1
|
Muthaiyan Shanmugam M, Manoj H. Microinjection for Single-Cell Analysis and Therapy. HANDBOOK OF SINGLE-CELL TECHNOLOGIES 2022:81-107. [DOI: 10.1007/978-981-10-8953-4_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Azhagiri MKK, Babu P, Venkatesan V, Thangavel S. Homology-directed gene-editing approaches for hematopoietic stem and progenitor cell gene therapy. Stem Cell Res Ther 2021; 12:500. [PMID: 34503562 PMCID: PMC8428126 DOI: 10.1186/s13287-021-02565-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
The advent of next-generation genome engineering tools like CRISPR-Cas9 has transformed the field of gene therapy, rendering targeted treatment for several incurable diseases. Hematopoietic stem and progenitor cells (HSPCs) continue to be the ideal target cells for gene manipulation due to their long-term repopulation potential. Among the gene manipulation strategies such as lentiviral gene augmentation, non-homologous end joining (NHEJ)-mediated gene editing, base editing and prime editing, only the homology-directed repair (HDR)-mediated gene editing provides the option of inserting a large transgene under its endogenous promoter or any desired locus. In addition, HDR-mediated gene editing can be applied for the gene knock-out, correction of point mutations and introduction of beneficial mutations. HSPC gene therapy studies involving lentiviral vectors and NHEJ-based gene-editing studies have exhibited substantial clinical progress. However, studies involving HDR-mediated HSPC gene editing have not yet progressed to the clinical testing. This suggests the existence of unique challenges in exploiting HDR pathway for HSPC gene therapy. Our review summarizes the mechanism, recent progresses, challenges, and the scope of HDR-based gene editing for the HSPC gene therapy.
Collapse
Affiliation(s)
- Manoj Kumar K Azhagiri
- Centre for Stem Cell Research (CSCR), a Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prathibha Babu
- Centre for Stem Cell Research (CSCR), a Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vigneshwaran Venkatesan
- Centre for Stem Cell Research (CSCR), a Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR), a Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India.
| |
Collapse
|
3
|
Kheiriabad S, Dolatabadi JEN, Hamblin MR. Dendrimers for gene therapy. DENDRIMER-BASED NANOTHERAPEUTICS 2021:285-309. [DOI: 10.1016/b978-0-12-821250-9.00026-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Gharbavi M, Sharafi A, Ghanbarzadeh S. Mesenchymal Stem Cells: A New Generation of Therapeutic Agents as Vehicles in Gene Therapy. Curr Gene Ther 2020; 20:269-284. [PMID: 32515309 DOI: 10.2174/1566523220666200607190339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022]
Abstract
In recent years, mesenchymal stem cells (MSCs) as a new tool for therapeutic gene delivery in clinics have attracted much attention. Their advantages cover longer lifespan, better isolation, and higher transfection efficiency and proliferation rate. MSCs are the preferred approach for cell-based therapies because of their in vitro self-renewal capacity, migrating especially to tumor tissues, as well as anti-inflammatory and immunomodulatory properties. Therefore, they have considerable efficiency in genetic engineering for future clinical applications in cancer gene therapy and other diseases. For improving therapeutic efficiency, targeted therapy of cancers can be achieved through the sustained release of therapeutic agents and functional gene expression induction to the intended tissues. The development of a new vector in gene therapy can improve the durability of a transgene expression. Also, the safety of the vector, if administered systemically, may resolve several problems, such as durability of expression and the host immune response. Currently, MSCs are prominent candidates as cell vehicles for both preclinical and clinical trials due to the secretion of therapeutic agents in several cancers. In the present study, we discuss the status of gene therapy in both viral and non-viral vectors along with their limitations. Throughout this study, the use of several nano-carriers for gene therapy is also investigated. Finally, we critically discuss the promising advantages of MSCs in targeted gene delivery, tumor inhibition and their utilization as the gene carriers in clinical situations.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Cancer Gene Therapy Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Ghanbarzadeh
