1
|
Elblová P, Lunova M, Henry SJ, Tu X, Calé A, Dejneka A, Havelková J, Petrenko Y, Jirsa M, Stephanopoulos N, Lunov O. Peptide-coated DNA nanostructures as a platform for control of lysosomal function in cells. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2024; 498:155633. [PMID: 39372137 PMCID: PMC11448966 DOI: 10.1016/j.cej.2024.155633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
DNA nanotechnology is a rapidly growing field that provides exciting tools for biomedical applications. Targeting lysosomal functions with nanomaterials, such as DNA nanostructures (DNs), represents a rational and systematic way to control cell functionality. Here we present a versatile DNA nanostructure-based platform that can modulate a number of cellular functions depending on the concentration and surface decoration of the nanostructure. Utilizing different peptides for surface functionalization of DNs, we were able to rationally modulate lysosomal activity, which in turn translated into the control of cellular function, ranging from changes in cell morphology to modulation of immune signaling and cell death. Low concentrations of decalysine peptide-coated DNs induced lysosomal acidification, altering the metabolic activity of susceptible cells. In contrast, DNs coated with an aurein-bearing peptide promoted lysosomal alkalization, triggering STING activation. High concentrations of decalysine peptide-coated DNs caused lysosomal swelling, loss of cell-cell contacts, and morphological changes without inducing cell death. Conversely, high concentrations of aurein-coated DNs led to lysosomal rupture and mitochondrial damage, resulting in significant cytotoxicity. Our study holds promise for the rational design of a new generation of versatile DNA-based nanoplatforms that can be used in various biomedical applications, like the development of combinatorial anti-cancer platforms, efficient systems for endolysosomal escape, and nanoplatforms modulating lysosomal pH.
Collapse
Affiliation(s)
- Petra Elblová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Prague 2, Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Skylar J.W. Henry
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, United States
| | - Xinyi Tu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, United States
| | - Alicia Calé
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Prague 2, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Jarmila Havelková
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 14220, Czech Republic
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Yuriy Petrenko
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, United States
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| |
Collapse
|
2
|
Lawson JL, Sekar RP, Wright ARE, Wheeler G, Yanes J, Estridge J, Johansen CG, Farnsworth NL, Kumar P, Tay JW, Kumar R. The Spatial Distribution of Lipophilic Cations in Gradient Copolymers Regulates Polymer-pDNA Complexation, Polyplex Aggregation, and Intracellular pDNA Delivery. Biomacromolecules 2024; 25:6855-6870. [PMID: 39318335 DOI: 10.1021/acs.biomac.4c01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Here, we demonstrate that the spatial distribution of lipophilic cations governs the complexation pathways, serum stability, and biological performance of polymer-pDNA complexes (polyplexes). Previous research focused on block/statistical copolymers, whereas gradient copolymers, where the density of lipophilic cations diminishes (gradually or steeply) along polymer backbones, remain underexplored. We engineered gradient copolymers that combine the polyplex colloidal stability of block copolymers with the transfection efficiency of statistical copolymers. We synthesized length- and compositionally equivalent gradient copolymers (G1-G3) along with statistical (S) and block (B) copolymers of 2-(diisopropylamino)ethyl methacrylate and 2-hydroxyethyl methacrylate. We mapped how polymer microstructure governs pDNA loading per polyplex, pDNA conformational changes, and polymer-pDNA binding thermodynamics via static light scattering, circular dichroism spectroscopy, and isothermal titration calorimetry, respectively. While gradient steepness is a powerful design handle to improve polyplex physical properties, augment pDNA delivery capacity, and attenuate polycation-triggered hemolysis, microstructural contrasts did not elicit differences in complement activation.
Collapse
Affiliation(s)
- Jessica L Lawson
- Materials Science, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ram Prasad Sekar
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Aryelle R E Wright
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Grant Wheeler
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jillian Yanes
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jordan Estridge
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Chelsea G Johansen
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Nikki L Farnsworth
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Praveen Kumar
- Shared Instrumentation Facility, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jian Wei Tay
- Biofrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Ramya Kumar
- Materials Science, Colorado School of Mines, Golden, Colorado 80401, United States
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
3
|
Kevadiya BD, Islam F, Deol P, Zaman LA, Mosselhy DA, Ashaduzzaman M, Bajwa N, Routhu NK, Singh PA, Dawre S, Vora LK, Nahid S, Mathur D, Nayan MU, Baldi A, Kothari R, Patel TA, Madan J, Gounani Z, Bariwal J, Hettie KS, Gendelman HE. Delivery of gene editing therapeutics. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102711. [PMID: 37813236 PMCID: PMC10843524 DOI: 10.1016/j.nano.2023.102711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/11/2023]
Abstract
For the past decades, gene editing demonstrated the potential to attenuate each of the root causes of genetic, infectious, immune, cancerous, and degenerative disorders. More recently, Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9 (CRISPR-Cas9) editing proved effective for editing genomic, cancerous, or microbial DNA to limit disease onset or spread. However, the strategies to deliver CRISPR-Cas9 cargos and elicit protective immune responses requires safe delivery to disease targeted cells and tissues. While viral vector-based systems and viral particles demonstrate high efficiency and stable transgene expression, each are limited in their packaging capacities and secondary untoward immune responses. In contrast, the nonviral vector lipid nanoparticles were successfully used for as vaccine and therapeutic deliverables. Herein, we highlight each available gene delivery systems for treating and preventing a broad range of infectious, inflammatory, genetic, and degenerative diseases. STATEMENT OF SIGNIFICANCE: CRISPR-Cas9 gene editing for disease treatment and prevention is an emerging field that can change the outcome of many chronic debilitating disorders.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Farhana Islam
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Pallavi Deol
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Institute of Modeling Collaboration and Innovation and Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| | - Lubaba A Zaman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Dina A Mosselhy
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland; Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; Microbiological Unit, Fish Diseases Department, Animal Health Research Institute, ARC, Dokki, Giza 12618, Egypt.
| | - Md Ashaduzzaman
- Department of Computer Science, University of Nebraska Omaha, Omaha, NE 68182, USA.
| | - Neha Bajwa
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Nanda Kishore Routhu
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Preet Amol Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India; Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab.
| | - Shilpa Dawre
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKMs, NMIMS, Babulde Banks of Tapi River, MPTP Park, Mumbai-Agra Road, Shirpur, Maharashtra, 425405, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Sumaiya Nahid
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | | | - Mohammad Ullah Nayan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Ashish Baldi
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India; Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab.
| | - Ramesh Kothari
- Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India.
| | - Tapan A Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-NIPER, Hyderabad 500037, Telangana, India.
| | - Zahra Gounani
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland.
| | - Jitender Bariwal
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th Street, Lubbock, TX 79430-6551, USA.
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
4
|
Mangla P, Vicentini Q, Biscans A. Therapeutic Oligonucleotides: An Outlook on Chemical Strategies to Improve Endosomal Trafficking. Cells 2023; 12:2253. [PMID: 37759475 PMCID: PMC10527716 DOI: 10.3390/cells12182253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The potential of oligonucleotide therapeutics is undeniable as more than 15 drugs have been approved to treat various diseases in the liver, central nervous system (CNS), and muscles. However, achieving effective delivery of oligonucleotide therapeutics to specific tissues still remains a major challenge, limiting their widespread use. Chemical modifications play a crucial role to overcome biological barriers to enable efficient oligonucleotide delivery to the tissues/cells of interest. They provide oligonucleotide metabolic stability and confer favourable pharmacokinetic/pharmacodynamic properties. This review focuses on the various chemical approaches implicated in mitigating the delivery problem of oligonucleotides and their limitations. It highlights the importance of linkers in designing oligonucleotide conjugates and discusses their potential role in escaping the endosomal barrier, a bottleneck in the development of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Priyanka Mangla
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| | - Quentin Vicentini
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
- Department of Laboratory Medicine, Clinical Research Centre, Karolinska Institute, 141 57 Stockholm, Sweden
| | - Annabelle Biscans
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| |
Collapse
|
5
|
Larcher LM, Pitout IL, Keegan NP, Veedu RN, Fletcher S. DNAzymes: Expanding the Potential of Nucleic Acid Therapeutics. Nucleic Acid Ther 2023. [PMID: 37093127 DOI: 10.1089/nat.2022.0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Nucleic acids drugs have been proven in the clinic as a powerful modality to treat inherited and acquired diseases. However, key challenges including drug stability, renal clearance, cellular uptake, and movement across biological barriers (foremost the blood-brain barrier) limit the translation and clinical efficacy of nucleic acid-based therapies, both systemically and in the central nervous system. In this study we provide an overview of an emerging class of nucleic acid therapeutic, called DNAzymes. In particular, we review the use of chemical modifications and carrier molecules for the stabilization and/or delivery of DNAzymes in cell and animal models. Although this review focuses on DNAzymes, the strategies described are broadly applicable to most nucleic acid technologies. This review should serve as a general guide for selecting chemical modifications to improve the therapeutic performance of DNAzymes.
