1
|
Beltran NM, Parra AN, Serrano AP, Castillo J, Castro IM, Elsey MK, Minervini V, Serafine KM. The Effects of Eating a Traditional High Fat/High Carbohydrate or a Ketogenic Diet on Sensitivity of Female Rats to Morphine. J Pharmacol Exp Ther 2024; 391:30-38. [PMID: 39060162 PMCID: PMC11415821 DOI: 10.1124/jpet.124.002188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/18/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Patients diagnosed with obesity are prescribed opioid medications at a higher rate than the general population; however, it is not known if eating a high fat diet might impact individual sensitivity to these medications. To explore the hypothesis that eating a high fat diet increases sensitivity of rats to the effects of morphine, 24 female Sprague-Dawley rats (n = 8/diet) ate either a standard (low fat) laboratory chow (17% kcal from fat), a high fat/low carbohydrate (ketogenic) chow (90.5% kcal from fat), or a traditional high fat/high carbohydrate chow (60% kcal from fat). Morphine-induced antinociception was assessed using a warm water tail withdrawal procedure, during which latency (in seconds) for rats to remove their tail from warm water baths was recorded following saline or morphine (0.32-56 mg/kg, i.p.) injections. Morphine was administered acutely and chronically (involving 18 days of twice-daily injections, increasing in 1/4 log dose increments every 3 days: 3.2-56 mg/kg, i.p., to induce dependence and assess tolerance). The adverse effects of morphine (i.e., tolerance, withdrawal, and changes in body temperature) were assessed throughout the study. Acute morphine induced comparable antinociception in rats eating different diets, and all rats developed tolerance following chronic morphine exposure. Observable withdrawal signs and body temperature were also comparable among rats eating different diets; however, withdrawal-induced weight loss was less severe for rats eating ketogenic chow. These results suggest that dietary manipulation might modulate the severity of withdrawal-related weight loss in ways that could be relevant for patients.
Collapse
Affiliation(s)
- Nina M Beltran
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Alyssa N Parra
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Ana Paulina Serrano
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Jazmin Castillo
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Isabella M Castro
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Madeline K Elsey
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Vanessa Minervini
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| | - Katherine M Serafine
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas (N.M.B., A.N.P., A.P.S., J.C., I.M.C., M.K.E., K.M.S.); and Department of Psychological Science, Creighton University, Omaha, Nebraska (V.M.)
| |
Collapse
|
2
|
Chow JJ, Pitts KM, Chabot JM, Ito R, Shaham Y. A rat model of operant negative reinforcement in opioid-dependent males and females. Psychopharmacology (Berl) 2024; 241:1791-1813. [PMID: 38642101 DOI: 10.1007/s00213-024-06594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
RATIONALE AND OBJECTIVE Avoidance of opioid withdrawal plays a key role in human opioid addiction. Here, we present a procedure for studying operant negative reinforcement in rats that was inspired by primate procedures where opioid-dependent subjects lever-press to prevent naloxone infusions. METHODS In Experiment 1, we trained rats (n = 30, 15 females) to lever-press to escape and then avoid mild footshocks (0.13-0.27 mA) for 35 days (30 trials/d). Next, we catheterized them and implanted minipumps containing methadone (10 mg/kg/day) or saline. We then paired (4 times, single session) a light cue (20-s) with a naloxone infusion (20 µg/kg, i.v) that precipitated opioid withdrawal. Next, we trained the rats to escape naloxone injections for 10 days (30 trials/d). Each trial started with the onset of the opioid-withdrawal cue. After 20-s, the lever extended, and an infusion of naloxone (1 to 2.2 µg/kg/infusion) began; a lever-press during an 11-s window terminated the withdrawal-paired cue and the infusion. In Experiment 2, we trained rats (n = 34, 17 females) on the same procedure but decreased the footshock escape/avoidance training to 20 days. RESULTS All rats learned to lever-press to escape or avoid mild footshocks. In both experiments, a subset, 56% (10/18) and 33% (8/24) of methadone-dependent rats learned to lever-press to escape naloxone infusions. CONCLUSIONS We introduce an operant negative reinforcement procedure where a subset of opioid-dependent rats learned to lever-press to escape withdrawal-inducing naloxone infusions. The procedure can be used to study mechanisms of individual differences in opioid negative reinforcement-related behaviors in opioid-dependent rats.
Collapse
Affiliation(s)
| | - Kayla M Pitts
- Intramural Research Program, NIDA, NIH, Baltimore, USA
| | | | - Rutsuko Ito
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Yavin Shaham
- Intramural Research Program, NIDA, NIH, Baltimore, USA.
| |
Collapse
|
3
|
Mueller LE, Wexler RS, Lovejoy DA, Stein RB, Slee AM. Teneurin C-terminal associated peptide (TCAP)-1 attenuates the development and expression of naloxone-precipitated morphine withdrawal in male Swiss Webster mice. Psychopharmacology (Berl) 2024; 241:1565-1575. [PMID: 38630316 PMCID: PMC11269454 DOI: 10.1007/s00213-024-06582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/26/2024] [Indexed: 07/25/2024]
Abstract
RATIONALE Corticotropin-releasing factor (CRF), the apical stress-inducing hormone, exacerbates stress and addictive behaviors. TCAP-1 is a peptide that directly inhibits both CRF-mediated stress and addiction-related behaviors; however, the direct action of TCAP-1 on morphine withdrawal-associated behaviors has not previously been examined. OBJECTIVE To determine whether TCAP-1 administration attenuates behavioral and physiological consequences of morphine withdrawal in mice. METHODS Mice were administered via subcutaneous route TCAP-1 either before or after initial morphine exposure, after which jumping behavior was quantified to assess the effects of TCAP-1 on naloxone-precipitated morphine withdrawal. As a comparison, mice were treated with nonpeptide CRF1 receptor antagonist CP-154,526. In one experiment, plasma corticosterone (CORT) was also measured as a physiological stress indicator. RESULTS Pretreatment with TCAP-1 (10-250 nmol/kg) before morphine treatment significantly inhibited the development of naloxone-precipitated withdrawal. TCAP-1 (250-500 nmol/kg) treatment administered after morphine treatment attenuated the behavioral expression of naloxone-precipitated withdrawal. TCAP-1 (250 nmol/kg) treatment during morphine treatment was more effective than the optimal dosing of CP-154,526 (20 mg/kg) at suppressing the behavioral expression of naloxone-precipitated withdrawal, despite similar reduction of withdrawal-induced plasma CORT level increases. CONCLUSIONS These findings establish TCAP-1 as a potential therapeutic candidate for the prevention and treatment of morphine withdrawal.
