10.1161/jaha.122.027749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background High-mobility group box 1 (HMGB1) is a major promotor of ischemic injuries and aseptic inflammatory responses. We tested its inhibition on neurological outcome and systemic immune response after cardiac arrest (CA) in rabbits. Methods and Results After 10 minutes of ventricular fibrillation, rabbits were resuscitated and received saline (control) or the HMGB1 inhibitor glycyrrhizin. A sham group underwent a similar procedure without CA. After resuscitation, glycyrrhizin blunted the successive rises in HMGB1, interleukin-6, and interleukin-10 blood levels as compared with control. Blood counts of the different immune cell populations were not different in glycyrrhizin versus control. After animal awakening, neurological outcome was improved by glycyrrhizin versus control, regarding both clinical recovery and histopathological damages. This was associated with reduced cerebral CD4+ and CD8+ T-cell infiltration beginning 2 hours after CA. Conversely, granulocytes' attraction or loss of microglial cells or cerebral monocytes were not modified by glycyrrhizin after CA. These modifications were not related to the blood-brain barrier preservation with glycyrrhizin versus control. Interestingly, the specific blockade of the HMGB1 receptor for advanced glycation end products by FPS-ZM1 recapitulated the neuroprotective effects of glycyrrhizin. Conclusions Our findings support that the early inhibition of HMGB1-signaling pathway prevents cerebral chemoattraction of T cells and neurological sequelae after CA. Glycyrrhizin could become a clinically relevant therapeutic target in this situation.
Collapse
Affiliation(s)
- Emilie Boissady
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Ecole Nationale Vétérinaire d’Alfort, IMRB, After ROSC NetworkMaisons‐AlfortFrance
| | - Yara Abi Zeid Daou
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Ecole Nationale Vétérinaire d’Alfort, IMRB, After ROSC NetworkMaisons‐AlfortFrance
| | - Estelle Faucher
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Ecole Nationale Vétérinaire d’Alfort, IMRB, After ROSC NetworkMaisons‐AlfortFrance
| | - Matthias Kohlhauer
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Ecole Nationale Vétérinaire d’Alfort, IMRB, After ROSC NetworkMaisons‐AlfortFrance
| | - Fanny Lidouren
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Ecole Nationale Vétérinaire d’Alfort, IMRB, After ROSC NetworkMaisons‐AlfortFrance
| | - Cynthia El Hedjaj
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Ecole Nationale Vétérinaire d’Alfort, IMRB, After ROSC NetworkMaisons‐AlfortFrance
| | | | - Hakim Hocini
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Vaccine Research InstituteUniversité Paris Est‐CréteilCréteilFrance
| | - Sophie Hue
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Vaccine Research InstituteUniversité Paris Est‐CréteilCréteilFrance
| | - Bijan Ghaleh
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Ecole Nationale Vétérinaire d’Alfort, IMRB, After ROSC NetworkMaisons‐AlfortFrance
| | - Renaud Tissier
- Université Paris Est‐Créteil, INSERM, IMRBCréteilFrance,Ecole Nationale Vétérinaire d’Alfort, IMRB, After ROSC NetworkMaisons‐AlfortFrance
| |
Collapse
|
19
|
Chen X, Malaeb SN, Pan J, Wang L, Scafidi J. Editorial: Perinatal hypoxic-ischemic brain injury: Mechanisms, pathogenesis, and potential therapeutic strategies. Front Cell Neurosci 2022; 16:1086692. [PMID: 36582212 PMCID: PMC9793000 DOI: 10.3389/fncel.2022.1086692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xiaodi Chen
- Women and Infants Hospital of RI, Alpert Medical School of Brown University, Providence, RI, United States
| | | | - Jonathan Pan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Laishuan Wang
- Children's Hospital, Fudan University, Shanghai, China
| | - Joseph Scafidi
- Department of Neurology and Pediatrics, Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
Mao D, Zheng Y, Xu F, Han X, Zhao H. HMGB1 in nervous system diseases: A common biomarker and potential therapeutic target. Front Neurol 2022; 13:1029891. [PMID: 36388178 PMCID: PMC9659947 DOI: 10.3389/fneur.2022.1029891] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
High-mobility group box-1 (HMGB1) is a nuclear protein associated with early inflammatory changes upon extracellular secretion expressed in various cells, including neurons and microglia. With the progress of research, neuroinflammation is believed to be involved in the pathogenesis of neurological diseases such as Parkinson's, epilepsy, and autism. As a key promoter of neuroinflammation, HMGB1 is thought to be involved in the pathogenesis of Parkinson's disease, stroke, traumatic brain injury, epilepsy, autism, depression, multiple sclerosis, and amyotrophic lateral sclerosis. However, in the clinic, HMGB1 has not been described as a biomarker for the above-mentioned diseases. However, the current preclinical research results show that HMGB1 antagonists have positive significance in the treatment of Parkinson's disease, stroke, traumatic brain injury, epilepsy, and other diseases. This review discusses the possible mechanisms by which HMGB1 mediates Parkinson's disease, stroke, traumatic brain injury, epilepsy, autism, depression, multiple sclerosis, amyotrophic lateral sclerosis, and the potential of HMGB1 as a biomarker for these diseases. Future research needs to further explore the underlying molecular mechanisms and clinical translation.
Collapse
Affiliation(s)
- Di Mao
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yuan Zheng
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fenfen Xu
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiao Han
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongyang Zhao
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Hongyang Zhao
| |
Collapse
|
21
|
Chen S, Sun Y, Li F, Zhang X, Hu X, Zhao X, Li Y, Li H, Zhang J, Liu W, Zheng GQ, Jin X. Modulation of α7nAchR by Melatonin Alleviates Ischemia and Reperfusion-Compromised Integrity of Blood-Brain Barrier Through Inhibiting HMGB1-Mediated Microglia Activation and CRTC1-Mediated Neuronal Loss. Cell Mol Neurobiol 2022; 42:2407-2422. [PMID: 34196879 DOI: 10.1007/s10571-021-01122-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
The only food and drug administration (FDA)-approved drug currently available for the treatment of acute ischemic stroke is tissue plasminogen activator (tPA), yet the therapeutic benefits of this drug are partially outweighed by the increased risk of hemorrhagic transformation (HT). Analysis of the NIH trial has shown that cigarette smoking protected tPA-treated patients from HT; however, the underlying mechanism is not clear. Nicotinic acetylcholine receptors (nAChR) has shown anti-inflammatory effect and modulation nAChR could be a strategy to reduce ischemia/reperfusion-induced blood-brain barrier (BBB) damage. Since melatonin could regulate the expression of α7nAchR and melatonin's neuroprotective effect against ischemic injury is mediated via α7nAChR modulation, here, we aim to test the hypothesis that melatonin reduces ischemia and reperfusion (I/R)-induced BBB damage through modulation of α7nACh receptor (α7nAChR). Mice were subjected to 1.5 h ischemia and 24 h reperfusion and at the onset of reperfusion, mice received intraperitoneal administration (i.p.) of either drug or saline. Mice were randomly assigned into five groups: Saline; α7nAChR agonist PNU282987; Melatonin; Melatonin+Methyllycaconitine (MLA, α7nAChR antagonist), and MLA group. BBB permeability was assessed by detecting the extravasation of Evan's blue and IgG. Our results showed that I/R significantly increased BBB permeability accompanied by occludin degradation, microglia activation, and high mobility group box 1 (HMGB1) release from the neuron. In addition, I/R significantly induced neuronal loss accompanied by the decrease of CREB-regulated transcriptional coactivator 1 (CRTC1) and p-CREB expression. Melatonin treatment significantly inhibited the above changes through modulating α7nAChR. Taken together, these results demonstrate that melatonin provides a protective effect on ischemia/reperfusion-induced BBB damage, at least in part, depending on the modulation of α7nAChR.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yanyun Sun
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fei Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Xinyu Zhang
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xiaoyan Hu
- Department of Anatomy, Histology and Embrology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Xiaoyun Zhao
- Department of Anatomy, Histology and Embrology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yixuan Li
- Department of Anatomy, Histology and Embrology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Hui Li
- Department of Anatomy, Histology and Embrology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Jianliang Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100054, China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, 518035, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xinchun Jin
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Department of Anatomy, Histology and Embrology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
22
|
Role of alarmins in poststroke inflammation and neuronal repair. Semin Immunopathol 2022:10.1007/s00281-022-00961-5. [PMID: 36161515 DOI: 10.1007/s00281-022-00961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Severe loss of cerebral blood flow causes hypoxia and glucose deprivation in the brain tissue, resulting in necrotic cell death in the ischemic brain. Several endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), are extracellularly released from the dead cells to activate pattern recognition receptors (PRRs) in immune cells that infiltrate into ischemic brain tissue following the disruption of the blood-brain barrier (BBB) after stroke onset. The activated immune cells produce various inflammatory cytokines and chemokines, triggering sterile cerebral inflammation in the ischemic brain that causes further neuronal cell death. Poststroke inflammation is resolved within several days after stroke onset, and neurological functions are restored to some extent as neural repair occurs around peri-infarct neurons. Clearance of DAMPs from the injured brain is necessary for the resolution of poststroke inflammation. Neurons and glial cells also express PRRs and receive DAMP signaling. Although the role of PRRs in neural cells in the ischemic brain has not yet been clarified, the signaling pathway is likely to be contribute to stroke pathology and neural repair after ischemic stroke. This review describes the molecular dynamics, signaling pathways, and functions of DAMPs in poststroke inflammation and its resolution.