Collapse
Affiliation(s)
- Leon M Larcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Ianthe L Pitout
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Niall P Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Discovery, PYC Therapeutics, Nedlands, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Discovery, PYC Therapeutics, Nedlands, Australia
| |
Collapse
|
6
|
Convenient Solid-Phase Attachment of Small-Molecule Ligands to Oligonucleotides via a Biodegradable Acid-Labile P-N-Bond. Molecules 2023; 28:molecules28041904. [PMID: 36838892 PMCID: PMC9961013 DOI: 10.3390/molecules28041904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
One of the key problems in the design of therapeutic and diagnostic oligonucleotides is the attachment of small-molecule ligands for targeted deliveries in such a manner that provides the controlled release of the oligonucleotide at a certain moment. Here, we propose a novel, convenient approach for attaching ligands to the 5'-end of the oligonucleotide via biodegradable, acid-labile phosphoramide linkage. The method includes the activation of the 5'-terminal phosphate of the fully protected, support-bound oligonucleotide, followed by interaction with a ligand bearing the primary amino group. This technique is simple to perform, allows for forcing the reaction to completion by adding excess soluble reactant, eliminates the problem of the limited solubility of reagents, and affords the possibility of using different solvents, including water/organic media. We demonstrated the advantages of this approach by synthesizing and characterizing a wide variety of oligonucleotide 5'-conjugates with different ligands, such as cholesterol, aliphatic oleylamine, and p-anisic acid. The developed method suits different types of oligonucleotides (deoxyribo-, 2'-O-methylribo-, ribo-, and others).
Collapse
|
7
|
Gholami L, Mahmoudi A, Kazemi Oskuee R, Malaekeh-Nikouei B. An overview of polyallylamine applications in gene delivery. Pharm Dev Technol 2022; 27:714-724. [PMID: 35880621 DOI: 10.1080/10837450.2022.2107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A chief objective of gene transportation studies is to manipulate clinically accepted carriers that can be utilized to combat incurable diseases. Despite various strategies, efficiency and application of these vectors have been hindered, owing to different obstacles. Polyallylamine (PAA) is a synthetic water-soluble, weak base cationic polymer with different properties that could be administrated as an ideal candidate for biomedical applications such as gene delivery, drug delivery, or even tissue engineering. However, some intrinsic properties of this polymer limit its application. The two associated problems with the use of PAA in gene delivery are low transfection efficiency (because of low buffering capacity) and cytotoxic effects attributed to intense cationic character. Most of the strategies for structural modification of the PAA structure have focused on introducing hydrophobic groups to the polymeric backbone that target both cytotoxicity and transfection. In this perspective, we concentrate on PAA as a gene delivery vehicle and the existing approaches for modification of this cationic polymer to give insight to researchers for exploitation of PAA as an efficient carrier in biomedical applications.
Collapse
Affiliation(s)
- Leila Gholami
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Mahmoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Yang L, Tang L, Zhang M, Liu C. Recent Advances in the Molecular Design and Delivery Technology of mRNA for Vaccination Against Infectious Diseases. Front Immunol 2022; 13:896958. [PMID: 35928814 PMCID: PMC9345514 DOI: 10.3389/fimmu.2022.896958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Vaccines can prevent many millions of illnesses against infectious diseases and save numerous lives every year. However, traditional vaccines such as inactivated viral and live attenuated vaccines cannot adapt to emerging pandemics due to their time-consuming development. With the global outbreak of the COVID-19 epidemic, the virus continues to evolve and mutate, producing mutants with enhanced transmissibility and virulence; the rapid development of vaccines against such emerging global pandemics becomes more and more critical. In recent years, mRNA vaccines have been of significant interest in combating emerging infectious diseases due to their rapid development and large-scale production advantages. However, their development still suffers from many hurdles such as their safety, cellular delivery, uptake, and response to their manufacturing, logistics, and storage. More efforts are still required to optimize the molecular designs of mRNA molecules with increased protein expression and enhanced structural stability. In addition, a variety of delivery systems are also needed to achieve effective delivery of vaccines. In this review, we highlight the advances in mRNA vaccines against various infectious diseases and discuss the molecular design principles and delivery systems of associated mRNA vaccines. The current state of the clinical application of mRNA vaccine pipelines against various infectious diseases and the challenge, safety, and protective effect of associated vaccines are also discussed.
Collapse
Affiliation(s)
- Lu Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, China
- *Correspondence: Chaoyong Liu, ; Ming Zhang,
| | - Chaoyong Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Chaoyong Liu, ; Ming Zhang,
| |
Collapse
|
9
|
Parambi DGT, Alharbi KS, Kumar R, Harilal S, Batiha GES, Cruz-Martins N, Magdy O, Musa A, Panda DS, Mathew B. Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:191-233. [PMID: 34655056 PMCID: PMC8518903 DOI: 10.1007/s12035-021-02555-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain disorders, like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington's disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with a unique expression in cells' substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new therapeutic options to translate to the clinic.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Omnia Magdy
- Department of Clinical Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014 Kingdom of Saudi Arabia
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371 Egypt
| | - Dibya Sundar Panda
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al Jouf, Sakaka, 72341 Kingdom of Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
10
|
Bao Q, Ganbold T, Qiburi Q, Bao M, Han S, Baigude H. AMP functionalized curdlan nanoparticles as a siRNA carrier: Synthesis, characterization and targeted delivery via adenosine A 2B receptor. Int J Biol Macromol 2021; 193:866-873. [PMID: 34743942 DOI: 10.1016/j.ijbiomac.2021.10.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Receptor-mediated endocytosis has been used for tissue targeted delivery of short interfering RNA (siRNA) drugs. Herein, we investigated adenosine receptor (AR) as a candidate for receptor-mediated siRNA internalization. We synthesized adenosine functionalized cationic curdlan derivatives (denote CuAMP polymers). One of these polymers, CuAMP4, efficiently delivered siRNA to breast cancer cells expressing high level of A2B receptor. The internalization of siRNA loaded CuAMP4 by cancer cells was inhibited by free AMP as well as endocytosis inhibitors. Moreover, knockdown of A2BR by siRNA, or pre-treatment of the cells with anti-A2BR antibody, strongly inhibited the cellular uptake of CuAMP4. Our findings confirmed that A2BR can be utilized for cell type specific siRNA delivery, and CuAMP4 NP may be a promising delivery system for cancer cell targeted delivery of therapeutic siRNAs.