- Cancer Gene Therapy Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Zanjan Pharmaceutical Nanotechnology Research Center and Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Ahmed R, Sayegh N, Graciotti M, Kandalaft LE. Electroporation as a method of choice to generate genetically modified dendritic cell cancer vaccines. Curr Opin Biotechnol 2020; 65:142-155. [PMID: 32240923 DOI: 10.1016/j.copbio.2020.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Abstract
In the last few decades, immunotherapy has emerged as an alternative therapeutic approach to treat cancer. Immunotherapy offers a plethora of different treatment possibilities. Among these, dendritic cell (DC)-based cancer vaccines constitute one of the most promising and valuable therapeutic options. DC-vaccines have been introduced into the clinics more than 15 years ago, and preclinical studies showed their general safety and low toxic effects on patients. However, their treatment efficacy is still rather limited, demanding for novel avenues to improve vaccine efficacy. One way to potentially achieve this is to focus on improving the DC-T cell interaction to further increase T cell priming and downstream activity. A successful DC-T cell interaction requires three different signals (Figure 1): (1) Major Histocompatibility Complex (MHC) and antigen complex interaction with T cell receptor (TCR) (2) interaction between co-stimulatory molecules and their cognate ligands at the cell surface and (3) secretion of cytokines to polarize the immune response toward a Type 1 helper (Th1) phenotype. In recent years, many studies attempted to improve the DC-T cell interaction and overall cancer vaccine therapeutic outcomes by increasing the expression of mediators of signal 1, 2 and/or 3, through genetic modifications of DCs. Transfection of genes of interest can be achieved through many different methods such as passive pulsing, lipofection, viral transfection, or electroporation (EP). However, EP is currently emerging as the method of choice thanks to its safety, versatility, and relatively easy clinical translation. In this review we will highlight the potential benefits of EP over other transfection methods as well as giving an overview of the available studies employing EP to gene-modify DCs in cancer vaccines. Crucial aspects such as safety, feasibility, and gene(s) of choice will be also discussed, together with future perspectives and opportunities for DC genetic engineering.
Collapse
Affiliation(s)
- Rita Ahmed
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland
| | - Naya Sayegh
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland
| | - Michele Graciotti
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland
| | - Lana E Kandalaft
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
| |
Collapse
|
6
|
Shomali N, Gharibi T, Vahedi G, Mohammed RN, Mohammadi H, Salimifard S, Marofi F. Mesenchymal stem cells as carrier of the therapeutic agent in the gene therapy of blood disorders. J Cell Physiol 2019; 235:4120-4134. [PMID: 31691976 DOI: 10.1002/jcp.29324] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
Abstract
Nonhematopoietic stem cells as a delivery platform of therapeutic useful genes have attracted widespread attention in recent years, owing to gained a long lifespan, easy separation, high proliferation, and high transfection capacity. Mesenchymal stem/stromal cells (MSCs) are the choice of the cells for gene and cell therapy due to high self-renewal capacity, high migration rate to the site of the tumor, and with immune suppressive and anti-inflammatory properties. Hence, it has a high potential of safety genetic modification of MSCs for antitumor gene expression and has paved the way for the clinical application of these cells to target the therapy of cancers and other diseases. The aim of gene therapy is targeted treatment of cancers and diseases through recovery, change, or enhancement cell performance to the sustained secretion of useful therapeutic proteins and induction expression of the functional gene in intended tissue. Recent developments in the vectors designing leading to the increase and durability of expression and improvement of the safety of the vectors that overcome a lot of problems, such as durability of expression and the host immune response. Nowadays, gene therapy approach is used by MSCs as a delivery vehicle in the preclinical and the clinical trials for the secretion of erythropoietin, recombinant antibodies, coagulation factors, cytokines, as well as angiogenic inhibitors in many blood disorders like anemia, hemophilia, and malignancies. In this study, we critically discuss the status of gene therapy by MSCs as a delivery vehicle for the treatment of blood disorders. Finally, the results of clinical trial studies are assessed, highlighting promising advantages of this emerging technology in the clinical setting.