Collapse
Affiliation(s)
| | | | - David A Lovejoy
- Protagenic Therapeutics, Inc., New York, NY, USA
- Department of Cell and Systems Biology, University of Toronto, Toronto, CA, Canada
| | | | | |
Collapse
|
4
|
Halbout B, Hutson C, Agrawal S, Springs ZA, Ostlund SB. Differential effects of acute and prolonged morphine withdrawal on motivational and goal-directed control over reward-seeking behaviour. Addict Biol 2024; 29:e13393. [PMID: 38706098 PMCID: PMC11070494 DOI: 10.1111/adb.13393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024]
Abstract
Opioid addiction is a relapsing disorder marked by uncontrolled drug use and reduced interest in normally rewarding activities. The current study investigated the impact of spontaneous withdrawal from chronic morphine exposure on emotional, motivational and cognitive processes involved in regulating the pursuit and consumption of food rewards in male rats. In Experiment 1, rats experiencing acute morphine withdrawal lost weight and displayed somatic signs of drug dependence. However, hedonically driven sucrose consumption was significantly elevated, suggesting intact and potentially heightened reward processing. In Experiment 2, rats undergoing acute morphine withdrawal displayed reduced motivation when performing an effortful response for palatable food reward. Subsequent reward devaluation testing revealed that acute withdrawal disrupted their ability to exert flexible goal-directed control over reward seeking. Specifically, morphine-withdrawn rats were impaired in using current reward value to select actions both when relying on prior action-outcome learning and when given direct feedback about the consequences of their actions. In Experiment 3, rats tested after prolonged morphine withdrawal displayed heightened rather than diminished motivation for food rewards and retained their ability to engage in flexible goal-directed action selection. However, brief re-exposure to morphine was sufficient to impair motivation and disrupt goal-directed action selection, though in this case, rats were only impaired in using reward value to select actions in the presence of morphine-paired context cues and in the absence of response-contingent feedback. We suggest that these opioid-withdrawal induced deficits in motivation and goal-directed control may contribute to addiction by interfering with the pursuit of adaptive alternatives to drug use.
Collapse
Affiliation(s)
- Briac Halbout
- Department of Anesthesiology and Perioperative Care, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - Collin Hutson
- Department of Anesthesiology and Perioperative Care, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - Stuti Agrawal
- Department of Anesthesiology and Perioperative Care, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - Zachary A. Springs
- Department of Anesthesiology and Perioperative Care, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
| | - Sean B. Ostlund
- Department of Anesthesiology and Perioperative Care, School of MedicineUniversity of California, IrvineIrvineCaliforniaUSA
- Department of Neurobiology and Behavior, School of Biological SciencesUniversity of California, IrvineIrvineCaliforniaUSA
| |
Collapse
|
5
|
Halbout B, Hutson C, Agrawal S, Springs ZA, Ostlund SB. Differential effects of acute and prolonged morphine withdrawal on motivational and goal-directed control over reward-seeking behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557822. [PMID: 37745601 PMCID: PMC10515939 DOI: 10.1101/2023.09.14.557822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Opioid addiction is a relapsing disorder marked by uncontrolled drug use and reduced interest in normally rewarding activities. The current study investigated the impact of spontaneous withdrawal from chronic morphine exposure on emotional, motivational, and cognitive processes involved in regulating the pursuit and consumption of natural food rewards in male rats. In Experiment 1, rats experiencing acute morphine withdrawal lost weight and displayed somatic signs of drug dependence. However, hedonically-driven sucrose consumption was significantly elevated, suggesting intact and potentially heightened emotional reward processing. In Experiment 2, rats undergoing acute morphine withdrawal displayed reduced motivation when performing an effortful response for palatable food reward. Subsequent reward devaluation testing revealed that acute withdrawal also disrupted their ability to exert flexible goal-directed control over their reward-seeking behavior. Specifically, morphine-withdrawn rats displayed insensitivity to reward devaluation both when relying on prior action-outcome learning and when given direct feedback about the consequences of their actions. In Experiment 3, rats tested after prolonged morphine withdrawal displayed heightened rather than diminished motivation for food rewards and retained their ability to engage in flexible goal-directed action selection. However, brief re-exposure to morphine was sufficient to impair motivation and disrupt goal-directed action selection, though in this case insensitivity to reward devaluation was only observed in the presence of morphine-paired context cues and in the absence of response-contingent feedback. We suggest that these opioid-withdrawal induced deficits in motivation and goal-directed control may contribute to addiction by interfering with the pursuit of adaptive alternatives to drug use.
Collapse
Affiliation(s)
- Briac Halbout
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Collin Hutson
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Stuti Agrawal
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Zachary A. Springs
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sean B. Ostlund
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
6
|
Monroe SC, Radke AK. Opioid withdrawal: role in addiction and neural mechanisms. Psychopharmacology (Berl) 2023; 240:1417-1433. [PMID: 37162529 PMCID: PMC11166123 DOI: 10.1007/s00213-023-06370-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Withdrawal from opioids involves a negative affective state that promotes maintenance of drug-seeking behavior and relapse. As such, understanding the neurobiological mechanisms underlying withdrawal from opioid drugs is critical as scientists and clinicians seek to develop new treatments and therapies. In this review, we focus on the neural systems known to mediate the affective and somatic signs and symptoms of opioid withdrawal, including the mesolimbic dopaminergic system, basolateral amygdala, extended amygdala, and brain and hormonal stress systems. Evidence from preclinical studies suggests that these systems are altered following opioid exposure and that these changes mediate behavioral signs of negative affect such as aversion and anxiety during withdrawal. Adaptations in these systems also parallel the behavioral and psychological features of opioid use disorder (OUD), highlighting the important role of withdrawal in the development of addictive behavior. Implications for relapse and treatment are discussed as well as promising avenues for future research, with the hope of promoting continued progress toward characterizing neural contributors to opioid withdrawal and compulsive opioid use.
