1
|
Liu W, Su JP, Zeng LL, Shen H, Hu DW. Gene expression and brain imaging association study reveals gene signatures in major depressive disorder. Brain Commun 2024; 6:fcae258. [PMID: 39185029 PMCID: PMC11342243 DOI: 10.1093/braincomms/fcae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 06/03/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
Major depressive disorder is often characterized by changes in the structure and function of the brain, which are influenced by modifications in gene expression profiles. How the depression-related genes work together within the scope of time and space to cause pathological changes remains unclear. By integrating the brain-wide gene expression data and imaging data in major depressive disorder, we identified gene signatures of major depressive disorder and explored their temporal-spatial expression specificity, network properties, function annotations and sex differences systematically. Based on correlation analysis with permutation testing, we found 345 depression-related genes significantly correlated with functional and structural alteration of brain images in major depressive disorder and separated them by directional effects. The genes with negative effect for grey matter density and positive effect for functional indices are enriched in downregulated genes in the post-mortem brain samples of patients with depression and risk genes identified by genome-wide association studies than genes with positive effect for grey matter density and negative effect for functional indices and control genes, confirming their potential association with major depressive disorder. By introducing a parameter of dispersion measure on the gene expression data of developing human brains, we revealed higher spatial specificity and lower temporal specificity of depression-related genes than control genes. Meanwhile, we found depression-related genes tend to be more highly expressed in females than males, which may contribute to the difference in incidence rate between male and female patients. In general, we found the genes with negative effect have lower network degree, more specialized function, higher spatial specificity, lower temporal specificity and more sex differences than genes with positive effect, indicating they may play different roles in the occurrence and development of major depressive disorder. These findings can enhance the understanding of molecular mechanisms underlying major depressive disorder and help develop tailored diagnostic and treatment strategies for patients of depression of different sex.
Collapse
Affiliation(s)
- Wei Liu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - Jian-Po Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - De-Wen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| |
Collapse
|
2
|
Ruan Y, Yuan R, He J, Jiang Y, Chu S, Chen N. New perspective on sustained antidepressant effect: focus on neurexins regulating synaptic plasticity. Cell Death Discov 2024; 10:205. [PMID: 38693106 PMCID: PMC11063156 DOI: 10.1038/s41420-024-01974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Depression is highly prevalent globally, however, currently available medications face challenges such as low response rates and short duration of efficacy. Additionally, depression mostly accompany other psychiatric disorders, further progressing to major depressive disorder without long-term effective management. Thus, sustained antidepressant strategies are urgently needed. Recently, ketamine and psilocybin gained attention as potential sustained antidepressants. Review of recent studies highlights that synaptic plasticity changes as key events of downstream long-lasting changes in sustained antidepressant effect. This underscores the significance of synaptic plasticity in sustained antidepressant effect. Moreover, neurexins, key molecules involved in the regulation of synaptic plasticity, act as critical links between synaptic plasticity and sustained antidepressant effects, involving mechanisms including protein level, selective splicing, epigenetics, astrocytes, positional redistribution and protein structure. Based on the regulation of synaptic plasticity by neurexins, several drugs with potential for sustained antidepressant effect are also discussed. Focusing on neurexins in regulating synaptic plasticity promises much for further understanding underlying mechanisms of sustained antidepressant and the next step in new drug development. This research represents a highly promising future research direction.
Collapse
Affiliation(s)
- Yuan Ruan
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ruolan Yuan
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jiaqi He
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yutong Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Naihong Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
3
|
Grezenko H, Ekhator C, Nwabugwu NU, Ganga H, Affaf M, Abdelaziz AM, Rehman A, Shehryar A, Abbasi FA, Bellegarde SB, Khaliq AS. Epigenetics in Neurological and Psychiatric Disorders: A Comprehensive Review of Current Understanding and Future Perspectives. Cureus 2023; 15:e43960. [PMID: 37622055 PMCID: PMC10446850 DOI: 10.7759/cureus.43960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 08/26/2023] Open
Abstract
The burgeoning field of epigenetics offers transformative insights into the complex landscape of neurological and psychiatric disorders. By unraveling the intricate interplay between genetic, epigenetic, environmental, and lifestyle factors, this comprehensive review highlights the multifaceted nature of mental health. The exploration reveals the potential of epigenetic modifications to revolutionize our understanding, diagnosis, treatment, and prevention of these disorders. Emphasizing the importance of multidisciplinary collaborations, large-scale studies, technological advancements, and ethical considerations, the review asserts the promise of epigenetics as a vital tool for personalized medicine, early intervention, and public health strategies. While acknowledging the challenges in a still-emerging field, the review paints an optimistic picture of epigenetics as a groundbreaking approach that can reshape mental healthcare, offering hope for those affected by neurological and psychiatric conditions. The future trajectory of the field relies on interdisciplinary efforts, ethical diligence, innovative technologies, and translating scientific insights into real-world applications, thereby unlocking the vast potential of epigenetics in mental health.
Collapse
Affiliation(s)
- Han Grezenko
- Translational Neuroscience, Barrow Neurological Institute, Phoenix, USA
| | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, USA
| | - Nkechi U Nwabugwu
- Public Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | - Maryam Affaf
- Internal Medicine, Women Medical College, Abbottabad, PAK
| | - Ali M Abdelaziz
- Internal Medicine, Alexandria University Faculty of Medicine, Alexandria, EGY
| | | | | | - Fatima A Abbasi
- Cardiology, Shifa International Hospital Islamabad, Islamabad, PAK
| | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, St. John's, ATG
| | | |
Collapse
|
4
|
Chen B, Jiao Z, Shen T, Fan R, Chen Y, Xu Z. Early antidepressant treatment response prediction in major depression using clinical and TPH2 DNA methylation features based on machine learning approaches. BMC Psychiatry 2023; 23:299. [PMID: 37127594 PMCID: PMC10150459 DOI: 10.1186/s12888-023-04791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/16/2023] [Indexed: 05/03/2023] Open
Abstract
OBJECTIVE To identify DNA methylation and clinical features, and to construct machine learning classifiers to assign the patients with major depressive disorder (MDD) into responders and non-responders after a 2-week treatment into responders and non-responders. METHOD Han Chinese patients (291 in total) with MDD comprised the study population. Datasets contained demographic information, environment stress factors, and the methylation levels of 38 methylated sites of tryptophan hydroxylase 2 (TPH2) genes in peripheral blood samples. Recursive Feature Elimination (RFE) was employed to select features. Five classification algorithms (logistic regression, classification and regression trees, support vector machine, logitboost and random forests) were used to establish the models. Performance metrics (AUC, F-Measure, G-Mean, accuracy, sensitivity, specificity, positive predictive value and negative predictive value) were computed with 5-fold-cross-validation. Variable importance was evaluated by random forest algorithm. RESULT RF with RFE outperformed the other models in our samples based on the demographic information and clinical features (AUC = 61.2%, 95%CI: 60.1-62.4%) / TPH2 CpGs features (AUC = 66.6%, 95%CI: 65.4-67.8%) / both clinical and TPH2 CpGs features (AUC = 72.9%, 95%CI: 71.8-74.0%). CONCLUSION The effects of TPH2 on the early-stage antidepressant response were explored by machine learning algorithms. On the basis of the baseline depression severity and TPH2 CpG sites, machine learning approaches can enhance our ability to predict the early-stage antidepressant response. Some potentially important predictors (e.g., TPH2-10-60 (rs2129575), TPH2-2-163 (rs11178998), age of first onset, age) in early-stage treatment response could be utilized in future fundamental research, drug development and clinical practice.
Collapse
Affiliation(s)
- Bingwei Chen
- Department of Epidemiology and Biostatistics, School of Public health, Southeast University, Nanjing, 210009, China.
| | - Zhigang Jiao
- Department of Epidemiology and Biostatistics, School of Public health, Southeast University, Nanjing, 210009, China.
| | - Tian Shen
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Ru Fan
- Department of Epidemiology and Biostatistics, School of Public health, Southeast University, Nanjing, 210009, China
| | - Yuqi Chen
- Department of Epidemiology and Biostatistics, School of Public health, Southeast University, Nanjing, 210009, China
- Department of Occupational Health and Poisoning Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| |
Collapse
|
5
|
SVCT2-mediated ascorbic acid uptake buffers stress responses via DNA hydroxymethylation reprogramming of S100 calcium-binding protein A4 gene. Redox Biol 2022; 58:102543. [PMID: 36436457 PMCID: PMC9694147 DOI: 10.1016/j.redox.2022.102543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Vitamin C, a key antioxidant in the central nervous system, cycles between ascorbic acid and dehydroascorbic acid under pathophysiological conditions. Clinical evidence supports that the absence of vitamin C may be linked to depressive symptoms, but much less is known about the mechanism. Herein, we show that chronic stress disrupts the expression of ascorbic acid transporter, sodium-dependent vitamin C transport 2, and induces a deficiency in endogenous ascorbic acid in the medial prefrontal cortex, leading to depressive-like behaviors by disturbing redox-dependent DNA methylation reprogramming. Attractively, ascorbic acid (100 mg/kg-1000 mg/kg, intraperitoneal injection, as bioequivalent of an intravenous drip dose of 0.48 g-4.8 g ascorbic acid per day in humans) produces rapid-acting antidepressant effects via triggering DNA demethylation catalyzed by ten-eleven translocation dioxygenases. In particular, the mechanistic studies by both transcriptome sequencing and methylation sequencing have shown that S100 calcium binding protein A4, a potentially protective factor against oxidative stress and brain injury, mediates the antidepressant activity of ascorbic acid via activating erb-b2 receptor tyrosine kinase 4 (ErbB4)-brain derived neurotrophic factor (BDNF) signaling pathway. Overall, our findings reveal a novel nutritional mechanism that couples stress to aberrant DNA methylation underlying depressive-like behaviors. Therefore, application of vitamin C may be a potential strategy for the treatment of depression.
Collapse
|
6
|
Peng S, Zhou Y, Lu M, Wang Q. Review of Herbal Medicines for the Treatment of Depression. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221139082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Depression, a mental illness that is receiving increasing attention, is caused by multiple factors and genes and adversely affects social life and health. Several hypotheses have been proposed to clarify the pathogenesis of depression, and various synthetic antidepressants have been introduced to treat patients with depression. However, these drugs are effective only in a proportion of patients and fail to achieve complete remission. Recently, herbal medicines have received much attention as alternative treatments for depression because of their fewer side effects and lower costs. In this review, we have mainly focused on the herbal medicines that have been proven in clinical studies (especially randomized controlled trials and preclinical studies) to have antidepressant effects; we also describe the potential mechanisms of the antidepressant effects of those herbal medicines; the cellular and animal model of depression; and the development of novel drug delivery systems for herbal antidepressants. Finally, we objectively elaborate on the challenges of using herbal medicines as antidepressants and describe the benefits, adverse effects, and toxicity of these medicines.