Collapse
Affiliation(s)
- Qingming Bao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Tsogzolmaa Ganbold
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China.
| | - Qiburi Qiburi
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Mingming Bao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Shuqin Han
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China.
| | - Huricha Baigude
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China.
| |
Collapse
|
11
|
Xin X, Zhang Z, Zhang X, Chen J, Lin X, Sun P, Liu X. Bioresponsive nanomedicines based on dynamic covalent bonds. NANOSCALE 2021; 13:11712-11733. [PMID: 34227639 DOI: 10.1039/d1nr02836g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Trends in the development of modern medicine necessitate the efficient delivery of therapeutics to achieve the desired treatment outcomes through precise spatiotemporal accumulation of therapeutics at the disease site. Bioresponsive nanomedicine is a promising platform for this purpose. Dynamic covalent bonds (DCBs) have attracted much attention in studies of the fabrication of bioresponsive nanomedicines with an abundance of combinations of therapeutic modules and carrier function units. DCB-based nanomedicines could be designed to maintain biological friendly synthesis and site-specific release for optimal therapeutic effects, allowing the complex to retain an integrated structure before accumulating at the disease site, but disassembling into individual active components without compromising function in the targeted organs or tissues. In this review, we focus on responsive nanomedicines containing dynamic chemical bonds that can be cleaved by various specific stimuli, enabling achievement of targeted drug release for optimal therapy in various diseases.
Collapse
Affiliation(s)
- Xiaoqian Xin
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, PR China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Khelghati N, Soleimanpour Mokhtarvand J, Mir M, Alemi F, Asemi Z, Sadeghpour A, Maleki M, Samadi Kafil H, Jadidi-Niaragh F, Majidinia M, Yousefi B. The importance of co-delivery of nanoparticle-siRNA and anticancer agents in cancer therapy. Chem Biol Drug Des 2021; 97:997-1015. [PMID: 33458952 DOI: 10.1111/cbdd.13824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/10/2021] [Indexed: 01/12/2023]
Abstract
According to global statistics, cancer is the second leading cause of death worldwide. Because of the heterogeneity of cancer, single-drug therapy has many limitations due to low efficacy. Therefore, combination therapy with two or more therapeutic agents is being arisen. One of the most important approaches in cancer therapy is the shot down of key genes involved in apoptotic processes and cell cycle. In this regard, siRNA is a good candidate, a highly attractive method to suppressing tumor growth and invasion. Combination therapy with siRNAs and chemotherapeutic agents can overcome the multidrug resistance and increase apoptosis. The efficient delivery of siRNA to the target cell/tissue/organ has been a challenge. To overcome these challenges, the presence of suitable delivery systems by using nanoparticles is interesting. In this review, we discuss the current challenges for successful RNA interference. Also, we suggested proper a strategy for delivering siRNA that can be useful in targeting therapy. Finally, the combination of a variety of anticancer drugs and siRNA through acceptable delivery systems and their effects on cell cycle and apoptosis will be evaluated.
Collapse
Affiliation(s)
- Nafiseh Khelghati
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mostafa Mir
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Sadeghpour
- Department of Orthopedic Surgery, School of Medicine and Shohada Educational Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Freitag F, Wagner E. Optimizing synthetic nucleic acid and protein nanocarriers: The chemical evolution approach. Adv Drug Deliv Rev 2021; 168:30-54. [PMID: 32246984 DOI: 10.1016/j.addr.2020.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
Optimizing synthetic nanocarriers is like searching for a needle in a haystack. How to find the most suitable carrier for intracellular delivery of a specified macromolecular nanoagent for a given disease target location? Here, we review different synthetic 'chemical evolution' strategies that have been pursued. Libraries of nanocarriers have been generated either by unbiased combinatorial chemistry or by variation and novel combination of known functional delivery elements. As in natural evolution, definition of nanocarriers as sequences, as barcode or design principle, may fuel chemical evolution. Screening in appropriate test system may not only provide delivery candidates, but also a refined understanding of cellular delivery including novel, unpredictable mechanisms. Combined with rational design and computational algorithms, candidates can be further optimized in subsequent evolution cycles into nanocarriers with improved safety and efficacy. Optimization of nanocarriers differs for various cargos, as illustrated for plasmid DNA, siRNA, mRNA, proteins, or genome-editing nucleases.
Collapse
|
15
|
Li T, Huang L, Yang M. Lipid-based Vehicles for siRNA Delivery in Biomedical Field. Curr Pharm Biotechnol 2020; 21:3-22. [PMID: 31549951 DOI: 10.2174/1389201020666190924164152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/04/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Genetic drugs have aroused much attention in the past twenty years. RNA interference (RNAi) offers novel insights into discovering potential gene functions and therapies targeting genetic diseases. Small interference RNA (siRNA), typically 21-23 nucleotides in length, can specifically degrade complementary mRNA. However, targeted delivery and controlled release of siRNA remain a great challenge. METHODS Different types of lipid-based delivery vehicles have been synthesized, such as liposomes, lipidoids, micelles, lipoplexes and lipid nanoparticles. These carriers commonly have a core-shell structure. For active targeting, ligands may be conjugated to the surface of lipid particles. RESULTS Lipid-based drug delivery vehicles can be utilized in anti-viral or anti-tumor therapies. They can also be used to tackle genetic diseases or discover novel druggable genes. CONCLUSION In this review, the structures of lipid-based vehicles and possible surface modifications are described, and applications of delivery vehicles in biomedical field are discussed.
Collapse
Affiliation(s)
- Tianzhong Li
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Linfeng Huang
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
16
|
Sun Y, Lv X, Ding P, Wang L, Sun Y, Li S, Zhang H, Gao Z. Exploring the functions of polymers in adenovirus-mediated gene delivery: Evading immune response and redirecting tropism. Acta Biomater 2019; 97:93-104. [PMID: 31386928 DOI: 10.1016/j.actbio.2019.06.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
Adenovirus (Ad) is a promising viral carrier in gene therapy because of its unique attribution. However, clinical applications of Ad vectors are currently restricted by their immunogenicity and broad native tropism. To address these obstacles, a variety of nonimmunogenic polymers are utilized to modify Ad vectors chemically or physically. In this review, we systemically discuss the functions of polymers in Ad-mediated gene delivery from two aspects: evading the host immune responses to Ads and redirecting Ad tropism. With polyethylene glycol (PEG) first in order, a variety of polymers have been developed to shield the surface of Ad vectors and well accomplished to evade the host immune response, block CAR-dependant cellular uptake, and reduce accumulation in the liver. In addition, shielding Ad vectors with targeted polymers (including targeting ligand-conjugated polymers and bio-responsive polymers) can also efficiently retarget Ad vectors to tumor tissues and reduce their distribution in nontargeted tissues. With its potential to evade the immune response and retarget Ad vectors, modification with polymers has been generally regarded as a promising strategy to facilitate the clinical applications of Ad vectors for virotherapy. STATEMENT OF SIGNIFICANCE: There is no doubt that Adenovirus (Ads) are attractive vectors for gene therapy, with high sophistication and effectiveness in overcoming both extra- and intracellular barriers, which cannot be exceeded by any other nonviral gene vectors. Unfortunately, their clinical applications are still restricted by some critical hurdles, including immunogenicity and native broad tropism. Therefore, a variety of elegant strategies have been developed from various angles to address these hurdles. Among these various strategies, coating Ads with nonimmunogenic polymers has attracted much attention. In this review, we systemically discuss the functions of polymers in Ad-mediated gene delivery from two aspects: evading the host immune responses to Ads and redirecting Ad tropism. In addition, the key factors in Ad modification with polymers have been highlighted and summarized to provide guiding theory for the design of more effective and safer polymer-Ad hybrid gene vectors.