Collapse
|
23
|
Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, Zhou LQ, Chen M, Tian DS, Wang W. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:215. [PMID: 35794095 PMCID: PMC9259607 DOI: 10.1038/s41392-022-01064-1] [Citation(s) in RCA: 266] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is caused primarily by an interruption in cerebral blood flow, which induces severe neural injuries, and is one of the leading causes of death and disability worldwide. Thus, it is of great necessity to further detailly elucidate the mechanisms of ischemic stroke and find out new therapies against the disease. In recent years, efforts have been made to understand the pathophysiology of ischemic stroke, including cellular excitotoxicity, oxidative stress, cell death processes, and neuroinflammation. In the meantime, a plethora of signaling pathways, either detrimental or neuroprotective, are also highly involved in the forementioned pathophysiology. These pathways are closely intertwined and form a complex signaling network. Also, these signaling pathways reveal therapeutic potential, as targeting these signaling pathways could possibly serve as therapeutic approaches against ischemic stroke. In this review, we describe the signaling pathways involved in ischemic stroke and categorize them based on the pathophysiological processes they participate in. Therapeutic approaches targeting these signaling pathways, which are associated with the pathophysiology mentioned above, are also discussed. Meanwhile, clinical trials regarding ischemic stroke, which potentially target the pathophysiology and the signaling pathways involved, are summarized in details. Conclusively, this review elucidated potential molecular mechanisms and related signaling pathways underlying ischemic stroke, and summarize the therapeutic approaches targeted various pathophysiology, with particular reference to clinical trials and future prospects for treating ischemic stroke.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
24
|
Hisaoka-Nakashima K, Ohata K, Yoshimoto N, Tokuda S, Yoshii N, Nakamura Y, Wang D, Liu K, Wake H, Yoshida T, Ago Y, Hashimoto K, Nishibori M, Morioka N. High-mobility group box 1-mediated hippocampal microglial activation induces cognitive impairment in mice with neuropathic pain. Exp Neurol 2022; 355:114146. [PMID: 35738416 DOI: 10.1016/j.expneurol.2022.114146] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Clinical evidence indicates that cognitive impairment is a common comorbidity of chronic pain, including neuropathic pain, but the mechanism underlying cognitive impairment remains unclear. Neuroinflammation plays a critical role in the development of both neuropathic pain and cognitive impairment. High-mobility group box 1 (HMGB1) is a proinflammatory molecule and could be involved in neuroinflammation-mediated cognitive impairment in the neuropathic pain state. Hippocampal microglial activation in mice has been associated with cognitive impairment. Thus, the current study examined a potential role of HMGB1 and microglial activation in cognitive impairment in mice with neuropathic pain due to a partial sciatic nerve ligation (PSNL). Mice developed cognitive impairment over two weeks, but not one week, after nerve injury. Nerve-injured mice demonstrated decreased nuclear fraction HMGB1, suggesting increased extracellular release of HMGB1. Furthermore, two weeks after PSNL, significant microglia activation was observed in hippocampus. Inhibition of microglial activation with minocycline, local hippocampal microglia depletion with clodronate liposome, or blockade of HMGB1 with either glycyrrhizic acid (GZA) or anti-HMGB1 antibody in PSNL mice reduced hippocampal microglia activation and ameliorated cognitive impairment. Other changes in the hippocampus of PSNL mice potentially related to cognitive impairment, including decreased hippocampal neuron dendrite length and spine densities and decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor (AMPAR) subunits, were prevented with anti-HMGB1 antibody treatment. The current findings suggest that neuro-inflammation involves a number of cellular-level changes and microglial activation. Blocking neuro-inflammation, particularly through blocking HMGB1 could be a novel approach to reducing co-morbidities such as cognitive impairment associated with neuropathic pain.
Collapse
Affiliation(s)
- Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Kazuto Ohata
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Natsuki Yoshimoto
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Shintarou Tokuda
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Nanako Yoshii
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Dengli Wang
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Takayuki Yoshida
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Masahiro Nishibori
- Department of Translational Research & Drug Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan.
| |
Collapse
|
25
|
Maternal Inflammation Exaggerates Offspring Susceptibility to Cerebral Ischemia–Reperfusion Injury via the COX-2/PGD2/DP2 Pathway Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1571705. [PMID: 35437456 PMCID: PMC9013311 DOI: 10.1155/2022/1571705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 12/04/2022]
Abstract
The pathogenesis of cerebral ischemia–reperfusion (I/R) injury is complex and does not exhibit an effective strategy. Maternal inflammation represents one of the most important factors involved in the etiology of brain injury in newborns. We aimed to investigate the effect of maternal inflammation on offspring susceptibility to cerebral I/R injury and the mechanisms by which it exerts its effects. Pregnant SD rats were intraperitoneally injected with LPS (300 μg/kg/day) at gestational days 11, 14, and 18. Pups were subjected to MCAO/R on postnatal day 60. Primary neurons were obtained from postnatal day 0 SD rats and subjected to OGD/R. Neurological deficits, brain injury, neuronal viability, neuronal damage, and neuronal apoptosis were assessed. Oxidative stress and inflammation were evaluated, and the expression levels of COX-2/PGD2/DP pathway-related proteins and apoptotic proteins were detected. Maternal LPS exposure significantly increased the levels of oxidative stress and inflammation, significantly activated the COX-2/PGD2/DP2 pathway, and increased proapoptotic protein expression. However, maternal LPS exposure significantly decreased the antiapoptotic protein expression, which subsequently increased neurological deficits and cerebral I/R injury in offspring rats. The corresponding results were observed in primary neurons. Moreover, these effects of maternal LPS exposure were reversed by a COX-2 inhibitor and DP1 agonist but exacerbated by a DP2 agonist. In conclusion, maternal inflammatory exposure may increase offspring susceptibility to cerebral I/R injury. Moreover, the underlying mechanism might be related to the activation of the COX-2/PGD2/DP2 pathway. These findings provide a theoretical foundation for the development of therapeutic drugs for cerebral I/R injury.