Collapse
Affiliation(s)
- Sean C Monroe
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, 90 N Patterson Ave, Oxford, OH, USA
| | - Anna K Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, 90 N Patterson Ave, Oxford, OH, USA.
| |
Collapse
|
7
|
Amgott-Kwan AT, Zadina JE. Endomorphin analog ZH853 shows low reward, tolerance, and affective-motivational signs of withdrawal, while inhibiting opioid withdrawal and seeking. Neuropharmacology 2023; 227:109439. [PMID: 36709036 DOI: 10.1016/j.neuropharm.2023.109439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Currently available μ-opioid receptor agonist pharmacotherapies for opioid use disorder possess adverse effects limiting their use and, despite treatment, rates of relapse remain high. We previously showed that endomorphin analog ZH853 had no effect in rodent models that predict abuse liability in humans. Here we extended these findings by examining dependence liability and reinforcing properties in female rats and male rats with previous opioid exposure. The potential use of ZH853 in managing opioid use disorder was evaluated by examining its effect on opioid-seeking behavior and withdrawal. We found that ZH853 did not induce locomotor activation in male and female mice and was not self-administered by female rats. Relative to morphine, ZH853 led to similar somatic signs of withdrawal, but low affective-motivational signs of withdrawal, and absent changes in ventral tegmental area K(+)-Cl(-) co-transporter expression associated with reward dysregulation. The low abuse liability of ZH853 was further supported in oxycodone self-administering male rats, where ZH853 substitution extinguished opioid-seeking behavior. ZH853 priming also did not reinstate morphine conditioned place preference. Lastly, ZH853 inhibited oxycodone-seeking behavior during relapse after forced abstinence and decreased the expression of morphine withdrawal. These findings suggest the potential use of ZH853 as a safer opioid medication for long-term treatment of pain and opioid use disorder.
Collapse
Affiliation(s)
- Ariel T Amgott-Kwan
- Neuroscience Program, Tulane Brain Institute: 6823 St Charles Avenue, 200 Flower Hall, Tulane University, New Orleans, LA, 70118, USA.
| | - James E Zadina
- Neuroscience Program, Tulane Brain Institute: 6823 St Charles Avenue, 200 Flower Hall, Tulane University, New Orleans, LA, 70118, USA; Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA; Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA; SE Louisiana Veterans Health Care System, 2400 Canal Street, New Orleans, LA, 70119, USA.
| |
Collapse
|
8
|
Bahi A, Dreyer JL. Effects of chronic psychosocial stress on 'binge-like' sucrose intake in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110625. [PMID: 36055562 DOI: 10.1016/j.pnpbp.2022.110625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022]
Abstract
Binge eating episodes are persistent and are essential features of numerous eating disorders (EDs). Susceptibility to EDs is largely presumed to be associated with early life stress. In fact, converging evidence from preclinical animal studies have implicated stress as a driver of binge eating. Still, literature examination indicates that vulnerability to EDs may depend on factors such as severity, time, and the type of stressor. Therefore, we aimed at exploring the link between chronic psychosocial stress and 'binge-like' sucrose intake in adolescent mice. To this aim, intruders' experimental mice were exposed to the chronic subordinate colony (CSC) housing, in the presence of a resident aggressive mouse for 2 weeks. At the end of the stress period, mice were tested for anxiety-like behavior then assessed for 'binge-like' intake of sucrose using a long-term drinking in the dark (DID) method that successfully replicates binge eating in humans. As expected, and compared to single housed colony controls (SHC), CSC exposure elicited an anxiogenic-like response in the open field (OF) and elevated-plus maze (EPM) tests and reduced weight gain. Most importantly, we report here for the first time, that mice exposed to chronic psychosocial stress displayed a 'binge-like' consumption of sucrose. However, neither quinine (bitter) nor saccharin (sweet) intakes were affected by CSC exposure. Finally, using Pearson's correlation, results showed a strong correlation between anxiety-like behavior parameters and sucrose intake. Overall these findings support the validity of our chronic psychosocial stress to model binge EDs and establish the long-term consequences of stress on 'binge-like' eating in male mice. These data suggest that chronic psychosocial stress is a risk factor for developing anxiety-associated EDs.
Collapse
Affiliation(s)
- Amine Bahi
- College of Medicine, Ajman University, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
9
|
Ruiz‐Quiñonez AK, Espinosa‐Riquer ZP, Carranza‐Aguilar CJ, Browne T, Cruz SL. Co-administration of morphine and levamisole increases death risk, produces neutropenia and modifies antinociception in mice. Addict Biol 2022; 27:e13166. [PMID: 35470549 DOI: 10.1111/adb.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
Abstract
Levamisole is a veterinary anthelmintic drug and a common adulterant of misused drugs. This study analyses the lethal, antinociceptive and haematological effects produced by acute or repeated levamisole administration by itself or combined with morphine. Independent groups of male Swiss Webster mice were i.p. injected with 100 mg/kg morphine, 31.6 mg/kg levamisole (lethal doses at 10%, LD10 ) or the same doses combined. Naloxone pretreatment (10 mg/kg, i.p.) prevented morphine-induced death, as did 2.5 mg/kg, i.p. mecamylamine with levamisole. Co-administration of levamisole and morphine (Lvm + Mor) increased lethality from 10% to 80%. This augmented effect was prevented by 30 mg/kg, i.p. naloxone and reduced with 10 mg/kg naloxone plus 2.5 mg/kg, i.p. mecamylamine. In independent groups of mice, 17.7 mg/kg, i.p. levamisole antagonized the acute morphine's antinociceptive effect evaluated in the tail-flick test. Repeated 17.7 mg/kg levamisole administration (2×/day/3 weeks) did not affect tolerance development to morphine (10 mg/kg, 3×/day/1 week). Blood samples obtained from mice repeatedly treated with levamisole showed leukopenia and neutropenia. Morphine also produced neutropenia, increased erythrocyte count and other related parameters (e.g. haemoglobin). Lvm + Mor had similar effects on leukocyte and neutrophil counts to those seen with levamisole only, but no erythrocyte-related alterations were evident. Blood chemistry analysis did not indicate liver damage but suggested some degree of electrolyte balance impairment. In conclusion, Lvm + Mor increased death risk, altered morphine-induced antinociceptive effects and produced haematologic abnormalities. The importance of studying combinations of drugs of abuse lies in the fact that drug users frequently combine drugs, which are commonly adulterated.