Collapse
Affiliation(s)
- Yanping Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China; State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiaoqian Lv
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Long Wang
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China; Department of Family and Consumer Sciences, California State University, Long Beach, CA 90840, USA
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shuo Li
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Huimin Zhang
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China; State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
17
|
Simultaneous separation of small interfering RNA and lipids using ion-pair reversed-phase liquid chromatography. J Chromatogr A 2019; 1601:145-154. [DOI: 10.1016/j.chroma.2019.04.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 11/23/2022]
|
18
|
Çiçek YA, Luther DC, Kretzmann JA, Rotello VM. Advances in CRISPR/Cas9 Technology for in Vivo Translation. Biol Pharm Bull 2019; 42:304-311. [PMID: 30828060 DOI: 10.1248/bpb.b18-00811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has revolutionized therapeutic gene editing by providing researchers with a new method to study and cure diseases previously considered untreatable. While the full range and power of CRISPR technology for therapeutics is being elucidated through in vitro studies, translation to in vivo studies is slow. To date there is no totally effective delivery strategy to carry CRISPR components to the target site in vivo. The complexity of in vivo delivery is furthered by the number of potential delivery methods, the different forms in which CRISPR can be delivered as a therapeutic, and the disease target and tissue type in question. There are major challenges and limitations to delivery strategies, and it is imperative that future directions are guided by well-conducted studies that consider the full effect these variables have on the eventual outcome. In this review we will discuss the advances of the latest in vivo CRISPR/Cas9 delivery strategies and highlight the challenges yet to be overcome.
Collapse
Affiliation(s)
- Yağız Anıl Çiçek
- Department of Chemistry, Middle East Technical University (METU)
| | | | - Jessica A Kretzmann
- Department of Chemistry, University of Massachusetts.,School of Molecular Sciences, The University of Western Australia
| | | |
Collapse
|
19
|
Ingusci S, Verlengia G, Soukupova M, Zucchini S, Simonato M. Gene Therapy Tools for Brain Diseases. Front Pharmacol 2019; 10:724. [PMID: 31312139 PMCID: PMC6613496 DOI: 10.3389/fphar.2019.00724] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/05/2019] [Indexed: 01/20/2023] Open
Abstract
Neurological disorders affecting the central nervous system (CNS) are still incompletely understood. Many of these disorders lack a cure and are seeking more specific and effective treatments. In fact, in spite of advancements in knowledge of the CNS function, the treatment of neurological disorders with modern medical and surgical approaches remains difficult for many reasons, such as the complexity of the CNS, the limited regenerative capacity of the tissue, and the difficulty in conveying conventional drugs to the organ due to the blood-brain barrier. Gene therapy, allowing the delivery of genetic materials that encodes potential therapeutic molecules, represents an attractive option. Gene therapy can result in a stable or inducible expression of transgene(s), and can allow a nearly specific expression in target cells. In this review, we will discuss the most commonly used tools for the delivery of genetic material in the CNS, including viral and non-viral vectors; their main applications; their advantages and disadvantages. We will discuss mechanisms of genetic regulation through cell-specific and inducible promoters, which allow to express gene products only in specific cells and to control their transcriptional activation. In addition, we will describe the applications to CNS diseases of post-transcriptional regulation systems (RNA interference); of systems allowing spatial or temporal control of expression [optogenetics and Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)]; and of gene editing technologies (CRISPR/Cas9, Zinc finger proteins). Particular attention will be reserved to viral vectors derived from herpes simplex type 1, a potential tool for the delivery and expression of multiple transgene cassettes simultaneously.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Gianluca Verlengia
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Marie Soukupova
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Silvia Zucchini
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy
| | - Michele Simonato
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
20
|
Killian T, Buntz A, Herlet T, Seul H, Mundigl O, Längst G, Brinkmann U. Antibody-targeted chromatin enables effective intracellular delivery and functionality of CRISPR/Cas9 expression plasmids. Nucleic Acids Res 2019; 47:e55. [PMID: 30809660 PMCID: PMC6547418 DOI: 10.1093/nar/gkz137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/21/2019] [Accepted: 02/20/2019] [Indexed: 01/01/2023] Open
Abstract
We report a novel system for efficient and specific targeted delivery of large nucleic acids to and into cells. Plasmid DNA and core histones were assembled to chromatin by salt gradient dialysis and subsequently connected to bispecific antibody derivatives (bsAbs) via a nucleic acid binding peptide bridge. The resulting reconstituted vehicles termed 'plasmid-chromatin' deliver packaged nucleic acids to and into cells expressing antigens that are recognized by the bsAb, enabling intracellular functionality without detectable cytotoxicity. High efficiency of intracellular nucleic acid delivery is revealed by intracellular expression of plasmid encoded genes in most (∼90%) target cells to which the vehicles were applied under normal growth/medium conditions in nanomolar concentrations. Specific targeting, uptake and transgene expression depends on antibody-mediated cell surface binding: plasmid chromatin of identical composition but with non-targeting bsAbs or without bsAbs is ineffective. Examples that demonstrate applicability, specificity and efficacy of antibody-targeted plasmid chromatin include reporter gene constructs as well as plasmids that enable CRISPR/Cas9 mediated genome editing of target cells.
Collapse
Affiliation(s)
- Tobias Killian
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Annette Buntz
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Teresa Herlet
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Heike Seul
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Olaf Mundigl
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Gernot Längst
- Biochemistry III; Biochemistry Centre Regensburg (BCR), University of Regensburg, Regensburg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| |
Collapse
|
21
|
Garg U, Chauhan S, Nagaich U, Jain N. Current Advances in Chitosan Nanoparticles Based Drug Delivery and Targeting. Adv Pharm Bull 2019; 9:195-204. [PMID: 31380245 PMCID: PMC6664124 DOI: 10.15171/apb.2019.023] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/11/2019] [Accepted: 04/13/2019] [Indexed: 01/08/2023] Open
Abstract
Nanoparticles (NPs) have been found to be potential targeted and controlled release drug delivery systems. Various drugs can be loaded in the NPs to achieve targeted delivery. Chitosan NPs being biodegradable, biocompatible, less toxic and easy to prepare, are an effective and potential tool for drug delivery. Chitosan is natural biopolymer which can be easily functionalized to obtain the desired targeted results and is also approved by GRAS (Generally Recognized as Safe by the United States Food and Drug Administration [US FDA]). Various methods for preparation of chitosan NPs include, ionic cross-linking, covalent cross-linking, reverse micellar method, precipitation and emulsion-droplet coalescence method. Chitosan NPs are found to have plethora of applications in drug delivery diagnosis and other biological applications. The key applications include ocular drug delivery, per-oral delivery, pulmonary drug delivery, nasal drug delivery, mucosal drug delivery, gene delivery, buccal drug delivery, vaccine delivery, vaginal drug delivery and cancer therapy. The present review describes the formation of chitosan, synthesis of chitosan NPs and their various applications in drug delivery.
Collapse
Affiliation(s)
| | | | | | - Neha Jain
- Amity Institute of Pharmacy, Amity University, Sector-125, Noida, Uttar Pradesh-201303
| |
Collapse
|
22
|
Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie 2019; 160:61-75. [DOI: 10.1016/j.biochi.2019.02.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022]
|
23
|
Zhang HX, Zhang Y, Yin H. Genome Editing with mRNA Encoding ZFN, TALEN, and Cas9. Mol Ther 2019; 27:735-746. [PMID: 30803822 PMCID: PMC6453514 DOI: 10.1016/j.ymthe.2019.01.014] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/18/2022] Open
Abstract
Genome-editing technologies based on programmable nucleases have significantly broadened our ability to make precise and direct changes in the genomic DNA of various species, including human cells. Delivery of programmable nucleases into the target tissue or cell is one of the pressing challenges in transforming the technology into medicine. In vitro-transcribed (IVT) mRNA-mediated delivery of nucleases has several advantages, such as transient expression with efficient in vivo and in vitro delivery, no genomic integration, a potentially low off-target rate, and high editing efficiency. This review focuses on key barriers related to IVT mRNA delivery, on developed modes of delivery, and on the application and future prospects of mRNA encoding nuclease-mediated genome editing in research and clinical trials.