Collapse
|
26
|
Liu S, Song Y, Zhang IY, Zhang L, Gao H, Su Y, Yang Y, Yin S, Zheng Y, Ren L, Yin HH, Pillai R, Nath A, Medina EF, Cosgrove PA, Bild AH, Badie B. RAGE Inhibitors as Alternatives to Dexamethasone for Managing Cerebral Edema Following Brain Tumor Surgery. Neurotherapeutics 2022; 19:635-648. [PMID: 35226341 PMCID: PMC9226224 DOI: 10.1007/s13311-022-01207-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 10/19/2022] Open
Abstract
Resection of brain tumors frequently causes injury to the surrounding brain tissue that exacerbates cerebral edema by activating an inflammatory cascade. Although corticosteroids are often utilized peri-operatively to alleviate the symptoms associated with brain edema, they increase operative morbidities and suppress the efficacy of immunotherapy. Thus, novel approaches to minimize cerebral edema caused by neurosurgical procedures will have significant utility in the management of patients with brain tumors. We have studied the role of the receptor for advanced glycation end products (RAGE) and its ligands on inflammatory responses to neurosurgical injury in mice and humans. Blood-brain barrier (BBB) integrity and neuroinflammation were characterized by Nanostring, flow cytometry, qPCR, and immunoblotting of WT and RAGE knockout mice brains subjected to surgical brain injury (SBI). Human tumor tissue and fluid collected from the resection cavity of patients undergoing craniotomy were also analyzed by single-cell RNA sequencing and ELISA. Genetic ablation of RAGE significantly abrogated neuroinflammation and BBB disruption in the murine SBI model. The inflammatory responses to SBI were associated with infiltration of S100A9-expressing myeloid-derived cells into the brain. Local release of pro-inflammatory S100A9 was confirmed in patients following tumor resection. RAGE and S100A9 inhibitors were as effective as dexamethasone in attenuating neuroinflammation. However, unlike dexamethasone and S100A9 inhibitor, RAGE inhibition did not diminish the efficacy of anti-PD-1 immunotherapy in glioma-bearing mice. These observations confirm the role of the RAGE axis in surgically induced neuroinflammation and provide an alternative therapeutic option to dexamethasone in managing post-operative cerebral edema.
Collapse
Affiliation(s)
- Shunan Liu
- Institute of Translational Medicine, the First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yanyan Song
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Ian Y Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Leying Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Hang Gao
- Department of Bone and Joint Surgery, No.1 Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yanping Su
- College of Pharmacy, Fujian Province, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yihang Yang
- Department of Neurosurgery, Shandong Province, Shandong Provincial Hospital Affiliated To Shandong University, Jinan, People's Republic of China
| | - Shi Yin
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yawen Zheng
- Department of Obstetrics & Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Lyuzhi Ren
- Division of Neurosurgery, City of Hope Beckman Research Institute, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Hongwei Holly Yin
- Department of Pathology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Raju Pillai
- Department of Pathology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Aritro Nath
- Department of Medical Oncology & Therapeutics Research, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Eric F Medina
- Department of Medical Oncology & Therapeutics Research, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Patrick A Cosgrove
- Department of Medical Oncology & Therapeutics Research, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Andrea H Bild
- Department of Medical Oncology & Therapeutics Research, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Behnam Badie
- Division of Neurosurgery, City of Hope Beckman Research Institute, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
27
|
Li W, Cao F, Takase H, Arai K, Lo EH, Lok J. Blood-Brain Barrier Mechanisms in Stroke and Trauma. Handb Exp Pharmacol 2022; 273:267-293. [PMID: 33580391 DOI: 10.1007/164_2020_426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The brain microenvironment is tightly regulated. The blood-brain barrier (BBB), which is composed of cerebral endothelial cells, astrocytes, and pericytes, plays an important role in maintaining the brain homeostasis by regulating the transport of both beneficial and detrimental substances between circulating blood and brain parenchyma. After brain injury and disease, BBB tightness becomes dysregulated, thus leading to inflammation and secondary brain damage. In this chapter, we overview the fundamental mechanisms of BBB damage and repair after stroke and traumatic brain injury (TBI). Understanding these mechanisms may lead to therapeutic opportunities for brain injury.
Collapse
Affiliation(s)
- Wenlu Li
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fang Cao
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hajime Takase
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Josephine Lok
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Garcia-Bonilla L, Iadecola C, Anrather J. Inflammation and Immune Response. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Fang X, Wang H, Zhuo Z, Tian P, Chen Z, Wang Y, Cheng X. miR-141-3p inhibits the activation of astrocytes and the release of inflammatory cytokines in bacterial meningitis through down-regulating HMGB1. Brain Res 2021; 1770:147611. [PMID: 34403663 DOI: 10.1016/j.brainres.2021.147611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bacterial meningitis (BM) is a serious infectious disease of the central nervous system that often occurs in children and adolescents. Many studies have suggested that microRNAs (miRNAs) are involved in BM. This study aimed to address the effects of miR-141-3p on astrocyte activation and inflammatory response in BM through HMGB1. METHODS The 3-week-old rats were injected with Streptococcus pneumoniae (SP) into the lateral ventricle to establish a BM model. Loeffler scoring method was used to evaluate the recovery of neurological function. Brain pathological damage was observed by hematoxylin and eosin (H&E) staining. Primary astrocytes were isolated from brain tissues of BM or non-infected SD rats. The levels of TNF-α, IL-1β, and IL-6 in brain tissues and astrocyte culture supernatant were measured by enzyme-linked immunosorbent assay (ELISA). The targeting relationship between miR-141-3p and HMGB1 was tested using dual-luciferase reporter assay. The expression of miR-141-3p, HMGB1, and the astrocytic marker glial fibrillary acidic protein (GFAP) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blotting. Methylation-specific PCR (MSP) analysis was performed to measure the methylation status of miR-141 promoter. RESULTS The results showed that lower Loeffler scores were exhibited in rats with BM. The subarachnoid space of brain tissues of BM rats was widened, and obvious inflammatory cells were observed. miR-141-3p expression was reduced in BM rats and SP-treated astrocytes. Additionally, we found that overexpression of miR-141-3p led to the downregulation of HMGB1, GFAP, and inflammatory cytokines (TNF-α, IL-1β, and IL-6) in astrocytes. Furthermore, the results of dual-luciferase reporter assay confirmed that miR-141-3p directly targeted HMGB1. Overexpression of miR-141-3p inhibited the levels of GFAP, TNF-α, IL-1β, and IL-6 in astrocytes, which was eliminated by the up-regulation of HMGB1. The results of MSP analysis indicated that miR-141 promoter was highly methylated in brain tissues and astrocytes. DNMT1 was involved in the methylation of miR-141 promoter in BM. CONCLUSION The present study verified that miR-141-3p affected inflammatory response by suppressing HMGB1 in SP-induced astrocytes and BM rat model.
Collapse
Affiliation(s)
- Xiao Fang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhihong Zhuo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Peichao Tian
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zheng Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yue Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiuyong Cheng
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
30
|
Schuhmann MK, Kollikowski AM, März AG, Bieber M, Pham M, Stoll G. Danger-associated molecular patterns are locally released during occlusion in hyper-acute stroke. Brain Behav Immun Health 2021; 15:100270. [PMID: 34589775 PMCID: PMC8474429 DOI: 10.1016/j.bbih.2021.100270] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Immune responses are an integral part of the complex reactions to acute cerebral ischemia and contribute to infarct expansion and tissue remodeling. Among damage-associated molecular patterns (DAMPs) the high-mobility group box 1 protein (HMGB1) and calprotectin (S100A8/A9) are released from dying cells and activate the innate immune system. Methods To assess DAMPs concentrations and related leukocytic infiltration directly and locally in human stroke patients we performed microcatheter sampling from within the core of the occluded vascular compartment before recanalization by mechanical thrombectomy. These samples from the core of a sealed cerebral-ischemic arterial compartment were compared with systemic control samples from the internal carotid artery obtained after recanalization. Results We found increased plasma levels of total free HMGB1 (+33%) and increased S100A8/A9 (+8%) locally within the ischemic cerebral compartment vs. systemic levels. Local concentrations of HMGB1 were associated with more extensive structural brain infarction on admission. In addition, local ischemic HMGB1 and S100A8/A9 concentrations were associated with the numbers of leukocytes that infiltrate the occluded compartment by collateral pathways. Conclusion This is the first direct human observation of a local increase in DAMPs concentrations in a uniquely sealed vascular compartment of the ischemic cerebral circulation. These data provide an important pathophysiological link between ischemia-induced cell death and stroke-related inflammation. HMGB1 is locally released during occlusion in human hyper-acute stroke S100A8/A9 is locally released during occlusion in human hyper-acute stroke HMGB1 concentrations are associated with structural brain infarction on admission DAMPs concentrations are related to inflammatory responses
Collapse
Affiliation(s)
| | | | | | - Michael Bieber
- Department of Neurology, University Hospital Würzburg, Germany
| | - Mirko Pham
- Department of Neuroradiology, University Hospital Würzburg, Germany
| | - Guido Stoll
- Department of Neurology, University Hospital Würzburg, Germany
- Corresponding author. Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany.
