1
|
Mediane DH, Basu S, Cahill EN, Anastasiades PG. Medial prefrontal cortex circuitry and social behaviour in autism. Neuropharmacology 2024; 260:110101. [PMID: 39128583 DOI: 10.1016/j.neuropharm.2024.110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) has proven to be highly enigmatic due to the diversity of its underlying genetic causes and the huge variability in symptom presentation. Uncovering common phenotypes across people with ASD and pre-clinical models allows us to better understand the influence on brain function of the many different genetic and cellular processes thought to contribute to ASD aetiology. One such feature of ASD is the convergent evidence implicating abnormal functioning of the medial prefrontal cortex (mPFC) across studies. The mPFC is a key part of the 'social brain' and may contribute to many of the changes in social behaviour observed in people with ASD. Here we review recent evidence for mPFC involvement in both ASD and social behaviours. We also highlight how pre-clinical mouse models can be used to uncover important cellular and circuit-level mechanisms that may underly atypical social behaviours in ASD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Diego H Mediane
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Shinjini Basu
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Emma N Cahill
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Paul G Anastasiades
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom.
| |
Collapse
|
2
|
Jones SP, O'Neill N, Carpenter JC, Muggeo S, Colasante G, Kullmann DM, Lignani G. Early developmental alterations of CA1 pyramidal cells in Dravet syndrome. Neurobiol Dis 2024; 201:106688. [PMID: 39368670 DOI: 10.1016/j.nbd.2024.106688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024] Open
Abstract
Dravet Syndrome (DS) is most often caused by heterozygous loss-of-function mutations in the voltage-gated sodium channel gene SCN1A (Nav1.1), resulting in severe epilepsy and neurodevelopmental impairment thought to be cause by reduced interneuron excitability. However, recent studies in mouse models suggest that interneuron dysfunction alone does not completely explain all the cellular and network impairments seen in DS. Here, we investigated the development of the intrinsic, synaptic, and network properties of CA1 pyramidal cells in a DS model prior to the appearance of overt seizures. We report that CA1 pyramidal cell development is altered by heterozygous reduction of Scn1a, and propose that this is explained by a period of reduced intrinsic excitability in early postnatal life, during which Scn1a is normally expressed in hippocampal pyramidal cells. We also use a novel ex vivo model of homeostatic plasticity to show an instability in homeostatic response during DS epileptogenesis. This study provides evidence for the early effects of Scn1a haploinsufficiency in pyramidal cells in contributing to the pathophysiology of DS.
Collapse
Affiliation(s)
- Steffan P Jones
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Nathanael O'Neill
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Jenna C Carpenter
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Sharon Muggeo
- San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Gaia Colasante
- San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK.
| |
Collapse
|
3
|
Shiota Y, Nishiyama T, Yokoyama S, Yoshimura Y, Hasegawa C, Tanaka S, Iwasaki S, Kikuchi M. Association of genetic variants with autism spectrum disorder in Japanese children revealed by targeted sequencing. Front Genet 2024; 15:1352480. [PMID: 39280100 PMCID: PMC11395840 DOI: 10.3389/fgene.2024.1352480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Autism spectrum disorders (ASD) represent a heterogeneous group of neurodevelopmental disorders with strong genetic predispositions. Although an increasing number of genetic variants have been implicated in the pathogenesis of ASD, little is known about the relationship between ASD-associated genetic variants and individual ASD traits. Therefore, we aimed to investigate these relationships. Methods Here, we report a case-control association study of 32 Japanese children with ASD (mainly with high-functioning autism [HFA]) and 36 with typical development (TD). We explored previously established ASD-associated genes using a next-generation sequencing panel and determined the association between Social Responsiveness Scale (SRS) T-scores and intelligence quotient (IQ) scores. Results In the genotype-phenotype analyses, 40 variants of five genes (SCN1A, SHANK3, DYRK1A, CADPS, and SCN2A) were associated with ASD/TD phenotypes. In particular, 10 SCN1A variants passed permutation filtering (false discovery rate <0.05). In the quantitative association analyses, 49 variants of 12 genes (CHD8, SCN1A, SLC6A1, KMT5B, CNTNAP2, KCNQ3, SCN2A, ARID1B, SHANK3, DYRK1A, FOXP1, and GRIN2B) and 50 variants of 10 genes (DYRK1A, SCN2A, SLC6A1, ARID1B, CNTNAP2, SHANK3, FOXP1, PTEN, SCN1A, and CHD8) were associated with SRS T- and IQ-scores, respectively. Conclusion Our data suggest that these identified variants are essential for the genetic architecture of HFA.
Collapse
Affiliation(s)
- Yuka Shiota
- Japan Society for the Promotion of Science, Tokyo, Japan
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Yuko Yoshimura
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Sumie Iwasaki
- Japan Society for the Promotion of Science, Tokyo, Japan
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
4
|
de Cássia Collaço R, Lammens M, Blevins C, Rodgers K, Gurau A, Yamauchi S, Kim C, Forrester J, Liu E, Ha J, Mei Y, Boehm C, Wohler E, Sobreira N, Rowe PC, Valle D, Brock MV, Bosmans F. Anxiety and dysautonomia symptoms in patients with a Na V1.7 mutation and the potential benefits of low-dose short-acting guanfacine. Clin Auton Res 2024; 34:191-201. [PMID: 38064009 PMCID: PMC11805752 DOI: 10.1007/s10286-023-01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/15/2023] [Indexed: 03/17/2024]
Abstract
PURPOSE Guanfacine is an α2A-adrenergic receptor agonist, FDA-approved to treat attention-deficit hyperactivity disorder and high blood pressure, typically as an extended-release formulation up to 7 mg/day. In our dysautonomia clinic, we observed that off-label use of short-acting guanfacine at 1 mg/day facilitated symptom relief in two families with multiple members presenting with severe generalized anxiety. We also noted anecdotal improvements in associated dysautonomia symptoms such as hyperhidrosis, cognitive impairment, and palpitations. We postulated that a genetic deficit existed in these patients that might augment guanfacine susceptibility. METHODS We used whole-exome sequencing to identify mutations in patients with shared generalized anxiety and dysautonomia symptoms. Guanfacine-induced changes in the function of voltage-gated Na+ channels were investigated using voltage-clamp electrophysiology. RESULTS Whole-exome sequencing uncovered the p.I739V mutation in SCN9A in the proband of two nonrelated families. Moreover, guanfacine inhibited ionic currents evoked by wild-type and mutant NaV1.7 encoded by SCN9A, as well as other NaV channel subtypes to a varying degree. CONCLUSION Our study provides further evidence for a possible pathophysiological role of NaV1.7 in anxiety and dysautonomia. Combined with off-target effects on NaV channel function, daily administration of 1 mg short-acting guanfacine may be sufficient to normalize NaV channel mutation-induced changes in sympathetic activity, perhaps aided by partial inhibition of NaV1.7 or other channel subtypes. In a broader context, expanding genetic and functional data about ion channel aberrations may enable the prospect of stratifying patients in which mutation-induced increased sympathetic tone normalization by guanfacine can support treatment strategies for anxiety and dysautonomia symptoms.
Collapse
Affiliation(s)
- Rita de Cássia Collaço
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Maxime Lammens
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Carley Blevins
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen Rodgers
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrei Gurau
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Suguru Yamauchi
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Christine Kim
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jeannine Forrester
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Edward Liu
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jinny Ha
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yuping Mei
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Corrine Boehm
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Rowe
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Malcolm V Brock
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Frank Bosmans
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium.
| |
Collapse
|
5
|
Peall KJ, Owen MJ, Hall J. Rare genetic brain disorders with overlapping neurological and psychiatric phenotypes. Nat Rev Neurol 2024; 20:7-21. [PMID: 38001363 DOI: 10.1038/s41582-023-00896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Understanding rare genetic brain disorders with overlapping neurological and psychiatric phenotypes is of increasing importance given the potential for developing disease models that could help to understand more common, polygenic disorders. However, the traditional clinical boundaries between neurology and psychiatry result in frequent segregation of these disorders into distinct silos, limiting cross-specialty understanding that could facilitate clinical and biological advances. In this Review, we highlight multiple genetic brain disorders in which neurological and psychiatric phenotypes are observed, but for which in-depth, cross-spectrum clinical phenotyping is rarely undertaken. We describe the combined phenotypes observed in association with genetic variants linked to epilepsy, dystonia, autism spectrum disorder and schizophrenia. We also consider common underlying mechanisms that centre on synaptic plasticity, including changes to synaptic and neuronal structure, calcium handling and the balance of excitatory and inhibitory neuronal activity. Further investigation is needed to better define and replicate these phenotypes in larger cohorts, which would help to gain greater understanding of the pathophysiological mechanisms and identify common therapeutic targets.
Collapse
Affiliation(s)
- Kathryn J Peall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK.
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Michael J Owen
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
6
|
Huang J, Fan X, Jin X, Teng L, Yan N. Dual-pocket inhibition of Na v channels by the antiepileptic drug lamotrigine. Proc Natl Acad Sci U S A 2023; 120:e2309773120. [PMID: 37782796 PMCID: PMC10576118 DOI: 10.1073/pnas.2309773120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
Voltage-gated sodium (Nav) channels govern membrane excitability, thus setting the foundation for various physiological and neuronal processes. Nav channels serve as the primary targets for several classes of widely used and investigational drugs, including local anesthetics, antiepileptic drugs, antiarrhythmics, and analgesics. In this study, we present cryogenic electron microscopy (cryo-EM) structures of human Nav1.7 bound to two clinical drugs, riluzole (RLZ) and lamotrigine (LTG), at resolutions of 2.9 Å and 2.7 Å, respectively. A 3D EM reconstruction of ligand-free Nav1.7 was also obtained at 2.1 Å resolution. RLZ resides in the central cavity of the pore domain and is coordinated by residues from repeats III and IV. Whereas one LTG molecule also binds to the central cavity, the other is found beneath the intracellular gate, known as site BIG. Therefore, LTG, similar to lacosamide and cannabidiol, blocks Nav channels via a dual-pocket mechanism. These structures, complemented with docking and mutational analyses, also explain the structure-activity relationships of the LTG-related linear 6,6 series that have been developed for improved efficacy and subtype specificity on different Nav channels. Our findings reveal the molecular basis for these drugs' mechanism of action and will aid the development of novel antiepileptic and pain-relieving drugs.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Liming Teng
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
- Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong Province518107, China
| |
Collapse
|
7
|
Pretzsch CM, Ecker C. Structural neuroimaging phenotypes and associated molecular and genomic underpinnings in autism: a review. Front Neurosci 2023; 17:1172779. [PMID: 37457001 PMCID: PMC10347684 DOI: 10.3389/fnins.2023.1172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Autism has been associated with differences in the developmental trajectories of multiple neuroanatomical features, including cortical thickness, surface area, cortical volume, measures of gyrification, and the gray-white matter tissue contrast. These neuroimaging features have been proposed as intermediate phenotypes on the gradient from genomic variation to behavioral symptoms. Hence, examining what these proxy markers represent, i.e., disentangling their associated molecular and genomic underpinnings, could provide crucial insights into the etiology and pathophysiology of autism. In line with this, an increasing number of studies are exploring the association between neuroanatomical, cellular/molecular, and (epi)genetic variation in autism, both indirectly and directly in vivo and across age. In this review, we aim to summarize the existing literature in autism (and neurotypicals) to chart a putative pathway from (i) imaging-derived neuroanatomical cortical phenotypes to (ii) underlying (neuropathological) biological processes, and (iii) associated genomic variation.