Collapse
Affiliation(s)
- Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Vahedi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Rebar N Mohammed
- Bone Marrow Transplant Center, Hiwa Cancer Hospital, Suleimanyah, Iraq.,Department of Microbiology, College of Veterinary Medicine, University of Sulaimani, Suleimanyah, Iraq
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Sevda Salimifard
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Pluripotent state induction in mouse embryonic fibroblast using mRNAs of reprogramming factors. Int J Mol Sci 2014; 15:21840-64. [PMID: 25437916 PMCID: PMC4284681 DOI: 10.3390/ijms151221840] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 12/12/2022] Open
Abstract
Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs) generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF) cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1) and Rex-1 (ZFP-42, zinc finger protein 42). Using embryonic stem cells (ESCs) conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs) using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF) cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations.
Collapse
|
8
|
Arima H, Motoyama K, Higashi T. Sugar-appended polyamidoamine dendrimer conjugates with cyclodextrins as cell-specific non-viral vectors. Adv Drug Deliv Rev 2013; 65:1204-14. [PMID: 23602906 DOI: 10.1016/j.addr.2013.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 03/26/2013] [Accepted: 04/10/2013] [Indexed: 12/31/2022]
Abstract
The widespread use of various cyclodextrin (CyD)-appended polymers and polyrotaxanes as gene carriers has been reported. Among the various polyamidoamine dendrimer (dendrimer) conjugates with CyDs (CDE), the dendrimer (G3) conjugate with α-CyD having an average degree of substitution (DS) of 2.4 (α-CDE (G3, DS 2)) displayed remarkable properties as DNA carriers. In an attempt to develop cell-specific gene transfer carriers, we prepared some sugar-appended α-CDEs, e.g. mannosylated, galactosylated, and lactosylated α-CDEs. In addition, PEGylated Lac-α-CDEs (G3) were prepared and evaluated as a hepatocyte-selective and serum-resistant gene transfer carrier. Moreover, PEGylated-α-CDE/CyD polypseudorotaxane systems for novel sustained DNA release system have been developed. Interestingly, glucronylglucosyl-β-cyclodextrin (GUG-β-CyD) conjugates with dendrimer (G2) (GUG-β-CDE (G2)) had superior gene transfer activity to α-CDE (G2), expecting a development of new series of sugar-appended CDEs over α-CDEs (G2). Collectively, sugar-appended α-CDEs have the potential as novel cell-specific and safe carriers for DNA.
Collapse
Affiliation(s)
- Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | | | | |
Collapse
|
9
|
Pati S, Kalra OP, Mukhopadhyay A. Foe turned friend: multiple functional roles attributable to hyper-activating stem cell factor receptor mutant in regeneration of the haematopoietic cell compartment. Cell Prolif 2011; 44:10-8. [PMID: 21199006 PMCID: PMC6496452 DOI: 10.1111/j.1365-2184.2010.00713.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Stem cell factor receptor, c-kit, is considered to be the master signalling molecule of haematopoietic stem cells. It develops the orchestral pattern of haematopoietic cell lineages, seen by its varying degree of omnipresence in progenitors, lineage committed and mature cells. We have investigated the effect of over-expressing c-kit on early recovery of the haematopoietic compartment, in irradiated hosts. MATERIALS AND METHODS Normal bone marrow cells (BMCs) were transfected with Kit(wt) (wild-type c-kit) or its variant Kit(mu) (asp814tyr) by electroporation. Lethally irradiated mice were transplanted with normal or transfected congeneic BMCs. The effect of ectopic expression of c-kit on haematopoietic cell recovery was determined by analysing donor-derived cells. Furthermore, effects of both types of c-kit over-expression on progenitor and lineage-committed cells were examined by flow cytometric analysis of Sca-1 and lineage-committed (Lin(+)) cells respectively. RESULTS Hyper-activating Kit(mu) significantly improved recovery of the haematopoietic system in irradiated hosts. In vivo results showed that the donor-derived c-kit(+) cell population was increased to more than 3-fold in the case of Kit(mu)-transfected cells compared to normal and Kit(wt) over-expressing BMCs. In general, survival of progenitor and committed cell was improved in the Kit(mu) over-expressing system compared to the other two cohorts. CONCLUSION These results suggest that recruitment of the hyper-activating variant of c-kit (Kit(mu)) lead to early recovery of the bone marrow of lethally irradiated mice.