| |
Collapse
|
31
|
Maehara N, Taniguchi K, Okuno A, Ando H, Hirota A, Li Z, Wang CT, Arai S, Miyazaki T. AIM/CD5L attenuates DAMPs in the injured brain and thereby ameliorates ischemic stroke. Cell Rep 2021; 36:109693. [PMID: 34525359 DOI: 10.1016/j.celrep.2021.109693] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/01/2021] [Accepted: 08/18/2021] [Indexed: 01/12/2023] Open
Abstract
The sterile inflammation caused by damage-associated molecular patterns (DAMPs) worsens the prognosis following primary injury such as ischemic stroke. However, there are no effective treatments to regulate DAMPs. Here, we report that AIM (or CD5L) protein reduces sterile inflammation by attenuating DAMPs and that AIM administration ameliorates the deleterious effects of ischemic stroke. AIM binds to DAMPs via charge-based interactions and disulfide bond formation. This AIM association promotes the phagocytic removal of DAMPs and neutralizes DAMPs by impeding their binding to inflammatory receptors. In experimental stroke, AIM-deficient mice exhibit severe neurological damage and higher mortality with greater levels of DAMPs and associated inflammation in the brain than wild-type mice, in which brain AIM levels increase following stroke onset. Recombinant AIM administration reduces sterile inflammation in the infarcted region, leading to a profound reduction of animal mortality. Our findings provide a basis for the therapies targeting DAMPs to improve ischemic stroke.
Collapse
Affiliation(s)
- Natsumi Maehara
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kaori Taniguchi
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ami Okuno
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideaki Ando
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Aika Hirota
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Zhiheng Li
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ching-Ting Wang
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; LEAP, Japan Agency for Medical Research and Development, Tokyo 113-0033, Japan; Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
32
|
Masai K, Kuroda K, Isooka N, Kikuoka R, Murakami S, Kamimai S, Wang D, Liu K, Miyazaki I, Nishibori M, Asanuma M. Neuroprotective Effects of Anti-high Mobility Group Box-1 Monoclonal Antibody Against Methamphetamine-Induced Dopaminergic Neurotoxicity. Neurotox Res 2021; 39:1511-1523. [PMID: 34417986 DOI: 10.1007/s12640-021-00402-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/08/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
High mobility group box-1 (HMGB1) is a ubiquitous non-histone nuclear protein that plays a key role as a transcriptional activator, with its extracellular release provoking inflammation. Inflammatory responses are essential in methamphetamine (METH)-induced acute dopaminergic neurotoxicity. In the present study, we examined the effects of neutralizing anti-HMGB1 monoclonal antibody (mAb) on METH-induced dopaminergic neurotoxicity in mice. BALB/c mice received a single intravenous administration of anti-HMGB1 mAb prior to intraperitoneal injections of METH (4 mg/kg × 2, at 2-h intervals). METH injections induced hyperthermia, an increase in plasma HMGB1 concentration, degeneration of dopaminergic nerve terminals, accumulation of microglia, and extracellular release of neuronal HMGB1 in the striatum. These METH-induced changes were significantly inhibited by intravenous administration of anti-HMGB1 mAb. In contrast, blood-brain barrier disruption occurred by METH injections was not suppressed. Our findings demonstrated the neuroprotective effects of anti-HMGB1 mAb against METH-induced dopaminergic neurotoxicity, suggesting that HMGB1 could play an initially important role in METH toxicity.
Collapse
Affiliation(s)
- Kaori Masai
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Keita Kuroda
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Nami Isooka
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Ryo Kikuoka
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Shinki Murakami
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Sunao Kamimai
- Department of Medical Neurobiology, Okayama University Medical School, 700-8558, Okayama, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 700-8558, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 700-8558, Okayama, Japan
| | - Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 700-8558, Okayama, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, 700-8558, Okayama, Japan.
| |
Collapse
|
33
|
Liu DD, Luo P, Gu L, Zhang Q, Gao P, Zhu Y, Chen X, Guo Q, Zhang J, Ma N, Wang J. Celastrol exerts a neuroprotective effect by directly binding to HMGB1 protein in cerebral ischemia-reperfusion. J Neuroinflammation 2021; 18:174. [PMID: 34372857 PMCID: PMC8353826 DOI: 10.1186/s12974-021-02216-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Celastrol (cel) was one of the earliest isolated and identified chemical constituents of Tripterygium wilfordii Hook. f. Based on a cel probe (cel-p) that maintained the bioactivity of the parent compound, the targets of cel in cerebral ischemia-reperfusion (I/R) injury were comprehensively analyzed by a quantitative chemical proteomics method. METHODS We constructed an oxygen-glucose deprivation (OGD) model in primary rat cortical neurons and a middle cerebral artery occlusion (MCAO) model in adult rats to detect the direct binding targets of cel in cerebral I/R. By combining various experimental methods, including tandem mass tag (TMT) labeling, mass spectrometry, and cellular thermal shift assay (CETSA), we revealed the targets to which cel directly bound to exert neuroprotective effects. RESULTS We found that cel inhibited the proinflammatory activity of high mobility group protein 1 (HMGB1) by directly binding to it and then blocking the binding of HMGB1 to its inflammatory receptors in the microenvironment of ischemia and hypoxia. In addition, cel rescued neurons from OGD injury in vitro and decreased cerebral infarction in vivo by targeting HSP70 and NF-κB p65. CONCLUSION Cel exhibited neuroprotective and anti-inflammatory effects by targeting HSP70 and NF-κB p65 and directly binding to HMGB1 in cerebral I/R injury.
Collapse
Affiliation(s)
- Dan-Dan Liu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Piao Luo
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liwei Gu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qian Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Peng Gao
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yongping Zhu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiao Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyan Guo
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junzhe Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Nan Ma
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. .,School of Pharmacy, Jinan University, Guangzhou , 510632, China.
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. .,Central People's Hospital of Zhanjiang, Zhanjiang, China. .,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China. .,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China. .,Department of Urology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 518020, Shenzhen, China.
| |
Collapse
|
34
|
Xie W, Wang X, Xiao T, Cao Y, Wu Y, Yang D, Zhang S. Protective Effects and Network Analysis of Ginsenoside Rb1 Against Cerebral Ischemia Injury: A Pharmacological Review. Front Pharmacol 2021; 12:604811. [PMID: 34276353 PMCID: PMC8283782 DOI: 10.3389/fphar.2021.604811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Currently, only a limited number of drugs are available for treating ischemic stroke. Hence, studies aiming to explore and develop other potential strategies and agents for preventing and treating ischemic stroke are urgently needed. Ginseng Rb1 (GRb1), a saponin from natural active ingredients derived from traditional Chinese medicine (TCM), exerts neuroprotective effects on the central nervous system (CNS). We conducted this review to explore and summarize the protective effects and mechanisms of GRb1 on cerebral ischemic injury, providing a valuable reference and insights for developing new agents to treat ischemic stroke. Our summarized results indicate that GRb1 exerts significant neuroprotective effects on cerebral ischemic injury both in vivo and in vitro, and these network actions and underlying mechanisms are mediated by antioxidant, anti-inflammatory, and antiapoptotic activities and involve the inhibition of excitotoxicity and Ca2+ influx, preservation of blood–brain barrier (BBB) integrity, and maintenance of energy metabolism. These findings indicate the potential of GRb1 as a candidate drug for treating ischemic stroke. Further studies, in particular clinical trials, will be important to confirm its therapeutic value in a clinical setting.