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
8
|
Dolma S, Joshi A. The Node of Ranvier as an Interface for Axo-Glial Interactions: Perturbation of Axo-Glial Interactions in Various Neurological Disorders. J Neuroimmune Pharmacol 2023; 18:215-234. [PMID: 37285016 DOI: 10.1007/s11481-023-10072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The action potential conduction along the axon is highly dependent on the healthy interactions between the axon and myelin-producing glial cells. Myelin, which facilitates action potential, is the protective insulation around the axon formed by Schwann cells and oligodendrocytes in the peripheral (PNS) and central nervous system (CNS), respectively. Myelin is a continuous structure with intermittent gaps called nodes of Ranvier, which are the sites enriched with ion channels, transmembrane, scaffolding, and cytoskeletal proteins. Decades-long extensive research has identified a comprehensive proteome with strictly regularized localization at the node of Ranvier. Concurrently, axon-glia interactions at the node of Ranvier have gathered significant attention as the pathophysiological targets for various neurodegenerative disorders. Numerous studies have shown the alterations in the axon-glia interactions culminating in neurological diseases. In this review, we have provided an update on the molecular composition of the node of Ranvier. Further, we have discussed in detail the consequences of disruption of axon-glia interactions during the pathogenesis of various CNS and PNS disorders.
Collapse
Affiliation(s)
- Sonam Dolma
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India
| | - Abhijeet Joshi
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India.
| |
Collapse
|
9
|
Chakraborty S, Parayil R, Mishra S, Nongthomba U, Clement JP. Epilepsy Characteristics in Neurodevelopmental Disorders: Research from Patient Cohorts and Animal Models Focusing on Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms231810807. [PMID: 36142719 PMCID: PMC9501968 DOI: 10.3390/ijms231810807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy, a heterogeneous group of brain-related diseases, has continued to significantly burden society and families. Epilepsy comorbid with neurodevelopmental disorders (NDDs) is believed to occur due to multifaceted pathophysiological mechanisms involving disruptions in the excitation and inhibition (E/I) balance impeding widespread functional neuronal circuitry. Although the field has received much attention from the scientific community recently, the research has not yet translated into actionable therapeutics to completely cure epilepsy, particularly those comorbid with NDDs. In this review, we sought to elucidate the basic causes underlying epilepsy as well as those contributing to the association of epilepsy with NDDs. Comprehensive emphasis is put on some key neurodevelopmental genes implicated in epilepsy, such as MeCP2, SYNGAP1, FMR1, SHANK1-3 and TSC1, along with a few others, and the main electrophysiological and behavioral deficits are highlighted. For these genes, the progress made in developing appropriate and valid rodent models to accelerate basic research is also detailed. Further, we discuss the recent development in the therapeutic management of epilepsy and provide a briefing on the challenges and caveats in identifying and testing species-specific epilepsy models.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Rrejusha Parayil
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | - Shefali Mishra
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - Upendra Nongthomba
- Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bengaluru 560012, India
| | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
- Correspondence: ; Tel.: +91-08-2208-2613
| |
Collapse
|
10
|
Son JH, Do H, Han J. Intragenic L1 Insertion: One Possibility of Brain Disorder. Life (Basel) 2022; 12:life12091425. [PMID: 36143463 PMCID: PMC9505610 DOI: 10.3390/life12091425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Long interspersed nuclear element 1 (LINE1, L1) is a retrotransposon comprising ~17% of the human genome. A subset of L1s maintains the potential to mobilize and alter the genomic landscape, consequently contributing to the change in genome integrity and gene expression. L1 retrotransposition occurs in the human brain regardless of disease status. However, in the brain of patients with various brain diseases, the expression level and copy number of L1 are significantly increased. In this review, we briefly introduce the methodologies applied to measure L1 mobility and identify genomic loci where new insertion of L1 occurs in the brain. Then, we present a list of genes disrupted by L1 transposition in the genome of patients with brain disorders. Finally, we discuss the association between genes disrupted by L1 and relative brain disorders.
Collapse
Affiliation(s)
- Ji-Hoon Son
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyunsu Do
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
- BioMedical Research Center, KAIST, Daejeon 34141, Korea
- Correspondence:
| |
Collapse
|
11
|
Shared Etiology in Autism Spectrum Disorder and Epilepsy with Functional Disability. Behav Neurol 2022; 2022:5893519. [PMID: 35530166 PMCID: PMC9068331 DOI: 10.1155/2022/5893519] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
Autism spectrum disorders and epilepsies are heterogeneous human disorders that have miscellaneous etiologies and pathophysiology. There is considerable risk of frequent epilepsy in autism that facilitates amplified morbidity and mortality. Several biological pathways appear to be involved in disease progression, including gene transcription regulation, cellular growth, synaptic channel function, and maintenance of synaptic structure. Here, abnormalities in excitatory/inhibitory (E/I) balance ratio are reviewed along with part of an epileptiform activity that may drive both overconnectivity and genetic disorders where autism spectrum disorders and epilepsy frequently co-occur. The most current ideas concerning common etiological and molecular mechanisms for co-occurrence of both autism spectrum disorders and epilepsy are discussed along with the powerful pharmacological therapies that protect the cognition and behavior of patients. Better understanding is necessary to identify a biological mechanism that might lead to possible treatments for these neurological disorders.
Collapse
|
12
|
Tran HNT, McMahon KL, Deuis JR, Vetter I, Schroeder CI. Structural and functional insights into the inhibition of human voltage-gated sodium channels by μ-conotoxin KIIIA disulfide isomers. J Biol Chem 2022; 298:101728. [PMID: 35167877 PMCID: PMC8927997 DOI: 10.1016/j.jbc.2022.101728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
μ-Conotoxins are components of cone snail venom, well-known for their analgesic activity through potent inhibition of voltage-gated sodium channel (NaV) subtypes, including NaV1.7. These small, disulfide-rich peptides are typically stabilized by three disulfide bonds arranged in a ‘native’ CysI-CysIV, CysII-CysV, CysIII-CysVI pattern of disulfide connectivity. However, μ-conotoxin KIIIA, the smallest and most studied μ-conotoxin with inhibitory activity at NaV1.7, forms two distinct disulfide bond isomers during thermodynamic oxidative folding, including Isomer 1 (CysI-CysV, CysII-CysIV, CysIII-CysVI) and Isomer 2 (CysI-CysVI, CysII-CysIV, CysIII-CysV), but not the native μ-conotoxin arrangement. To date, there has been no study on the structure and activity of KIIIA comprising the native μ-conotoxin disulfide bond arrangement. Here, we evaluated the synthesis, potency, sodium channel subtype selectivity, and 3D structure of the three isomers of KIIIA. Using a regioselective disulfide bond-forming strategy, we synthetically produced the three μ-conotoxin KIIIA isomers displaying distinct bioactivity and NaV subtype selectivity across human NaV channel subtypes 1.2, 1.4, and 1.7. We show that Isomer 1 inhibits NaV subtypes with a rank order of potency of NaV1.4 > 1.2 > 1.7 and Isomer 2 in the order of NaV1.4≈1.2 > 1.7, while the native isomer inhibited NaV1.4 > 1.7≈1.2. The three KIIIA isomers were further evaluated by NMR solution structure analysis and molecular docking with hNaV1.2. Our study highlights the importance of investigating alternate disulfide isomers, as disulfide connectivity affects not only the overall structure of the peptides but also the potency and subtype selectivity of μ-conotoxins targeting therapeutically relevant NaV subtypes.
Collapse
Affiliation(s)
- Hue N T Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Kirsten L McMahon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia.
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA.
| |
Collapse
|
13
|
Caporale N, Leemans M, Birgersson L, Germain PL, Cheroni C, Borbély G, Engdahl E, Lindh C, Bressan RB, Cavallo F, Chorev NE, D'Agostino GA, Pollard SM, Rigoli MT, Tenderini E, Tobon AL, Trattaro S, Troglio F, Zanella M, Bergman Å, Damdimopoulou P, Jönsson M, Kiess W, Kitraki E, Kiviranta H, Nånberg E, Öberg M, Rantakokko P, Rudén C, Söder O, Bornehag CG, Demeneix B, Fini JB, Gennings C, Rüegg J, Sturve J, Testa G. From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures. Science 2022; 375:eabe8244. [PMID: 35175820 DOI: 10.1126/science.abe8244] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Convergent evidence associates exposure to endocrine disrupting chemicals (EDCs) with major human diseases, even at regulation-compliant concentrations. This might be because humans are exposed to EDC mixtures, whereas chemical regulation is based on a risk assessment of individual compounds. Here, we developed a mixture-centered risk assessment strategy that integrates epidemiological and experimental evidence. We identified that exposure to an EDC mixture in early pregnancy is associated with language delay in offspring. At human-relevant concentrations, this mixture disrupted hormone-regulated and disease-relevant regulatory networks in human brain organoids and in the model organisms Xenopus leavis and Danio rerio, as well as behavioral responses. Reinterrogating epidemiological data, we found that up to 54% of the children had prenatal exposures above experimentally derived levels of concern, reaching, for the upper decile compared with the lowest decile of exposure, a 3.3 times higher risk of language delay.