Collapse
Affiliation(s)
- Siqi Peng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yalan Zhou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Lu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Alshaya DS. Genetic and epigenetic factors associated with depression: An updated overview. Saudi J Biol Sci 2022; 29:103311. [PMID: 35762011 PMCID: PMC9232544 DOI: 10.1016/j.sjbs.2022.103311] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 05/15/2022] [Indexed: 11/16/2022] Open
Abstract
Depression is a complex psychiatric disturbance involving many environmental, genetic, and epigenetic factors. Until now, genetic, and non-genetic studies are still on the way to understanding the complex mechanism of this disease, and there are still many questions that have not yet been answered. Depression includes a large spectrum of heterogeneous symptoms correlated to the deficit of a range of psychological, cognitive, and emotional processes, and it affects various age groups. It is classified into several types according to the severity of symptoms, time of occurrence, and time. Following the World Health Organization (WHO), depression attacks near 350 million persons globally. Several factors overlap in causing depression, including genetic and epigenetic factors, environmental conditions, various stresses, lack of some nutrients to which people are exposed, and excessive stress and abuse in childhood. This study included conducting surveys on depression and new treatment trends based on epigenetic factors associated with the occurrence of the disease. Epigenetic factors provide a completely novel dimension to therapeutic approaches as most diseases are not monogenic, and it is likely that the environment has a significant contribution. Epigenetic inheritance is included in many mental and psychiatric disorders such as depression. In general, epigenetic modifications could be summarized in 3 major points: DNA methylation, histone modification, and non-mediated regulation of RNA (ncRNA). This study also describes some genes associated with one of the depressive disorders using bioinformatics tools and gene bank and had the genes: SLC6A4, COMT, TPH2, FKBP5, MDD1, HTR2A, and MDD2. As in this study, the awareness of Saudi society about depression and its genetic and non-genetic causes was estimated. The results showed that an encouraging percentage of more than half of the research sample possessed correct information about this disorder.
Collapse
Key Words
- COMT, Catechol-O-methyltransferase
- Depression
- Epigenetic factors
- FKBP5, FKBP Prolyl Isomerase 5
- Genetic factors
- HTR2A, hydroxy tryptamine receptor 2A
- MBCT, Mindfulness-based cognitive therapy
- MDD1, Major Depressive Disorder 1
- MDD2, Major Depressive Disorder 2
- NICE, National Institute for Health and Care Excellence
- NIMH, National Institute of Mental Health
- SAD, Seasonal Affective Disorder
- SLC6A4, Solute Carrier Family 6 Member 4
- Symptoms
- TPH2, Tryptophan hydroxylase 2
- Treatment
Collapse
Affiliation(s)
- Dalal S. Alshaya
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
8
|
Elevated BICD2 DNA methylation in blood of major depressive disorder patients and reduction of depressive-like behaviors in hippocampal Bicd2-knockdown mice. Proc Natl Acad Sci U S A 2022; 119:e2201967119. [PMID: 35858435 PMCID: PMC9335189 DOI: 10.1073/pnas.2201967119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Major depressive disorder (MDD) is a prevalent and devastating mental illness. To date, the diagnosis of MDD is largely dependent on clinical interviews and questionnaires and still lacks a reliable biomarker. DNA methylation has a stable and reversible nature and is likely associated with the course and therapeutic efficacy of complex diseases, which may play an important role in the etiology of a disease. Here, we identified and validated a DNA methylation biomarker for MDD from four independent cohorts of the Chinese Han population. First, we integrated the analysis of the DNA methylation microarray (n = 80) and RNA expression microarray data (n = 40) and identified BICD2 as the top-ranked gene. In the replication phase, we employed the Sequenom MassARRAY method to confirm the DNA hypermethylation change in a large sample size (n = 1,346) and used the methylation-sensitive restriction enzymes and a quantitative PCR approach (MSE-qPCR) and qPCR method to confirm the correlation between DNA hypermethylation and mRNA down-regulation of BICD2 (n = 60). The results were replicated in the peripheral blood of mice with depressive-like behaviors, while in the hippocampus of mice, Bicd2 showed DNA hypomethylation and mRNA/protein up-regulation. Hippocampal Bicd2 knockdown demonstrates antidepressant action in the chronic unpredictable mild stress (CUMS) mouse model of depression, which may be mediated by increased BDNF expression. Our study identified a potential DNA methylation biomarker and investigated its functional implications, which could be exploited to improve the diagnosis and treatment of MDD.
Collapse
|
9
|
DeRosa H, Richter T, Wilkinson C, Hunter RG. Bridging the Gap Between Environmental Adversity and Neuropsychiatric Disorders: The Role of Transposable Elements. Front Genet 2022; 13:813510. [PMID: 35711940 PMCID: PMC9196244 DOI: 10.3389/fgene.2022.813510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/13/2022] [Indexed: 12/21/2022] Open
Abstract
Long regarded as “junk DNA,” transposable elements (TEs) have recently garnered much attention for their role in promoting genetic diversity and plasticity. While many processes involved in mammalian development require TE activity, deleterious TE insertions are a hallmark of several psychiatric disorders. Moreover, stressful events including exposure to gestational infection and trauma, are major risk factors for developing psychiatric illnesses. Here, we will provide evidence demonstrating the intersection of stressful events, atypical TE expression, and their epigenetic regulation, which may explain how neuropsychiatric phenotypes manifest. In this way, TEs may be the “bridge” between environmental perturbations and psychopathology.
Collapse
Affiliation(s)
- Holly DeRosa
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Troy Richter
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Cooper Wilkinson
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Richard G Hunter
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
10
|
Li Y, Jinxiang T, Shu Y, Yadong P, Ying L, Meng Y, Ping Z, Xiao H, Yixiao F. Childhood trauma and the plasma levels of IL-6, TNF-α are risk factors for major depressive disorder and schizophrenia in adolescents: A cross-sectional and case-control study. J Affect Disord 2022; 305:227-232. [PMID: 35151670 DOI: 10.1016/j.jad.2022.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/07/2022] [Accepted: 02/09/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND It has been reported that childhood trauma and inflammation are associated with major depressive disorder (MDD) and schizophrenia (SZ), but previous researches were almost aimed at adults. The aim of the present research is to observe the alteration of peripheral interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in adolescents (12-20 years) with MDD and SZ, to investigate the impact of childhood abuse in early-onset MDD and SZ, and to furtherly explore the correlation between childhood maltreatment and plasma IL-6, TNF-α levels. SUBJECTS AND METHODS Enzyme-linked immunosorbent assay (ELISA) is applied to obtain the plasma concentrations of IL-6 and TNF-α in 55 patients with MDD, 51 patients with SZ and 47 healthy minors. The short form of the Childhood Trauma Questionnaire (CTQ-SF) is used to assess the severity of early trauma. RESULTS Plasma IL-6 and TNF-α levels are significantly elevated in patients with early-onset MDD and SZ compared with healthy subjects (p <0.01), whose results display that the correlation between IL-6 and TNF-α is significantly positive (γ=0.787, p <0.01) in all participants. Compared with the healthy adolescents, patients with MDD and SZ show more serious childhood trauma, and the plasma IL-6, TNF-α concentrations are closely related to childhood maltreatment. CONCLUSIONS Early trauma and peripheral inflammatory response play an important role in the pathophysiology of early-onset MDD or SZ. The current findings provide effective targets for the prevention, diagnosis, and treatment of major depressive disorder and schizophrenia in adolescents.
Collapse
Affiliation(s)
- Yi Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tang Jinxiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Sleep and Psychology Center, Bishan Hospital of Chongqing, Chongqing 402760, China
| | - Yang Shu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Yadong
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Liu Ying
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Yuan Meng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhang Ping
- Department of English, Sichuan International Study University, Chongqing 400000, China
| | - Hou Xiao
- Department of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.
| | - Fu Yixiao
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
11
|
Manusov EG, Diego VP, Sheikh K, Laston S, Blangero J, Williams-Blangero S. Non-alcoholic Fatty Liver Disease and Depression: Evidence for Genotype × Environment Interaction in Mexican Americans. Front Psychiatry 2022; 13:936052. [PMID: 35845438 PMCID: PMC9283683 DOI: 10.3389/fpsyt.2022.936052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
This study examines the impact of G × E interaction effects on non-alcoholic fatty liver disease (NAFLD) among Mexican Americans in the Rio Grande Valley (RGV) of South Texas. We examined potential G × E interaction using variance components models and likelihood-based statistical inference in the phenotypic expression of NAFLD, including hepatic steatosis and hepatic fibrosis (identified using vibration controlled transient elastography and controlled attenuation parameter measured by the FibroScan Device). We screened for depression using the Beck Depression Inventory-II (BDI-II). We identified significant G × E interactions for hepatic fibrosis × BDI-II. These findings provide evidence that genetic factors interact with depression to influence the expression of hepatic fibrosis.
Collapse
Affiliation(s)
- Eron Grant Manusov
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX, United States.,School of Medicine, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Vincent P Diego
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX, United States.,School of Medicine, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Khalid Sheikh
- School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Sandra Laston
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX, United States.,School of Medicine, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - John Blangero
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX, United States.,School of Medicine, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Sarah Williams-Blangero
- Department of Human Genetics, The University of Texas Rio Grande Valley, Brownsville, TX, United States.,School of Medicine, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| |
Collapse
|
12
|
Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022; 239:663-693. [PMID: 35072761 PMCID: PMC8785013 DOI: 10.1007/s00213-021-05982-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE The chronic mild stress (CMS) paradigm was first described almost 40 years ago and has become a widely used model in the search for antidepressant drugs for major depression disorder (MDD). It has resulted in the publication of almost 1700 studies in rats alone. Under the original CMS procedure, the expression of an anhedonic response, a key symptom of depression, was seen as an essential feature of both the model and a depressive state. The prolonged exposure of rodents to unpredictable/uncontrollable mild stressors leads to a reduction in the intake of palatable liquids, behavioral despair, locomotor inhibition, anxiety-like changes, and vegetative (somatic) abnormalities. Many of the CMS studies do not report these patterns of behaviors, and they often fail to include consistent molecular, neuroanatomical, and physiological phenotypes of CMS-exposed animals. OBJECTIVES To critically review the CMS studies in rats so that conceptual and methodological flaws can be avoided in future studies. RESULTS Analysis of the literature supports the validity of the CMS model and its impact on the field. However, further improvements could be achieved by (i) the stratification of animals into 'resilient' and 'susceptible' cohorts within the CMS animals, (ii) the use of more refined protocols in the sucrose test to mitigate physiological and physical artifacts, and (iii) the systematic evaluation of the non-specific effects of CMS and implementation of appropriate adjustments within the behavioral tests. CONCLUSIONS We propose methodological revisions and the use of more advanced behavioral tests to refine the rat CMS paradigm, which offers a valuable tool for developing new antidepressant medications.