Collapse
Affiliation(s)
- Ana K. Ruiz‐Quiñonez
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav, IPN) Mexico City Mexico
| | - Zyanya P. Espinosa‐Riquer
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav, IPN) Mexico City Mexico
| | - César J. Carranza‐Aguilar
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav, IPN) Mexico City Mexico
| | - Thom Browne
- Colombo Plan Secretariat Drug Advisory Program Colombo Sri Lanka
| | - Silvia L. Cruz
- Departamento de Farmacobiología Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav, IPN) Mexico City Mexico
- Faculty of Medicine National Autonomous University of Mexico Mexico City Mexico
| |
Collapse
|
10
|
Mohammadzadeh L, Alizadeh AM, Feiz MS, Jamali S, Abedi M, Latifi H, Haghparast A. Acute morphine administration, morphine dependence, and naloxone-induced withdrawal syndrome affect the resting-state functional connectivity and local field potentials of the rat prefrontal cortex. Behav Brain Res 2022; 427:113859. [PMID: 35337941 DOI: 10.1016/j.bbr.2022.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/14/2022] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
Abstract
Opiates are among the widely abused substances worldwide. Also, the clinical use of opioids can cause unwanted and potentially severe consequences such as developing tolerance and dependence. This study simultaneously measured the changes induced after morphine dependence and naloxone-induced withdrawal syndrome on the resting-state functional connectivity (rsFC) and local field potential (LFP) power in the prefrontal cortex of the rat. The obtained results revealed that acute morphine administration significantly increased the LFP power in all frequency bands, as well as the rsFC strength of the prefrontal cortex, and naloxone injection reversed this effect. In contrast, chronic morphine administration reduced neural activity and general correlation values in intrinsic signals, as well as the LFP power in all frequency bands. In morphine-dependent rats, after each morphine administration, the LFP power in all frequency bands and the rsFC strength of the prefrontal cortex were increased, and these effects were further enhanced after naloxone precipitated withdrawal syndrome. The present study concludes that general correlation merely reflects the field activity of the local cortices imaged.
Collapse
Affiliation(s)
- Leila Mohammadzadeh
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839-69411, Iran
| | - Amir Mohammad Alizadeh
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | - Mohammad Sadegh Feiz
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839-69411, Iran
| | - Shole Jamali
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Mohaddeseh Abedi
- Department of Physics, Shahid Beheshti University, Tehran, 19839-63113, Iran
| | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839-69411, Iran; Department of Physics, Shahid Beheshti University, Tehran, 19839-63113, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, P.O.Box 19615-1178, Iran.
| |
Collapse
|
11
|
Snyder AE, Silberman Y. Corticotropin releasing factor and norepinephrine related circuitry changes in the bed nucleus of the stria terminalis in stress and alcohol and substance use disorders. Neuropharmacology 2021; 201:108814. [PMID: 34624301 PMCID: PMC8578398 DOI: 10.1016/j.neuropharm.2021.108814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Alcohol Use Disorder (AUD) affects around 14.5 million individuals in the United States, with Substance Use Disorder (SUD) affecting an additional 8.3 million individuals. Relapse is a major barrier to effective long-term treatment of this illness with stress often described as a key trigger for a person with AUD or SUD to relapse during a period of abstinence. Two signaling molecules, norepinephrine (NE) and corticotropin releasing factor (CRF), are released during the stress response, and also play important roles in reward behaviors and the addiction process. Within the addiction literature, one brain region in which there has been increasing research focus in recent years is the bed nucleus of the stria terminalis (BNST). The BNST is a limbic structure with numerous cytoarchitecturally and functionally different subregions that has been implicated in drug-seeking behaviors and stress responses. This review focuses on drug and stress-related neurocircuitry changes in the BNST, particularly within the CRF and NE systems, with an emphasis on differences and similarities between the major dorsal and ventral BNST subregions.
Collapse
Affiliation(s)
- Angela E Snyder
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA
| | - Yuval Silberman
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA.
| |
Collapse
|
12
|
Parekh SV, Paniccia JE, Adams LO, Lysle DT. Hippocampal TNF-α Signaling Mediates Heroin Withdrawal-Enhanced Fear Learning and Withdrawal-Induced Weight Loss. Mol Neurobiol 2021; 58:2963-2973. [PMID: 33580871 PMCID: PMC8128733 DOI: 10.1007/s12035-021-02322-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/04/2021] [Indexed: 12/25/2022]
Abstract
There is significant comorbidity of opioid use disorder (OUD) and post-traumatic stress disorder (PTSD) in clinical populations. However, the neurobiological mechanisms underlying the relationship between chronic opioid use and withdrawal and development of PTSD are poorly understood. Our previous work identified that chronic escalating heroin administration and withdrawal can produce enhanced fear learning, an animal model of hyperarousal, and is associated with an increase in dorsal hippocampal (DH) interleukin-1β (IL-1β). However, other cytokines, such as TNF-α, work synergistically with IL-1β and may have a role in the development of enhanced fear learning. Based on both translational rodent and clinical studies, TNF-α has been implicated in hyperarousal states of PTSD, and has an established role in hippocampal-dependent learning and memory. The first set of experiments tested the hypothesis that chronic heroin administration followed by withdrawal is capable of inducing alterations in DH TNF-α expression. The second set of experiments examined whether DH TNF-α expression is functionally relevant to the development of enhanced fear learning. We identified an increase of TNF-α immunoreactivity and positive cells at 0, 24, and 48 h into withdrawal in the dentate gyrus DH subregion. Interestingly, intra-DH infusions of etanercept (TNF-α inhibitor) 0, 24, and 48 h into heroin withdrawal prevented the development of enhanced fear learning and mitigated withdrawal-induced weight loss. Overall, these findings provide insight into the role of TNF-α in opioid withdrawal and the development of anxiety disorders such as PTSD.
Collapse
Affiliation(s)
- Shveta V Parekh
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC, 27599-3270, USA
| | - Jacqueline E Paniccia
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC, 27599-3270, USA
| | - Lydia O Adams
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC, 27599-3270, USA
| | - Donald T Lysle
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC, 27599-3270, USA.