Collapse
Affiliation(s)
- Nicolò Caporale
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy.,Human Technopole, V.le Rita Levi-Montalcini, 1, 20157 Milan, Italy
| | - Michelle Leemans
- UMR 7221, Phyma, CNRS-Muséum National d'Histoire Naturelle, Sorbonne Université, 75005 Paris, France
| | - Lina Birgersson
- Department of Biological and Environmental Sciences, University of Gothenburg, 41463 Gothenburg, Sweden
| | - Pierre-Luc Germain
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Cristina Cheroni
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy.,Human Technopole, V.le Rita Levi-Montalcini, 1, 20157 Milan, Italy
| | - Gábor Borbély
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden
| | - Elin Engdahl
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden.,Department of Organismal Biology, Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-221 85 Lund, Sweden
| | - Raul Bardini Bressan
- Medical Research Council Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, UK
| | - Francesca Cavallo
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Nadav Even Chorev
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Giuseppe Alessandro D'Agostino
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Steven M Pollard
- Medical Research Council Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, UK
| | - Marco Tullio Rigoli
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy
| | - Erika Tenderini
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Alejandro Lopez Tobon
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Sebastiano Trattaro
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy
| | - Flavia Troglio
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Matteo Zanella
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Åke Bergman
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden.,Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden.,School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Pauliina Damdimopoulou
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden.,Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Maria Jönsson
- Department of Organismal Biology, Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Wieland Kiess
- Hospital for Children and Adolescents, Department of Women and Child Health, University Hospital, University of Leipzig, 04103 Leipzig, Germany
| | - Efthymia Kitraki
- Lab of Basic Sciences, Faculty of Dentistry, National and Kapodistrian University of Athens, 152 72 Athens, Greece
| | - Hannu Kiviranta
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Kuopio 70210, Finland
| | - Eewa Nånberg
- School of Health Sciences, Örebro University, SE-70182 Örebro, Sweden
| | - Mattias Öberg
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Panu Rantakokko
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Kuopio 70210, Finland
| | - Christina Rudén
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Olle Söder
- Department of Women's and Children's Health, Pediatric Endocrinology Division, Karolinska Institutet and University Hospital, SE-17176 Stockholm, Sweden
| | - Carl-Gustaf Bornehag
- Faculty of Health, Science and Technology, Department of Health Sciences, Karlstad University, SE- 651 88 Karlstad, Sweden.,Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barbara Demeneix
- UMR 7221, Phyma, CNRS-Muséum National d'Histoire Naturelle, Sorbonne Université, 75005 Paris, France
| | - Jean-Baptiste Fini
- UMR 7221, Phyma, CNRS-Muséum National d'Histoire Naturelle, Sorbonne Université, 75005 Paris, France
| | - Chris Gennings
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joëlle Rüegg
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden.,Department of Organismal Biology, Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, 41463 Gothenburg, Sweden
| | - Giuseppe Testa
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy.,Human Technopole, V.le Rita Levi-Montalcini, 1, 20157 Milan, Italy
| |
Collapse
|
14
|
Al Dera H. Cellular and molecular mechanisms underlying autism spectrum disorders and associated comorbidities: A pathophysiological review. Biomed Pharmacother 2022; 148:112688. [PMID: 35149383 DOI: 10.1016/j.biopha.2022.112688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders that develop in early life due to interaction between several genetic and environmental factors and lead to alterations in brain function and structure. During the last decades, several mechanisms have been placed to explain the pathogenesis of autism. Unfortunately, these are reported in several studies and reviews which make it difficult to follow by the reader. In addition, some recent molecular mechanisms related to ASD have been unrevealed. This paper revises and highlights the major common molecular mechanisms responsible for the clinical symptoms seen in people with ASD, including the roles of common genetic factors and disorders, neuroinflammation, GABAergic signaling, and alterations in Ca+2 signaling. Besides, it covers the major molecular mechanisms and signaling pathways involved in initiating the epileptic seizure, including the alterations in the GABAergic and glutamate signaling, vitamin and mineral deficiency, disorders of metabolism, and autoimmunity. Finally, this review also discusses sleep disorder patterns and the molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Hussain Al Dera
- Department of Basic Medical Sciences, College of Medicine at King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.
| |
Collapse
|
15
|
Tao E, Corry B. Characterizing fenestration size in sodium channel subtypes and their accessibility to inhibitors. Biophys J 2022; 121:193-206. [PMID: 34958776 PMCID: PMC8790208 DOI: 10.1016/j.bpj.2021.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 01/21/2023] Open
Abstract
Voltage-gated sodium channels (Nav) underlie the electrical activity of nerve and muscle cells. Humans have nine different subtypes of these channels, which are the target of small-molecule inhibitors commonly used to treat a range of conditions. Structural studies have identified four lateral fenestrations within the Nav pore module that have been shown to influence Nav pore blocker access during resting-state inhibition. However, the structural differences among the nine subtypes are still unclear. In particular, the dimensions of the four individual fenestrations across the Nav subtypes and their differential accessibility to pore blockers is yet to be characterized. To address this, we applied classical molecular dynamics simulations to study the recently published structures of Nav1.1, Nav1.2, Nav1.4, Nav1.5, and Nav1.7. Although there is significant variability in the bottleneck sizes of the Nav fenestrations, the subtypes follow a common pattern, with wider DI-II and DIII-IV fenestrations, a more restricted DII-III fenestration, and the most restricted DI-IV fenestration. We further identify the key bottleneck residues in each fenestration and show that the motions of aromatic residue sidechains govern the bottleneck radii. Well-tempered metadynamics simulations of Nav1.4 and Nav1.5 in the presence of the pore blocker lidocaine also support the DI-II fenestration being the most likely access route for drugs. Our computational results provide a foundation for future in vitro experiments examining the route of drug access to sodium channels. Understanding the fenestrations and their accessibility to drugs is critical for future analyses of diseases mutations across different sodium channel subtypes, with the potential to inform pharmacological development of resting-state inhibitors and subtype-selective drug design.
Collapse
Affiliation(s)
- Elaine Tao
- Research School of Biology, Australian National University, Canberra, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, Australia.
| |
Collapse
|
16
|
Ding J, Li X, Tian H, Wang L, Guo B, Wang Y, Li W, Wang F, Sun T. SCN1A Mutation-Beyond Dravet Syndrome: A Systematic Review and Narrative Synthesis. Front Neurol 2022; 12:743726. [PMID: 35002916 PMCID: PMC8739186 DOI: 10.3389/fneur.2021.743726] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background:SCN1A is one of the most common epilepsy genes. About 80% of SCN1A gene mutations cause Dravet syndrome (DS), which is a severe and catastrophic epileptic encephalopathy. More than 1,800 mutations have been identified in SCN1A. Although it is known that SCN1A is the main cause of DS and genetic epilepsy with febrile seizures plus (GEFS+), there is a dearth of information on the other related diseases caused by mutations of SCN1A. Objective: The aim of this study is to systematically review the literature associated with SCN1A and other non-DS-related disorders. Methods: We searched PubMed and SCOPUS for all the published cases related to gene mutations of SCN1A until October 20, 2021. The results reported by each study were summarized narratively. Results: The PubMed and SCOPUS search yielded 2,889 items. A total of 453 studies published between 2005 and 2020 met the final inclusion criteria. Overall, 303 studies on DS, 93 on GEFS+, three on Doose syndrome, nine on the epilepsy of infancy with migrating focal seizures (EIMFS), six on the West syndrome, two on the Lennox–Gastaut syndrome (LGS), one on the Rett syndrome, seven on the nonsyndromic epileptic encephalopathy (NEE), 19 on hemiplegia migraine, six on autism spectrum disorder (ASD), two on nonepileptic SCN1A-related sudden deaths, and two on the arthrogryposis multiplex congenital were included. Conclusion: Aside from DS, SCN1A also causes other epileptic encephalopathies, such as GEFS+, Doose syndrome, EIMFS, West syndrome, LGS, Rett syndrome, and NEE. In addition to epilepsy, hemiplegic migraine, ASD, sudden death, and arthrogryposis multiplex congenital can also be caused by mutations of SCN1A.
Collapse
Affiliation(s)
- Jiangwei Ding
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyan Tian
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Baorui Guo
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Yangyang Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Wenchao Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Feng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
17
|
Mahling R, Hovey L, Isbell HM, Marx DC, Miller MS, Kilpatrick AM, Weaver LD, Yoder JB, Kim EH, Andresen CNJ, Li S, Shea MA. Na V1.2 EFL domain allosterically enhances Ca 2+ binding to sites I and II of WT and pathogenic calmodulin mutants bound to the channel CTD. Structure 2021; 29:1339-1356.e7. [PMID: 33770503 PMCID: PMC8458505 DOI: 10.1016/j.str.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 11/23/2022]
Abstract
Neuronal voltage-gated sodium channel NaV1.2 C-terminal domain (CTD) binds calmodulin (CaM) constitutively at its IQ motif. A solution structure (6BUT) and other NMR evidence showed that the CaM N domain (CaMN) is structurally independent of the C-domain (CaMC) whether CaM is bound to the NaV1.2IQp (1,901-1,927) or NaV1.2CTD (1,777-1,937) with or without calcium. However, in the CaM + NaV1.2CTD complex, the Ca2+ affinity of CaMN was more favorable than in free CaM, while Ca2+ affinity for CaMC was weaker than in the CaM + NaV1.2IQp complex. The CTD EF-like (EFL) domain allosterically widened the energetic gap between CaM domains. Cardiomyopathy-associated CaM mutants (N53I(N54I), D95V(D96V), A102V(A103V), E104A(E105A), D129G(D130G), and F141L(F142L)) all bound the NaV1.2 IQ motif favorably under resting (apo) conditions and bound calcium normally at CaMN sites. However, only N53I and A102V bound calcium at CaMC sites at [Ca2+] < 100 μM. Thus, they are expected to respond like wild-type CaM to Ca2+ spikes in excitable cells.
Collapse
Affiliation(s)
- Ryan Mahling
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Liam Hovey
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Holly M Isbell
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Dagan C Marx
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Mark S Miller
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Adina M Kilpatrick
- Department of Physics and Astronomy, Drake University, Des Moines, IA 50311-4516, USA
| | - Lisa D Weaver
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Jesse B Yoder
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Elaine H Kim
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Corinne N J Andresen
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Shuxiang Li
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Madeline A Shea
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA.
| |
Collapse
|
18
|
Bagheri S, Haddadi R, Saki S, Kourosh-Arami M, Komaki A. The effect of sodium channels on neurological/neuronal disorders: A systematic review. Int J Dev Neurosci 2021; 81:669-685. [PMID: 34687079 DOI: 10.1002/jdn.10153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
Neurological and neuronal disorders are associated with structural, biochemical, or electrical abnormalities in the nervous system. Many neurological diseases have not yet been discovered. Interventions used for the treatment of these disorders include avoidance measures, lifestyle changes, physiotherapy, neurorehabilitation, pain management, medication, and surgery. In the sodium channelopathies, alterations in the structure, expression, and function of voltage-gated sodium channels (VGSCs) are considered as the causes of neurological and neuronal diseases. Online databases, including Scopus, Science Direct, Google Scholar, and PubMed were assessed for studies published between 1977 and 2020 using the keywords of review, sodium channels blocker, neurological diseases, and neuronal diseases. VGSCs consist of one α subunit and two β subunits. These subunits are known to regulate the gating kinetics, functional characteristics, and localization of the ion channel. These channels are involved in cell migration, cellular connections, neuronal pathfinding, and neurite outgrowth. Through the VGSC, the action potential is triggered and propagated in the neurons. Action potentials are physiological functions and passage of impermeable ions. The electrophysiological properties of these channels and their relationship with neurological and neuronal disorders have been identified. Subunit mutations are involved in the development of diseases, such as epilepsy, multiple sclerosis, autism, and Alzheimer's disease. Accordingly, we conducted a review of the link between VGSCs and neurological and neuronal diseases. Also, novel therapeutic targets were introduced for future drug discoveries.