Collapse
|
13
|
Park HS, Kim J, Ahn SH, Ryu HY. Epigenetic Targeting of Histone Deacetylases in Diagnostics and Treatment of Depression. Int J Mol Sci 2021; 22:5398. [PMID: 34065586 PMCID: PMC8160658 DOI: 10.3390/ijms22105398] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Depression is a highly prevalent, disabling, and often chronic illness that places substantial burdens on patients, families, healthcare systems, and the economy. A substantial minority of patients are unresponsive to current therapies, so there is an urgent need to develop more broadly effective, accessible, and tolerable therapies. Pharmacological regulation of histone acetylation level has been investigated as one potential clinical strategy. Histone acetylation status is considered a potential diagnostic biomarker for depression, while inhibitors of histone deacetylases (HDACs) have garnered interest as novel therapeutics. This review describes recent advances in our knowledge of histone acetylation status in depression and the therapeutic potential of HDAC inhibitors.
Collapse
Affiliation(s)
- Hyun-Sun Park
- Department of Biochemistry, Inje University College of Medicine, Busan 47392, Korea
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, Ansan 15588, Korea;
| | - Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
14
|
Zhou J, Li M, Wang X, He Y, Xia Y, Sweeney JA, Kopp RF, Liu C, Chen C. Drug Response-Related DNA Methylation Changes in Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. Front Neurosci 2021; 15:674273. [PMID: 34054421 PMCID: PMC8155631 DOI: 10.3389/fnins.2021.674273] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Pharmacotherapy is the most common treatment for schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). Pharmacogenetic studies have achieved results with limited clinical utility. DNA methylation (DNAm), an epigenetic modification, has been proposed to be involved in both the pathology and drug treatment of these disorders. Emerging data indicates that DNAm could be used as a predictor of drug response for psychiatric disorders. In this study, we performed a systematic review to evaluate the reproducibility of published changes of drug response-related DNAm in SCZ, BD and MDD. A total of 37 publications were included. Since the studies involved patients of different treatment stages, we partitioned them into three groups based on their primary focuses: (1) medication-induced DNAm changes (n = 8); (2) the relationship between DNAm and clinical improvement (n = 24); and (3) comparison of DNAm status across different medications (n = 14). We found that only BDNF was consistent with the DNAm changes detected in four independent studies for MDD. It was positively correlated with clinical improvement in MDD. To develop better predictive DNAm factors for drug response, we also discussed future research strategies, including experimental, analytical procedures and statistical criteria. Our review shows promising possibilities for using BDNF DNAm as a predictor of antidepressant treatment response for MDD, while more pharmacoepigenetic studies are needed for treatments of various diseases. Future research should take advantage of a system-wide analysis with a strict and standard analytical procedure.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueying Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen He
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - John A. Sweeney
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, United States
| | - Richard F. Kopp
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Potential clinical value of circular RNAs as peripheral biomarkers for the diagnosis and treatment of major depressive disorder. EBioMedicine 2021; 66:103337. [PMID: 33862583 PMCID: PMC8054154 DOI: 10.1016/j.ebiom.2021.103337] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Background circular RNAs (circRNAs) are expressed abundantly in the brain and are implicated in the pathophysiology of neuropsychiatric disease. However, the potential clinical value of circRNAs in major depressive disorder (MDD) remains unclear. Methods RNA sequencing was conducted in whole-blood samples in a discovery set (7 highly homogeneous MDD patients and 7 matched healthy controls [HCs]). The differential expression of circRNAs was verified in an independent validation set. The interventional study was conducted to assess the potential effect of the antidepressive treatment on the circRNA expression. Findings in the validation set, compared with 52 HCs, significantly decreased circFKBP8 levels (Diff: -0.24; [95% CI -0.39 ~ -0.09]) and significantly elevated circMBNL1 levels (Diff: 0.37; [95% CI 0.09 ~ 0.64]) were observed in 53 MDD patients. The expression of circMBNL1 was negatively correlated with 24-item Hamilton Depression Scale (HAMD-24) scores in 53 MDD patients. A mediation model indicated that circMBNL1 affected HAMD-24 scores through a mediator, serum brain-derived neurotrophic factor. In 53 MDD patients, the amplitude of low-frequency fluctuations in the right orbital part middle frontal gyrus was positively correlated with circFKBP8 and circMBNL1 expression. Furthermore, the interventional study of 53 MDD patients demonstrated that antidepressive treatment partly increased circFKBP8 expression and the change in expression of circFKBP8 was predictive of further reduced HAMD-24 scores. Interpretation whole-blood circFKBP8 and circMBNL1 may be potential biomarkers for the diagnosis of MDD, respectively, and circFKBP8 may show great potential for the antidepressive treatment.
Collapse
|
16
|
Hoepner CT, McIntyre RS, Papakostas GI. Impact of Supplementation and Nutritional Interventions on Pathogenic Processes of Mood Disorders: A Review of the Evidence. Nutrients 2021; 13:nu13030767. [PMID: 33652997 PMCID: PMC7996954 DOI: 10.3390/nu13030767] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
This narrative review was conducted using searches of the PubMed/Medline and Google Scholar databases from inception to November 2019. Clinical trials and relevant articles were identified by cross-referencing major depressive disorder (and/or variants) with the following terms: folate, homocysteine, S-adenosylmethionine (SAMe), L-acetylcarnitine, alpha-lipoic acid, N-acetylcysteine, L-tryptophan, zinc, magnesium, vitamin D, omega-3 fatty acids, coenzyme Q10, and inositol. Manual reviews of references were also performed using article reference lists. Abnormal levels of folate, homocysteine, and SAMe have been shown to be associated with a higher risk of depression. Numerous studies have demonstrated antidepressant activity with L-methylfolate and SAMe supplementation in individuals with depression. Additionally, the amino acids L-acetylcarnitine, alpha-lipoic acid, N-acetylcysteine, and L-tryptophan have been implicated in the development of depression and shown to exert antidepressant effects. Other agents with evidence for improving depressive symptoms include zinc, magnesium, omega-3 fatty acids, and coenzyme Q10. Potential biases and differences in study designs within and amongst the studies and reviews selected may confound results. Augmentation of antidepressant medications with various supplements targeting nutritional and physiological factors can potentiate antidepressant effects. Medical foods, particularly L-methylfolate, and other supplements may play a role in managing depression in patients with inadequate response to antidepressant therapies.
Collapse
Affiliation(s)
- Cara T. Hoepner
- Bay Area Psychiatric, A Nursing Corporation, San Francisco, CA 94111, USA
- Correspondence:
| | - Roger S. McIntyre
- Mood Disorders Psychopharmacology Unit, University of Toronto, Toronto, ON M5T 2S8, Canada;
| | | |
Collapse
|
17
|
Clinton SM, Shupe EA, Glover ME, Unroe KA, McCoy CR, Cohen JL, Kerman IA. Modeling heritability of temperamental differences, stress reactivity, and risk for anxiety and depression: Relevance to research domain criteria (RDoC). Eur J Neurosci 2021; 55:2076-2107. [PMID: 33629390 PMCID: PMC8382785 DOI: 10.1111/ejn.15158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/29/2021] [Accepted: 02/20/2021] [Indexed: 01/04/2023]
Abstract
Animal models provide important tools to study biological and environmental factors that shape brain function and behavior. These models can be effectively leveraged by drawing on concepts from the National Institute of Mental Health Research Domain Criteria (RDoC) Initiative, which aims to delineate molecular pathways and neural circuits that underpin behavioral anomalies that transcend psychiatric conditions. To study factors that contribute to individual differences in emotionality and stress reactivity, our laboratory utilized Sprague-Dawley rats that were selectively bred for differences in novelty exploration. Selective breeding for low versus high locomotor response to novelty produced rat lines that differ in behavioral domains relevant to anxiety and depression, particularly the RDoC Negative Valence domains, including acute threat, potential threat, and loss. Bred Low Novelty Responder (LR) rats, relative to their High Responder (HR) counterparts, display high levels of behavioral inhibition, conditioned and unconditioned fear, avoidance, passive stress coping, anhedonia, and psychomotor retardation. The HR/LR traits are heritable, emerge in the first weeks of life, and appear to be driven by alterations in the developing amygdala and hippocampus. Epigenomic and transcriptomic profiling in the developing and adult HR/LR brain suggest that DNA methylation and microRNAs, as well as differences in monoaminergic transmission (dopamine and serotonin in particular), contribute to their distinct behavioral phenotypes. This work exemplifies ways that animal models such as the HR/LR rats can be effectively used to study neural and molecular factors driving emotional behavior, which may pave the way toward improved understanding the neurobiological mechanisms involved in emotional disorders.
Collapse
Affiliation(s)
- Sarah M Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elizabeth A Shupe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matthew E Glover
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Keaton A Unroe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Chelsea R McCoy
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Joshua L Cohen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Ilan A Kerman
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Behavioral Health Service Line, Veterans Affairs Pittsburgh Health System, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Nobis A, Zalewski D, Waszkiewicz N. Peripheral Markers of Depression. J Clin Med 2020; 9:E3793. [PMID: 33255237 PMCID: PMC7760788 DOI: 10.3390/jcm9123793] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Major Depressive Disorder (MDD) is a leading cause of disability worldwide, creating a high medical and socioeconomic burden. There is a growing interest in the biological underpinnings of depression, which are reflected by altered levels of biological markers. Among others, enhanced inflammation has been reported in MDD, as reflected by increased concentrations of inflammatory markers-C-reactive protein, interleukin-6, tumor necrosis factor-α and soluble interleukin-2 receptor. Oxidative and nitrosative stress also plays a role in the pathophysiology of MDD. Notably, increased levels of lipid peroxidation markers are characteristic of MDD. Dysregulation of the stress axis, along with increased cortisol levels, have also been reported in MDD. Alterations in growth factors, with a significant decrease in brain-derived neurotrophic factor and an increase in fibroblast growth factor-2 and insulin-like growth factor-1 concentrations have also been found in MDD. Finally, kynurenine metabolites, increased glutamate and decreased total cholesterol also hold promise as reliable biomarkers for MDD. Research in the field of MDD biomarkers is hindered by insufficient understanding of MDD etiopathogenesis, substantial heterogeneity of the disorder, common co-morbidities and low specificity of biomarkers. The construction of biomarker panels and their evaluation with use of new technologies may have the potential to overcome the above mentioned obstacles.