Collapse
Affiliation(s)
- Hong-Xia Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Medical Research Institute, Wuhan University, 430071 Wuhan, China
| | - Ying Zhang
- Medical Research Institute, Wuhan University, 430071 Wuhan, China.
| | - Hao Yin
- Department of Urology, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China; Medical Research Institute, Wuhan University, 430071 Wuhan, China.
| |
Collapse
|
24
|
Singh S, Maurya PK. Nanomaterials-Based siRNA Delivery: Routes of Administration, Hurdles and Role of Nanocarriers. NANOTECHNOLOGY IN MODERN ANIMAL BIOTECHNOLOGY 2019. [PMCID: PMC7121101 DOI: 10.1007/978-981-13-6004-6_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Ribonucleic acid interference (RNAi) is a potential alternative therapeutic approach to knock down the overexpression of genes in several disorders especially cancers with underlying genetic dysfunctions. For silencing of specific genes involved in cell cycle, small/short interfering ribonucleic acids (siRNAs) are being used clinically. The siRNA-based RNAi is more efficient, specific and safe antisense technology than other RNAi approaches. The route of siRNA administration for siRNA therapy depends on the targeted site. However, certain hurdles like poor stability of siRNA, saturation, off-target effect, immunogenicity, anatomical barriers and non-targeted delivery restrict the successful siRNA therapy. Thus, advancement of an effective, secure, and long-term delivery system is prerequisite to the medical utilization of siRNA. Polycationic nanocarriers mediated targeted delivery system is an ideal system to remove these hurdles and to increase the blood retention time and rate of intracellular permeability. In this chapter, we will mainly discuss the different biocompatible, biodegradable, non-toxic (organic, inorganic and hybrid) nanocarriers that encapsulate and shield the siRNA from the different harsh environment and provides the increased systemic siRNA delivery.
Collapse
Affiliation(s)
- Sanjay Singh
- Division of Biological and Life Sciences, Ahmedabad University, Ahmedabad, Gujarat India
| | | |
Collapse
|
25
|
Schlickewei C, Klatte TO, Wildermuth Y, Laaff G, Rueger JM, Ruesing J, Chernousova S, Lehmann W, Epple M. A bioactive nano-calcium phosphate paste for in-situ transfection of BMP-7 and VEGF-A in a rabbit critical-size bone defect: results of an in vivo study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:15. [PMID: 30671652 DOI: 10.1007/s10856-019-6217-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to prepare an injectable DNA-loaded nano-calcium phosphate paste that is suitable as bioactive bone substitution material. For this we used the well-known potential of calcium phosphate in bone contact and supplemented it with DNA for the in-situ transfection of BMP-7 and VEGF-A in a critical-size bone defect. 24 New Zealand white rabbits were randomly divided into two groups: One group with BMP-7- and VEGF-A-encoding DNA on calcium phosphate nanoparticles and a control group with calcium phosphate nanoparticles only. The bone defect was created at the proximal medial tibia and filled with the DNA-loaded calcium phosphate paste. As control, a bone defect was filled with the calcium phosphate paste without DNA. The proximal tibia was investigated 2, 4 and 12 weeks after the operation. A histomorphological analysis of the dynamic bone parameters was carried out with the Osteomeasure system. The animals treated with the DNA-loaded calcium phosphate showed a statistically significantly increased bone volume per total volume after 4 weeks in comparison to the control group. Additionally, a statistically significant increase of the trabecular number and the number of osteoblasts per tissue area were observed. These results were confirmed by radiological analysis. The DNA-loaded bone paste led to a significantly faster healing of the critical-size bone defect in the rabbit model after 4 weeks. After 12 weeks, all defects had equally healed in both groups. No difference in the quality of the new bone was found. The injectable DNA-loaded calcium phosphate paste led to a faster and more sustained bone healing and induced an accelerated bone formation after 4 weeks. The material was well integrated into the bone defect and new bone was formed on its surface. The calcium phosphate paste without DNA led to a regular healing of the critical-size bone defect, but the healing was slower than the DNA-loaded paste. Thus, the in-situ transfection with BMP-7 and VEGF-A significantly improved the potential of calcium phosphate as pasty bone substitution material.
Collapse
Affiliation(s)
- Carsten Schlickewei
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Till O Klatte
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Yasmin Wildermuth
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Georg Laaff
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Johannes M Rueger
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Johannes Ruesing
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Svitlana Chernousova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Wolfgang Lehmann
- Department of Trauma, Orthopaedics and Plastic Surgery, University Hospital Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany.
| |
Collapse
|
26
|
Krhac Levacic A, Morys S, Wagner E. Solid-phase supported design of carriers for therapeutic nucleic acid delivery. Biosci Rep 2017; 37:BSR20160617. [PMID: 28963371 PMCID: PMC5662914 DOI: 10.1042/bsr20160617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022] Open
Abstract
Nucleic acid molecules are important therapeutic agents in the field of antisense oligonucleotide, RNA interference, and gene therapies. Since nucleic acids are not able to cross cell membranes and enter efficiently into cells on their own, the development of efficient, safe, and precise delivery systems is the crucial challenge for development of nucleic acid therapeutics. For the delivery of nucleic acids to their intracellular site of action, either the cytosol or the nucleus, several extracellular and intracellular barriers have to be overcome. Multifunctional carriers may handle the different special requirements of each barrier. The complexity of such macromolecules however poses a new hurdle in medical translation, which is the chemical production in reproducible and well-defined form. Solid-phase assisted synthesis (SPS) presents a solution for this challenge. The current review provides an overview on the design and SPS of precise sequence-defined synthetic carriers for nucleic acid cargos.
Collapse
Affiliation(s)
- Ana Krhac Levacic
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Stephan Morys
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
- Nanosystems Initiative Munich, Schellingstrasse 4, D-80799 Munich, Germany
| |
Collapse
|
27
|
Cavallaro G, Sardo C, Craparo EF, Porsio B, Giammona G. Polymeric nanoparticles for siRNA delivery: Production and applications. Int J Pharm 2017; 525:313-333. [DOI: 10.1016/j.ijpharm.2017.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
|
28
|
Zhang P, Wagner E. History of Polymeric Gene Delivery Systems. Top Curr Chem (Cham) 2017; 375:26. [PMID: 28181193 DOI: 10.1007/s41061-017-0112-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 01/24/2017] [Indexed: 12/16/2022]
Abstract
As an option for genetic disease treatment and an alternative for traditional cancer chemotherapy, gene therapy achieves significant attention. Nucleic acid delivery, however, remains a main challenge in human gene therapy. Polymer-based delivery systems offer a safer and promising route for therapeutic gene delivery. Over the past five decades, various cationic polymers have been optimized for increasingly effective nucleic acid transfer. This resulted in a chemical evolution of cationic polymers from the first-generation polycations towards bioinspired multifunctional sequence-defined polymers and nanocomposites. With the increasing of knowledge in molecular biological processes and rapid progress of macromolecular chemistry, further improvement of polymeric nucleic acid delivery systems will provide effective tool for gene-based therapy in the near future.
Collapse
Affiliation(s)
- Peng Zhang
- Pharmaceutical Biotechnology, Center for System-Based Drug Research Ludwig-Maximilians-Universität, 81377, Munich, Germany. .,Nanosystems Initiative Munich (NIM), 80799, Munich, Germany.