Collapse
Affiliation(s)
- Shokufeh Bagheri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology, School of Pharmacy, Hamadan University of Medical Science, Hamadan, Iran
| | - Sahar Saki
- Vice-Chancellor for Research and Technology, Hamadan University of Medical Science, Hamadan, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
19
|
Wu X, Hong L. Calmodulin Interactions with Voltage-Gated Sodium Channels. Int J Mol Sci 2021; 22:ijms22189798. [PMID: 34575961 PMCID: PMC8472079 DOI: 10.3390/ijms22189798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Calmodulin (CaM) is a small protein that acts as a ubiquitous signal transducer and regulates neuronal plasticity, muscle contraction, and immune response. It interacts with ion channels and plays regulatory roles in cellular electrophysiology. CaM modulates the voltage-gated sodium channel gating process, alters sodium current density, and regulates sodium channel protein trafficking and expression. Many mutations in the CaM-binding IQ domain give rise to diseases including epilepsy, autism, and arrhythmias by interfering with CaM interaction with the channel. In the present review, we discuss CaM interactions with the voltage-gated sodium channel and modulators involved in CaM regulation, as well as summarize CaM-binding IQ domain mutations associated with human diseases in the voltage-gated sodium channel family.
Collapse
|
20
|
Heinrichs B, Liu B, Zhang J, Meents JE, Le K, Erickson A, Hautvast P, Zhu X, Li N, Liu Y, Spehr M, Habel U, Rothermel M, Namer B, Zhang X, Lampert A, Duan G. The Potential Effect of Na v 1.8 in Autism Spectrum Disorder: Evidence From a Congenital Case With Compound Heterozygous SCN10A Mutations. Front Mol Neurosci 2021; 14:709228. [PMID: 34385907 PMCID: PMC8354588 DOI: 10.3389/fnmol.2021.709228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
Apart from the most prominent symptoms in Autism spectrum disorder (ASD), namely deficits in social interaction, communication and repetitive behavior, patients often show abnormal sensory reactivity to environmental stimuli. Especially potentially painful stimuli are reported to be experienced in a different way compared to healthy persons. In our present study, we identified an ASD patient carrying compound heterozygous mutations in the voltage-gated sodium channel (VGSC) Na v 1.8, which is preferentially expressed in sensory neurons. We expressed both mutations, p.I1511M and p.R512∗, in a heterologous expression system and investigated their biophysical properties using patch-clamp recordings. The results of these experiments reveal that the p.R512∗ mutation renders the channel non-functional, while the p.I1511M mutation showed only minor effects on the channel's function. Behavioral experiments in a Na v 1.8 loss-of-function mouse model additionally revealed that Na v 1.8 may play a role in autism-like symptomatology. Our results present Na v 1.8 as a protein potentially involved in ASD pathophysiology and may therefore offer new insights into the genetic basis of this disease.
Collapse
Affiliation(s)
- Björn Heinrichs
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Baowen Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jannis E. Meents
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Kim Le
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Andelain Erickson
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Petra Hautvast
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Xiwen Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ningbo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Brain Structure-Function Relationships: Decoding the Human Brain at Systemic Levels, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Markus Rothermel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine, Foundation, Hanover, Germany
| | - Barbara Namer
- Research Group Neurosciences of the Interdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Angelika Lampert
- Institute of Physiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Mary L, Nourisson E, Feger C, Laugel V, Chaigne D, Keren B, Afenjar A, Billette T, Trost D, Cieuta-Walti C, Gerard B, Piton A, Schaefer E. Pathogenic variants in KCNQ2 cause intellectual deficiency without epilepsy: Broadening the phenotypic spectrum of a potassium channelopathy. Am J Med Genet A 2021; 185:1803-1815. [PMID: 33754465 DOI: 10.1002/ajmg.a.62181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/19/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022]
Abstract
High-throughput sequencing (HTS) improved the molecular diagnosis in individuals with intellectual deficiency (ID) and helped to broaden the phenotype of previously known disease-causing genes. We report herein four unrelated patients with isolated ID, carriers of a likely pathogenic variant in KCNQ2, a gene usually implicated in benign familial neonatal seizures (BFNS) or early onset epileptic encephalopathy (EOEE). Patients were diagnosed by targeted HTS or exome sequencing. Pathogenicity of the variants was assessed by multiple in silico tools. Patients' ID ranged from mild to severe with predominance of speech disturbance and autistic features. Three of the four variants disrupted the same amino acid. Compiling all the pathogenic variants previously reported, we observed a strong overlap between variants causing EOEE, isolated ID, and BFNS and an important intra-familial phenotypic variability, although missense variants in the voltage-sensing domain and the pore are significantly associated to EOEE (p < 0.01, Fisher test). Thus, pathogenic variants in KCNQ2 can be associated with isolated ID. We did not highlight strong related genotype-phenotype correlations in KCNQ2-related disorders. A second genetic hit, a burden of rare variants, or other extrinsic factors may explain such a phenotypic variability. However, it is of interest to study encephalopathy genes in non-epileptic ID patients.
Collapse
Affiliation(s)
- Laura Mary
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elsa Nourisson
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Claire Feger
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Vincent Laugel
- Service de Neuropédiatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Denys Chaigne
- Service de Neuropédiatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Boris Keren
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe de Recherche Clinique "Déficiences Intellectuelles et Autisme," Université Pierre et Marie Curie, Hôpital de la Pitié-Salpêtrière, Paris, France.,Institut du Cerveau et de la Moelle Épinière, Sorbonne Universités, Université Pierre et Marie Curie (Université Paris 06), UMRS 1127, INSERM U 1127, CNRS UMR 7225, Paris, France
| | - Alexandra Afenjar
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Département de Génétique et Embryologie Médicale, Hôpital Trousseau, Sorbonne Universités, Paris, France
| | - Thierry Billette
- Assistance Publique-Hôpitaux de Paris, Service de Neuropédiatrie, Hôpital Armand Trousseau, Paris, France
| | | | | | - Bénédicte Gerard
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Amélie Piton
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR-7104, Inserm U964, Université de Strasbourg, Strasbourg, France
| | - Elise Schaefer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d'Alsace, Strasbourg, France
| |
Collapse
|
22
|
Hemizygous mutations in L1CAM in two unrelated male probands with childhood onset psychosis. Psychiatr Genet 2021; 30:73-82. [PMID: 32404617 DOI: 10.1097/ypg.0000000000000253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To identify genes underlying childhood onset psychosis. METHODS Patients with onset of psychosis at age 13 or younger were identified from clinics across England, and they and their parents were exome sequenced and analysed for possible highly penetrant genetic contributors. RESULTS We report two male childhood onset psychosis patients of different ancestries carrying hemizygous very rare possibly damaging missense variants (p.Arg846His and p.Pro145Ser) in the L1CAM gene. L1CAM is an X-linked Mendelian disease gene in which both missense and loss of function variants are associated with syndromic forms of intellectual disability and developmental disorder. CONCLUSIONS This is the first study reporting a possible extension of the phenotype of L1CAM variant carriers to childhood onset psychosis. The family history and presence of other significant rare genetic variants in the patients suggest that there may be genetic interactions modulating the presentation.
Collapse
|
23
|
Zhu D, Yuan T, Gao J, Xu Q, Xue K, Zhu W, Tang J, Liu F, Wang J, Yu C. Correlation between cortical gene expression and resting-state functional network centrality in healthy young adults. Hum Brain Mapp 2021; 42:2236-2249. [PMID: 33570215 PMCID: PMC8046072 DOI: 10.1002/hbm.25362] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Resting‐state functional connectivity in the human brain is heritable, and previous studies have investigated the genetic basis underlying functional connectivity. However, at present, the molecular mechanisms associated with functional network centrality are still largely unknown. In this study, functional networks were constructed, and the graph‐theory method was employed to calculate network centrality in 100 healthy young adults from the Human Connectome Project. Specifically, functional connectivity strength (FCS), also known as the “degree centrality” of weighted networks, is calculated to measure functional network centrality. A multivariate technique of partial least squares regression (PLSR) was then conducted to identify genes whose spatial expression profiles best predicted the FCS distribution. We found that FCS spatial distribution was significantly positively correlated with the expression of genes defined by the first PLSR component. The FCS‐related genes we identified were significantly enriched for ion channels, axon guidance, and synaptic transmission. Moreover, FCS‐related genes were preferentially expressed in cortical neurons and young adulthood and were enriched in numerous neurodegenerative and neuropsychiatric disorders. Furthermore, a series of validation and robustness analyses demonstrated the reliability of the results. Overall, our results suggest that the spatial distribution of FCS is modulated by the expression of a set of genes associated with ion channels, axon guidance, and synaptic transmission.
Collapse
Affiliation(s)
- Dan Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Tengfei Yuan
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Junfeng Gao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenshuang Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Tang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
24
|
Distinct Pathogenic Genes Causing Intellectual Disability and Autism Exhibit a Common Neuronal Network Hyperactivity Phenotype. Cell Rep 2021; 30:173-186.e6. [PMID: 31914384 DOI: 10.1016/j.celrep.2019.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/15/2019] [Accepted: 11/27/2019] [Indexed: 01/31/2023] Open
Abstract
Pathogenic mutations in either one of the epigenetic modifiers EHMT1, MBD5, MLL3, or SMARCB1 have been identified to be causative for Kleefstra syndrome spectrum (KSS), a neurodevelopmental disorder with clinical features of both intellectual disability (ID) and autism spectrum disorder (ASD). To understand how these variants lead to the phenotypic convergence in KSS, we employ a loss-of-function approach to assess neuronal network development at the molecular, single-cell, and network activity level. KSS-gene-deficient neuronal networks all develop into hyperactive networks with altered network organization and excitatory-inhibitory balance. Interestingly, even though transcriptional data reveal distinct regulatory mechanisms, KSS target genes share similar functions in regulating neuronal excitability and synaptic function, several of which are associated with ID and ASD. Our results show that KSS genes mainly converge at the level of neuronal network communication, providing insights into the pathophysiology of KSS and phenotypically congruent disorders.
Collapse
|
25
|
Properties of Calmodulin Binding to Na V1.2 IQ Motif and Its Autism-Associated Mutation R1902C. Neurochem Res 2021; 46:523-534. [PMID: 33394222 DOI: 10.1007/s11064-020-03189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/15/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023]
Abstract
Voltage-gated sodium channels (VGSCs) are fundamental to the initiation and propagation of action potentials in excitable cells. Ca2+/calmodulin (CaM) binds to VGSC type II (NaV1.2) isoleucine and glutamine (IQ) motif. An autism-associated mutation in NaV1.2 IQ motif, Arg1902Cys (R1902C), has been reported to affect the combination between CaM and the IQ motif compared to that of the wild type IQ motif. However, the detailed properties for the Ca2+-regulated binding of CaM to NaV1.2 IQ (1901Lys-1927Lys, IQwt) and mutant IQ motif (IQR1902C) remains unclear. Here, the binding ability of CaM and CaM's constituent proteins including N- and C lobe to the IQ motif of NaV1.2 and its mutant was investigated by protein pull-down experiments. We discovered that the combination between CaM and the IQ motif was U-shaped with the highest at [Ca2+] ≈ free and the lowest at 100 nM [Ca2+]. In the IQR1902C mutant, Ca2+-dependence of CaM binding was nearly lost. Consequently, the binding of CaM to IQR1902C at 100 and 500 nM [Ca2+] was increased compared to that of IQwt. Both N- and C lobe of CaM could bind with NaV1.2 IQ motif and IQR1902C mutant, with the major effect of C lobe. Furthermore, CaMKII had no impact on the binding between CaM and NaV1.2 IQ motif. This research offers novel insight to the regulation of NaV1.2 IQwt and IQR1902C motif, an autism-associated mutation, by CaM.