Collapse
Affiliation(s)
- Aleksander Nobis
- Department of Psychiatry, Medical University of Bialystok, pl. Brodowicza 1, 16-070 Choroszcz, Poland; (D.Z.); (N.W.)
| | | | | |
Collapse
|
19
|
Zorkina Y, Abramova O, Ushakova V, Morozova A, Zubkov E, Valikhov M, Melnikov P, Majouga A, Chekhonin V. Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. Molecules 2020; 25:E5294. [PMID: 33202839 PMCID: PMC7697162 DOI: 10.3390/molecules25225294] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Neuropsychiatric diseases are one of the main causes of disability, affecting millions of people. Various drugs are used for its treatment, although no effective therapy has been found yet. The blood brain barrier (BBB) significantly complicates drugs delivery to the target cells in the brain tissues. One of the problem-solving methods is the usage of nanocontainer systems. In this review we summarized the data about nanoparticles drug delivery systems and their application for the treatment of neuropsychiatric disorders. Firstly, we described and characterized types of nanocarriers: inorganic nanoparticles, polymeric and lipid nanocarriers, their advantages and disadvantages. We discussed ways to interact with nerve tissue and methods of BBB penetration. We provided a summary of nanotechnology-based pharmacotherapy of schizophrenia, bipolar disorder, depression, anxiety disorder and Alzheimer's disease, where development of nanocontainer drugs derives the most active. We described various experimental drugs for the treatment of Alzheimer's disease that include vector nanocontainers targeted on β-amyloid or tau-protein. Integrally, nanoparticles can substantially improve the drug delivery as its implication can increase BBB permeability, the pharmacodynamics and bioavailability of applied drugs. Thus, nanotechnology is anticipated to overcome the limitations of existing pharmacotherapy of psychiatric disorders and to effectively combine various treatment modalities in that direction.
Collapse
Affiliation(s)
- Yana Zorkina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Abramova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Valeriya Ushakova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Department of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anna Morozova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Eugene Zubkov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Marat Valikhov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Pavel Melnikov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Alexander Majouga
- D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Vladimir Chekhonin
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
20
|
Dotto JM, Chacha JS. The potential of pumpkin seeds as a functional food ingredient: A review. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00575] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
21
|
Branje S, Geeraerts S, de Zeeuw EL, Oerlemans AM, Koopman-Verhoeff ME, Schulz S, Nelemans S, Meeus W, Hartman CA, Hillegers MHJ, Oldehinkel AJ, Boomsma DI. Intergenerational transmission: Theoretical and methodological issues and an introduction to four Dutch cohorts. Dev Cogn Neurosci 2020; 45:100835. [PMID: 32823179 PMCID: PMC7451818 DOI: 10.1016/j.dcn.2020.100835] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/27/2020] [Accepted: 08/04/2020] [Indexed: 01/09/2023] Open
Abstract
Behaviors, traits and characteristics are transmitted from parents to offspring because of complex genetic and non-genetic processes. We review genetic and non-genetic mechanisms of intergenerational transmission of psychopathology and parenting and focus on recent methodological advances in disentangling genetic and non-genetic factors. In light of this review, we propose that future studies on intergenerational transmission should aim to disentangle genetic and non-genetic transmission, take a long-term longitudinal perspective, and focus on paternal and maternal intergenerational transmission. We present four large longitudinal cohort studies within the Consortium on Individual Development, which together address many of these methodological challenges. These four cohort studies aim to examine the extent to which genetic and non-genetic transmission from the parental generation shapes parenting behavior and psychopathology in the next generation, as well as the extent to which self-regulation and social competence mediate this transmission. Conjointly, these four cohorts provide a comprehensive approach to the study of intergenerational transmission.
Collapse
Affiliation(s)
- Susan Branje
- Youth and Family, Department of Educational and Pedagogical Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Sanne Geeraerts
- Youth and Family, Department of Educational and Pedagogical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Eveline L de Zeeuw
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Anoek M Oerlemans
- Department of Psychiatry, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - M Elisabeth Koopman-Verhoeff
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Susanne Schulz
- Youth and Family, Department of Educational and Pedagogical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Stefanie Nelemans
- Youth and Family, Department of Educational and Pedagogical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Wim Meeus
- Youth and Family, Department of Educational and Pedagogical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Catharina A Hartman
- Department of Psychiatry, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Manon H J Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Albertine J Oldehinkel
- Department of Psychiatry, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Dorret I Boomsma
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Dregan A, Rayner L, Davis KAS, Bakolis I, Arias de la Torre J, Das-Munshi J, Hatch SL, Stewart R, Hotopf M. Associations Between Depression, Arterial Stiffness, and Metabolic Syndrome Among Adults in the UK Biobank Population Study: A Mediation Analysis. JAMA Psychiatry 2020; 77:598-606. [PMID: 31995135 PMCID: PMC6990710 DOI: 10.1001/jamapsychiatry.2019.4712] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/01/2019] [Indexed: 02/06/2023]
Abstract
Importance Previous research has linked a history of depression with arterial stiffness (AS) during midlife. Objective To assess the association of depression with elevated midlife AS and to investigate the extent to which this association is mediated via metabolic syndrome (MetS). Design, Settings, and Participants This population-based retrospective cohort study analyzed data collected between March 2006 and December 2010 from 124 445 participants aged 40 to 69 years from the UK Biobank. Participants without data on AS at baseline (n = 332 780) or who reported a previous diagnosis of cardiovascular disease (n = 45 374) were not eligible. Data analysis was performed from May to August 2019. Exposures Lifetime history of depression was assessed via verbal interview and linked hospital-based clinical depression diagnosis. Metabolic syndrome was defined as the presence of 3 or more of hypertension, dyslipidemia, hyperglycemia, hypertriglyceridemia, and unhealthy waist circumference. Main Outcomes and Measures Peripherally assessed AS index (ASI) using digital photoplethysmography. Results Of 124 445 included participants with ASI assessed, 71 799 (57.7%) were women, and the mean (SD) age was 56 (8) years. A total of 10 304 participants (8.3%) reported a history of depression. Study findings indicated a significant direct association between depression and ASI levels (β = 0.25; 95% CI, 0.17-0.32). A significant indirect association was also observed between depression and ASI levels (β = 0.10; 95% CI, 0.07-0.13), indicating that 29% of the association of depression with ASI was mediated by MetS. The proportion of mediation increased to 37% when C-reactive protein was added to the MetS criteria (direct association: β = 0.21; 95% CI, 0.15-0.28; indirect association: β = 0.13; 95% CI, 0.10-0.17). Concerning components of MetS, the strongest indirect association was for waist circumference, accounting for 25% of the association between depression and ASI levels (direct association: β = 0.26; 95% CI, 0.18-0.34; indirect association: β = 0.09; 95% CI, 0.06-0.11). Among men, hypertriglyceridemia accounted for 19% of the association between depression and ASI (direct association: β = 0.22; 95% CI, 0.05-0.40; indirect association: β = 0.05; 95% CI, 0.02-0.08). Conclusions and Relevance One-third of the association of depression with elevated ASI levels during midlife may be accounted for by combined MetS and inflammatory processes. Unhealthy waist circumference and hypertriglyceridemia emerged as the most important potential targets for preventive interventions within women and men, respectively.
Collapse
Affiliation(s)
- Alex Dregan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Lauren Rayner
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Katrina A. S. Davis
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Ioannis Bakolis
- Biostatistics and Health Informatics, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
- Centre for Implementation Science, Health Services and Population Research Department, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Jorge Arias de la Torre
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Jayati Das-Munshi
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Stephani L. Hatch
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Robert Stewart
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Matthew Hotopf
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
23
|
Pan B, Zhou Y, Li H, Li Y, Xue X, Li L, Liu Q, Zhao X, Niu Q. Relationship between occupational aluminium exposure and histone lysine modification through methylation. J Trace Elem Med Biol 2020; 61:126551. [PMID: 32470791 DOI: 10.1016/j.jtemb.2020.126551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Aluminium is an environmental neurotoxin to which human beings are extensively exposed. However, the molecular mechanism of aluminium toxicity remains unclear. METHODS The changes in cognitive function of aluminum exposed workers under long-term occupational exposure were evaluated, and the relationship between cognitive changes, plasma memory related BDNF and EGR1 protein expression, and variations of epigenetic markers H3K4me3, H3K9me2, H3K27me3 expression levels in blood was explored. RESULTS MMSE, DSFT, DST scores in cognitive function and the levels of plasma BDNF and EGR1 protein expression decreased with the increase of blood aluminum level. H3K4me3, H3K9me2, H3K27me3 expression levels in peripheral blood lymphocytes of aluminum exposed workers were statistically different (all P<0.05). H3K4me3, H3K9me2 and H3K27me3 expression levels in lymphocytes were correlated with blood aluminum level. BDNF, EGR1 protein level and H3K4me3, H3K9me2, H3K27me3 expression levels have different degrees of correlation. There was a linear regression relationship between plasma BDNF, H3K4me3 and H3K9me2. H3K9me2 had a greater effect on BDNF than H3K4me3. There is a linear regression relationship between EGR1, H3K4me3 and H3K27me3, and the influence of H3K4me3 on EGR1 is greater than that of H3K27me3 on EGR1. CONCLUSION Alummnum may regulate the expression of BDNF and EGR1 by regulating H3K4me3, H3K27me3 and H3K9me2, and affect the cognitive function of workers by affecting the expression of BDNF and EGR1.
Collapse
Affiliation(s)
- Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), China
| | - Yue Zhou
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Huan Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, China
| | - Yaqin Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Xingli Xue
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Liang Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Qun Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Xiaoyan Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, China.
| |
Collapse
|
24
|
Wigner P, Synowiec E, Jóźwiak P, Czarny P, Bijak M, Białek K, Szemraj J, Gruca P, Papp M, Śliwiński T. The Effect of Chronic Mild Stress and Venlafaxine on the Expression and Methylation Levels of Genes Involved in the Tryptophan Catabolites Pathway in the Blood and Brain Structures of Rats. J Mol Neurosci 2020; 70:1425-1436. [PMID: 32406039 PMCID: PMC7399689 DOI: 10.1007/s12031-020-01563-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022]
Abstract
A growing body of evidence suggests that depression may be associated with impairment of the tryptophan catabolites (TRYCATs) pathway. The present study investigated the effects of the chronic administration of venlafaxine on the expression and methylation status of Katl, Tph1/2, Ido1, Kmo and Kynu in the brain and blood of rats exposed to the CMS model of depression. The rats were subjected to the CMS procedure for 2 or 7 weeks and administered venlafaxine (10 mg/kg/day, IP) for 5 weeks. mRNA and protein expression and the methylation status of gene promoters in PBMCs and six brain structures were evaluated and analysed using the TaqMan Gene Expression Assay and Western blotting, and methylation-sensitive high-resolution melting (MS-HRM), respectively. We found that the CMS procedure increased KatI expression in the midbrain and KatII expression in the midbrain and the amygdala, while venlafaxine administration decreased KatII expression in the hypothalamus and the cerebral cortex. The methylation status of the Tph1 and Kmo promoters in peripheral blood mononuclear cells (PBMCs) was significantly increased in the stressed group after antidepressant therapy. The protein levels of Tph1 and Ido1 were decreased following venlafaxine administration. Our results confirmed that CMS and venlafaxine modulate the expression levels and methylation status of genes involved in the TRYCATs pathway.