Collapse
Affiliation(s)
- S Pati
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | |
Collapse
|
10
|
Liu C, Zhang N. Nanoparticles in Gene Therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:509-62. [DOI: 10.1016/b978-0-12-416020-0.00013-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Efficient gene transfer mediated by HIV-1-based defective lentivector and inhibition of HIV-1 replication. Virol Sin 2007. [DOI: 10.1007/s12250-007-0002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Van den Bosch GA, Ponsaerts P, Vanham G, Van Bockstaele DR, Berneman ZN, Van Tendeloo VFI. Cellular immunotherapy for cytomegalovirus and HIV-1 infection. J Immunother 2006; 29:107-21. [PMID: 16531812 DOI: 10.1097/01.cji.0000184472.28832.d3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Current antiviral drugs do not fully reconstitute the specific antiviral immune control in chronically human immunodeficiency virus (HIV)-1-infected patients or in cytomegalovirus (CMV)-infected patients after hematopoietic stem cell transplantation. Therefore, immunotherapy in which the patient's immune system is manipulated to enhance antiviral immune responses has become a promising area of viral immunology research. In this review, an overview is provided on the cellular immunotherapy strategies that have been developed for HIV infection and CMV reactivation in immunocompromised patients. As an introduction, the mechanisms behind the cellular immune system and their importance for the development of a workable immunotherapy approach are discussed. Next, the focus is shifted to the immunopathogenesis of CMV and HIV-1 infections to correlate these findings with the concepts and ideas behind the viral-specific immunotherapies discussed. Current and future perspectives of active and passive cellular immunotherapy for the treatment of CMV and HIV-1 infections are reviewed. Finally, pitfalls and key issues with regard to the development of immunotherapy protocols that can be applied in a clinical setting are addressed.
Collapse
Affiliation(s)
- Glenn A Van den Bosch
- Laboratory of Experimental Hematology, Faculty of Medicine, University of Antwerp, Antwerp University Hospital, Edegem, Belgium
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Segerman A, Lindman K, Mei YF, Allard A, Wadell G. Adenovirus types 11p and 35 attach to and infect primary lymphocytes and monocytes, but hexon expression in T-cells requires prior activation. Virology 2006; 349:96-111. [PMID: 16483626 DOI: 10.1016/j.virol.2005.12.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/01/2005] [Accepted: 12/23/2005] [Indexed: 11/30/2022]
Abstract
Hematopoietic cells are attractive targets for gene therapy, but the conventional adenovirus (Ad) vectors, based on Ad5, transduce these cells inefficiently. One reason for low permissiveness of hematopoietic cells to infection by species C Ads appears to be inefficient attachment. Vectors pseudotyped with species B fibers are clearly more efficient at transducing hematopoietic cells than Ad5. To evaluate which Ad species B type(s) would be the most efficient vector(s) for primary T-cells, B-cells and monocytes, attachment to and entry of the species B1 serotypes 3p and 7p and the species B2 serotypes 11p and 35 into primary PBMCs was studied. Ad11p and Ad35 were the only serotypes to show efficient binding and for which uptake by PBMCs could be detected. Infection of PBMCs by Ad5, Ad11p and Ad35 was compared. Expression of Ad hexons was detected in stimulated PBMCs, most frequently in T-cells, and in unstimulated monocytes, although B-cells appear to be refractory to productive infection. Replication of Ad DNA was severely restricted in most PBMCs. Neither hexon expression nor genome replication could be detected in unstimulated lymphocytes, but FISH and a real-time PCR-based assay suggested that Ad11p and Ad35 DNA reach the nucleus. Activation thus appears to be required for T-cells to be permissive to Ad gene expression. In summary, there are substantial differences between Ad3p and Ad7p on the one hand and Ad11p and Ad35 on the other, in their ability to interact with PBMCs. Ad11p and Ad35 probably represent vectors of choice for these cell types.