| |
Collapse
|
13
|
Seaman RW, Collins GT. Impact of Morphine Dependence and Withdrawal on the Reinforcing Effectiveness of Fentanyl, Cocaine, and Methamphetamine in Rats. Front Pharmacol 2021; 12:691700. [PMID: 34093214 PMCID: PMC8175987 DOI: 10.3389/fphar.2021.691700] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
Recent estimates suggest increased popularity of the concurrent use of opioids and stimulants, with over 50% of treatment-seeking opioid users reporting regular stimulant use. The goal of the current study was to determine how opioid dependence and withdrawal affect the reinforcing effects of fentanyl, cocaine, and methamphetamine. Male Sprague-Dawley rats were allowed to self-administer fentanyl under a progressive ratio (PR) schedule of reinforcement. Baseline evaluations of reinforcing effectiveness of fentanyl, cocaine, and methamphetamine were determined. Opioid dependence was then established by administering escalating doses of morphine (10–40 mg/kg) twice-daily for four days and subsequently maintained by once-daily injections of 40 mg/kg morphine. To evaluate the impact of opioid dependence and withdrawal on the self-administration of fentanyl, cocaine, and methamphetamine, sessions occurred either 12 or 20 h after the morphine, respectively. During opioid withdrawal, the fentanyl dose-response curve was shifted rightward with an increase in maximal effectiveness, whereas it was shifted rightward with a reduction in maximal effectiveness when evaluated in rats currently dependent on opioids, relative to baseline. The reinforcing effects of cocaine and methamphetamine were unchanged by either condition. The current studies provide direct evidence that the reinforcing effects of fentanyl are increased in opioid-withdrawn rats and reduced in opioid-dependent rats, relative to rats that are not physically dependent on opioids. These findings suggest that motivations to use opioids are dependent on the state of the individual whereas stimulants retain their reinforcing effects regardless of whether the individual is in an opioid-dependent or withdrawn state.
Collapse
Affiliation(s)
- Robert W Seaman
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Gregory T Collins
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,South Texas Veterans Health Care System, San Antonio, TX, United States
| |
Collapse
|
14
|
Mavrikaki M, Lintz T, Constantino N, Page S, Chartoff E. Chronic opioid exposure differentially modulates oxycodone self-administration in male and female rats. Addict Biol 2021; 26:e12973. [PMID: 33078503 PMCID: PMC8129895 DOI: 10.1111/adb.12973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022]
Abstract
Withdrawal from opioid painkillers can produce short‐lived physical symptoms and protracted psychological symptoms including anxiety and depressive‐like states that often lead to opioid misuse and opioid use disorder (OUD). Studies testing the hypothesis that opioid withdrawal potentiates the reinforcing effects of opioid self‐administration (SA) are largely inconclusive and have focused on males. Although some clinical evidence indicates that women are more likely than men to misuse opioids to self‐medicate, preclinical studies in both sexes are lacking. Based on clinical reports, we hypothesized that withdrawal from escalating‐dose morphine injections that approximates a prescription painkiller regimen would lead to increased oxycodone SA to a greater extent in female compared to male rats. After escalating‐dose morphine (5–30 mg/kg or vehicle, twice/day for 12 days), rats underwent a 2‐week abstinence period during which withdrawal signs were measured. The impact of this treatment was assessed on oxycodone SA acquisition, maintenance, dose response, and progressive ratio responding, with additional analyses to compare sexes. We found that both sexes expressed somatic withdrawal, whereas only males demonstrated hyperalgesia in the warm water tail flick assay. During SA acquisition, males with prior morphine exposure took significantly more oxycodone than females. Finally, females with prior morphine exposure demonstrated the lowest motivation to SA oxycodone in the progressive ratio test. Contrary to our initial hypothesis, our findings suggest that prior opioid exposure increases vulnerability to initiate misuse more in males and decreases the reinforcing efficacy of oxycodone in females.
Collapse
Affiliation(s)
- Maria Mavrikaki
- Department of Psychiatry, Harvard Medical School McLean Hospital Belmont Massachusetts USA
| | - Tania Lintz
- Department of Psychiatry, Harvard Medical School McLean Hospital Belmont Massachusetts USA
| | - Nick Constantino
- Department of Psychiatry, Harvard Medical School McLean Hospital Belmont Massachusetts USA
| | - Sarah Page
- Department of Psychiatry, Harvard Medical School McLean Hospital Belmont Massachusetts USA
| | - Elena Chartoff
- Department of Psychiatry, Harvard Medical School McLean Hospital Belmont Massachusetts USA
| |
Collapse
|
15
|
Uddin O, Jenne C, Fox ME, Arakawa K, Keller A, Cramer N. Divergent profiles of fentanyl withdrawal and associated pain in mice and rats. Pharmacol Biochem Behav 2020; 200:173077. [PMID: 33316293 DOI: 10.1016/j.pbb.2020.173077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022]
Abstract
Opioid abuse has devastating effects on patients, their families, and society. Withdrawal symptoms are severely unpleasant, prolonged, and frequently hinder recovery or lead to relapse. The sharp increase in abuse and overdoses arising from the illicit use of potent and rapidly-acting synthetic opioids, such as fentanyl, highlights the urgency of understanding the withdrawal mechanisms related to these drugs. Progress is impeded by inconsistent reports on opioid withdrawal in different preclinical models. Here, using rats and mice of both sexes, we quantified withdrawal behaviors during spontaneous and naloxone-precipitated withdrawal, following two weeks of intermittent fentanyl exposure. We found that both mice and rats lost weight during exposure and showed increased signs of distress during spontaneous and naloxone precipitated withdrawal. However, these species differed in their expression of withdrawal associated pain, a key contributor to relapse in humans. Spontaneous or ongoing pain was preferentially expressed in rats in both withdrawal conditions, while no change was observed in mice. In contrast, withdrawal associated thermal hyperalgesia was found only in mice. These data suggest that rats and mice diverge in how they experience withdrawal and which aspects of the human condition they most accurately model. These differences highlight each species' strengths as model systems and can inform experimental design in studies of opioid withdrawal.
Collapse
Affiliation(s)
- Olivia Uddin
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States of America
| | - Carleigh Jenne
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States of America
| | - Megan E Fox
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States of America
| | - Keiko Arakawa
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States of America
| | - Asaf Keller
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States of America
| | - Nathan Cramer
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States of America.
| |
Collapse
|
16
|
Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system. Neuropsychopharmacology 2020; 45:1781-1792. [PMID: 32079024 PMCID: PMC7608117 DOI: 10.1038/s41386-020-0643-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Drug-evoked adaptations in the mesolimbic dopamine system are postulated to drive opioid abuse and addiction. These adaptations vary in magnitude and direction following different patterns of opioid exposure, but few studies have systematically manipulated the pattern of opioid administration while measuring neurobiological and behavioral impact. We exposed male and female mice to morphine for one week, with administration patterns that were either intermittent (daily injections) or continuous (osmotic minipump infusion). We then interrupted continuous morphine exposure with either naloxone-precipitated or spontaneous withdrawal. Continuous morphine exposure caused tolerance to the psychomotor-activating effects of morphine, whereas both intermittent and interrupted morphine exposure caused long-lasting psychomotor sensitization. Given links between locomotor sensitization and mesolimbic dopamine signaling, we used fiber photometry and a genetically encoded dopamine sensor to conduct longitudinal measurements of dopamine dynamics in the nucleus accumbens. Locomotor sensitization caused by interrupted morphine exposure was accompanied by enhanced dopamine signaling in the nucleus accumbens. To further assess downstream consequences on striatal gene expression, we used next-generation RNA sequencing to perform genome-wide transcriptional profiling in the nucleus accumbens and dorsal striatum. The interruption of continuous morphine exposure exacerbated drug-evoked transcriptional changes in both nucleus accumbens and dorsal striatum, dramatically increasing differential gene expression and engaging unique signaling pathways. Our study indicates that opioid-evoked adaptations in brain function and behavior are critically dependent on the pattern of drug administration, and exacerbated by interruption of continuous exposure. Maintaining continuity of chronic opioid administration may, therefore, represent a strategy to minimize iatrogenic effects on brain reward circuits.