Collapse
Affiliation(s)
- Weijie Xie
- Shanghai Mental Health Centre, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyue Wang
- Shanghai Mental Health Centre, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianbao Xiao
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yibo Cao
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yumei Wu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongsheng Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Song Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Garcia-Bonilla L, Sciortino R, Shahanoor Z, Racchumi G, Janakiraman M, Montaner J, Zhou P, Anrather J, Iadecola C. Role of microglial and endothelial CD36 in post-ischemic inflammasome activation and interleukin-1β-induced endothelial activation. Brain Behav Immun 2021; 95:489-501. [PMID: 33872708 PMCID: PMC8187325 DOI: 10.1016/j.bbi.2021.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cerebral ischemia is associated with an acute inflammatory response that contributes to the resulting injury. The innate immunity receptor CD36, expressed in microglia and endothelium, and the pro-inflammatory cytokine interleukin-1β (IL-1β) are involved in the mechanisms of ischemic injury. Since CD36 has been implicated in activation of the inflammasome, the main source of IL-1β, we investigated whether CD36 mediates brain injury through the inflammasome and IL-1β. We found that active caspase-1, a key inflammasome component, is decreased in microglia of CD36-deficient mice subjected to transient middle cerebral artery occlusion, an effect associated with a reduction in brain IL-1β. Conditional deletion of CD36 either in microglia or endothelium reduced ischemic injury in mice, attesting to the pathogenic involvement of CD36 in both cell types. Application of an ischemic brain extract to primary brain endothelial cell cultures from wild type (WT) mice induced IL-1β-dependent endothelial activation, reflected by increases in the cytokine colony stimulating factor-3, a response markedly attenuated in CD36-deficient endothelia. Similarly, the increase in colony stimulating factor-3 induced by recombinant IL-1β was attenuated in CD36-deficient compared to WT endothelia. We conclude that microglial CD36 is a key determinant of post-ischemic IL-1β production by regulating caspase-1 activity, whereas endothelial CD36 is required for the full expression of the endothelial activation induced by IL-1β. The data identify microglial and endothelial CD36 as critical upstream components of the acute inflammatory response to cerebral ischemia and viable putative therapeutic targets.
Collapse
Affiliation(s)
- Lidia Garcia-Bonilla
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Rose Sciortino
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ziasmin Shahanoor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gianfranco Racchumi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mathangi Janakiraman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Joan Montaner
- Neurovascular Lab, Vall d́Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
36
|
Peek V, Harden LM, Damm J, Aslani F, Leisengang S, Roth J, Gerstberger R, Meurer M, von Köckritz-Blickwede M, Schulz S, Spengler B, Rummel C. LPS Primes Brain Responsiveness to High Mobility Group Box-1 Protein. Pharmaceuticals (Basel) 2021; 14:ph14060558. [PMID: 34208101 PMCID: PMC8230749 DOI: 10.3390/ph14060558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
High mobility group box (HMGB)1 action contributes to late phases of sepsis, but the effects of increased endogenous plasma HMGB1 levels on brain cells during inflammation are unclear. Here, we aimed to further investigate the role of HMGB1 in the brain during septic-like lipopolysaccharide-induced inflammation in rats (LPS, 10 mg/kg, i.p.). HMGB-1 mRNA expression and release were measured in the periphery/brain by RT-PCR, immunohistochemistry and ELISA. In vitro experiments with disulfide-HMGB1 in primary neuro-glial cell cultures of the area postrema (AP), a circumventricular organ with a leaky blood–brain barrier and direct access to circulating mediators like HMGB1 and LPS, were performed to determine the direct influence of HMGB1 on this pivotal brain structure for immune-to-brain communication. Indeed, HMGB1 plasma levels stayed elevated after LPS injection. Immunohistochemistry of brains and AP cultures confirmed LPS-stimulated cytoplasmatic translocation of HMGB1 indicative of local HMGB1 release. Moreover, disulfide-HMGB1 stimulation induced nuclear factor (NF)-κB activation and a significant release of interleukin-6, but not tumor necrosis factor α, into AP culture supernatants. However, only a few AP cells directly responded to HMGB1 with increased intracellular calcium concentration. Interestingly, priming with LPS induced a seven-fold higher percentage of responsive cells to HMGB1. We conclude that, as a humoral and local mediator, HMGB1 enhances brain inflammatory responses, after LPS priming, linked to sustained sepsis symptoms.
Collapse
Affiliation(s)
- Verena Peek
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Lois M. Harden
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa;
| | - Jelena Damm
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Ferial Aslani
- Institute of Anatomy and Cell Biology of the Medical Faculty, Justus Liebig University, 35392 Giessen, Germany;
| | - Stephan Leisengang
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Rüdiger Gerstberger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
| | - Marita Meurer
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.M.); (M.v.K.-B.)
| | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.M.); (M.v.K.-B.)
| | - Sabine Schulz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.S.); (B.S.)
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.S.); (B.S.)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (V.P.); (J.D.); (S.L.); (J.R.); (R.G.)
- Correspondence:
| |
Collapse
|
37
|
Nakamura K, Sakai S, Tsuyama J, Nakamura A, Otani K, Kurabayashi K, Yogiashi Y, Masai H, Shichita T. Extracellular DJ-1 induces sterile inflammation in the ischemic brain. PLoS Biol 2021; 19:e3000939. [PMID: 34014921 PMCID: PMC8136727 DOI: 10.1371/journal.pbio.3000939] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation is implicated in the onset and progression of various diseases, including cerebral pathologies. Here, we report that DJ-1, which plays a role within cells as an antioxidant protein, functions as a damage-associated molecular pattern (DAMP) and triggers inflammation if released from dead cells into the extracellular space. We first found that recombinant DJ-1 protein induces the production of various inflammatory cytokines in bone marrow–derived macrophages (BMMs) and dendritic cells (BMDCs). We further identified a unique peptide sequence in the αG and αH helices of DJ-1 that activates Toll-like receptor 2 (TLR2) and TLR4. In the ischemic brain, DJ-1 is released into the extracellular space from necrotic neurons within 24 h after stroke onset and makes direct contact with TLR2 and TLR4 in infiltrating myeloid cells. Although DJ-1 deficiency in a murine model of middle cerebral artery occlusion did not attenuate neuronal injury, the inflammatory cytokine expression in infiltrating immune cells was significantly decreased. Next, we found that the administration of an antibody to neutralize extracellular DJ-1 suppressed cerebral post-ischemic inflammation and attenuated ischemic neuronal damage. Our results demonstrate a previously unknown function of DJ-1 as a DAMP and suggest that extracellular DJ-1 could be a therapeutic target to prevent inflammation in tissue injuries and neurodegenerative diseases. Intracellular expression of the antioxidant protein DJ-1 has previously been shown to be neuroprotective. This study reveals that extracellularly released DJ-1 from necrotic neurons is a trigger of sterile inflammation that promotes neuronal injury and neurological deficits after ischemic stroke.
Collapse
Affiliation(s)
- Koutarou Nakamura
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Seiichiro Sakai
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Jun Tsuyama
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Akari Nakamura
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Kento Otani
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Kumiko Kurabayashi
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yoshiko Yogiashi
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hisao Masai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
- Precursory Research for Innovative Medical Care, Japan Agency for Medical Research and Development, Tokyo, Japan
- * E-mail:
| |
Collapse
|
38
|
Kim JE, Park H, Kim TH, Kang TC. LONP1 Regulates Mitochondrial Accumulations of HMGB1 and Caspase-3 in CA1 and PV Neurons Following Status Epilepticus. Int J Mol Sci 2021; 22:2275. [PMID: 33668863 PMCID: PMC7956547 DOI: 10.3390/ijms22052275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Lon protease 1 (LONP1) is a highly conserved serine peptidase that plays an important role in the protein quality control system in mammalian mitochondria. LONP1 catalyzes the degradation of oxidized, dysfunctional, and misfolded matrix proteins inside mitochondria and regulates mitochondrial gene expression and genome integrity. Therefore, LONP1 is up-regulated and suppresses cell death in response to oxidative stress, heat shock, and nutrient starvation. On the other hand, translocation of high mobility group box 1 (HMGB1) and active caspase-3 into mitochondria is involved in apoptosis of parvalbumin (PV) cells (one of the GABAergic interneurons) and necrosis of CA1 neurons in the rat hippocampus, respectively, following status epilepticus (SE). In the present study, we investigated whether LONP1 may improve neuronal viability to prevent or ameliorate translocation of active caspase-3 and HMGB1 in mitochondria within PV and CA1 neurons. Following SE, LONP1 expression was up-regulated in mitochondria of PV and CA1 neurons. LONP1 knockdown deteriorated SE-induced neuronal death with mitochondrial accumulation of active caspase-3 and HMGB1 in PV cells and CA1 neurons, respectively. LONP1 knockdown did not affect the aberrant mitochondrial machinery induced by SE. Therefore, our findings suggest, for the first time, that LONP1 may contribute to the alleviation of mitochondrial overloads of active caspase-3 and HMGB1, and the maintenance of neuronal viability against SE.