Collapse
|
26
|
Hong L, Zhang M, Sridhar A, Darbar D. Pathogenic mutations perturb calmodulin regulation of Na v1.8 channel. Biochem Biophys Res Commun 2020; 533:168-174. [PMID: 32948286 PMCID: PMC11038804 DOI: 10.1016/j.bbrc.2020.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
The voltage-gated sodium channels play a key role in the generation and propagation of the cardiac action potential. Emerging data indicate that the Nav1.8 channel, encoded by the SCN10A gene, is a modulator of cardiac conduction and variation in the gene has been associated with arrhythmias such as atrial fibrillation (AF) and Brugada syndrome (BrS). The voltage gated sodium channels contain a calmodulin (CaM)-binding IQ domain involved in channel slow inactivation, we here investigated the role of CaM regulation of Nav1.8 channel function, and showed that CaM enhanced slow inactivation of the Nav1.8 channel and hyperpolarized steady-state inactivation curve of sodium currents. The effects of CaM on the channel gating were disrupted in the Nav1.8 channel truncated IQ domain. We studied Nav1.8 IQ domain mutations associated with AF and BrS, and found that a BrS-linked mutation (R1863Q) reduced the CaM-induced hyperpolarization shift, AF-linked mutations (R1869C and R1869G) disrupted CaM-induced enhanced inactivation, and effects of CaM on both development and recovery from slow inactivation were attenuated in all pathogenic mutations. Our findings indicate a role of CaM in the regulation of Nav1.8 channel function in cardiac arrhythmias.
Collapse
Affiliation(s)
- Liang Hong
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - Meihong Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Arvind Sridhar
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dawood Darbar
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Administration, Chicago, IL, USA.
| |
Collapse
|
27
|
Rea V, Van Raay TJ. Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts. Front Mol Neurosci 2020; 13:575575. [PMID: 33262688 PMCID: PMC7686559 DOI: 10.3389/fnmol.2020.575575] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a highly variable and complex set of neurological disorders that alter neurodevelopment and cognitive function, which usually presents with social and learning impairments accompanied with other comorbid symptoms like hypersensitivity or hyposensitivity, or repetitive behaviors. Autism can be caused by genetic and/or environmental factors and unraveling the etiology of ASD has proven challenging, especially given that different genetic mutations can cause both similar and different phenotypes that all fall within the autism spectrum. Furthermore, the list of ASD risk genes is ever increasing making it difficult to synthesize a common theme. The use of rodent models to enhance ASD research is invaluable and is beginning to unravel the underlying molecular mechanisms of this disease. Recently, zebrafish have been recognized as a useful model of neurodevelopmental disorders with regards to genetics, pharmacology and behavior and one of the main foundations supporting autism research (SFARI) recently identified 12 ASD risk genes with validated zebrafish mutant models. Here, we describe what is known about those 12 ASD risk genes in human, mice and zebrafish to better facilitate this research. We also describe several non-genetic models including pharmacological and gnotobiotic models that are used in zebrafish to study ASD.
Collapse
Affiliation(s)
| | - Terence J. Van Raay
- Dept of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
28
|
Masini E, Loi E, Vega-Benedetti AF, Carta M, Doneddu G, Fadda R, Zavattari P. An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity. Int J Mol Sci 2020; 21:ijms21218290. [PMID: 33167418 PMCID: PMC7663950 DOI: 10.3390/ijms21218290] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects social interaction and communication, with restricted interests, activity and behaviors. ASD is highly familial, indicating that genetic background strongly contributes to the development of this condition. However, only a fraction of the total number of genes thought to be associated with the condition have been discovered. Moreover, other factors may play an important role in ASD onset. In fact, it has been shown that parental conditions and in utero and perinatal factors may contribute to ASD etiology. More recently, epigenetic changes, including DNA methylation and micro RNA alterations, have been associated with ASD and proposed as potential biomarkers. This review aims to provide a summary of the literature regarding ASD candidate genes, mainly focusing on synapse formation and functionality and relevant epigenetic and environmental aspects acting in concert to determine ASD onset.
Collapse
Affiliation(s)
- Elena Masini
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
| | - Eleonora Loi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
| | - Ana Florencia Vega-Benedetti
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
| | - Marinella Carta
- Center for Pervasive Developmental Disorders, Azienda Ospedaliera Brotzu, 09121 Cagliari, Italy;
| | - Giuseppe Doneddu
- Centro per l’Autismo e Disturbi correlati (CADc), Nuovo Centro Fisioterapico Sardo, 09131 Cagliari, Italy;
| | - Roberta Fadda
- Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09123 Cagliari, Italy;
| | - Patrizia Zavattari
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (E.L.); (A.F.V.-B.)
- Correspondence:
| |
Collapse
|
29
|
Karunakaran S, Menon RN, Nair SS, Santhakumar S, Nair M, Sundaram S. Clinical and Genetic Profile of Autism Spectrum Disorder-Epilepsy (ASD-E) Phenotype: Two Sides of the Same Coin! Clin EEG Neurosci 2020; 51:390-398. [PMID: 32114799 DOI: 10.1177/1550059420909673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The clinical phenotype of autism spectrum disorder and epilepsy (ASD-E) is a common neurological presentation in various genetic disorders, irrespective of the underlying pathophysiological mechanisms. Here we describe the demographic and clinical profiles, coexistent neurological conditions, type of seizures, epilepsy syndrome, and EEG findings in 11 patients with ASD-E phenotype with proven genetic etiology. The commonest genetic abnormality noted was CDKL5 mutation (3), MECP2 mutation (2), and 1p36 deletion (2). The median age of onset of clinical seizures was 6 months (range, 10 days to 11 years). The most common seizure type was focal onset seizures with impaired awareness, observed in 7 (63.6%) patients followed by epileptic spasms in 4 (30.8%), generalized tonic-clonic and atonic seizures in 3 (27.3%) patients each and tonic seizures in 2 (18.2%) patients and myoclonic seizures in 1 (9.1%) patient. Focal and multifocal interictal epileptiform abnormalities were seen in 6 (54.6%) and 5 (45.5%) patients, respectively. Epileptic encephalopathy and focal epilepsy were seen in 7 (63.6%) and 4 (36.4%) patients, respectively. The diagnostic yield of genetic testing was 44% (11 of 25 patients) and when variants of unknown significance and metabolic defects were included, the yield increased to 60% (15 of 25 patients). We conclude that in patients with ASD-E phenotype with an underlying genetic basis, the clinical seizure type, epilepsy syndrome, and EEG patterns are variable. Next-generation exome sequencing and chromosomal microarray need to be considered in clinical practice as part of evaluation of children with ASD-E phenotype.
Collapse
Affiliation(s)
- Sudhakar Karunakaran
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Ramshekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Sruthi S Nair
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - S Santhakumar
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Muralidharan Nair
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Soumya Sundaram
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| |
Collapse
|
30
|
Autism and Migraine: An Unexplored Association? Brain Sci 2020; 10:brainsci10090615. [PMID: 32899972 PMCID: PMC7565535 DOI: 10.3390/brainsci10090615] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder is characterized by neurological, psychiatric and medical comorbidities—some conditions co-occur so frequently that comorbidity in autism is the rule rather than the exception. The most common autism co-occurring conditions are intellectual disability, language disorders, attention-deficit hyperactivity disorder, epilepsy, gastrointestinal problems, sleep disorders, anxiety, depression, obsessive-compulsive disorder, psychotic disorders, oppositional defiant disorder, and eating disorders. They are well known and studied. Migraine is the most common brain disease in the world, but surprisingly only a few studies investigate the comorbidity between autism and migraine. The aim of this narrative review is to explore the literature reports about the comorbidity between autism and migraine and to investigate the common neurotransmitter, immune, anatomical and genetic abnormalities at the base of these two conditions.
Collapse
|
31
|
Menezes LFS, Sabiá Júnior EF, Tibery DV, Carneiro LDA, Schwartz EF. Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front Pharmacol 2020; 11:1276. [PMID: 33013363 PMCID: PMC7461817 DOI: 10.3389/fphar.2020.01276] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is a disease characterized by abnormal brain activity and a predisposition to generate epileptic seizures, leading to neurobiological, cognitive, psychological, social, and economic impacts for the patient. There are several known causes for epilepsy; one of them is the malfunction of ion channels, resulting from mutations. Voltage-gated sodium channels (NaV) play an essential role in the generation and propagation of action potential, and malfunction caused by mutations can induce irregular neuronal activity. That said, several genetic variations in NaV channels have been described and associated with epilepsy. These mutations can affect channel kinetics, modifying channel activation, inactivation, recovery from inactivation, and/or the current window. Among the NaV subtypes related to epilepsy, NaV1.1 is doubtless the most relevant, with more than 1500 mutations described. Truncation and missense mutations are the most observed alterations. In addition, several studies have already related mutated NaV channels with the electrophysiological functioning of the channel, aiming to correlate with the epilepsy phenotype. The present review provides an overview of studies on epilepsy-associated mutated human NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.
Collapse
Affiliation(s)
- Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Elias Ferreira Sabiá Júnior
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Lilian Dos Anjos Carneiro
- Faculdade de Medicina, Centro Universitário Euro Americano, Brasília, Brazil.,Faculdade de Medicina, Centro Universitário do Planalto Central, Brasília, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
32
|
Bidirectional Modulation of the Voltage-Gated Sodium (Nav1.6) Channel by Rationally Designed Peptidomimetics. Molecules 2020; 25:molecules25153365. [PMID: 32722255 PMCID: PMC7435778 DOI: 10.3390/molecules25153365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 01/25/2023] Open
Abstract
Disruption of protein:protein interactions (PPIs) that regulate the function of voltage-gated Na+ (Nav) channels leads to neural circuitry aberrations that have been implicated in numerous channelopathies. One example of this pathophysiology is mediated by dysfunction of the PPI between Nav1.6 and its regulatory protein fibroblast growth factor 14 (FGF14). Thus, peptides derived from FGF14 might exert modulatory actions on the FGF14:Nav1.6 complex that are functionally relevant. The tetrapeptide Glu-Tyr-Tyr-Val (EYYV) mimics surface residues of FGF14 at the β8–β9 loop, a structural region previously implicated in its binding to Nav1.6. Here, peptidomimetics derived from EYYV (6) were designed, synthesized, and pharmacologically evaluated to develop probes with improved potency. Addition of hydrophobic protective groups to 6 and truncation to a tripeptide (12) produced a potent inhibitor of FGF14:Nav1.6 complex assembly. Conversely, addition of hydrophobic protective groups to 6 followed by addition of an N-terminal benzoyl substituent (19) produced a potentiator of FGF14:Nav1.6 complex assembly. Subsequent functional evaluation using whole-cell patch-clamp electrophysiology confirmed their inverse activities, with 12 and 19 reducing and increasing Nav1.6-mediated transient current densities, respectively. Overall, we have identified a negative and positive allosteric modulator of Nav1.6, both of which could serve as scaffolds for the development of target-selective neurotherapeutics.