Collapse
Affiliation(s)
- Anna Segerman
- Department of Virology, Umeå University, SE-901 85 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
15
|
Papapetrou EP, Zoumbos NC, Athanassiadou A. Genetic modification of hematopoietic stem cells with nonviral systems: past progress and future prospects. Gene Ther 2006; 12 Suppl 1:S118-30. [PMID: 16231044 DOI: 10.1038/sj.gt.3302626] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Serious unwanted complications provoked by retroviral gene transfer into hematopoietic stem cells (HSCs) have recently raised the need for the development and assessment of alternative gene transfer vectors. Within this context, nonviral gene transfer systems are attracting increasing interest. Their main advantages include low cost, ease of handling and large-scale production, large packaging capacity and, most importantly, biosafety. While nonviral gene transfer into HSCs has been restricted in the past by poor transfection efficiency and transient maintenance, in recent years, biotechnological developments are converting nonviral transfer into a realistic approach for genetic modification of cells of hematopoietic origin. Herein we provide an overview of past accomplishments in the field of nonviral gene transfer into hematopoietic progenitor/stem cells and we point at future challenges. We argue that episomally maintained self-replicating vectors combined with physical methods of delivery show the greatest promise among nonviral gene transfer strategies for the treatment of disorders of the hematopoietic system.
Collapse
Affiliation(s)
- E P Papapetrou
- Department of Biology, Faculty of Medicine, University of Patras, Patras, Greece
| | | | | |
Collapse
|
16
|
Strayer DS, Akkina R, Bunnell BA, Dropulic B, Planelles V, Pomerantz RJ, Rossi JJ, Zaia JA. Current status of gene therapy strategies to treat HIV/AIDS. Mol Ther 2005; 11:823-42. [PMID: 15922953 DOI: 10.1016/j.ymthe.2005.01.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 01/19/2005] [Accepted: 01/26/2005] [Indexed: 12/21/2022] Open
Abstract
Progress in developing effective gene transfer approaches to treat HIV-1 infection has been steady. Many different transgenes have been reported to inhibit HIV-1 in vitro. However, effective translation of such results to clinical practice, or even to animal models of AIDS, has been challenging. Among the reasons for this failure are uncertainty as to the most effective cell population(s) to target, the diffuseness of these target cells in the body, and ineffective or insufficiently durable gene delivery. Better understanding of the HIV-1 replicative cycle, host factors involved in HIV-1 infection, vector biology and application, transgene technology, animal models, and clinical study design have all contributed vastly to planning current and future strategies for application of gene therapeutic approaches to the treatment of AIDS. This review focuses on the newest developments in these areas and provides a strong basis for renewed optimism that gene therapy will have an important role to play in treating people infected with HIV-1.