Collapse
|
17
|
Piccin A, Contarino A. The CRF 1 receptor mediates social behavior deficits induced by opiate withdrawal. J Neurosci Res 2020; 100:309-321. [PMID: 32725663 DOI: 10.1002/jnr.24697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/18/2020] [Accepted: 07/05/2020] [Indexed: 02/01/2023]
Abstract
Poor sociability and aggressive behavior are key clinical features of opioid use disorders. The corticotropin-releasing factor (CRF) system may mediate behavioral effects of substances of abuse but its implication in substance-induced social behavior deficits and outward-directed hostility remains largely unknown. CRF signaling is mediated by two receptor types, termed CRF1 and CRF2 . The present study aimed at understanding the role for the CRF1 receptor in social and aggressive behavior induced by withdrawal from repeated opiate administration. Thus, wild-type (CRF1 +/+), CRF1 receptor heterozygous (CRF1 +/-), and null mutant (CRF1 -/-) female and male mice were treated with saline or escalating doses of morphine (20-100 mg/kg, i.p.) during six consecutive days and tested in the three-chamber task for sociability (i.e., preference for an unfamiliar same-sex conspecific vs. an object) 7 days after the last administration. Moreover, aggressive biting behavior toward the unfamiliar conspecific was assessed during the three-chamber test. Opiate withdrawal disrupted sociability in CRF1 +/+ and CRF1 +/-, but not in CRF1 -/-, female mice, without affecting aggressive biting behavior in any genotype. In contrast, opiate withdrawal did not affect sociability but increased aggressive biting behavior in male mice, independently of CRF1 receptor-deficiency. Nevertheless, in opiate-withdrawn CRF1 +/+, but not CRF1 +/- and CRF1 -/-, male mice, sociability directly correlated with aggressive biting behavior, suggesting a role for the CRF1 receptor in hostility-linked social approach. These findings demonstrate the implication of the CRF1 receptor in social behavior deficits associated with repeated opiate administration and withdrawal, revealing a new potential target for the treatment of opioid use disorders.
Collapse
Affiliation(s)
- Alessandro Piccin
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Angelo Contarino
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| |
Collapse
|
18
|
Sajko T, Rotim K, Kurtovic B, Rotim C, Rotim A. Prospective randomized appraisal of the best pain relief option after L4/L5 discectomy. Neurol Res 2020; 42:1003-1009. [PMID: 32713326 DOI: 10.1080/01616412.2020.1796383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To determine the efficacy of paracetamol and tramadol analgesia via patient controlled pump and intermittent administration using the Short-Form McGill Pain Questionnaire after L4/L5 discectomy in neurosurgical patients. METHODS Fourteen months prospective quantitative study with 200 neurosurgical patients' participation who underwent elective discectomy of the L4/L5 intervertebral disc extrusion. The study was conducted due to a patient-controlled analgesia pump and intermittent analgesia application. Pain was assessed using the Short-Form McGill Pain Questionnaire in the Croatian language during the zero, first, and second postoperative day. RESULTS Perception of pain was reduced in patient controlled analgesia pump groups after the second measurement during the first postoperative day [95% CI: -3.89, -0.76], regardless of administered analgesic (p< 0.001). After the final measurement, at 7 PM on the second postoperative day, the differences were not significant (p= 0.070). This study results are registered and allocated in the Australian New Zealand Clinical Trials Registry (ANZCTR). DISCUSSION Analgesia administration via patient-controlled pump contributes to the alleviation of postoperative pain after L4/L5 disc extrusion surgery regardless of administered analgesic.
Collapse
Affiliation(s)
- Tomislav Sajko
- University of Applied Health Sciences , Zagreb, Croatia.,School of Medicine, Josip Juraj Strossmayer University of Osijek , Osijek, Croatia.,Faculty of Education and Rehabilitation Sciences, University of Zagreb , Zagreb, Croatia.,Clinical Department of Neurosurgery, Sestre Milosrdnice University Hospital Center , Zagreb, Croatia
| | - Kresimir Rotim
- University of Applied Health Sciences , Zagreb, Croatia.,School of Medicine, Josip Juraj Strossmayer University of Osijek , Osijek, Croatia.,Clinical Department of Neurosurgery, Sestre Milosrdnice University Hospital Center , Zagreb, Croatia
| | | | - Cecilija Rotim
- University of Applied Health Sciences , Zagreb, Croatia.,"Andrija Stampar" Teaching Institute of Public Health , Zagreb, Croatia
| | - Ante Rotim
- Department of Neurosurgery, Dubrava University Hospital , Zagreb, Croatia
| |
Collapse
|
19
|
Role of orexin-1 and -2 receptors within the nucleus accumbens in the acquisition of sensitization to morphine in rats. Behav Brain Res 2019; 373:112090. [PMID: 31325517 DOI: 10.1016/j.bbr.2019.112090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022]
Abstract
It has been reported that orexins A and B are involved in the mediation of drug reward. In addition, the nucleus accumbens (NAc) has an important role in the development of morphine-conditioned place preference (CPP) and morphine sensitization. In the present study, we aimed to evaluate the role of orexin receptors within the NAc in morphine sensitization using CPP paradigm. Adult male Wistar rats were used and were bilaterally implanted by two cannulae in the NAc. The animals received intra-accumbal administration of OX1 or OX2 receptor antagonists, SB-334867 (0.1, 1, and 10 nM/side) or TCS OX2 29 (2, 10, and 20 nM/side), 10 min before morphine injection during the sensitization period, during which the animals received repeated administration of morphine (5 mg/kg; s.c.) once daily for three days followed by 5 morphine injection-free days. Then the CPP paradigm was conducted for the evaluation of morphine rewarding properties by injecting a sub-threshold dose of morphine (0.5 mg/kg; s.c.). The results showed that bilateral administration of OX1 receptor antagonist into the NAc reduced acquisition of morphine sensitization in a dose-dependent manner, but OX2 receptor antagonist produced similar effect only at its highest dose, indicating that OX1 and OX2 receptors within the NAc are involved in the acquisition of morphine sensitization.