Collapse
|
33
|
Chao OY, Marron Fernandez de Velasco E, Pathak SS, Maitra S, Zhang H, Duvick L, Wickman K, Orr HT, Hirai H, Yang YM. Targeting inhibitory cerebellar circuitry to alleviate behavioral deficits in a mouse model for studying idiopathic autism. Neuropsychopharmacology 2020; 45:1159-1170. [PMID: 32179875 PMCID: PMC7234983 DOI: 10.1038/s41386-020-0656-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 03/03/2020] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) encompasses wide-ranging neuropsychiatric symptoms with unclear etiology. Although the cerebellum is a key region implicated in ASD, it remains elusive how the cerebellar circuitry is altered and whether the cerebellum can serve as a therapeutic target to rectify the phenotype of idiopathic ASD with polygenic abnormalities. Using a syndromic ASD model, e.g., Black and Tan BRachyury T+Itpr3tf/J (BTBR) mice, we revealed that increased excitability of presynaptic interneurons (INs) and decreased intrinsic excitability of postsynaptic Purkinje neurons (PNs) resulted in low PN firing rates in the cerebellum. Knowing that downregulation of Kv1.2 potassium channel in the IN nerve terminals likely augmented their excitability and GABA release, we applied a positive Kv1.2 modulator to mitigate the presynaptic over-inhibition and social impairment of BTBR mice. Selective restoration of the PN activity by a new chemogenetic approach alleviated core ASD-like behaviors of the BTBR strain. These findings highlight complex mechanisms converging onto the cerebellar dysfunction in the phenotypic model and provide effective strategies for potential therapies of ASD.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | | | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Swati Maitra
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Hao Zhang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Lisa Duvick
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Harry T Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
34
|
Liu H, Barnes J, Pedrosa E, Herman NS, Salas F, Wang P, Zheng D, Lachman HM. Transcriptome analysis of neural progenitor cells derived from Lowe syndrome induced pluripotent stem cells: identification of candidate genes for the neurodevelopmental and eye manifestations. J Neurodev Disord 2020; 12:14. [PMID: 32393163 PMCID: PMC7212686 DOI: 10.1186/s11689-020-09317-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Lowe syndrome (LS) is caused by loss-of-function mutations in the X-linked gene OCRL, which codes for an inositol polyphosphate 5-phosphatase that plays a key role in endosome recycling, clathrin-coated pit formation, and actin polymerization. It is characterized by congenital cataracts, intellectual and developmental disability, and renal proximal tubular dysfunction. Patients are also at high risk for developing glaucoma and seizures. We recently developed induced pluripotent stem cell (iPSC) lines from three patients with LS who have hypomorphic variants affecting the 3' end of the gene, and their neurotypical brothers to serve as controls. METHODS In this study, we used RNA sequencing (RNA-seq) to obtain transcriptome profiles in LS and control neural progenitor cells (NPCs). RESULTS In a comparison of the patient and control NPCs (n = 3), we found 16 differentially expressed genes (DEGs) at the multiple test adjusted p value (padj) < 0.1, with nine at padj < 0.05. Using nominal p value < 0.05, 319 DEGs were detected. The relatively small number of DEGs could be due to the fact that OCRL is not a transcription factor per se, although it could have secondary effects on gene expression through several different mechanisms. Although the number of DEGs passing multiple test correction was small, those that were found are quite consistent with some of the known molecular effects of OCRL protein, and the clinical manifestations of LS. Furthermore, using gene set enrichment analysis (GSEA), we found that genes increased expression in the patient NPCs showed enrichments of several gene ontology (GO) terms (false discovery rate < 0.25): telencephalon development, pallium development, NPC proliferation, and cortex development, which are consistent with a condition characterized by intellectual disabilities and psychiatric manifestations. In addition, a significant enrichment among the nominal DEGs for genes implicated in autism spectrum disorder (ASD) was found (e.g., AFF2, DNER, DPP6, DPP10, RELN, CACNA1C), as well as several that are strong candidate genes for the development of eye problems found in LS, including glaucoma. The most notable example is EFEMP1, a well-known candidate gene for glaucoma and other eye pathologies. CONCLUSION Overall, the RNA-seq findings present several candidate genes that could help explain the underlying basis for the neurodevelopmental and eye problems seen in boys with LS.
Collapse
Affiliation(s)
- Hequn Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jesse Barnes
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nathaniel S. Herman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Franklin Salas
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
35
|
Wolff M, Brunklaus A, Zuberi SM. Phenotypic spectrum and genetics of SCN2A-related disorders, treatment options, and outcomes in epilepsy and beyond. Epilepsia 2020; 60 Suppl 3:S59-S67. [PMID: 31904126 DOI: 10.1111/epi.14935] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
Pathogenic variants in the SCN2A gene are associated with a variety of neurodevelopmental phenotypes, defined in recent years through multicenter collaboration. Phenotypes include benign (self-limited) neonatal and infantile epilepsy and more severe developmental and epileptic encephalopathies also presenting in early infancy. There is increasing evidence that an important phenotype linked to the gene is autism and intellectual disability without epilepsy or with rare seizures in later childhood. Other associations of SCN2A include the movement disorders chorea and episodic ataxia. It is likely that as genetic testing enters mainstream practice that new phenotypic associations will be identified. Some missense, gain of function variants tend to present in early infancy with epilepsy, whereas other missense or truncating, loss of function variants present with later-onset epilepsies or intellectual disability only. Knowledge of both mutation type and functional consequences can guide precision therapy. Sodium channel blockers may be effective antiepileptic medications in gain of function, neonatal and infantile presentations.
Collapse
Affiliation(s)
- Markus Wolff
- Pediatric Neurology, Vivantes Hospital Neukoelln, Berlin, Germany
| | - Andreas Brunklaus
- Paediatric Neurosciences Research Group, Royal Hospital for Children & School of Medicine, University of Glasgow, Glasgow, UK
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children & School of Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
36
|
Zhu L, Chen L, Xu P, Lu D, Dai S, Zhong L, Han Y, Zhang M, Xiao B, Chang L, Wu Q. Genetic and molecular basis of epilepsy-related cognitive dysfunction. Epilepsy Behav 2020; 104:106848. [PMID: 32028124 DOI: 10.1016/j.yebeh.2019.106848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
Epilepsy is a common neurological disease characterized by recurrent seizures. About 70 million people were affected by epilepsy or epileptic seizures. Epilepsy is a complicated complex or symptomatic syndromes induced by structural, functional, and genetic causes. Meanwhile, several comorbidities are accompanied by epileptic seizures. Cognitive dysfunction is a long-standing complication associated with epileptic seizures, which severely impairs quality of life. Although the definitive pathogenic mechanisms underlying epilepsy-related cognitive dysfunction remain unclear, accumulating evidence indicates that multiple risk factors are probably involved in the development and progression of cognitive dysfunction in patients with epilepsy. These factors include the underlying etiology, recurrent seizures or status epilepticus, structural damage that induced secondary epilepsy, genetic variants, and molecular alterations. In this review, we summarize several theories that may explain the genetic and molecular basis of epilepsy-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Puying Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Di Lu
- Biomedicine Engineering Research Center, Kunming Medical University, 1168 Chun Rong West Road, Kunming, Yunnan 650500, PR China
| | - Shujuan Dai
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lianmei Zhong
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
37
|
Cukier HN, Griswold AJ, Hofmann NK, Gomez L, Whitehead PL, Abramson RK, Gilbert JR, Cuccaro ML, Dykxhoorn DM, Pericak-Vance MA. Three Brothers With Autism Carry a Stop-Gain Mutation in the HPA-Axis Gene NR3C2. Autism Res 2020; 13:523-531. [PMID: 32064789 DOI: 10.1002/aur.2269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/20/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022]
Abstract
Whole exome sequencing and copy-number variant analysis was performed on a family with three brothers diagnosed with autism. Each of the siblings shares an alteration in the nuclear receptor subfamily 3 group C member 2 (NR3C2) gene that is predicted to result in a stop-gain mutation (p.Q919X) in the mineralocorticoid receptor (MR) protein. This variant was maternally inherited and provides further evidence for a connection between the NR3C2 and autism. Interestingly, the NR3C2 gene encodes the MR protein, a steroid hormone-regulated transcription factor that acts in the hypothalamic-pituitary-adrenal axis and has been connected to stress and anxiety, both of which are features often seen in individuals with autism. Autism Res 2020, 13: 523-531. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Given the complexity of the genetics underlying autism, each gene contributes to risk in a relatively small number of individuals, typically less than 1% of all autism cases. Whole exome sequencing of three brothers with autism identified a rare variant in the nuclear receptor subfamily 3 group C member 2 gene that is predicted to strongly interfere with its normal function. This gene encodes the mineralocorticoid receptor protein, which plays a role in how the body responds to stress and anxiety, features that are often elevated in people diagnosed with autism. This study adds further support to the relevance of this gene as a risk factor for autism.
Collapse
Affiliation(s)
- Holly N Cukier
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Natalia K Hofmann
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Patrice L Whitehead
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Ruth K Abramson
- University of South Carolina School of Medicine, Columbia, South Carolina
| | - John R Gilbert
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
38
|
Zhang Y, Li N, Li C, Zhang Z, Teng H, Wang Y, Zhao T, Shi L, Zhang K, Xia K, Li J, Sun Z. Genetic evidence of gender difference in autism spectrum disorder supports the female-protective effect. Transl Psychiatry 2020; 10:4. [PMID: 32066658 PMCID: PMC7026157 DOI: 10.1038/s41398-020-0699-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 12/07/2019] [Accepted: 12/30/2019] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a male-to-female prevalence of 4:1. However, the genetic mechanisms underlying this gender difference remain unclear. Mutation burden analysis, a TADA model, and co-expression and functional network analyses were performed on de novo mutations (DNMs) and corresponding candidate genes. We found that the prevalence of putative functional DNMs (loss-of-function and predicted deleterious missense mutations) in females was significantly higher than that in males, suggesting that a higher genetic load was required in females to reach the threshold for a diagnosis. We then prioritized 174 candidate genes, including 60 shared genes, 91 male-specific genes, and 23 female-specific genes. All of the three subclasses of candidate genes were significantly more frequently co-expressed in female brains than male brains, suggesting that compensation effects of the deficiency of ASD candidate genes may be more likely in females. Nevertheless, the three subclasses of candidate genes were co-expressed with each other, suggesting a convergent functional network of male and female-specific genes. Our analysis of different aspects of genetic components provides suggestive evidence supporting the female-protective effect in ASD. Moreover, further study is needed to integrate neuronal and hormonal data to elucidate the underlying gender difference in ASD.