Collapse
Affiliation(s)
- David S Strayer
- Department of Pathology, Jefferson Medical College, 1020 Locust Street, Room 251, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bonehill A, Heirman C, Thielemans K. Genetic approaches for the induction of a CD4+ T cell response in cancer immunotherapy. J Gene Med 2005; 7:686-95. [PMID: 15693037 DOI: 10.1002/jgm.713] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Recently, it has become more and more obvious that not only CD8+ cytotoxic T lymphocytes, but also CD4+ T helper cells are required for the induction of an optimal, long-lasting anti-tumor immune response. CD4+ T helper cells, and in particular IFN-gamma-secreting type 1 T helper cells, have been shown to fulfill a critical function in the mounting of a cancer-specific response. Consequently, targeting antigens into MHC class II molecules would greatly enhance the efficacy of an anti-cancer vaccine. The dissection of the MHC class II presentation pathway has paved the way for rational approaches to achieve this goal: novel systems have been developed to genetically manipulate the MHC class II presentation pathway. First, different genetic approaches have been used for the delivery of known epitopes into the MHC class II processing pathway or directly onto the peptide-binding groove of the MHC molecules. Second, several strategies exist for the targeting of whole tumor antigens, containing both MHC class I and class II restricted epitopes, to the MHC class II processing pathway. We review these data and describe how this knowledge is currently applied in vaccine development.
Collapse
Affiliation(s)
- Aude Bonehill
- Laboratory of Molecular and Cellular Therapy, Department of Physiology-Immunology, Medical School of the Vrije Universiteit Brussel (VUB), Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | | | | |
Collapse
|
18
|
Smits E, Ponsaerts P, Lenjou M, Nijs G, Van Bockstaele DR, Berneman ZN, Van Tendeloo VFI. RNA-based gene transfer for adult stem cells and T cells. Leukemia 2004; 18:1898-902. [PMID: 15385941 DOI: 10.1038/sj.leu.2403463] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electroporation of mRNA has become an established method for gene transfer into dendritic cells for immunotherapeutic purposes. However, many more cell types and applications might benefit from an efficient mRNA-based gene transfer method. In this study, we investigated the potential of mRNA-based gene transfer to induce short-term transgene expression in adult stem cells and activated T cells, based on electroporation with mRNA encoding the enhanced green fluorescent protein. The results show efficient transgene expression in CD34-positive hematopoietic progenitor cells (35%), in in vitro cultured mesenchymal cells (90%) and in PHA-stimulated T cells (50%). Next to presentation of gene transfer results, potential applications of mRNA-based gene transfer in stem cells and T cells are discussed.
Collapse
Affiliation(s)
- E Smits
- Laboratory of Experimental Hematology, Faculty of Medicine, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | | | | | | | | | | | | |
Collapse
|
19
|
Su YR, Ishiguro H, Major AS, Dove DE, Zhang W, Hasty AH, Babaev VR, Linton MF, Fazio S. Macrophage apolipoprotein A-I expression protects against atherosclerosis in ApoE-deficient mice and up-regulates ABC transporters. Mol Ther 2004; 8:576-83. [PMID: 14529830 DOI: 10.1016/s1525-0016(03)00214-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The antiatherogenic effect of high-density lipoprotein (HDL) and its major protein component apolipoprotein A-I (apoA-I) has been largely attributed to their key roles in reverse cholesterol transport (RCT) and cellular cholesterol efflux. Substantial evidence shows that overexpression of human apoA-I reduces atherosclerosis in animal models. However, it is uncertain whether this protection is due to an increase in plasma HDL level or to a local effect in the artery wall. To test the hypothesis that expression of human apoA-I in macrophages can promote RCT in the artery wall, we used a retroviral construct expressing human apoA-I cDNA (MFG-HAI) to transduce ApoE(-/-) bone marrow cells and then transplanted these cells into ApoE(-/-) mice with preexisting atherosclerosis. ApoE(-/-) mice reconstituted with MFG-HAI marrow had a significant reduction (30%) in atherosclerotic lesions in the proximal aorta compared to control mice that received marrow expressing MFG parental virus. Peritoneal macrophages isolated from MFG-HAI mice showed a four- to fivefold increase in mRNA expression levels of both ATP-binding cassette (ABC) A1 and ABCG1 compared to controls. Our data demonstrate that gene transfer-mediated expression of human apoA-I in macrophages can compensate in part for apoE deficiency and delay the progression of atherosclerotic lesions by stimulating ABC-dependent cholesterol efflux and RCT.