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research Ludwig-Maximilians-Universität, 81377, Munich, Germany.,Nanosystems Initiative Munich (NIM), 80799, Munich, Germany.,Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, 80799, Munich, Germany
| |
Collapse
|
29
|
Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther 2017; 24:133-143. [DOI: 10.1038/gt.2017.5] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 10/28/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022]
|
30
|
Davaa E, Lee J, Jenjob R, Yang SG. MT1-MMP Responsive Doxorubicin Conjugated Poly(lactic-co-glycolic Acid)/Poly(styrene-alt-maleic Anhydride) Core/Shell Microparticles for Intrahepatic Arterial Chemotherapy of Hepatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2017; 9:71-79. [PMID: 27966863 DOI: 10.1021/acsami.6b08994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, we demonstrated that the MT1-MMP-responsive peptide (sequence: GPLPLRSWGLK) and doxorubicin-conjugated poly(lactic-co-glycolic acid/poly(styrene-alt-maleic anhydride) core/shell microparticles (PLGA/pSMA MPs) can be applied for intrahepatic arterial injection for hepatocellular carcinoma (HCC). PLGA/pSMA MPs were prepared with a capillary-focused microfluidic device. The particle size, observed by scanning electron microscopy (SEM), was around 22 ± 3 μm. MT1-MMP-responsive peptide and doxorubicin (DOX) were chemically conjugated with pSMA segments on the shell of MPs to form a PLGA/pSMA-peptide-DOX complex, resulting in high encapsulation efficiency (91.1%) and loading content (2.9%). DOX was released from PLGA/pSMA-peptide-DOX MPs in a pH-dependent manner (∼25% at pH 5.4 and ∼8% at pH 7.4) and accumulated significantly in an MT1-MMP-overexpressing Hep3B cell line. An in vivo intrahepatic injection study showed localization of MPs on the hepatic vessels and hepatic lobes up to 24 h after the injection without any shunting to the lung. Moreover, MPs efficiently inhibited tumor growth of Hep3B hepatic tumor xenografted mouse models. We expect that PLGA/pSMA-peptide-DOX MPs can be utilized as an effective intrahepatic drug delivery system for the treatment of HCC.
Collapse
Affiliation(s)
- Enkhzaya Davaa
- Department of New Drug Development, School of Medicine, Inha University , B-308, Chungsuk Bldg, 366, Seohae-Daero, Jung-Gu, Incheon 22332, Republic of Korea
| | - Junghan Lee
- Department of New Drug Development, School of Medicine, Inha University , B-308, Chungsuk Bldg, 366, Seohae-Daero, Jung-Gu, Incheon 22332, Republic of Korea
| | - Ratchapol Jenjob
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) , Rayong 21210, Thailand
| | - Su-Geun Yang
- Department of New Drug Development, School of Medicine, Inha University , B-308, Chungsuk Bldg, 366, Seohae-Daero, Jung-Gu, Incheon 22332, Republic of Korea
| |
Collapse
|
31
|
Saung MT, Sharei A, Adalsteinsson VA, Cho N, Kamath T, Ruiz C, Kirkpatrick J, Patel N, Mino-Kenudson M, Thayer SP, Langer R, Jensen KF, Liss AS, Love JC. A Size-Selective Intracellular Delivery Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5873-5881. [PMID: 27594517 PMCID: PMC5337179 DOI: 10.1002/smll.201601155] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/15/2016] [Indexed: 05/20/2023]
Abstract
Identifying and separating a subpopulation of cells from a heterogeneous mixture are essential elements of biological research. Current approaches require detailed knowledge of unique cell surface properties of the target cell population. A method is described that exploits size differences of cells to facilitate selective intracellular delivery using a high throughput microfluidic device. Cells traversing a constriction within this device undergo a transient disruption of the cell membrane that allows for cytoplasmic delivery of cargo. Unique constriction widths allow for optimization of delivery to cells of different sizes. For example, a 4 μm wide constriction is effective for delivery of cargo to primary human T-cells that have an average diameter of 6.7 μm. In contrast, a 6 or 7 μm wide constriction is best for large pancreatic cancer cell lines BxPc3 (10.8 μm) and PANC-1 (12.3 μm). These small differences in cell diameter are sufficient to allow for selective delivery of cargo to pancreatic cancer cells within a heterogeneous mixture containing T-cells. The application of this approach is demonstrated by selectively delivering dextran-conjugated fluorophores to circulating tumor cells in patient blood allowing for their subsequent isolation and genomic characterization.
Collapse
Affiliation(s)
- May Tun Saung
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
- Hospital Medicine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Armon Sharei
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Viktor A Adalsteinsson
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Nahyun Cho
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Tushar Kamath
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Camilo Ruiz
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Jesse Kirkpatrick
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Nehal Patel
- Advanced Tissue Resources Core, Massachusetts General Hospital, Charlestown Navy Yard, Charlestown, MA, 02129, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Sarah P Thayer
- Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Robert Langer
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Klavs F Jensen
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - J Christopher Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| |
Collapse
|
32
|
Guyader CPE, Lamarre B, De Santis E, Noble JE, Slater NK, Ryadnov MG. Autonomously folded α-helical lockers promote RNAi. Sci Rep 2016; 6:35012. [PMID: 27721465 PMCID: PMC5056365 DOI: 10.1038/srep35012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022] Open
Abstract
RNAi is an indispensable research tool with a substantial therapeutic potential. However, the complete transition of the approach to an applied capability remains hampered due to poorly understood relationships between siRNA delivery and gene suppression. Here we propose that interfacial tertiary contacts between α-helices can regulate siRNA cytoplasmic delivery and RNAi. We introduce a rationale of helical amphipathic lockers that differentiates autonomously folded helices, which promote gene silencing, from helices folded with siRNA, which do not. Each of the helical designs can deliver siRNA into cells via energy-dependent endocytosis, while only autonomously folded helices with pre-locked hydrophobic interfaces were able to promote statistically appreciable gene silencing. We propose that it is the amphipathic locking of interfacing helices prior to binding to siRNA that enables RNAi. The rationale offers structurally balanced amphipathic scaffolds to advance the exploitation of functional RNAi.
Collapse
Affiliation(s)
- Christian P. E. Guyader
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | - Baptiste Lamarre
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | | | - James E. Noble
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| | - Nigel K. Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK
| | - Maxim G. Ryadnov
- National Physical Laboratory, Teddington, Middlesex, TW11 0WL, UK
| |
Collapse
|
33
|
Yang J, Kopeček J. Design of smart HPMA copolymer-based nanomedicines. J Control Release 2016; 240:9-23. [DOI: 10.1016/j.jconrel.2015.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 01/13/2023]
|
34
|
Thomas TJ, Tajmir-Riahi HA, Thomas T. Polyamine–DNA interactions and development of gene delivery vehicles. Amino Acids 2016; 48:2423-31. [DOI: 10.1007/s00726-016-2246-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
|
35
|
Zhang L, Jin F, Zhang T, Zhang L, Xing J. Structural influence of graft and block polycations on the adsorption of BSA. Int J Biol Macromol 2016; 85:252-7. [DOI: 10.1016/j.ijbiomac.2015.12.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 12/28/2022]
|
36
|
Thorey IS, Grote M, Mayer K, Brinkmann U. Hapten-Binding Bispecific Antibodies for the Targeted Delivery of SiRNA and SiRNA-Containing Nanoparticles. Methods Mol Biol 2016; 1364:219-234. [PMID: 26472454 DOI: 10.1007/978-1-4939-3112-5_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hapten-binding bispecific antibodies (bsAbs) are effective and versatile tools for targeting diverse payloads, including siRNAs, to specific cells and tissues. In this chapter, we provide examples for successful SiRNA delivery using this powerful targeting platform. We further provide protocols for designing and producing bsAbs, for combining bsAbs with SiRNA into functional complexes, and achieving specific mRNA knockdown in cells by using these functional complexes.