Collapse
Affiliation(s)
- Yi Zhang
- grid.268099.c0000 0001 0348 3990Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025 China ,grid.216417.70000 0001 0379 7164National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Na Li
- grid.268099.c0000 0001 0348 3990Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025 China
| | - Chao Li
- grid.268099.c0000 0001 0348 3990Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025 China
| | - Ze Zhang
- grid.268099.c0000 0001 0348 3990Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025 China
| | - Huajing Teng
- grid.9227.e0000000119573309Beijing Institutes of Life Science, Chinese Academy of Science, Beijing, 100101 China
| | - Yan Wang
- grid.9227.e0000000119573309Beijing Institutes of Life Science, Chinese Academy of Science, Beijing, 100101 China
| | - Tingting Zhao
- grid.268099.c0000 0001 0348 3990Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025 China
| | - Leisheng Shi
- grid.268099.c0000 0001 0348 3990Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025 China ,grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Kun Zhang
- grid.268099.c0000 0001 0348 3990Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325025 China
| | - Kun Xia
- grid.216417.70000 0001 0379 7164Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008 China
| | - Jinchen Li
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China.
| | - Zhongsheng Sun
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325025, China. .,Beijing Institutes of Life Science, Chinese Academy of Science, Beijing, 100101, China.
| |
Collapse
|
39
|
Bhandari R, Paliwal JK, Kuhad A. Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic, Epigenetic, and Environmental Factors. ADVANCES IN NEUROBIOLOGY 2020; 24:97-141. [PMID: 32006358 DOI: 10.1007/978-3-030-30402-7_4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Autism spectrum disorder (ASD) is a complex heterogeneous consortium of pervasive development disorders (PDD) which ranges from atypical autism, autism, and Asperger syndrome affecting brain in the developmental stage. This debilitating neurodevelopmental disorder results in both core as well as associated symptoms. Core symptoms observed in autistic patients are lack of social interaction, pervasive, stereotyped, and restricted behavior while the associated symptoms include irritability, anxiety, aggression, and several comorbid disorders.ASD is a polygenic disorder and is multifactorial in origin. Copy number variations (CNVs) of several genes that regulate the synaptogenesis and signaling pathways are one of the major factors responsible for the pathogenesis of autism. The complex integration of various CNVs cause mutations in the genes which code for molecules involved in cell adhesion, voltage-gated ion-channels, scaffolding proteins as well as signaling pathways (PTEN and mTOR pathways). These mutated genes are responsible for affecting synaptic transmission by causing plasticity dysfunction responsible, in turn, for the expression of ASD.Epigenetic modifications affecting DNA transcription and various pre-natal and post-natal exposure to a variety of environmental factors are also precipitating factors for the occurrence of ASD. All of these together cause dysregulation of glutamatergic signaling as well as imbalance in excitatory: inhibitory pathways resulting in glial cell activation and release of inflammatory mediators responsible for the aberrant social behavior which is observed in autistic patients.In this chapter we review and provide insight into the intricate integration of various genetic, epigenetic, and environmental factors which play a major role in the pathogenesis of this disorder and the mechanistic approach behind this integration.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Jyoti K Paliwal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India.
| |
Collapse
|
40
|
Changes in the Fluorescence Tracking of NaV1.6 Protein Expression in a BTBR T+Itpr3tf/J Autistic Mouse Model. Neural Plast 2019; 2019:4893103. [PMID: 31933626 PMCID: PMC6942885 DOI: 10.1155/2019/4893103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
The axon initial segment (AIS), the site of action potential initiation in neurons, is a critical determinant of neuronal excitability. Growing evidence indicates that appropriate recruitment of the AIS macrocomplex is essential for synchronized firing. However, disruption of the AIS structure is linked to the etiology of multiple disorders, including autism spectrum disorder (ASD), a condition characterized by deficits in social communication, stereotyped behaviors, and very limited interests. To date, a complete understanding of the molecular components that underlie the AIS in ASD has remained elusive. In this research, we examined the AIS structure in a BTBR T+Itpr3tf/J mouse model (BTBR), a valid model that exhibits behavioral, electrical, and molecular features of autism, and compared this to the C57BL/6J wild-type control mouse. Using Western blot studies and high-resolution confocal microscopy in the prefrontal frontal cortex (PFC), our data indicate disrupted expression of different isoforms of the voltage-gated sodium channels (NaV) at the AIS, whereas other components of AIS such as ankyrin-G and fibroblast growth factor 14 (FGF14) and contactin-associated protein 1 (Caspr) in BTBR were comparable to those in wild-type control mice. A Western blot assay showed that BTBR mice exhibited a marked increase in different sodium channel isoforms in the PFC compared to wild-type mice. Our results provide potential evidence for previously undescribed mechanisms that may play a role in the pathogenesis of autistic-like phenotypes in BTBR mice.
Collapse
|
41
|
Dissecting the genetic basis of comorbid epilepsy phenotypes in neurodevelopmental disorders. Genome Med 2019; 11:65. [PMID: 31653223 PMCID: PMC6815046 DOI: 10.1186/s13073-019-0678-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022] Open
Abstract
Background Neurodevelopmental disorders (NDDs) such as autism spectrum disorder, intellectual disability, developmental disability, and epilepsy are characterized by abnormal brain development that may affect cognition, learning, behavior, and motor skills. High co-occurrence (comorbidity) of NDDs indicates a shared, underlying biological mechanism. The genetic heterogeneity and overlap observed in NDDs make it difficult to identify the genetic causes of specific clinical symptoms, such as seizures. Methods We present a computational method, MAGI-S, to discover modules or groups of highly connected genes that together potentially perform a similar biological function. MAGI-S integrates protein-protein interaction and co-expression networks to form modules centered around the selection of a single “seed” gene, yielding modules consisting of genes that are highly co-expressed with the seed gene. We aim to dissect the epilepsy phenotype from a general NDD phenotype by providing MAGI-S with high confidence NDD seed genes with varying degrees of association with epilepsy, and we assess the enrichment of de novo mutation, NDD-associated genes, and relevant biological function of constructed modules. Results The newly identified modules account for the increased rate of de novo non-synonymous mutations in autism, intellectual disability, developmental disability, and epilepsy, and enrichment of copy number variations (CNVs) in developmental disability. We also observed that modules seeded with genes strongly associated with epilepsy tend to have a higher association with epilepsy phenotypes than modules seeded at other neurodevelopmental disorder genes. Modules seeded with genes strongly associated with epilepsy (e.g., SCN1A, GABRA1, and KCNB1) are significantly associated with synaptic transmission, long-term potentiation, and calcium signaling pathways. On the other hand, modules found with seed genes that are not associated or weakly associated with epilepsy are mostly involved with RNA regulation and chromatin remodeling. Conclusions In summary, our method identifies modules enriched with de novo non-synonymous mutations and can capture specific networks that underlie the epilepsy phenotype and display distinct enrichment in relevant biological processes. MAGI-S is available at https://github.com/jchow32/magi-s.
Collapse
|
42
|
Ricobaraza A, Mora-Jimenez L, Puerta E, Sanchez-Carpintero R, Mingorance A, Artieda J, Nicolas MJ, Besne G, Bunuales M, Gonzalez-Aparicio M, Sola-Sevilla N, Valencia M, Hernandez-Alcoceba R. Epilepsy and neuropsychiatric comorbidities in mice carrying a recurrent Dravet syndrome SCN1A missense mutation. Sci Rep 2019; 9:14172. [PMID: 31578435 PMCID: PMC6775062 DOI: 10.1038/s41598-019-50627-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/11/2019] [Indexed: 11/30/2022] Open
Abstract
Dravet Syndrome (DS) is an encephalopathy with epilepsy associated with multiple neuropsychiatric comorbidities. In up to 90% of cases, it is caused by functional happloinsufficiency of the SCN1A gene, which encodes the alpha subunit of a voltage-dependent sodium channel (Nav1.1). Preclinical development of new targeted therapies requires accessible animal models which recapitulate the disease at the genetic and clinical levels. Here we describe that a C57BL/6 J knock-in mouse strain carrying a heterozygous, clinically relevant SCN1A mutation (A1783V) presents a full spectrum of DS manifestations. This includes 70% mortality rate during the first 8 weeks of age, reduced threshold for heat-induced seizures (4.7 °C lower compared with control littermates), cognitive impairment, motor disturbances, anxiety, hyperactive behavior and defects in the interaction with the environment. In contrast, sociability was relatively preserved. Electrophysiological studies showed spontaneous interictal epileptiform discharges, which increased in a temperature-dependent manner. Seizures were multifocal, with different origins within and across individuals. They showed intra/inter-hemispheric propagation and often resulted in generalized tonic-clonic seizures. 18F-labelled flourodeoxyglucose positron emission tomography (FDG-PET) revealed a global increase in glucose uptake in the brain of Scn1aWT/A1783V mice. We conclude that the Scn1aWT/A1783V model is a robust research platform for the evaluation of new therapies against DS.
Collapse
Affiliation(s)
- Ana Ricobaraza
- University of Navarra, Gene Therapy Program CIMA, IdiSNA, Navarra institute for health research, Pamplona, Spain.