Collapse
Affiliation(s)
- Paulina Wigner
- Faculty of Biology and Environmental Protection, Laboratory of Medical Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Ewelina Synowiec
- Faculty of Biology and Environmental Protection, Laboratory of Medical Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Paweł Jóźwiak
- Faculty of Biology and Environmental Protection, Department of Cytobiochemistry, University of Lodz, Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Michał Bijak
- Faculty of Biology and Environmental Protection, Department of General Biochemistry, University of Lodz, Lodz, Poland
| | - Katarzyna Białek
- Faculty of Biology and Environmental Protection, Laboratory of Medical Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Piotr Gruca
- Polish Academy of Sciences, Institute of Pharmacology, Krakow, Poland
| | - Mariusz Papp
- Polish Academy of Sciences, Institute of Pharmacology, Krakow, Poland
| | - Tomasz Śliwiński
- Faculty of Biology and Environmental Protection, Laboratory of Medical Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
25
|
Watson C, Ventriglio A, Bhugra D. A narrative review of suicide and suicidal behavior in medical students. Indian J Psychiatry 2020; 62:250-256. [PMID: 32773867 PMCID: PMC7368448 DOI: 10.4103/psychiatry.indianjpsychiatry_357_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/11/2020] [Accepted: 04/18/2020] [Indexed: 11/04/2022] Open
Abstract
Studies across different countries have consistently demonstrated high rates of several psychiatric disorders among medical students. These findings, in turn, may be correlated with the higher than expected rate of suicide in student doctors. We aimed to provide a narrative review of the literature concerning suicidality in medical students worldwide. A narrative review is not a systematic review. Using Pub Med, we identified articles including our defined search terms: ((suicide) OR self-harm) (attempted suicide, deliberate self-harm AND medical students) OR future doctors. Particular credence was given to review articles and original research conducted this decade. We find that medical student suicide is likely related to a number of social and environmental factors. Structural systems in medical schools may play a role, for example, curricula, accommodation, social support, and academic pressures. Interpersonal factors that may be implicated include social isolation, the competitive nature of learning, and being away from home at an early age. There may also be endemic factors unique to medical training, which may contribute to higher rates of depression and suicidality; these include simulation training, working with cadavers, and witnessing trauma throughout placements. The socio-cultural environment, for example, the role of ragging, expectations from teachers, and patients, may place extra pressure on vulnerable individuals. Rates have been shown to be higher among females, which raises further discussion on the nature of gender roles and gender role expectations within medicine. As the medical workforce of the future, today's students require a considerable emotional and financial investment. It is, therefore, crucial that educators and supervisors understand the needs of this student body while delivering the essential skills to be a doctor in a sensitive nonstigmatizing manner.
Collapse
Affiliation(s)
- Cameron Watson
- Foundation Trainee, Barts NHS Foundation Trust London, London, England
| | - Antonio Ventriglio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Dinesh Bhugra
- Institute of Psychiatry, Kings College, London, England
| |
Collapse
|
26
|
Wang Y, Qian M, Tang D, Herbstman J, Perera F, Wang S. A powerful and flexible weighted distance-based method incorporating interactions between DNA methylation and environmental factors on health outcomes. Bioinformatics 2020; 36:653-659. [PMID: 31504174 DOI: 10.1093/bioinformatics/btz630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/18/2019] [Accepted: 08/19/2019] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Deoxyribonucleic acid (DNA) methylation plays a crucial role in human health. Studies have demonstrated associations between DNA methylation and environmental factors with evidence also supporting the idea that DNA methylation may modify the risk of environmental factors on health outcomes. However, due to high dimensionality and low study power, current studies usually focus on finding differential methylation on health outcomes at CpG level or gene level combining multiple CpGs and/or finding environmental effects on health outcomes but ignoring their interactions on health outcomes. Here we introduce the idea of a pseudo-data matrix constructed with cross-product terms between CpGs and environmental factors that are able to capture their interactions. We then develop a powerful and flexible weighted distance-based method with the pseudo-data matrix where association strength was used as weights on CpGs, environmental factors and their interactions to up-weight signals and down-weight noises in distance calculations. RESULTS We compared the power of this novel approach and several comparison methods in simulated datasets and the Mothers and Newborns birth cohort of the Columbia Center for Children's Environmental Health to determine whether prenatal polycyclic aromatic hydrocarbons interacts with DNA methylation in association with Attention Deficit Hyperactivity Disorder and Mental Development Index at age 3. AVAILABILITY AND IMPLEMENTATION An R code for the proposed method Dw-M-E-int together with a tutorial and a sample dataset is available for downloading from http://www.columbia.edu/∼sw2206/softwares.htm. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ya Wang
- Department of Biostatistics, New York, NY 10032, USA
| | - Min Qian
- Department of Biostatistics, New York, NY 10032, USA
| | - Deliang Tang
- Columbia Center for Children's Environmental Health, Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Julie Herbstman
- Columbia Center for Children's Environmental Health, Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Shuang Wang
- Department of Biostatistics, New York, NY 10032, USA
| |
Collapse
|
27
|
Li Z, Liu S, Li X, Zhao W, Li J, Xu Y. Circular RNA in Schizophrenia and Depression. Front Psychiatry 2020; 11:392. [PMID: 32457667 PMCID: PMC7221196 DOI: 10.3389/fpsyt.2020.00392] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) and depression (DEP) are two common major psychiatric disorders that are associated with high risk of suicide. These disorders affect not only physical and mental health, but they also affect the social function of the individual. However, diagnoses of SZ and DEP are mainly based on symptomatic changes and the clinical experience of psychiatrists. These rather subjective measures can induce misdiagnoses and missed diagnoses. Therefore, it is necessary to further explore objective indexes for improving the early diagnoses and prognoses of SZ and DEP. Current research indicates that non-coding RNA (ncRNA) may play a role in the occurrence and development of SZ and DEP. Circular RNA (circRNA), as an important component of ncRNA, is associated with many biological functions, especially post-transcriptional regulation. Since circRNA is easily detected in peripheral blood and has a high degree of spatiotemporal tissue specificity and stability, these attributes provide us with a new idea to further explore the potential value for the diagnosis and treatment of SZ and DEP. Here, we summarize the classification, characteristics, and biological functions of circRNA and the most significant results of experimental studies, aiming to highlight the involvement of circRNA in SZ and DEP.
Collapse
Affiliation(s)
- Zexuan Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Wentao Zhao
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan, China.,Department of Humanities and Social Science, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
28
|
Tomasi J, Lisoway AJ, Zai CC, Harripaul R, Müller DJ, Zai GCM, McCabe RE, Richter MA, Kennedy JL, Tiwari AK. Towards precision medicine in generalized anxiety disorder: Review of genetics and pharmaco(epi)genetics. J Psychiatr Res 2019; 119:33-47. [PMID: 31563039 DOI: 10.1016/j.jpsychires.2019.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
Abstract
Generalized anxiety disorder (GAD) is a prevalent and chronic mental disorder that elicits widespread functional impairment. Given the high degree of non-response/partial response among patients with GAD to available pharmacological treatments, there is a strong need for novel approaches that can optimize outcomes, and lead to medications that are safer and more effective. Although investigations have identified interesting targets predicting treatment response through pharmacogenetics (PGx), pharmaco-epigenetics, and neuroimaging methods, these studies are often solitary, not replicated, and carry several limitations. This review provides an overview of the current status of GAD genetics and PGx and presents potential strategies to improve treatment response by combining better phenotyping with PGx and improved analytical methods. These strategies carry the dual benefit of delivering data on biomarkers of treatment response as well as pointing to disease mechanisms through the biology of the markers associated with response. Overall, these efforts can serve to identify clinical, genetic, and epigenetic factors that can be incorporated into a pharmaco(epi)genetic test that may ultimately improve treatment response and reduce the socioeconomic burden of GAD.
Collapse
Affiliation(s)
- Julia Tomasi
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Amanda J Lisoway
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Clement C Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ricardo Harripaul
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel J Müller
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gwyneth C M Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; General Adult Psychiatry and Health Systems Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Randi E McCabe
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Anxiety Treatment and Research Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Margaret A Richter
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Frederick W. Thompson Anxiety Disorders Centre, Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - James L Kennedy
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Arun K Tiwari
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
29
|
Beydoun MA, Hossain S, Chitrala KN, Tajuddin SM, Beydoun HA, Evans MK, Zonderman AB. Association between epigenetic age acceleration and depressive symptoms in a prospective cohort study of urban-dwelling adults. J Affect Disord 2019; 257:64-73. [PMID: 31299406 PMCID: PMC6757325 DOI: 10.1016/j.jad.2019.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/07/2019] [Accepted: 06/29/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE This study tests associations of DNA methylation-based (DNAm) measures of epigenetic age acceleration (EAA) with cross-sectional and longitudinal depressive symptoms in an urban sample of middle-aged adults. METHODS White and African-American adult participants in the Healthy Aging in Neighborhoods of Diversity across the Life Span study for whom DNA samples were analyzed (baseline age: 30-65 years) we included. We estimated three DNAm based EAA measures: (1) universal epigenetic age acceleration (AgeAccel); (2) intrinsic epigenetic age acceleration (IEAA); and (3) extrinsic epigenetic age acceleration (EEAA). Depressive symptoms were assessed using the 20-item Center for Epidemiological Studies-Depression scale total and sub-domain scores at baseline (2004-2009) and follow-up visits (2009-2013). Linear mixed-effects regression models were conducted, adjusting potentially confounding covariates, selection bias and multiple testing (N = 329 participants, ∼52% men, k = 1.9 observations/participant, mean follow-up time∼4.7 years). RESULTS None of the epigenetic age acceleration measures were associated with total depressive symptom scores at baseline or over time. IEAA - a measure of cellular epigenetic age acceleration irrespective of white blood cell composition - was cross-sectionally associated with decrement in "positive affect" in the total population (γ011± SE = -0.090 ± 0.030, P = 0.003, Cohen's D: -0.16) and among Whites (γ011 ± SE = -0.135 ± 0.048, P = 0.005, Cohen's D: -0.23), after correction for multiple testing. Baseline "positive affect" was similarly associated with AgeAccel. LIMITATIONS Limitations included small sample size, weak-moderate effects and measurement error. CONCLUSIONS IEAA and AgeAccel, two measures of EAA using Horvath algorithm, were linked to a reduced "positive affect", overall and among Whites. Future studies are needed to replicate our findings and test bi-directional relationships.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States.
| | - Sharmin Hossain
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States
| | - Kumaraswamy Naidu Chitrala
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States
| | - Salman M Tajuddin
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, United States
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States
| |
Collapse
|
30
|
Zhu Y, Strachan E, Fowler E, Bacus T, Roy-Byrne P, Zhao J. Genome-wide profiling of DNA methylome and transcriptome in peripheral blood monocytes for major depression: A Monozygotic Discordant Twin Study. Transl Psychiatry 2019; 9:215. [PMID: 31477685 PMCID: PMC6718674 DOI: 10.1038/s41398-019-0550-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
DNA methylation plays an important role in major depressive disorder (MDD), but the specific genes and genomic regions associated with MDD remain largely unknown. Here we conducted genome-wide profiling of DNA methylation (Infinium MethylationEPIC BeadChip) and gene expression (RNA-seq) in peripheral blood monocytes from 79 monozygotic twin pairs (mean age 38.2 ± 15.6 years) discordant on lifetime history of MDD to identify differentially methylated regions (DMRs) and differentially expressed genes (DEGs) associated with MDD, followed by replication in brain tissue samples. Integrative DNA methylome and transcriptome analysis and network analysis was performed to identify potential functional epigenetic determinants for MDD. We identified 39 DMRs and 30 DEGs associated with lifetime history of MDD. Some genes were replicated in postmortem brain tissue. Integrative DNA methylome and transcriptome analysis revealed both negative and positive correlations between DNA methylation and gene expression, but the correlation pattern varies greatly by genomic locations. Network analysis revealed distinct gene modules enriched in signaling pathways related to stress responses, neuron apoptosis, insulin receptor signaling, mTOR signaling, and nerve growth factor receptor signaling, suggesting potential functional relevance to MDD. These results demonstrated that altered DNA methylation and gene expression in peripheral blood monocytes are associated with MDD. Our results highlight the utility of using peripheral blood epigenetic markers and demonstrate that a monozygotic discordant co-twin control design can aid in the discovery of novel genes associated with MDD. If validated, the newly identified genes may serve as novel biomarkers or druggable targets for MDD and related disorders.