Collapse
Affiliation(s)
- Yan Ru Su
- Atherosclerosis Research Unit, Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6300, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bonamino M, Serafini M, D'Amico G, Gaipa G, Todisco E, Bernasconi S, Golay J, Biondi A, Introna M. Functional transfer of CD40L gene in human B-cell precursor ALL blasts by second-generation SIN lentivectors. Gene Ther 2004; 11:85-93. [PMID: 14681701 DOI: 10.1038/sj.gt.3302141] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three different second-generation lentiviral self-inactivating vectors containing CMV, EF1alpha and PGK promoter, respectively, and all carrying the exogenous GFP gene, were compared for expression in human B-cell precursor ALL blasts. At a comparable percentage of transduction and vector DNA copy number, CMV clearly showed better efficiency of transcription. Human bone marrow stromal cells were favored compared to the MRC-5 cell line, as support for cell viability during infection. Cells were infected and analyzed after variable culture times ranging from 4 to 12 days, to reduce the possibility of pseudotransduction. In 10/14 samples, we detected more than 20% GFP-positive cells after exposure to high-titer viral supernatants. We then tested a similar vector carrying the human CD40L cDNA and, in similar infection conditions, obtained more than 20% transduction in 6/6 samples. The levels of transduction obtained were sufficient to induce the upregulation of CD83 molecule in cocultured immature dendritic cells.
Collapse
Affiliation(s)
- M Bonamino
- Centro M Tettamanti, Clinica Pediatrica Università di Milano Bicocca, Ospedale San Gerardo, Monza, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pereboeva L, Komarova S, Mikheeva G, Krasnykh V, Curiel DT. Approaches to utilize mesenchymal progenitor cells as cellular vehicles. Stem Cells 2004; 21:389-404. [PMID: 12832693 DOI: 10.1634/stemcells.21-4-389] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mammalian cells represent a novel vector approach for gene delivery that overcomes major drawbacks of viral and nonviral vectors and couples cell therapy with gene delivery. A variety of cell types have been tested in this regard, confirming that the ideal cellular vector system for ex vivo gene therapy has to comply with stringent criteria and is yet to be found. Several properties of mesenchymal progenitor cells (MPCs), such as easy access and simple isolation and propagation procedures, make these cells attractive candidates as cellular vehicles. In the current work, we evaluated the potential utility of MPCs as cellular vectors with the intent to use them in the cancer therapy context. When conventional adenoviral (Ad) vectors were used for MPC transduction, the highest transduction efficiency of MPCs was 40%. We demonstrated that Ad primary-binding receptors were poorly expressed on MPCs, while the secondary Ad receptors and integrins presented in sufficient amounts. By employing Ad vectors with incorporated integrin-binding motifs (Ad5lucRGD), MPC transduction was augmented tenfold, achieving efficient genetic loading of MPCs with reporter and anticancer genes. MPCs expressing thymidine kinase were able to exert a bystander killing effect on the cancer cell line SKOV3ip1 in vitro. In addition, we found that MPCs were able to support Ad replication, and thus can be used as cell vectors to deliver oncolytic viruses. Our results show that MPCs can foster expression of suicide genes or support replication of adenoviruses as potential anticancer therapeutic payloads. These findings are consistent with the concept that MPCs possess key properties that ensure their employment as cellular vehicles and can be used to deliver either therapeutic genes or viruses to tumor sites.