| | - Lucia Mora-Jimenez
- University of Navarra, Gene Therapy Program CIMA, IdiSNA, Navarra institute for health research, Pamplona, Spain
| | - Elena Puerta
- University of Navarra, Department of Pharmacology and Toxicology, IdiSNA, Navarra institute for health research, Pamplona, Spain
| | - Rocio Sanchez-Carpintero
- University Clinic of Navarra, Dravet Syndrome Unit, Pediatric Neurology Unit, IdiSNA, Navarra institute for health research, Pamplona, Spain
| | | | - Julio Artieda
- University of Navarra, Neuroscience Program CIMA, IdiSNA, Navarra institute for health research, Neurophysiology Service, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Maria Jesus Nicolas
- University of Navarra, Neuroscience Program CIMA, IdiSNA, Navarra institute for health research, Pamplona, Spain
| | - Guillermo Besne
- University of Navarra, Neuroscience Program CIMA, IdiSNA, Navarra institute for health research, Pamplona, Spain
| | - Maria Bunuales
- University of Navarra, Gene Therapy Program CIMA, IdiSNA, Navarra institute for health research, Pamplona, Spain
| | - Manuela Gonzalez-Aparicio
- University of Navarra, Gene Therapy Program CIMA, IdiSNA, Navarra institute for health research, Pamplona, Spain
| | - Noemi Sola-Sevilla
- University Clinic of Navarra, Dravet Syndrome Unit, Pediatric Neurology Unit, IdiSNA, Navarra institute for health research, Pamplona, Spain
| | - Miguel Valencia
- University of Navarra, Neuroscience Program CIMA, IdiSNA, Navarra institute for health research, Pamplona, Spain
| | - Ruben Hernandez-Alcoceba
- University of Navarra, Gene Therapy Program CIMA, IdiSNA, Navarra institute for health research, Pamplona, Spain
| |
Collapse
|
43
|
Léna I, Mantegazza M. Na V1.2 haploinsufficiency in Scn2a knock-out mice causes an autistic-like phenotype attenuated with age. Sci Rep 2019; 9:12886. [PMID: 31501495 PMCID: PMC6733925 DOI: 10.1038/s41598-019-49392-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Mutations of the SCN2A gene, encoding the voltage gated sodium channel NaV1.2, have been associated to a wide spectrum of epileptic disorders ranging from benign familial neonatal-infantile seizures to early onset epileptic encephalopathies such as Ohtahara syndrome. These phenotypes may be caused by either gain-of-function or loss-of-function mutations. More recently, loss-of-function SCN2A mutations have also been identified in patients with autism spectrum disorder (ASD) without overt epileptic phenotypes. Heterozygous Scn2a knock-out mice (Scn2a+/−) may be a model of this phenotype. Because ASD develops in childhood, we performed a detailed behavioral characterization of Scn2a+/− mice comparing the juvenile/adolescent period of development and adulthood. We used tasks relevant to ASD and the different comorbidities frequently found in this disorder, such as anxiety or intellectual disability. Our data demonstrate that young Scn2a+/− mice display autistic-like phenotype associated to impaired memory and reduced reactivity to stressful stimuli. Interestingly, these dysfunctions are attenuated with age since adult mice show only communicative deficits. Considering the clinical data available on patients with loss-of-function SCN2A mutations, our results indicate that Scn2a+/− mice constitute an ASD model with construct and face validity during the juvenile/adolescent period of development. However, more information about the clinical features of adult carriers of SCN2A mutations is needed to evaluate comparatively the phenotype of adult Scn2a+/− mice.
Collapse
Affiliation(s)
- Isabelle Léna
- Université Côte d'Azur, 660 Route des Lucioles, 06560, Valbonne - Sophia Antipolis, France. .,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), 660 Route des Lucioles, 06560, Valbonne - Sophia Antipolis, France.
| | - Massimo Mantegazza
- Université Côte d'Azur, 660 Route des Lucioles, 06560, Valbonne - Sophia Antipolis, France. .,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), 660 Route des Lucioles, 06560, Valbonne - Sophia Antipolis, France. .,Inserm, 660 Route des Lucioles, 06560, Valbonne - Sophia Antipolis, France.
| |
Collapse
|
44
|
Geng Y, Peterson RT. The zebrafish subcortical social brain as a model for studying social behavior disorders. Dis Model Mech 2019; 12:dmm039446. [PMID: 31413047 PMCID: PMC6737945 DOI: 10.1242/dmm.039446] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Social behaviors are essential for the survival and reproduction of social species. Many, if not most, neuropsychiatric disorders in humans are either associated with underlying social deficits or are accompanied by social dysfunctions. Traditionally, rodent models have been used to model these behavioral impairments. However, rodent assays are often difficult to scale up and adapt to high-throughput formats, which severely limits their use for systems-level science. In recent years, an increasing number of studies have used zebrafish (Danio rerio) as a model system to study social behavior. These studies have demonstrated clear potential in overcoming some of the limitations of rodent models. In this Review, we explore the evolutionary conservation of a subcortical social brain between teleosts and mammals as the biological basis for using zebrafish to model human social behavior disorders, while summarizing relevant experimental tools and assays. We then discuss the recent advances gleaned from zebrafish social behavior assays, the applications of these assays to studying related disorders, and the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Yijie Geng
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S. 2000 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
45
|
Post-translational histone modifications and their interaction with sex influence normal brain development and elaboration of neuropsychiatric disorders. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1968-1981. [DOI: 10.1016/j.bbadis.2018.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
|
46
|
Cardoso AR, Lopes-Marques M, Silva RM, Serrano C, Amorim A, Prata MJ, Azevedo L. Essential genetic findings in neurodevelopmental disorders. Hum Genomics 2019; 13:31. [PMID: 31288856 PMCID: PMC6617629 DOI: 10.1186/s40246-019-0216-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) represent a growing medical challenge in modern societies. Ever-increasing sophisticated diagnostic tools have been continuously revealing a remarkably complex architecture that embraces genetic mutations of distinct types (chromosomal rearrangements, copy number variants, small indels, and nucleotide substitutions) with distinct frequencies in the population (common, rare, de novo). Such a network of interacting players creates difficulties in establishing rigorous genotype-phenotype correlations. Furthermore, individual lifestyles may also contribute to the severity of the symptoms fueling a large spectrum of gene-environment interactions that have a key role on the relationships between genotypes and phenotypes.Herein, a review of the genetic discoveries related to NDDs is presented with the aim to provide useful general information for the medical community.
Collapse
Affiliation(s)
- Ana R Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Mónica Lopes-Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Raquel M Silva
- Department of Medical Sciences and iBiMED, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,Present Address: Center for Interdisciplinary Research in Health (CIIS), Institute of Health Sciences (ICS), Universidade Católica Portuguesa, 3504-505, Viseu, Portugal
| | - Catarina Serrano
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - António Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Maria J Prata
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Luísa Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal. .,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal. .,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
47
|
Genetic mechanisms of regression in autism spectrum disorder. Neurosci Biobehav Rev 2019; 102:208-220. [DOI: 10.1016/j.neubiorev.2019.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/12/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022]
|
48
|
Shin W, Kweon H, Kang R, Kim D, Kim K, Kang M, Kim SY, Hwang SN, Kim JY, Yang E, Kim H, Kim E. Scn2a Haploinsufficiency in Mice Suppresses Hippocampal Neuronal Excitability, Excitatory Synaptic Drive, and Long-Term Potentiation, and Spatial Learning and Memory. Front Mol Neurosci 2019; 12:145. [PMID: 31249508 PMCID: PMC6582764 DOI: 10.3389/fnmol.2019.00145] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/17/2019] [Indexed: 01/13/2023] Open
Abstract
Nav1.2, a voltage-gated sodium channel subunit encoded by the Scn2a gene, has been implicated in various brain disorders, including epilepsy, autism spectrum disorder, intellectual disability, and schizophrenia. Nav1.2 is known to regulate the generation of action potentials in the axon initial segment and their propagation along axonal pathways. Nav1.2 also regulates synaptic integration and plasticity by promoting back-propagation of action potentials to dendrites, but whether Nav1.2 deletion in mice affects neuronal excitability, synaptic transmission, synaptic plasticity, and/or disease-related animal behaviors remains largely unclear. Here, we report that mice heterozygous for the Scn2a gene (Scn2a+/- mice) show decreased neuronal excitability and suppressed excitatory synaptic transmission in the presence of network activity in the hippocampus. In addition, Scn2a+/- mice show suppressed hippocampal long-term potentiation (LTP) in association with impaired spatial learning and memory, but show largely normal locomotor activity, anxiety-like behavior, social interaction, repetitive behavior, and whole-brain excitation. These results suggest that Nav1.2 regulates hippocampal neuronal excitability, excitatory synaptic drive, LTP, and spatial learning and memory in mice.
Collapse
Affiliation(s)
- Wangyong Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Ryeonghwa Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Kyungdeok Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Muwon Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Seo Yeong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Sun Nam Hwang
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Jin Yong Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| |
Collapse
|
49
|
Crystal structures of Ca 2+-calmodulin bound to Na V C-terminal regions suggest role for EF-hand domain in binding and inactivation. Proc Natl Acad Sci U S A 2019; 116:10763-10772. [PMID: 31072926 DOI: 10.1073/pnas.1818618116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium (NaV) and calcium channels (CaV) form targets for calmodulin (CaM), which affects channel inactivation properties. A major interaction site for CaM resides in the C-terminal (CT) region, consisting of an IQ domain downstream of an EF-hand domain. We present a crystal structure of fully Ca2+-occupied CaM, bound to the CT of NaV1.5. The structure shows that the C-terminal lobe binds to a site ∼90° rotated relative to a previous site reported for an apoCaM complex with the NaV1.5 CT and for ternary complexes containing fibroblast growth factor homologous factors (FHF). We show that the binding of FHFs forces the EF-hand domain in a conformation that does not allow binding of the Ca2+-occupied C-lobe of CaM. These observations highlight the central role of the EF-hand domain in modulating the binding mode of CaM. The binding sites for Ca2+-free and Ca2+-occupied CaM contain targets for mutations linked to long-QT syndrome, a type of inherited arrhythmia. The related NaV1.4 channel has been shown to undergo Ca2+-dependent inactivation (CDI) akin to CaVs. We present a crystal structure of Ca2+/CaM bound to the NaV1.4 IQ domain, which shows a binding mode that would clash with the EF-hand domain. We postulate the relative reorientation of the EF-hand domain and the IQ domain as a possible conformational switch that underlies CDI.
Collapse
|
50
|
Nashabat M, Al Qahtani XS, Almakdob S, Altwaijri W, Ba-Armah DM, Hundallah K, Al Hashem A, Al Tala S, Maddirevula S, Alkuraya FS, Tabarki B, Alfadhel M. The landscape of early infantile epileptic encephalopathy in a consanguineous population. Seizure 2019; 69:154-172. [PMID: 31054490 DOI: 10.1016/j.seizure.2019.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Epileptic encephalopathies (EE), are a group of age-related disorders characterized by intractable seizures and electroencephalogram (EEG) abnormalities that may result in cognitive and motor delay. Early infantile epileptic encephalopathies (EIEE) manifest in the first year of life. EIEE are highly heterogeneous genetically but a genetic etiology is only identified in half of the cases, typically in the form of de novo dominant mutations. METHOD This is a descriptive retrospective study of a consecutive series of patients diagnosed with EIEE from the participating hospitals. A chart review was performed for all patients. The diagnosis of epileptic encephalopathy was confirmed by molecular investigations in commercial labs. In silico study was done for all novel mutations. A systematic search was done for all the types of EIEE and their correlated genes in the literature using the Online Mendelian Inheritance In Man and PubMed databases. RESULTS In this case series, we report 72 molecularly characterized EIEE from a highly consanguineous population, and review their clinical course. We identified 50 variants, 26 of which are novel, causing 26 different types of EIEE. Unlike outbred populations, autosomal recessive EIEE accounted for half the cases. The phenotypes ranged from self-limiting and drug-responsive to severe refractory seizures or even death. CONCLUSIONS We reported the largest EIEE case series in the region with confirmed molecular testing and detailed clinical phenotyping. The number autosomal recessive predominance could be explained by the society's high consanguinity. We reviewed all the EIEE registered causative genes in the literature and proposed a functional classification.
Collapse
Affiliation(s)
- Marwan Nashabat
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Xena S Al Qahtani
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Salwa Almakdob
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Waleed Altwaijri
- Division of Pediatric Neurology, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Duaa M Ba-Armah
- Division of Pediatric Neurology, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Khalid Hundallah
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amal Al Hashem
- Division of Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Division of Genetics, Department of Pediatrics, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.
| |
Collapse
|