Collapse
Affiliation(s)
- Irmgard S Thorey
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Penzberg, Nonnenwald 2, 82377, Penzberg, Germany
| | - Michael Grote
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Penzberg, Nonnenwald 2, 82377, Penzberg, Germany
| | - Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Penzberg, Nonnenwald 2, 82377, Penzberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Penzberg, Nonnenwald 2, 82377, Penzberg, Germany.
| |
Collapse
|
37
|
Pyykkö I, Zou J, Schrott-Fischer A, Glueckert R, Kinnunen P. An Overview of Nanoparticle Based Delivery for Treatment of Inner Ear Disorders. Methods Mol Biol 2016; 1427:363-415. [PMID: 27259938 DOI: 10.1007/978-1-4939-3615-1_21] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoparticles offer new possibilities for inner ear treatment as they can carry a variety of drugs, protein, and nucleic acids to inner ear. Nanoparticles are equipped with several functions such as targetability, immuno-transparency, biochemical stability, and ability to be visualized in vivo and in vitro. A group of novel peptides can be attached to the surface of nanoparticles that will enhance the cell entry, endosomal escape, and nuclear targeting. Eight different types of nanoparticles with different payload carrying strategies are available now. The transtympanic delivery of nanoparticles indicates that, depending on the type of nanoparticle, different migration pathways into the inner ear can be employed, and that optimal carriers can be designed according to the intended cargo. The use of nanoparticles as drug/gene carriers is especially attractive in conjunction with cochlear implantation or even as an inclusion in the implant as a drug/gene reservoir.
Collapse
Affiliation(s)
- Ilmari Pyykkö
- Department of Otolaryngology, University of Tampere and University Hospital of Tampere, Tampere, 33014, Finland. .,Hearing and Balance Research Unit, Field of Otolaryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, Tampere, 33520, Finland.
| | - Jing Zou
- BECS, Department of Biomedical Engineering and Computational Science, Aalto University, Aalto, 02150, Espoo, Finland
| | - Annelies Schrott-Fischer
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Paavo Kinnunen
- BECS, Department of Biomedical Engineering and Computational Science, Aalto University, Aalto, Finland
| |
Collapse
|
38
|
Liao W, Li W, Zhang T, Kirberger M, Liu J, Wang P, Chen W, Wang Y. Powering up the molecular therapy of RNA interference by novel nanoparticles. Biomater Sci 2016; 4:1051-61. [DOI: 10.1039/c6bm00204h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With more suitable for disease treatment due to reduced cellular toxicity, higher loading capacity, and better biocompatibility, nanoparticle-based siRNA delivery systems have proved to be more potent, higher specific and less toxic than the traditional drug therapy.
Collapse
Affiliation(s)
- Wenzhen Liao
- Institute of Food Safety and Nutrition
- Jinan University
- Guangzhou
- China
- Department of Food Science and Technology
| | | | - Tiantian Zhang
- Institute of Food Safety and Nutrition
- Jinan University
- Guangzhou
- China
| | | | - Jun Liu
- Department of Food and Bioproduct Sciences
- University of Saskatchewan
- Saskatoon
- Canada
| | - Pei Wang
- Center for Excellence in Post-Harvest Technologies
- North Carolina Agricultural and Technical State University
- North Carolina 28081
- USA
| | - Wei Chen
- Sun Yat-Sen University
- Guangzhou
- China
| | - Yong Wang
- Department of Food Science and Engineering
- Jinan University
- Guangzhou
- China
| |
Collapse
|
39
|
Lee J, Saw PE, Gujrati V, Lee Y, Kim H, Kang S, Choi M, Kim JI, Jon S. Mono-arginine Cholesterol-based Small Lipid Nanoparticles as a Systemic siRNA Delivery Platform for Effective Cancer Therapy. Theranostics 2016; 6:192-203. [PMID: 26877778 PMCID: PMC4729768 DOI: 10.7150/thno.13657] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/01/2015] [Indexed: 01/08/2023] Open
Abstract
Although efforts have been made to develop a platform carrier for the delivery of RNAi therapeutics, systemic delivery of siRNA has shown only limited success in cancer therapy. Cationic lipid-based nanoparticles have been widely used for this purpose, but their toxicity and undesired liver uptake after systemic injection owing to their cationic surfaces have hampered further clinical translation. This study describes the development of neutral, small lipid nanoparticles (SLNPs) made of a nontoxic cationic cholesterol derivative, as a suitable carrier of systemic siRNA to treat cancers. The cationic cholesterol derivative, mono arginine-cholesterol (MA-Chol), was synthesized by directly attaching an arginine moiety to cholesterol via a cleavable ester bond. siRNA-loaded SLNPs (siRNA@SLNPs) were prepared using MA-Chol and a neutral helper lipid, dioleoyl phosphatidylethanolamine (DOPE), as major components and a small amount of PEGylated phospholipid mixed with siRNA. The resulting nanoparticles were less than ~50 nm in diameter with neutral zeta potential and much lower toxicity than typical cationic cholesterol (DC-Chol)-based lipid nanoparticles. SLNPs loaded with siRNA against kinesin spindle protein (siKSP@SLNPs) exhibited a high level of target gene knockdown in various cancer cell lines, as shown by measurement of KSP mRNA and cell death assays. Furthermore, systemic injection of siKSP@SLNPs into prostate tumor-bearing mice resulted in preferential accumulation of the delivered siRNA at the tumor site and significant inhibition of tumor growth, with little apparent toxicity, as shown by body weight measurements. These results suggest that these SLNPs may provide a systemic delivery platform for RNAi-based cancer therapy.
Collapse
Affiliation(s)
- Jinju Lee
- 1. † School of Life Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Gwangju 500-712, Republic of Korea
| | - Phei Er Saw
- 2. ‡ KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and technology (KAIST), 291 Daehak-ro, Daejeon 305-701, Republic of Korea
| | - Vipul Gujrati
- 2. ‡ KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and technology (KAIST), 291 Daehak-ro, Daejeon 305-701, Republic of Korea
| | - Yonghyun Lee
- 2. ‡ KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and technology (KAIST), 291 Daehak-ro, Daejeon 305-701, Republic of Korea
| | - Hyungjun Kim
- 2. ‡ KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and technology (KAIST), 291 Daehak-ro, Daejeon 305-701, Republic of Korea
| | - Sukmo Kang
- 2. ‡ KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and technology (KAIST), 291 Daehak-ro, Daejeon 305-701, Republic of Korea
| | - Minsuk Choi
- 2. ‡ KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and technology (KAIST), 291 Daehak-ro, Daejeon 305-701, Republic of Korea
| | - Jae-Il Kim
- 1. † School of Life Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Gwangju 500-712, Republic of Korea
| | - Sangyong Jon
- 2. ‡ KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and technology (KAIST), 291 Daehak-ro, Daejeon 305-701, Republic of Korea
| |
Collapse
|
40
|
Affiliation(s)
- Mahmoud Elsabahy
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, 71515 Assiut, Egypt, and Misr University for Science and Technology, 6 of October City, Egypt
| | - Gyu Seong Heo
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
| | - Soon-Mi Lim
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
| | - Guorong Sun
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
| | - Karen L. Wooley
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842-3012, United States
| |
Collapse
|
41
|
Lopes I, C. N. Oliveira A, P. Sárria M, P. Neves Silva J, Gonçalves O, Gomes AC, Real Oliveira MECD. Monoolein-based nanocarriers for enhanced folate receptor-mediated RNA delivery to cancer cells. J Liposome Res 2015; 26:199-210. [DOI: 10.3109/08982104.2015.1076463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ivo Lopes
- Department of Physics, University of Minho, Campus of Gualtar, Braga, Portugal and
- Department of Biology, University of Minho, Braga, Portugal
| | - Ana C. N. Oliveira
- Department of Physics, University of Minho, Campus of Gualtar, Braga, Portugal and
- Department of Biology, University of Minho, Braga, Portugal
| | | | - João P. Neves Silva
- Department of Physics, University of Minho, Campus of Gualtar, Braga, Portugal and
| | - Odete Gonçalves
- Department of Physics, University of Minho, Campus of Gualtar, Braga, Portugal and
- Department of Biology, University of Minho, Braga, Portugal
| | | | | |
Collapse
|
42
|
Lächelt U, Wagner E. Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chem Rev 2015; 115:11043-78. [DOI: 10.1021/cr5006793] [Citation(s) in RCA: 418] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Lächelt
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| |
Collapse
|
43
|
Preparation and Testing of Quaternized Chitosan Nanoparticles as Gene Delivery Vehicles. Appl Biochem Biotechnol 2015; 175:3244-57. [DOI: 10.1007/s12010-015-1483-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/05/2015] [Indexed: 02/04/2023]
|
44
|
Bartolami E, Bessin Y, Bettache N, Gary-Bobo M, Garcia M, Dumy P, Ulrich S. Multivalent DNA recognition by self-assembled clusters: deciphering structural effects by fragments screening and evaluation as siRNA vectors. Org Biomol Chem 2015; 13:9427-38. [DOI: 10.1039/c5ob01404b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fragment self-assembly was used for producing clusters with a variety of scaffolds and ligands, and an effective siRNA vector was identified.