Collapse
Affiliation(s)
- L Pereboeva
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, 35294, USA.
| | | | | | | | | |
Collapse
|
22
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2003; 11:810-814. [DOI: 10.11569/wcjd.v11.i6.810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
23
|
Van den Plas D, Ponsaerts P, Van Tendeloo V, Van Bockstaele DR, Berneman ZN, Merregaert J. Efficient removal of LoxP-flanked genes by electroporation of Cre-recombinase mRNA. Biochem Biophys Res Commun 2003; 305:10-5. [PMID: 12732189 DOI: 10.1016/s0006-291x(03)00669-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Introduction of Cre-recombinase in target cells is currently achieved by transfection of plasmid DNA or by viral-mediated transduction. However, efficiency of non-viral DNA transfection is often low in many cell types, and the use of viral vectors for transduction implies a more complex and laborious manipulation associated with safety issues. We have developed a non-viral non-DNA technique for rapid and highly efficient excision of LoxP-flanked DNA sequences based on electroporation of in vitro transcribed mRNA encoding Cre-recombinase. A K562-DSRed[EGFP] cell line was developed in order to measure Cre-mediated recombination by flow cytometric analysis. These cells have a stable integrated DSRed reporter gene flanked by two LoxP sites, and an EGFP reporter gene, which could only be transcribed when the coding sequence for DSRed was removed. The presented data show recombination efficiencies, as measured by appearance of EGFP-fluorescence, of up to 85% in Cre-recombinase mRNA-electroporated K562-DSRed[EGFP] cells. In conclusion, mRNA electroporation of Cre-recombinase is a powerful, safe, and clinically applicable alternative to current technologies used for excision of stably integrated LoxP-flanked DNA sequences.
Collapse
Affiliation(s)
- Dave Van den Plas
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Krystyna Konopka
- Department of Microbiology, University of the Pacific School of Dentistry, 2155 Webster Street, San Francisco, California 94115, USA
| |
Collapse
|
25
|
Srivastava A. Obstacles to human hematopoietic stem cell transduction by recombinant adeno-associated virus 2 vectors. J Cell Biochem 2002; 38:39-45. [PMID: 12046848 DOI: 10.1002/jcb.10053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recombinant adeno-associated virus 2 (AAV) vectors have proven to be a potentially useful alternative to the more commonly used retroviral and adenoviral vectors for gene therapy in humans. Their safety and efficacy in Phase I clinical trials for gene therapy of cystic fibrosis and hemophilia B have been well documented, and their remarkable versatility and efficacy in a wide variety of pre-clinical models of human diseases have catapulted these vectors to the forefront. AAV vectors have been shown to be particularly well suited for transduction of brain and muscle cells. However, controversies exist with regard to their utility as a vector for gene transfer into human hematopoietic stem cells. On the one hand, some investigators have concluded that AAV vectors do not transduce hematopoietic stem cells at all, and others have reported that stem cell transduction requires enormously high vector-to-cell ratios. On the other hand, some investigators have reported high-efficiency transduction of human hematopoietic stem cells at low vector-to cell ratios. This article will provide a historical perspective as well as attempt to elaborate the reasons behind these controversies which have become clearer by studies focused on understanding, at the molecular level, the fundamental aspects of the life cycle of recombinant AAV vectors.
Collapse
Affiliation(s)
- Arun Srivastava
- Department of Microbiology & Immunology, Walther Oncology Center, Indiana University School of Medicine, Indianapolis 46202-5120, USA.
| |
Collapse
|
26
|
Abstract
In vivo electrotransfer is a physical technique for gene delivery in various mammalian tissues, which involves the injection of plasmid DNA into a target tissue and administration of an electric field. Its ease of performance, as well as recent understanding of its mechanism and applications to different mammalian tissues such as skeletal muscle, liver, brain and tumors, makes it a powerful technique. It could be used in gene therapy and as a laboratory tool to study gene functions.
Collapse
Affiliation(s)
- Pascal Bigey
- Laboratoire de Chimie Bioorganique et de Biotechnologie Moléculaire et Cellulaire, UMR 7001 ENSCP/CNRS/Aventis, CRVA-Aventis, Batiment Monod, Laboratory 3C05, 13 quai Jules Guesde, 94403 Vitry-sur-Seine cedex, France
| | | | | |
Collapse
|