Collapse
Affiliation(s)
- Yun Zhu
- 0000 0004 1936 8091grid.15276.37Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL USA
| | - Eric Strachan
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Emily Fowler
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Tamara Bacus
- 0000000122986657grid.34477.33Department of Pediatrics, University of Washington, Seattle, WA USA
| | - Peter Roy-Byrne
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
31
|
Relationship between family history of alcohol problems and different clusters of depressive symptoms. Ir J Psychol Med 2019; 39:45-53. [DOI: 10.1017/ipm.2019.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Objectives:
Major depressive disorder (MDD) is a multifactorial syndrome with significant interactions between genetic and environmental factors. This study specifically investigates the association between family history of alcohol problems (FHAP) and family history of depression (FHD), and how these relate to different clusters of depressive symptoms.
Methods:
Correlations between FHAP and FHD and different clusters of the Beck Depression Inventory (BDI) were studied. We sampled 333 employees from a general hospital who had been receiving a psychiatric consultation between 2005 and 2012. Analysis of variance (ANOVA) and Analysis of covariance (ANCOVA) models were conducted to explore these correlations.
Results:
There was a significant positive correlation between FHAP and BDI affective score. This result remained significant even after the adjustment for other variables considered as important factors for MDD, such as gender, age, marital status, education, ethnic group and FHD. More specifically, FHAP was correlated with dissatisfaction and episodes of crying among the affective symptoms. FHAP showed no statistical difference in any of the other clusters score or in the BDI total score. Moreover, as expected, we found a correlation between FHD and BDI total score and Somatic and Cognitive clusters.
Conclusion:
FHAP should be routinely investigated in individuals presenting with depressive symptoms. This is especially important in cases presenting with dissatisfaction and episodes of crying in patients who do not endorse criteria for MDD. Due to study limitations, the findings require replication by neurobiological, epidemiological and clinical studies.
Collapse
|
32
|
Hökfelt T, Barde S, Xu ZQD, Kuteeva E, Rüegg J, Le Maitre E, Risling M, Kehr J, Ihnatko R, Theodorsson E, Palkovits M, Deakin W, Bagdy G, Juhasz G, Prud’homme HJ, Mechawar N, Diaz-Heijtz R, Ögren SO. Neuropeptide and Small Transmitter Coexistence: Fundamental Studies and Relevance to Mental Illness. Front Neural Circuits 2018; 12:106. [PMID: 30627087 PMCID: PMC6309708 DOI: 10.3389/fncir.2018.00106] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Neuropeptides are auxiliary messenger molecules that always co-exist in nerve cells with one or more small molecule (classic) neurotransmitters. Neuropeptides act both as transmitters and trophic factors, and play a role particularly when the nervous system is challenged, as by injury, pain or stress. Here neuropeptides and coexistence in mammals are reviewed, but with special focus on the 29/30 amino acid galanin and its three receptors GalR1, -R2 and -R3. In particular, galanin's role as a co-transmitter in both rodent and human noradrenergic locus coeruleus (LC) neurons is addressed. Extensive experimental animal data strongly suggest a role for the galanin system in depression-like behavior. The translational potential of these results was tested by studying the galanin system in postmortem human brains, first in normal brains, and then in a comparison of five regions of brains obtained from depressed people who committed suicide, and from matched controls. The distribution of galanin and the four galanin system transcripts in the normal human brain was determined, and selective and parallel changes in levels of transcripts and DNA methylation for galanin and its three receptors were assessed in depressed patients who committed suicide: upregulation of transcripts, e.g., for galanin and GalR3 in LC, paralleled by a decrease in DNA methylation, suggesting involvement of epigenetic mechanisms. It is hypothesized that, when exposed to severe stress, the noradrenergic LC neurons fire in bursts and release galanin from their soma/dendrites. Galanin then acts on somato-dendritic, inhibitory galanin autoreceptors, opening potassium channels and inhibiting firing. The purpose of these autoreceptors is to act as a 'brake' to prevent overexcitation, a brake that is also part of resilience to stress that protects against depression. Depression then arises when the inhibition is too strong and long lasting - a maladaption, allostatic load, leading to depletion of NA levels in the forebrain. It is suggested that disinhibition by a galanin antagonist may have antidepressant activity by restoring forebrain NA levels. A role of galanin in depression is also supported by a recent candidate gene study, showing that variants in genes for galanin and its three receptors confer increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events. In summary, galanin, a neuropeptide coexisting in LC neurons, may participate in the mechanism underlying resilience against a serious and common disorder, MDD. Existing and further results may lead to an increased understanding of how this illness develops, which in turn could provide a basis for its treatment.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Joelle Rüegg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- The Center for Molecular Medicine, Stockholm, Sweden
- Swedish Toxicology Sciences Research Center, Swetox, Södertälje, Sweden
| | - Erwan Le Maitre
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Pronexus Analytical AB, Solna, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Ihnatko
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Miklos Palkovits
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - William Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- NAP 2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | | | - Naguib Mechawar
- Douglas Hospital Research Centre, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Epigenetic outlier profiles in depression: A genome-wide DNA methylation analysis of monozygotic twins. PLoS One 2018; 13:e0207754. [PMID: 30458022 PMCID: PMC6245788 DOI: 10.1371/journal.pone.0207754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/06/2018] [Indexed: 11/22/2022] Open
Abstract
Recent discoveries highlight the importance of stochastic epigenetic changes, as indexed by epigenetic outlier DNA methylation signatures, as a valuable tool to understand aberrant cell function and subsequent human pathology. There is evidence of such changes in different complex disorders as diverse as cancer, obesity and, to a lesser extent, depression. The current study was aimed at identifying outlying DNA methylation signatures of depressive psychopathology. Here, genome-wide DNA methylation levels were measured (by means of Illumina Infinium HumanMethylation450 Beadchip) in peripheral blood of thirty-four monozygotic twins informative for depressive psychopathology (lifetime DSM-IV diagnoses). This dataset was explored to identify outlying epigenetic signatures of depression, operationalized as extreme hyper- or hypo-methylation in affected co-twins from discordant pairs that is not observed across the rest of the study sample. After adjusting for blood cell count, there were thirteen CpG sites across which depressed co-twins from the discordant pairs exhibited outlying DNA methylation signatures. None of them exhibited a methylation outlier profile in the concordant and healthy pairs, and some of these loci spanned genes previously associated with neuropsychiatric phenotypes, such as GHSR and KCNQ1. This exploratory study provides preliminary proof-of-concept validation that epigenetic outlier profiles derived from genome-wide DNA methylation data may be related to depression risk.
Collapse
|
34
|
Gu Y, Zhang CWH, Wang L, Zhao Y, Wang H, Ye Q, Gao S. Association Analysis between Body Mass Index and Genomic DNA Methylation across 15 Major Cancer Types. J Cancer 2018; 9:2532-2542. [PMID: 30026852 PMCID: PMC6036895 DOI: 10.7150/jca.23535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 05/01/2018] [Indexed: 12/17/2022] Open
Abstract
Cancer incidence and mortality increase with increasing body mass index (BMI), but BMI-associated epigenetic alterations in cancer remain elusive. We hypothesized that BMI would be associated with DNA methylation alterations in cancers. To test this hypothesis, here, we estimated the associations between DNA methylation and BMI through two different methods across 15 cancer types, at approximately 485,000 CpG sites and 2415 samples using data from The Cancer Genome Atlas. After comparing the DNA methylation levels in control BMI and high BMI individuals, we found differentially methylated CpG sites (DMSs) in cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), and uterine corpus endometrial carcinoma (UCEC) (False Discovery Rate < 0.05). The DMSs of COAD or UCEC were enriched in several obesity-induced and cancer-related pathways. Next, when BMI was used as a continuous variable, we identified BMI-associated methylated CpG sites (BMS) (P (Bonferroni) < 0.05) in CHOL (BMS = 1), COAD (BMS = 1), and UCEC (BMS = 4) using multivariable linear regression. In UCEC, three of the BMSs can predict the clinical outcomes and survival of patients with the tumors. Overall, we observed associations between DNA methylation and high BMI in CHOL, COAD, and UCEC. Furthermore, three BMI-associated CpGs were identified as potential biomarkers for UCEC prognosis.
Collapse
Affiliation(s)
- Yinmin Gu
- University of Science and Technology of China, Hefei 230026, China.,CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | | | - Liang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhui Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Shan Gao
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.,Medical College, Guizhou University, Guiyang 550025, China
| |
Collapse
|
35
|
Cole JH. Neuroimaging Studies Illustrate the Commonalities Between Ageing and Brain Diseases. Bioessays 2018; 40:e1700221. [PMID: 29882974 DOI: 10.1002/bies.201700221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/23/2018] [Indexed: 12/19/2022]
Abstract
The lack of specificity in neuroimaging studies of neurological and psychiatric diseases suggests that these different diseases have more in common than is generally considered. Potentially, features that are secondary effects of different pathological processes may share common neurobiological underpinnings. Intriguingly, many of these mechanisms are also observed in studies of normal (i.e., non-pathological) brain ageing. Different brain diseases may be causing premature or accelerated ageing to the brain, an idea that is supported by a line of "brain ageing" research that combines neuroimaging data with machine learning analysis. In reviewing this field, I conclude that such observations could have important implications, suggesting that we should shift experimental paradigm: away from characterizing the average case-control brain differences resulting from a disease toward methods that place individuals in their age-appropriate context. This will also lead naturally to clinical applications, whereby neuroimaging can contribute to a personalized-medicine approach to improve brain health.