Collapse
Affiliation(s)
- Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
45
|
Kakran M, Muratani M, Tng WJ, Liang H, Trushina DB, Sukhorukov GB, Ng HH, Antipina MN. Layered polymeric capsules inhibiting the activity of RNases for intracellular delivery of messenger RNA. J Mater Chem B 2015; 3:5842-5848. [DOI: 10.1039/c5tb00615e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Delivery of luciferase messenger RNA to HEK293T cells is successfully performed by polymer multilayer microcapsules co-encapsulating RNase inhibitors.
Collapse
Affiliation(s)
- Mitali Kakran
- Institute of Materials Research and Engineering
- A*STAR
- Singapore
- Singapore
| | | | | | - Hongqing Liang
- Genome Institute of Singapore
- A*STAR
- Singapore
- 138672 Singapore
| | - Daria B. Trushina
- Institute of Materials Research and Engineering
- A*STAR
- Singapore
- Singapore
- Faculty of Physics
| | - Gleb B. Sukhorukov
- Institute of Materials Research and Engineering
- A*STAR
- Singapore
- Singapore
- School of Engineering and Materials Science
| | - Huck Hui Ng
- Genome Institute of Singapore
- A*STAR
- Singapore
- 138672 Singapore
| | - Maria N. Antipina
- Institute of Materials Research and Engineering
- A*STAR
- Singapore
- Singapore
| |
Collapse
|
46
|
Chang C, Dan H, Zhang LP, Chang MX, Sheng YF, Zheng GH, Zhang XZ. Fabrication of thermoresponsive, core-crosslinked micelles based on poly[N-isopropyl acrylamide-co-3-(trimethoxysilyl)propylmethacrylate]-b-poly{N-[3-(dimethylamino)propyl]methacrylamide} for the codelivery of doxorubicin and nucleic acid. J Appl Polym Sci 2014. [DOI: 10.1002/app.41752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cong Chang
- Key Laboratory of Chinese Medicine Resource and Compound Prescription of Ministry of Education; Hubei University of Chinese Medicine; Wuhan 430065 People's Republic of China
| | - Hong Dan
- Key Laboratory of Chinese Medicine Resource and Compound Prescription of Ministry of Education; Hubei University of Chinese Medicine; Wuhan 430065 People's Republic of China
| | - Li-Ping Zhang
- Key Laboratory of Chinese Medicine Resource and Compound Prescription of Ministry of Education; Hubei University of Chinese Medicine; Wuhan 430065 People's Republic of China
| | - Ming-Xiang Chang
- Affiliated Hospital; Hubei University of Chinese Medicine; Wuhan 430061 People's Republic of China
| | - Yin-Feng Sheng
- Affiliated Hospital; Hubei University of Chinese Medicine; Wuhan 430061 People's Republic of China
| | - Guo-Hua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription of Ministry of Education; Hubei University of Chinese Medicine; Wuhan 430065 People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry; Wuhan University; Wuhan 430072 People's Republic of China
| |
Collapse
|
47
|
Borna H, Imani S, Iman M, Azimzadeh Jamalkandi S. Therapeutic face of RNAi: in vivo challenges. Expert Opin Biol Ther 2014; 15:269-85. [PMID: 25399911 DOI: 10.1517/14712598.2015.983070] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION RNA interference is a sequence-specific gene silencing phenomenon in which small interfering RNAs (siRNAs) can trigger gene transcriptional and post-transcriptional silencing. This phenomenon represents an emerging therapeutic approach for in vivo studies by efficient delivery of specific synthetic siRNAs against diseases. Therefore, simultaneous development of synthetic siRNAs along with novel delivery techniques is considered as novel and interesting therapeutic challenges. AREAS COVERED This review provides a basic explanation to siRNA signaling pathways and their therapeutic challenges. Here, we provide a comprehensive explanation to failed and successful trials and their in vivo challenges. EXPERT OPINION Specific, efficient and targeted delivery of siRNAs is the major concern for their in vivo administrations. Also, anatomical barriers, drug stability and availability, immunoreactivity and existence of various delivery routes, different genetic backgrounds are major clinical challenges. However, successful administration of siRNA-based drugs is expected during foreseeable features. But, their systemic applications will depend on strong targeted drug delivery strategies.
Collapse
Affiliation(s)
- Hojat Borna
- Baqiyatallah University of Medical Sciences, Chemical Injuries Research Center , Tehran , Iran
| | | | | | | |
Collapse
|
48
|
Bouillon C, Paolantoni D, Rote JC, Bessin Y, Peterson LW, Dumy P, Ulrich S. Degradable Hybrid Materials Based on Cationic Acylhydrazone Dynamic Covalent Polymers Promote DNA Complexation through Multivalent Interactions. Chemistry 2014; 20:14705-14. [DOI: 10.1002/chem.201403695] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 12/28/2022]
|
49
|
Cui G, Wang X, Ye X, Zu J, Zan K, Hua F. Oxygen-glucose deprivation of neurons transfected with toll-like receptor 3-siRNA: Determination of an optimal transfection sequence. Neural Regen Res 2014; 8:3233-40. [PMID: 25206644 PMCID: PMC4146184 DOI: 10.3969/j.issn.1673-5374.2013.34.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022] Open
Abstract
Toll-like receptor 3 protein expression has been shown to be upregulated during cerebral ischemia/reperfusion injury in rats. In this study, rat primary cortical neurons were subjected to oxygen-glucose deprivation to simulate cerebral ischemia/reperfusion injury. Chemically synthesized small interfering RNA (siRNA)-1280, -1724 and -418 specific to toll-like receptor 3 were transfected into oxygen-glucose deprived cortical neurons to suppress the upregulation of toll-like receptor 3 protein expression. Western blotting demonstrated that after transfection with siRNA, toll-like receptor 3 protein expression reduced, especially in the toll-like receptor 3-1724 group. These results suggested that siRNA-1724 is an optimal sequence for inhibiting toll-like receptor 3 expression in cortical neurons following oxygen-glucose deprivation.
Collapse
Affiliation(s)
- Guiyun Cui
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China
| | - Xiaopeng Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China
| | - Xinchun Ye
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China
| | - Jie Zu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China
| | - Kun Zan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China
| | - Fang Hua
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China
| |
Collapse
|
50
|
Abstract
RNA interference (RNAi) therapeutics appear to offer substantial opportunities for future therapy. However, post-administration RNAi effectors are typically unable to reach disease target cells in vivo without the assistance of a delivery system or vector. The main focus of this review is on lipid-based nanoparticle (LNP) delivery systems in current research and development that have at least been shown to act as effective delivery systems for functional delivery of RNAi effectors to disease target cells in vivo. The potential utility of these LNP delivery systems is growing rapidly, and LNPs are emerging as the preferred synthetic delivery systems in preclinical studies and current nonviral RNAi effector clinical trials. Moreover, studies on LNP-mediated delivery in vivo are leading to the emergence of useful biophysical parameters and physical organic chemistry rules that provide a framework for understanding in vivo delivery behaviors and outcomes. These same parameters and rules should also suggest ways and means to develop next generations of LNPs with genuine utility and long-term clinical viability.
Collapse
Affiliation(s)
- Andrew D Miller
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London SE1 9NH , UK and GlobalAcorn Limited , London , UK
| |
Collapse
|