Collapse
Affiliation(s)
| | | | | | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym Unversity, Chuncheon 24252, Korea; (J.-E.K.); (H.P.); (T.-H.K.)
| |
Collapse
|
39
|
Morichi S, Yamanaka G, Watanabe Y, Takamatsu T, Kasuga A, Takeshita M, Go S, Ishida Y, Oana S, Kashiwagi Y, Kawashima H. High mobility group box 1 and angiogenetic growth factor levels in children with central nerve system infections. J Infect Chemother 2021; 27:840-844. [PMID: 33583741 DOI: 10.1016/j.jiac.2021.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION To clarify the pathology of children with acute encephalopathy and other neurological disorders, the involvement of high-mobility group box 1 (HMGB1), which is a representative of danger-associated molecular patterns, and angiogenesis-related growth factors were investigated. PATIENTS AND METHODS Participants were 12 children with acute encephalopathy (influenza, rotavirus, and others), 7 with bacterial meningitis, and 6 with epilepsy disease (West syndrome). Twenty-four patients with non-central nervous system (CNS) infections as a control group were admitted to our hospital. We examined the levels of HMGB1, platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and other cytokines in the serum and cerebrospinal fluid (CSF) of the subjects. RESULTS Serum and CSF HMGB1 levels were significantly higher in the encephalopathy and meningitis groups than in the West syndrome and control groups. CSF HMGB1 levels correlated with those of interleukin-6 and -8. CSF HMGB1 and VEGF levels were correlated, and PDGF showed a positive relationship. CONCLUSION HMGB1 and angiogenesis-related growth factors appear to play pivotal roles in the pathophysiology of CNS infections.
Collapse
Affiliation(s)
- Shinichiro Morichi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University.
| | - Gaku Yamanaka
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Yusuke Watanabe
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Tomoko Takamatsu
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Akiko Kasuga
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Mika Takeshita
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Soken Go
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Yu Ishida
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Shingo Oana
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Yasuyo Kashiwagi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| | - Hisashi Kawashima
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University
| |
Collapse
|
40
|
Shen L, Zhang T, Yang Y, Lu D, Xu A, Li K. FPS-ZM1 Alleviates Neuroinflammation in Focal Cerebral Ischemia Rats via Blocking Ligand/RAGE/DIAPH1 Pathway. ACS Chem Neurosci 2021; 12:63-78. [PMID: 33300334 DOI: 10.1021/acschemneuro.0c00530] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Receptor for advanced glycation end products (RAGEs), a multiligand receptor belonging to the cell-surface immunoglobulin superfamily, has been reported to play a crucial role in neuroinflammation and neurodegenerative diseases. Here, we tested our hypothesis that the RAGE-specific antagonist FPS-ZM1 is neuroprotective against ischemic brain injury. Distal middle cerebral artery occlusion (MCAO) or sham operation was performed on anesthetized Sprague-Dawley male rats (n = 60), which were then treated with FPS-ZM1 or vehicle (four groups in total = Vehicle + MCAO, FPS-ZM1 + MCAO, Vehicle + sham, and FPS-ZM1 + sham). After 1 week, neurological function was evaluated, and then, brain tissues were collected for 2,3,5-triphenyltetrazolium chloride staining, Nissl staining, TUNEL staining, Western blotting, and immunohistochemical analyses. FPS-ZM1 treatment after MCAO markedly attenuated neurological deficits and reduced the infarct area. More interestingly, FPS-ZM1 inhibited ischemia-induced astrocytic activation and microgliosis and decreased the elevated levels of proinflammatory cytokines. Furthermore, FPS-ZM1 blocked the increase in the level of RAGE and, notably, of DIAPH1, the key cytoplasmic hub for RAGE-ligand-mediated activation of cellular signaling. Accordingly, FPS-ZM1 also reversed the MCAO-induced increase in phosphorylation of NF-κB targets that are potentially downstream from RAGE/DIAPH1. Our findings reveal that FPS-ZM1 treatment reduces neuroinflammation in rats with focal cerebral ischemia and further suggest that the ligand/RAGE/DIAPH1 pathway contributes to this FPS-ZM1-mediated alleviation of neuroinflammation.
Collapse
Affiliation(s)
- Lingling Shen
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Tianyuan Zhang
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Yu Yang
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Dan Lu
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Anding Xu
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Keshen Li
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| |
Collapse
|
41
|
Gou X, Ying J, Yue Y, Qiu X, Hu P, Qu Y, Li J, Mu D. The Roles of High Mobility Group Box 1 in Cerebral Ischemic Injury. Front Cell Neurosci 2020; 14:600280. [PMID: 33384585 PMCID: PMC7770223 DOI: 10.3389/fncel.2020.600280] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a ubiquitous nuclear protein that plays an important role in stabilizing nucleosomes and DNA repair. HMGB1 can be passively released from necrotic neurons or actively secreted by microglia, macrophages/monocytes, and neutrophils. Cerebral ischemia is a major cause of mortality and disability worldwide, and its outcome depends on the number of neurons dying due to hypoxia in the ischemic area. HMGB1 contributes to the pathogenesis of cerebral ischemia via mediating neuroinflammatory responses to cerebral ischemic injury. Extracellular HMGB1 regulates many neuroinflammatory events by interacting with its different cell surface receptors, such as receptors for advanced glycation end products, toll-like receptor (TLR)-2, and TLR-4. Additionally, HMGB1 can be redox-modified, thus exerting specific cellular functions in the ischemic brain and has different roles in the acute and late stages of cerebral ischemic injury. However, the role of HMGB1 in cerebral ischemia is complex and remains unclear. Herein, we summarize and review the research on HMGB1 in cerebral ischemia, focusing especially on the role of HMGB1 in hypoxic ischemia in the immature brain and in white matter ischemic injury. We also outline the possible mechanisms of HMGB1 in cerebral ischemia and the main strategies to inhibit HMGB1 pertaining to its potential as a novel critical molecular target in cerebral ischemic injury.
Collapse
Affiliation(s)
- Xiaoyun Gou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Xia Qiu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Peng Hu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Jinhui Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Nishibori M, Wang D, Ousaka D, Wake H. High Mobility Group Box-1 and Blood-Brain Barrier Disruption. Cells 2020; 9:cells9122650. [PMID: 33321691 PMCID: PMC7764171 DOI: 10.3390/cells9122650] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence suggests that inflammatory responses are involved in the progression of brain injuries induced by a diverse range of insults, including ischemia, hemorrhage, trauma, epilepsy, and degenerative diseases. During the processes of inflammation, disruption of the blood–brain barrier (BBB) may play a critical role in the enhancement of inflammatory responses and may initiate brain damage because the BBB constitutes an interface between the brain parenchyma and the bloodstream containing blood cells and plasma. The BBB has a distinct structure compared with those in peripheral tissues: it is composed of vascular endothelial cells with tight junctions, numerous pericytes surrounding endothelial cells, astrocytic endfeet, and a basement membrane structure. Under physiological conditions, the BBB should function as an important element in the neurovascular unit (NVU). High mobility group box-1 (HMGB1), a nonhistone nuclear protein, is ubiquitously expressed in almost all kinds of cells. HMGB1 plays important roles in the maintenance of chromatin structure, the regulation of transcription activity, and DNA repair in nuclei. On the other hand, HMGB1 is considered to be a representative damage-associated molecular pattern (DAMP) because it is translocated and released extracellularly from different types of brain cells, including neurons and glia, contributing to the pathophysiology of many diseases in the central nervous system (CNS). The regulation of HMGB1 release or the neutralization of extracellular HMGB1 produces beneficial effects on brain injuries induced by ischemia, hemorrhage, trauma, epilepsy, and Alzheimer’s amyloidpathy in animal models and is associated with improvement of the neurological symptoms. In the present review, we focus on the dynamics of HMGB1 translocation in different disease conditions in the CNS and discuss the functional roles of extracellular HMGB1 in BBB disruption and brain inflammation. There might be common as well as distinct inflammatory processes for each CNS disease. This review will provide novel insights toward an improved understanding of a common pathophysiological process of CNS diseases, namely, BBB disruption mediated by HMGB1. It is proposed that HMGB1 might be an excellent target for the treatment of CNS diseases with BBB disruption.