Collapse
Affiliation(s)
- James H Cole
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience King's College London, London, SE5 8AF, UK
| |
Collapse
|
36
|
Kang HJ, Bae KY, Kim SW, Shin IS, Kim HR, Shin MG, Yoon JS, Kim JM. Longitudinal associations between glucocorticoid receptor methylation and late-life depression. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:56-62. [PMID: 29432878 DOI: 10.1016/j.pnpbp.2018.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 01/19/2023]
Abstract
It has been suggested that hypothalamus-pituitary-adrenal (HPA) axis dysregulation plays a role in the etiology of depression. HPA axis function is mediated by glucocorticoid receptors (GRs), which are influenced by epigenetic mechanisms (DNA methylation). The association between the DNA methylation of the GR gene (nuclear receptor subfamily 3, group C, member 1; NR3C1) and late-life depression as well as the role of NR3C1 methylation in the prediction of the incidence of depression have not yet been investigated. Therefore, we examined the independent and longitudinal effects of the methylation of three CpG sites in exon 1F of NR3C1 on late-life depression using peripheral blood. In total, 732 Korean community residents aged ≥65 years were assessed; 521 individuals in this group without depression at baseline were followed 2 years later. The Geriatric Mental State Schedule was used to identify depression, and demographic and clinical covariates were evaluated. The effects of NR3C1 methylation (the individual methylation status of three CpG sites and their average values) on current and follow-up depression were calculated using a multivariate logistic regression model. Higher NR3C1 methylation levels at CpG 2 and 3 and the average methylation value were independently associated with the prevalence of depression at baseline. Additionally, a higher NR3C1 methylation level at CpG 2 was associated with depression incidence 2 years later in this population. These findings suggest an association between the methylation of NR3C1 exon 1F, especially at CpG 2, and depression later in life.
Collapse
Affiliation(s)
- Hee-Ju Kang
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kyung-Yeol Bae
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Il-Seon Shin
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hye-Ran Kim
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-do, Republic of Korea
| | - Myung-Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jin-Sang Yoon
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
37
|
Abstract
The neural mechanisms conferring reduced motivation, as observed in depressed individuals, is poorly understood. Here, we examine in rodents if reduced motivation to exert effort is controlled by transmission from the lateral habenula (LHb), a nucleus overactive in depressed-like states, to the rostromedial tegmental nucleus (RMTg), a nucleus that inhibits dopaminergic neurons. In an aversive test wherein immobility indicates loss of effort, LHb→RMTg transmission increased during transitions into immobility, driving LHb→RMTg increased immobility, and inhibiting LHb→RMTg produced the opposite effects. In an appetitive test, driving LHb→RMTg reduced the effort exerted to receive a reward, without affecting the reward's hedonic property. Notably, LHb→RMTg stimulation only affected specific aspects of these motor tasks, did not affect all motor tasks, and promoted avoidance, indicating that LHb→RMTg activity does not generally reduce movement but appears to carry a negative valence that reduces effort. These results indicate that LHb→RMTg activity controls the motivation to exert effort and may contribute to the reduced motivation in depression.
Collapse
|
38
|
Wang SE, Ko SY, Kim YS, Jo S, Lee SH, Jung SJ, Son H. Capsaicin upregulates HDAC2 via TRPV1 and impairs neuronal maturation in mice. Exp Mol Med 2018. [PMID: 29520110 PMCID: PMC5898893 DOI: 10.1038/emm.2017.289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) affects mood and neuroplasticity in the brain, where its role is poorly understood. In the present study we investigated whether capsaicin (8-methyl-N-vanillyl-trans-6-nonenamide), an agonist of TRPV1, induced chromatin remodeling and thereby altered gene expression related to synaptic plasticity. We found that capsaicin treatment resulted in upregulation of histone deacetylase 2 (HDAC2) in the mouse hippocampus and HDAC2 was enriched at Psd95, synaptophysin, GLUR1, GLUR2 promoters. Viral-mediated hippocampal knockdown of HDAC2 induced expression of Synapsin I and prevented the detrimental effects of capsaicin on Synapsin I expression in mice, supporting the role of HDAC2 in regulation of capsaicin-induced Synapsin I expression. Taken together, our findings implicate HDAC2 in capsaicin-induced transcriptional regulation of synaptic molecules and support the view that HDAC2 is a molecular link between TRPV1 activity and synaptic plasticity.
Collapse
Affiliation(s)
- Sung Eun Wang
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Seung Yeon Ko
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Yong-Seok Kim
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Sungsin Jo
- Hanyang University Hospital for Rheumatic Disease, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Seung Hoon Lee
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Sung Jun Jung
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea.,Department of Physiology, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Hyeon Son
- Graduate School of Biomedical Science and Engineering, Hanyang Biomedical Research Institute, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| |
Collapse
|
39
|
DNA methylation and clinical response to antidepressant medication in major depressive disorder: A review and recommendations. Neurosci Lett 2018; 669:14-23. [DOI: 10.1016/j.neulet.2016.12.071] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/28/2022]
|
40
|
Suarez NA, Macia A, Muotri AR. LINE-1 retrotransposons in healthy and diseased human brain. Dev Neurobiol 2017; 78:434-455. [PMID: 29239145 DOI: 10.1002/dneu.22567] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Long interspersed element-1 (LINE-1 or L1) is a transposable element with the ability to self-mobilize throughout the human genome. The L1 elements found in the human brain is hypothesized to date back 56 million years ago and has survived evolution, currently accounting for 17% of the human genome. L1 retrotransposition has been theorized to contribute to somatic mosaicism. This review focuses on the presence of L1 in the healthy and diseased human brain, such as in autism spectrum disorders. Throughout this exploration, we will discuss the impact L1 has on neurological disorders that can occur throughout the human lifetime. With this, we hope to better understand the complex role of L1 in the human brain development and its implications to human cognition. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 434-455, 2018.
Collapse
Affiliation(s)
- Nicole A Suarez
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| | - Angela Macia
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California, 92093
| |
Collapse
|
41
|
Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers. Trends Neurosci 2017; 40:681-690. [DOI: 10.1016/j.tins.2017.10.001] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 11/16/2022]
|
42
|
Wang Y, Teschendorff AE, Widschwendter M, Wang S. Accounting for differential variability in detecting differentially methylated regions. Brief Bioinform 2017; 20:47-57. [DOI: 10.1093/bib/bbx097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Ya Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Andrew E Teschendorff
- Department of Women's Cancer, University College London, London, UK
- CAS Key Lab of Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Statistical Cancer Genomics, UCL Cancer Institute, University College London, London, UK
| | | | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
43
|
Serotonin transporter gene promoter methylation status correlates with in vivo prefrontal 5-HTT availability and reward function in human obesity. Transl Psychiatry 2017; 7:e1167. [PMID: 28675387 PMCID: PMC5538116 DOI: 10.1038/tp.2017.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/08/2017] [Accepted: 05/09/2017] [Indexed: 12/26/2022] Open
Abstract
A polymorphism in the promoter region of the human serotonin transporter (5-HTT)-coding SLC6A4 gene (5-HTTLPR) has been implicated in moderating susceptibility to stress-related psychopathology and to possess regulatory functions on human in vivo 5-HTT availability. However, data on a direct relation between 5-HTTLPR and in vivo 5-HTT availability have been inconsistent. Additional factors such as epigenetic modifications of 5-HTTLPR might contribute to this association. This is of particular interest in the context of obesity, as an association with 5-HTTLPR hypermethylation has previously been reported. Here, we tested the hypothesis that methylation rates of 14 cytosine-phosphate-guanine (CpG) 5-HTTLPR loci, in vivo central 5-HTT availability as measured with [11C]DASB positron emission tomography (PET) and body mass index (BMI) are related in a group of 30 obese (age: 36±10 years, BMI>35 kg/m2) and 14 normal-weight controls (age 36±7 years, BMI<25 kg/m2). No significant association between 5-HTTLPR methylation and BMI overall was found. However, site-specific elevations in 5-HTTLPR methylation rates were significantly associated with lower 5-HTT availability in regions of the prefrontal cortex (PFC) specifically within the obese group when analyzed in isolation. This association was independent of functional 5-HTTLPR allelic variation. In addition, negative correlative data showed that CpG10-associated 5-HTT availability determines levels of reward sensitivity in obesity. Together, our findings suggest that epigenetic mechanisms rather than 5-HTTLPR alone influence in vivo 5-HTT availability, predominantly in regions having a critical role in reward processing, and this might have an impact on the progression of the obese phenotype.
Collapse
|
44
|
Mahmood S, Evinová A, Škereňová M, Ondrejka I, Lehotský J. Association of EGF, IGFBP-3 and TP53 Gene Polymorphisms with Major Depressive Disorder in Slovak Population. Cent Eur J Public Health 2017; 24:223-230. [PMID: 27755861 DOI: 10.21101/cejph.a4301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/27/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a main public health concern worldwide. Despite extensive investigations, the exact mechanisms responsible for MDD have not been identified. Epidermal growth factor (EGF) and insulin growth factor binding protein-3 (IGFBP-3) are involved in brain function. Tumour suppressor protein p53 is widely involved in neuronal death in response to different forms of acute insults and neurological disorders. The present study focuses on the possible associations of the single-nucleotide polymorphisms (SNP) of EGF A61G (rs4444903), IGFBP-3 C32G (rs2854746) and TP53 G72C (rs1042522) genes with MDD risk in the Slovak population. METHODS The present case-control association study was carried out in 111 confirmed MDD patients and 207 healthy subjects. Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism methods. RESULTS Logistic regression analysis showed no association between SNPs of selected genes and MDD risk in the Slovak population. However, the stratification of individuals by gender revealed that males carrying IGFBP-3 G alleles (G32G or GG) had marginally increased risk for developing MDD as compared to CC homozygous males (p=0.09). In women, inverse association was observed between SNP rs1042522 and MDD risk (p=0.04 for recessive model). CONCLUSION Our results suggest the protective effect of minor allele 72C of TP53 gene towards MDD. The disruption of mechanisms involved in cell survival and death regulation may be involved in pathophysiology of MDD.