Collapse
|
20
|
Akbari E, Mirzaei E, Rezaee L, Zarrabian S, Haghparast A. The effect of amitriptyline administration on pain-related behaviors in morphine-dependent rats: Hypoalgesia or hyperalgesia? Neurosci Lett 2018; 683:185-189. [PMID: 30081059 DOI: 10.1016/j.neulet.2018.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 11/25/2022]
Abstract
Pain control in opioid-dependent individuals is a clinical complication. The present study investigated the effects of different doses of amitriptyline in the three stages of the formalin test in morphine-dependent rats (MDRs). Morphine dependency was induced using the oral method, and then, amitriptyline-induced antinociceptive effects were measured at 4 doses (2.5, 5, 10, and 20 mg/kg) and compared with the control group in a formalin-based model of pain. There was no observed antinociceptive effect in the MDRs and morphine-naïve rats (MNRs) in phase I. In the interphase, amitriptyline induced pain suppression at doses of 5 and 20 mg/kg. In phase II, at doses of 5, 10, and 20 mg/kg, the hypoalgesic effect on pain-related behaviors was seen in the MNRs. In MDRs, amitriptyline at doses of 2.5 and 5 mg/kg caused the hyperalgesic effect, whereas at 10 and 20 mg/kg doses, it induced a hypoalgesic effect. A significant attenuation was observed in the latency to fall from the accelerating rotarod at doses of 10 and 20 mg/kg in the MDRs, and at a dose of 20 mg/kg in the MNRs. Data showed that amitriptyline dose-dependently induced paradoxical hypo- and hyper-algesic effects in MDRs.
Collapse
Affiliation(s)
- Esmaeil Akbari
- Immunogenetic Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Physiology and Pharmacology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ebrahim Mirzaei
- School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Laleh Rezaee
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Zarrabian
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Xie N, Gomes FP, Deora V, Gregory K, Vithanage T, Nassar ZD, Cabot PJ, Sturgess D, Shaw PN, Parat MO. Activation of μ-opioid receptor and Toll-like receptor 4 by plasma from morphine-treated mice. Brain Behav Immun 2017; 61:244-258. [PMID: 27939249 DOI: 10.1016/j.bbi.2016.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 12/13/2022] Open
Abstract
In this study, we quantified the ability of opioids present in biological samples to activate the μ-opioid receptor and TLR4 using cell-based assays. Each assay was standardised, in the presence of plasma, using morphine, its μ receptor-active metabolite morphine-6 glucuronide (M6G) and its μ receptor-inactive, but TLR4-active metabolite morphine-3 glucuronide (M3G). Specificity was verified using antagonists. Morphine- and M6G-spiked plasma samples exhibited μ receptor activation, which M3G-spiked plasma lacked. In contrast, M3G showed moderate but consistent activation of TLR-4. Plasma samples were collected at a number of time points from mice administered morphine (1 or 10mg/kg every 12h for 3days) or saline. Morphine administration led to intermittent μ receptor activation, reversed by μ receptor antagonists, and to TRL4 activation at time points where M3G is measured in plasma. Interestingly, this protocol of morphine administration also led to TLR4-independent NF-κB activation, at time points where M3G was not detected, presumably via elevation of circulating cytokines including, but not limited to, TNFα. Circulating TNFα was increased after three days of morphine administration, and TNFα mRNA elevated in the spleen of morphine-treated mice.
Collapse
Affiliation(s)
- Nan Xie
- School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Fabio P Gomes
- School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Vandana Deora
- School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kye Gregory
- Mater Research Institute (MRI-UQ), The University of Queensland, Brisbane, Australia
| | - Tharindu Vithanage
- Mater Research Institute (MRI-UQ), The University of Queensland, Brisbane, Australia
| | - Zeyad D Nassar
- School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Peter J Cabot
- School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - David Sturgess
- Mater Research Institute (MRI-UQ), The University of Queensland, Brisbane, Australia
| | - Paul N Shaw
- School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Marie-Odile Parat
- School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
22
|
Zhou Y, Leri F. Neuroscience of opiates for addiction medicine. PROGRESS IN BRAIN RESEARCH 2016; 223:237-51. [DOI: 10.1016/bs.pbr.2015.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Continuous infusion versus intermittent bolus dosing of morphine: a comparison of analgesia, tolerance, and subsequent voluntary morphine intake. J Psychiatr Res 2014; 59:161-6. [PMID: 25193460 DOI: 10.1016/j.jpsychires.2014.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/14/2014] [Accepted: 08/14/2014] [Indexed: 11/24/2022]
Abstract
Improved utilization of continuous or intermittent opioid administration in pain treatment necessitates a comparison of the antinociceptive effect and tolerance of these two treatment methods. More importantly, the effect of treatment method on subsequent opioid consumption has not been directly compared, although it is widely assumed that continuous opioid treatment may produce lower addictive liability relative to intermittent opioid treatment. In this study, we compared the antinociceptive effect and tolerance of morphine in rats that received repeated injection (10 mg/kg twice daily for 7 days) or continuous infusion (20 mg/kg daily for 7 days) subcutaneously and the self-administration of intravenous morphine in these rats after 7 days of withdrawal. Both intermittent and continuous morphine treatment produced antinociceptive tolerance, but the exhibition of tolerance differed. Moreover, intermittent morphine pretreatment facilitated subsequent morphine self-administration, whereas continuous morphine pretreatment produced minimal effects, as shown by comparable levels of active responses and morphine consumption between continuous morphine and saline-treated rats. These results suggest that the administration method of opioid should be selected according to the specific pain situation and that continuous opioid administration or long-acting therapy may be advantageous, producing less influence on drug-taking behavior than intermittent administration of short-acting drugs.