Collapse
|
43
|
Kurita N, Yamashiro K, Kuroki T, Tanaka R, Urabe T, Ueno Y, Miyamoto N, Takanashi M, Shimura H, Inaba T, Yamashiro Y, Nomoto K, Matsumoto S, Takahashi T, Tsuji H, Asahara T, Hattori N. Metabolic endotoxemia promotes neuroinflammation after focal cerebral ischemia. J Cereb Blood Flow Metab 2020; 40:2505-2520. [PMID: 31910709 PMCID: PMC7820690 DOI: 10.1177/0271678x19899577] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipopolysaccharide (LPS) is a major component of the outer membrane of Gram-negative bacteria and a potent inflammatory stimulus for the innate immune response via toll-like receptor (TLR) 4 activation. Type 2 diabetes is associated with changes in gut microbiota and impaired intestinal barrier functions, leading to translocation of microbiota-derived LPS into the circulatory system, a condition referred to as metabolic endotoxemia. We investigated the effects of metabolic endotoxemia after experimental stroke with transient middle cerebral artery occlusion (MCAO) in a murine model of type 2 diabetes (db/db) and phenotypically normal littermates (db/+). Compared to db/+ mice, db/db mice exhibited an altered gut microbial composition, increased intestinal permeability, and higher plasma LPS levels. In addition, db/db mice presented increased infarct volumes and higher expression levels of LPS, TLR4, and inflammatory cytokines in the ischemic brain, as well as more severe neurological impairments and reduced survival rates after MCAO. Oral administration of a non-absorbable antibiotic modulated the gut microbiota and improved metabolic endotoxemia and stroke outcomes in db/db mice; these effects were associated with reduction of LPS levels and neuroinflammation in the ischemic brain. These data suggest that targeting metabolic endotoxemia may be a novel potential therapeutic strategy to improve stroke outcomes.
Collapse
Affiliation(s)
- Naohide Kurita
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuo Yamashiro
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takuma Kuroki
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryota Tanaka
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Tochigi Japan
| | - Takao Urabe
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Yuji Ueno
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobukazu Miyamoto
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masashi Takanashi
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideki Shimura
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Toshiki Inaba
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Nomoto
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoshi Matsumoto
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Yakult Central Institute, Tokyo, Japan
| | - Takuya Takahashi
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Yakult Honsha European Research Center for Microbiology ESV, Gent, Belgium
| | - Hirokazu Tsuji
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Yakult Central Institute, Tokyo, Japan
| | - Takashi Asahara
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Yakult Central Institute, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
44
|
Shao A, Lin D, Wang L, Tu S, Lenahan C, Zhang J. Oxidative Stress at the Crossroads of Aging, Stroke and Depression. Aging Dis 2020; 11:1537-1566. [PMID: 33269106 PMCID: PMC7673857 DOI: 10.14336/ad.2020.0225] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
Epidemiologic studies have shown that in the aging society, a person dies from stroke every 3 minutes and 42 seconds, and vast numbers of people experience depression around the globe. The high prevalence and disability rates of stroke and depression introduce enormous challenges to public health. Accumulating evidence reveals that stroke is tightly associated with depression, and both diseases are linked to oxidative stress (OS). This review summarizes the mechanisms of OS and OS-mediated pathological processes, such as inflammation, apoptosis, and the microbial-gut-brain axis in stroke and depression. Pathological changes can lead to neuronal cell death, neurological deficits, and brain injury through DNA damage and the oxidation of lipids and proteins, which exacerbate the development of these two disorders. Additionally, aging accelerates the progression of stroke and depression by overactive OS and reduced antioxidant defenses. This review also discusses the efficacy and safety of several antioxidants and antidepressants in stroke and depression. Herein, we propose a crosstalk between OS, aging, stroke, and depression, and provide potential therapeutic strategies for the treatment of stroke and depression.
Collapse
Affiliation(s)
- Anwen Shao
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Danfeng Lin
- 2Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Lingling Wang
- 2Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Sheng Tu
- 3State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Cameron Lenahan
- 4Burrell College of Osteopathic Medicine, Las Cruces, USA.,5Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jianmin Zhang
- 1Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.,6Brain Research Institute, Zhejiang University, Zhejiang, China.,7Collaborative Innovation Center for Brain Science, Zhejiang University, Zhejiang, China
| |
Collapse
|
45
|
Fan H, Tang HB, Chen Z, Wang HQ, Zhang L, Jiang Y, Li T, Yang CF, Wang XY, Li X, Wu SX, Zhang GL. Inhibiting HMGB1-RAGE axis prevents pro-inflammatory macrophages/microglia polarization and affords neuroprotection after spinal cord injury. J Neuroinflammation 2020; 17:295. [PMID: 33036632 PMCID: PMC7547440 DOI: 10.1186/s12974-020-01973-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Background Spinal cord injury (SCI) favors a persistent pro-inflammatory macrophages/microglia-mediated response with only a transient appearance of anti-inflammatory phenotype of immune cells. However, the mechanisms controlling this special sterile inflammation after SCI are still not fully elucidated. It is known that damage-associated molecular patterns (DAMPs) released from necrotic cells after injury can trigger severe inflammation. High mobility group box 1(HMGB1), a ubiquitously expressed DNA binding protein, is an identified DAMP, and our previous study demonstrated that reactive astrocytes could undergo necroptosis and release HMGB1 after SCI in mice. The present study aimed to explore the effects and the possible mechanism of HMGB1on macrophages/microglia polarization, as well as the neuroprotective effects by HMGB1 inhibition after SCI. Methods In this study, the expression and the concentration of HMGB1 was determined by qRT-PCR, ELISA, and immunohistochemistry. Glycyrrhizin was applied to inhibit HMGB1, while FPS-ZM1 to suppress receptor for advanced glycation end products (RAGE). The polarization of macrophages/microglia in vitro and in vivo was detected by qRT-PCR, immunostaining, and western blot. The lesion area was detected by GFAP staining, while neuronal survival was examined by Nissl staining. Luxol fast blue (LFB) staining, DAB staining, and western blot were adopted to evaluate the myelin loss. Basso-Beattie-Bresnahan (BBB) scoring and rump-height Index (RHI) assay was applied to evaluate locomotor functional recovery. Results Our data showed that HMGB1 can be elevated and released from necroptotic astrocytes and HMGB1 could induce pro-inflammatory microglia through the RAGE-nuclear factor-kappa B (NF-κB) pathway. We further demonstrated that inhibiting HMGB1 or RAGE effectively decreased the numbers of detrimental pro-inflammatory macrophages/microglia while increased anti-inflammatory cells after SCI. Furthermore, our data showed that inhibiting HMGB1 or RAGE significantly decreased neuronal loss and demyelination, and improved functional recovery after SCI. Conclusions The data implicated that HMGB1-RAGE axis contributed to the dominant pro-inflammatory macrophages/microglia-mediated pro-inflammatory response, and inhibiting this pathway afforded neuroprotection for SCI. Thus, therapies designed to modulate immune microenvironment based on this cascade might be a prospective treatment for SCI.