Collapse
Affiliation(s)
- Silvia Mahmood
- Department of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Biomedical Centre Martin (BioMed Martin), Martin, Slovakia.,Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Evinová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Mária Škereňová
- Department of Clinical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University Hospital, Martin, Slovakia
| | - Igor Ondrejka
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Clinic of Psychiatry, Martin University Hospital, Martin, Slovakia
| | - Ján Lehotský
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.,Department of Neurosciences, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Biomedical Centre Martin (BioMed Martin), Martin, Slovakia
| |
Collapse
|
45
|
Construct and face validity of a new model for the three-hit theory of depression using PACAP mutant mice on CD1 background. Neuroscience 2017; 354:11-29. [PMID: 28450265 DOI: 10.1016/j.neuroscience.2017.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
Major depression is a common cause of chronic disability. Despite decades of efforts, no equivocally accepted animal model is available for studying depression. We tested the validity of a new model based on the three-hit concept of vulnerability and resilience. Genetic predisposition (hit 1, mutation of pituitary adenylate cyclase-activating polypeptide, PACAP gene), early-life adversity (hit 2, 180-min maternal deprivation, MD180) and chronic variable mild stress (hit 3, CVMS) were combined. Physical, endocrinological, behavioral and functional morphological tools were used to validate the model. Body- and adrenal weight changes as well as corticosterone titers proved that CVMS was effective. Forced swim test indicated increased depression in CVMS PACAP heterozygous (Hz) mice with MD180 history, accompanied by elevated anxiety level in marble burying test. Corticotropin-releasing factor neurons in the oval division of the bed nucleus of the stria terminalis showed increased FosB expression, which was refractive to CVMS exposure in wild-type and Hz mice. Urocortin1 neurons became over-active in CMVS-exposed PACAP knock out (KO) mice with MD180 history, suggesting the contribution of centrally projecting Edinger-Westphal nucleus to the reduced depression and anxiety level of stressed KO mice. Serotoninergic neurons of the dorsal raphe nucleus lost their adaptation ability to CVMS in MD180 mice. In conclusion, the construct and face validity criteria suggest that MD180 PACAP HZ mice on CD1 background upon CVMS may be used as a reliable model for the three-hit theory.
Collapse
|
46
|
Degnan AP, Tora GO, Huang H, Conlon DA, Davis CD, Hanumegowda UM, Hou X, Hsiao Y, Hu J, Krause R, Li YW, Newton AE, Pieschl RL, Raybon J, Rosner T, Sun JH, Taber MT, Taylor SJ, Wong MK, Zhang H, Lodge NJ, Bronson JJ, Macor JE, Gillman KW. Discovery of Indazoles as Potent, Orally Active Dual Neurokinin 1 Receptor Antagonists and Serotonin Transporter Inhibitors for the Treatment of Depression. ACS Chem Neurosci 2016; 7:1635-1640. [PMID: 27744678 DOI: 10.1021/acschemneuro.6b00337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Combination studies of neurokinin 1 (NK1) receptor antagonists and serotonin-selective reuptake inhibitors (SSRIs) have shown promise in preclinical models of depression. Such a combination may offer important advantages over the current standard of care. Herein we describe the discovery and optimization of an indazole-based chemotype to provide a series of potent dual NK1 receptor antagonists/serotonin transporter (SERT) inhibitors to overcome issues of ion channel blockade. This effort culminated in the identification of compound 9, an analogue that demonstrated favorable oral bioavailability, excellent brain uptake, and robust in vivo efficacy in a validated depression model. Over the course of this work, a novel heterocycle-directed asymmetric hydrogenation was developed to facilitate installation of the key stereogenic center.
Collapse
Affiliation(s)
- Andrew P. Degnan
- Research and Development, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - George O. Tora
- Research and Development, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Hong Huang
- Research and Development, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - David A. Conlon
- Chemical
Development, Bristol-Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Carl D. Davis
- Research and Development, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Umesh M. Hanumegowda
- Research and Development, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Xiaoping Hou
- Department of Chemical Synthesis, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Yi Hsiao
- Chemical
Development, Bristol-Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Joanna Hu
- Research and Development, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Rudolph Krause
- Research and Development, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Yu-Wen Li
- Research and Development, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Amy E. Newton
- Research and Development, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Rick L. Pieschl
- Research and Development, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Joseph Raybon
- Research and Development, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Thorsten Rosner
- Chemical
Development, Bristol-Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Jung-Hui Sun
- Department of Chemical Synthesis, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Matthew T. Taber
- Research and Development, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Sarah J. Taylor
- Research and Development, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Michael K. Wong
- Department of Chemical Synthesis, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Huiping Zhang
- Department of Chemical Synthesis, Bristol-Myers Squibb Company, Princeton, New Jersey 08543, United States
| | - Nicholas J. Lodge
- Research and Development, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Joanne J. Bronson
- Research and Development, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - John E. Macor
- Research and Development, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, United States
| | - Kevin W. Gillman
- Research and Development, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492, United States
| |
Collapse
|
47
|
McCoy CR, Jackson NL, Day J, Clinton SM. Genetic predisposition to high anxiety- and depression-like behavior coincides with diminished DNA methylation in the adult rat amygdala. Behav Brain Res 2016; 320:165-178. [PMID: 27965039 DOI: 10.1016/j.bbr.2016.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/22/2016] [Accepted: 12/07/2016] [Indexed: 12/17/2022]
Abstract
Understanding biological mechanisms that shape vulnerability to emotional dysfunction is critical for elucidating the neurobiology of psychiatric illnesses like anxiety and depression. To elucidate molecular and epigenetic alterations in the brain that contribute to individual differences in emotionality, our laboratory utilized a rodent model of temperamental differences. Rats bred for low response to novelty (Low Responders, LRs) are inhibited in novel situations and display high anxiety, helplessness, and diminished sociability compared to High Novelty Responder (HR) rats. Our current transcriptome profiling experiment identified widespread gene expression differences in the amygdala of adult HR/LR rats; we hypothesize that HR/LR gene expression and downstream behavioral differences stem from distinct epigenetic (specifically DNA methylation) patterning in the HR/LR brain. Although we found similar levels of DNA methyltransferase proteins in the adult HR/LR amygdala, next-generation sequencing analysis of the methylome revealed 793 differentially methylated genomic sites between the groups. Most of the differentially methylated sites were hypermethylated in HR versus LR, so we next tested the hypothesis that enhancing DNA methylation in LRs would improve their anxiety/depression-like phenotype. We found that increasing DNA methylation in LRs (via increased dietary methyl donor content) improved their anxiety-like behavior and decreased their typically high levels of Forced Swim Test (FST) immobility; however, dietary methyl donor depletion exacerbated LRs' high FST immobility. These data are generally consistent with findings in depressed patients showing that treatment with DNA methylation-promoting agents improves depressive symptoms, and highlight epigenetic mechanisms that may contribute to individual differences in risk for emotional dysfunction.
Collapse
Affiliation(s)
- Chelsea R McCoy
- School of Neuroscience, Virginia Tech University, Blacksburg, VA 24060, USA
| | - Nateka L Jackson
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham AL, USA
| | - Jeremy Day
- Department of Neurobiology, University of Alabama at Birmingham AL, USA
| | - Sarah M Clinton
- School of Neuroscience, Virginia Tech University, Blacksburg, VA 24060, USA.
| |
Collapse
|
48
|
Hong C, Efferth T. Systematic Review on Post-Traumatic Stress Disorder Among Survivors of the Wenchuan Earthquake. TRAUMA, VIOLENCE & ABUSE 2016; 17:542-561. [PMID: 26028651 DOI: 10.1177/1524838015585313] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Post-traumatic stress disorder (PTSD) widely occurs among victims or witness of disasters. With flashbacks, hyperarousal, and avoidance being the typical symptoms, PTSD became a focus of psychological research. The earthquake in Wenchuan, China, on May 12, 2008, was without precedent in magnitude and aftermath and caused huge damage, which drew scientists' attention to mental health of the survivors. We conducted a systematic overview by collecting published articles from the PubMed database and classifying them into five points: epidemiology, neuropathology, biochemistry, genetics and epigenetics, and treatment. The large body of research during the past 6 years showed that adolescents and adults were among the most studied populations with high prevalence rates for PTSD. Genomic and transcriptomic studies focusing on gene × environment studies as well as epigenetics are still rare, although a few available data showed great potential to better understand the pathophysiology of PTSD as multifactorial disease. Phytotherapy with Chinese herbs and acupuncture are rarely reported as of yet, although the first published data indicated promising therapy effects. Future studies should focus on the following points: (1) The affected populations under observation should be better defined concerning individual risk factor, time of observation, spatial movement, and individual disease courses of patients. (2) The role of social support for prevalence rates of PTSD should be observed in more detail. (3) Efficacy and safety of Chinese medicine should be studied to find potential interventions and effective treatments of PTSD.
Collapse
Affiliation(s)
- Chunlan Hong
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
49
|
Liu S, Du T, Liu Z, Shen Y, Xiu J, Xu Q. Inverse changes in L1 retrotransposons between blood and brain in major depressive disorder. Sci Rep 2016; 6:37530. [PMID: 27874048 PMCID: PMC5118746 DOI: 10.1038/srep37530] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022] Open
Abstract
Long interspersed nuclear element-1 (LINE-1 or L1) is a type of retrotransposons comprising 17% of the human and mouse genome, and has been found to be associated with several types of neurological disorders. Previous post-mortem brain studies reveal increased L1 copy number in the prefrontal cortex from schizophrenia patients. However, whether L1 retrotransposition occurs similarly in major depressive disorder (MDD) is unknown. Here, L1 copy number was measured by quantitative PCR analysis in peripheral blood of MDD patients (n = 105) and healthy controls (n = 105). The results showed that L1 copy number was increased in MDD patients possibly due to its hypomethylation. Furthermore, L1 copy number in peripheral blood and five brain regions (prefrontal cortex, hippocampus, amygdala, nucleus accumbens and paraventricular hypothalamic nucleus) was measured in the chronic unpredictable mild stress (CUMS) model of depression in mice. Intriguingly, increased L1 copy number in blood and the decreased L1 copy number in the prefrontal cortex were observed in stressed mice, while no change was found in other brain regions. Our results suggest that the changes of L1 may be associated with the pathophysiology of MDD, but the biological mechanism behind dysfunction of L1 retrotransposition in MDD remains to be further investigated.
Collapse
Affiliation(s)
- Shu Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences &Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, 10005, China
| | - Tingfu Du
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences &Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, 10005, China.,Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Zeyue Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences &Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, 10005, China
| | - Yan Shen
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences &Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, 10005, China
| | - Jianbo Xiu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences &Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, 10005, China
| | - Qi Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences &Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, 10005, China
| |
Collapse
|
50
|
Karsli-Ceppioglu S. Epigenetic Mechanisms in Psychiatric Diseases and Epigenetic Therapy. Drug Dev Res 2016; 77:407-413. [PMID: 27594444 DOI: 10.1002/ddr.21340] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Preclinical Research Epigenetic mechanisms refer covalent modification of DNA and histone proteins that control transcriptional regulation of gene expression. Epigenetic regulation is involved in the development of the nervous system and plays an important role in the pathophysiology of psychiatric disorders, including depression, bipolar disorder, and schizophrenia. Epigenetic drugs, including histone deacetylation and DNA methylation inhibitors have received increased attention for the management of psychiatric diseases. The purpose of this review is to discuss the potential of epigenetic drugs to treat these disorders and to clarify the mechanisms by which they regulate the dysfunctional genes in the brain. Drug Dev Res 77 : 407-413, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
|