Collapse
Affiliation(s)
- Hong Fan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.,Institute of Neurosciences, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hai-Bin Tang
- Department of Laboratory Medicine, Xi'an Central Hospital, Xi'an Jiaotong University, 161 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Zhe Chen
- Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hu-Qing Wang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Lei Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yu Jiang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Tao Li
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Cai-Feng Yang
- Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiao-Ya Wang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xia Li
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Sheng-Xi Wu
- Institute of Neurosciences, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Gui-Lian Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
46
|
Li J, Bao G, Wang H. Time to Develop Therapeutic Antibodies Against Harmless Proteins Colluding with Sepsis Mediators? Immunotargets Ther 2020; 9:157-166. [PMID: 33117741 PMCID: PMC7547129 DOI: 10.2147/itt.s262605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/22/2020] [Indexed: 12/29/2022] Open
Abstract
Sepsis refers to a systemic inflammatory response syndrome resulting from microbial infections, and is partly attributable to dysregulated inflammation and associated immunosuppression. A ubiquitous nuclear protein, HMGB1, is secreted by activated leukocytes to orchestrate inflammatory responses during early stages of sepsis. When it is released by injured somatic cells at overwhelmingly higher quantities, HMGB1 may induce macrophage pyroptosis and immunosuppression, thereby impairing the host's ability to eradicate microbial infections. A number of endogenous proteins have been shown to bind HMGB1 to modulate its extracellular functions. Here, we discuss an emerging possibility to develop therapeutic antibodies against harmless proteins that collude with pathogenic mediators for the clinical management of human sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
- Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY11030, USA
| | - Guoqiang Bao
- Department of General Surgery, Tangdu Hospital, Xi’an, Shaanxi710032, People’s Republic of China
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549, USA
| |
Collapse
|
47
|
Role of DAMPs and of Leukocytes Infiltration in Ischemic Stroke: Insights from Animal Models and Translation to the Human Disease. Cell Mol Neurobiol 2020; 42:545-556. [DOI: 10.1007/s10571-020-00966-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
|
48
|
Chibaatar E, Le K, Abdoulaye IA, Wu S, Guo Y. Melatonin Ameliorates Lipopolysaccharide-Induced Microglial Inflammation via Triggering SIRT1/HMGB1 Signaling Axis. J Mol Neurosci 2020; 71:691-701. [PMID: 32910356 DOI: 10.1007/s12031-020-01699-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
Stroke is one of the highest incidence neurological disorder with great morbidity and mortality rate. The secondary neuroinflammation contributed by microglial activation is a consequential response observed in the pathogenesis of stroke. High-mobility group box 1, a non-histone nuclear protein, interacts with immune cells, such as microglia, and leads to a cascade amplification of the secondary neuroinflammatory responses, which are related to neuronal damage later. Melatonin is a neurohormone, well-known as its anti-oxidative and anti-inflammatory effects. However, until now, more findings are required for better understanding about anti-inflammatory effect of melatonin on HMGB1 and HMGB1-triggered pathway in LPS-induced microglial activation. Melatonin effect on the viability of BV2 microglial cells was measured by CCK-8 assay; mRNA levels of HMGB1 and other inflammatory cytokines were determined by quantitative real-time polymerase chain reaction assay or enzyme-linked immunosorbent assays; the protein expression levels of TLR4/MyD88/NF-κB and SIRT1 were detected by Western blot, and HMGB1 translocation and release from BV2 microglial cells were examined by immunofluorescence assay. The results of this study demonstrated that melatonin suppressed LPS-triggered BV2 microglial activation-mediated inflammation by inhibiting high expression and release of HMGB1 and moderating the activation of subsequent TLR4/MyD88/NF-κB signaling pathway, which was activated by SIRT1 elevation. Furthermore, LPS-induced expression of pro-inflammatory cytokines (i.e., TNF-α, IL-6, and IL-1β) was notably reversed by melatonin pre-treatment. In summary, our findings suggest that melatonin may act as a promising therapeutic agent for reducing post-stroke neuroinflammation by targeting HMGB1 and the subsequent signaling axis.
Collapse
Affiliation(s)
- Enkhmurun Chibaatar
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China.,School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Kai Le
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Idriss Ali Abdoulaye
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China.,School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Shanshan Wu
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China.,School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Yijing Guo
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China.
| |
Collapse
|
49
|
Wang B, Huang X, Pan X, Zhang T, Hou C, Su WJ, Liu LL, Li JM, Wang YX. Minocycline prevents the depressive-like behavior through inhibiting the release of HMGB1 from microglia and neurons. Brain Behav Immun 2020; 88:132-143. [PMID: 32553784 DOI: 10.1016/j.bbi.2020.06.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Our previous study reports the causal role of high mobility group box 1 (HMGB1) in the development of depression; and we find glycyrrhizic acid (GZA) can be a potential treatment for major depressive disorder (MDD) considering its inhibition of HMGB1 activity. This study aims to further explore the exact cell types that release HMGB1 in the hippocampus. METHODS We detected the effects of microglia conditioned medium on primary astrocytes and neurons. The effects of minocycline on depressive-like behaviors were tested in BABLB/c mice after four weeks of chronic unpredictable mild stress (CUMS) exposure. Furthermore, the immunofluorescence (IF) assays, hematoxylin-eosin (HE) and TUNEL staining were used to observe hippocampal slices to evaluate the release of HMGB1. The cytoplasmic translocations of HMGB1 protein were assayed by western-blot. RESULTS Exposure to CUMS caused an active release of HMGB1 from microglia and neurons in the hippocampus. After minocycline administration for inhibiting the activation of microglia, both microglia and neurons reduced the release of HMGB1 and the protein level of central and peripheral HMGB1 recovered accordingly. Along with blocking the release of HMGB1, behavioral and cognitive deficits induced by CUMS were improved significantly by minocycline. In addition, the supernatant of primary microglia stimulated the secretion of HMGB1 in primary neurons, not in astrocytes, at 24 h after 4 h-LPS treatment. CONCLUSION All the evidence supported our hypotheses that microglia and neurons are the main cell sources of HMGB1 release under CUMS condition, and that the release of HMGB1 by microglia may play an important role in the development of depressive-like behavior.
Collapse
Affiliation(s)
- Bo Wang
- Department of Nautical Psychology, Faculty of Psychology, Second Military Medical University, Shanghai 200433, China; Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai 200433, China; Department of Medicine, The Unit 31641 of PLA, Xishuangbanna 666100, China
| | - Xiao Huang
- Department of Anaesthesiology, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201112, China
| | - Xiao Pan
- Department of Medical Psychology, Changzheng Hospital, Navy Medical University, Shanghai 200003, China
| | - Ting Zhang
- Department of Nautical Psychology, Faculty of Psychology, Second Military Medical University, Shanghai 200433, China
| | - Cheng Hou
- Department of Pharmaceutical Sciences, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wen-Jun Su
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai 200433, China
| | - Lin-Lin Liu
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai 200433, China
| | - Jia-Mei Li
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai 200433, China
| | - Yun-Xia Wang
- Department of Nautical Psychology, Faculty of Psychology, Second Military Medical University, Shanghai 200433, China; Department of Medical Psychology, Changzheng Hospital, Navy Medical University, Shanghai 200003, China.
| |
Collapse
|
50
|
Kim SW, Lee JK. Role of HMGB1 in the Interplay between NETosis and Thrombosis in Ischemic Stroke: A Review. Cells 2020; 9:cells9081794. [PMID: 32731558 PMCID: PMC7464684 DOI: 10.3390/cells9081794] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps (NETs) comprise decondensed chromatin, histones and neutrophil granular proteins and are involved in the response to infectious as well as non-infectious diseases. The prothrombotic activity of NETs has been reported in various thrombus-related diseases; this activity can be attributed to the fact that the NETs serve as a scaffold for cells and numerous coagulation factors and stimulate fibrin deposition. A crosstalk between NETs and thrombosis has been indicated to play a role in numerous thrombosis-related conditions including stroke. In cerebral ischemia, neutrophils are the first group of cells to infiltrate the damaged brain tissue, where they produce NETs in the brain parenchyma and within blood vessels, thereby aggravating inflammation. Increasing evidences suggest the connection between NETosis and thrombosis as a possible cause of “tPA resistance”, a problem encountered during the treatment of stroke patients. Several damage-associated molecular pattern molecules have been proven to induce NETosis and thrombosis, with high mobility group box 1 (HMGB1) playing a critical role. This review discusses NETosis and thrombosis and their crosstalk in various thrombosis-related diseases, focusing on the role of HMGB1 as a mediator in stroke. We also addresses the function of peptidylarginine deiminase 4 with respect to the interplay with HMGB1 in NET-induced thrombosis.
Collapse
Affiliation(s)
- Seung-Woo Kim
- Department of Biomedical Sciences, Inha University School of Medicine, Inchon 22212, Korea;
- Medical Research Center, Inha University School of Medicine, Inchon 22212, Korea
| | - Ja-Kyeong Lee
- Medical Research Center, Inha University School of Medicine, Inchon 22212, Korea
- Department of Anatomy, Inha University School of Medicine, Inchon 22212, Korea
- Correspondence: ; Tel.: +82-32-860-9893; Fax: +82-32-884-2105
| |
Collapse
|