Collapse
|
24
|
Shahraki MR, Mirshekari H, Sabri A. Aloe vera Aqueous Extract Effect on Morphine Withdrawal Syndrome in Morphine-Dependent Female Rats. INTERNATIONAL JOURNAL OF HIGH RISK BEHAVIORS & ADDICTION 2014; 3:e11358. [PMID: 25593890 PMCID: PMC4286921 DOI: 10.5812/ijhrba.11358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 11/12/2013] [Accepted: 05/25/2014] [Indexed: 04/13/2023]
Abstract
BACKGROUND Aloe vera is a medicinal herb used as an anti-inflammatory and sedative agent. OBJECTIVES The current study aimed to evaluate the effect of Aloe vera aqueous extract on morphine withdrawal symptoms in morphine-dependent female rats. PATIENTS AND METHODS The current research was performed on 40 female Wista-Albino rats which were made dependent on morphine using Houshyar protocol and were randomly divided into five groups (A, B, C, D, and E). Group A did not receive any agent in the period of handling but other groups (B, C, D and E) received 5, 10, 20 and 40 mg/kg of Aloe vera aqueous extract by gavage, three times daily for a week, respectively. Withdrawal symptoms, stool form, agitation, disparity, floppy eyelids, and body mass variations were checked for 10 days. The obtained data were analyzed using SPSS v.11 software, and Friedman, Kruskal-Wallis, and Mann-Whitney statistical tests. Statistical difference was considered significant (P < 0.05). RESULTS The results of the present study showed that agitation, disparity, and floppy eyelids in group E were significantly higher than those of others groups; however, these symptoms in group C were significantly lower than those of the other groups. CONCLUSIONS The results of the present study revealed that the Aloe vera aqueous extract had various effects on morphine withdrawal syndrome in morphine-dependent female rats .
Collapse
Affiliation(s)
- Mohammad Reza Shahraki
- Department of Physiology, Zahedan University of Medical Sciences, Zahedan, IR Iran
- Corresponding author: Mohammad Reza Shahraki, Department of Physiology, Zahedan University of Medical Sciences, Zahedan, IR Iran. Tel: +98-5413414552-5, Fax: +98-5413414563, E-mail:
| | - Hamideh Mirshekari
- Zahedan Health Center, Zahedan University of Medical Sciences, Zahedan, IR Iran
| | - Azame Sabri
- Mashhad Health Service Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
| |
Collapse
|
25
|
Afsharimani B, Doornebal CW, Cabot PJ, Hollmann MW, Parat MO. Comparison and analysis of the animal models used to study the effect of morphine on tumour growth and metastasis. Br J Pharmacol 2014; 172:251-9. [PMID: 24467261 DOI: 10.1111/bph.12589] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The effect of opioids on tumour growth and metastasis has been debated for many years, with recent emphasis on the possibility that they might influence the rate of disease-free survival after tumour resection when used in the perioperative pain management of cancer surgery patients. The literature presents conflicting and inconclusive in vitro and in vivo data about the potential effect of opioids, especially morphine, on tumour growth and metastasis. To inform clinical practice, appropriate animal models are needed to test whether opioids alter the course of tumour growth and metastasis. Here, we review the literature on animal-based studies testing the effect of morphine on cancer so far, and analyse differences between the models used that may explain the discrepancies in published results. Such analysis should elucidate the role of opioids in cancer and help define ideal pre-clinical models to provide definitive answers. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- B Afsharimani
- School of Pharmacy, University of Queensland, Woolloongabba, Qld, Australia
| | | | | | | | | |
Collapse
|
26
|
Blanco L, Ros CM, Tarragón E, Fernández-Villalba E, Herrero MT. Functional role of Barrington's nucleus in the micturition reflex: relevance in the surgical treatment of Parkinson's disease. Neuroscience 2014; 266:150-61. [PMID: 24568730 DOI: 10.1016/j.neuroscience.2014.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 01/23/2023]
Abstract
The pontine micturition center or Barrington's nucleus (BN) - besides regulating micturition - co-regulates the activity of other pelvic viscera such as the colon and genitals. At present, this issue is gaining particular importance due to: (i) recent findings of α-synuclein in BN, (ii) known urinary dysfunction in parkinsonian patients (part of the so-called non-motor symptoms), other patients with dementia and as in very old individuals; and (iii) its proximity to the pedunculopontine nucleus, a surgical target in deep brain stimulation for Parkinson's disease (PD). The structural and functional organization of the micturition reflex comprises a coordinating action of somatic motor activity with both divisions of the autonomic nervous system, modulated by trunk encephalic and cortical centers that involve the BN as locus coeruleus and periaqueductal gray matter, among other trunk encephalic structures. The involvement of dopaminergic activity (physiologic inhibition of the micturition reflex mediated by dopaminergic D1 activity) that diminishes in Parkinsonism and leads to overactivity of the micturition reflex is also well known. In this review, the integrating role of the BN in the context of vesical and gastrointestinal behavior is revisited, and the principal morpho-functional findings that associate dysfunction with the urinary disorders that appear during the pre-motor stages of PD are summarized.
Collapse
Affiliation(s)
- L Blanco
- Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain; International Center of Neurological Restoration, Department of Experimental Neurophysiology, Avenue 25 #15805, 11300 Havana, Cuba
| | - C M Ros
- Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain; Department of Medicine, School of Health Sciences, University Jaime I, Campus del Riu Sec, 12071 Castellón de la Plana, Spain
| | - E Tarragón
- Department of Medicine, School of Health Sciences, University Jaime I, Campus del Riu Sec, 12071 Castellón de la Plana, Spain
| | - E Fernández-Villalba
- Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain
| | - M T Herrero
- Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), School of Medicine, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain; Department of Medicine, School of Health Sciences, University Jaime I, Campus del Riu Sec, 12071 Castellón de la Plana, Spain.
| |
Collapse
|
27
|
Pintér-Kübler B, Ferenczi S, Núnez C, Zelei E, Polyák Á, Milanés MV, Kovács KJ. Differential Changes in Expression of Stress- and Metabolic-Related Neuropeptides in the Rat Hypothalamus during Morphine Dependence and Withdrawal. PLoS One 2013; 8:e67027. [PMID: 23805290 PMCID: PMC3689674 DOI: 10.1371/journal.pone.0067027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/13/2013] [Indexed: 12/27/2022] Open
Abstract
Chronic morphine treatment and naloxone precipitated morphine withdrawal activates stress-related brain circuit and results in significant changes in food intake, body weight gain and energy metabolism. The present study aimed to reveal hypothalamic mechanisms underlying these effects. Adult male rats were made dependent on morphine by subcutaneous implantation of constant release drug pellets. Pair feeding revealed significantly smaller weight loss of morphine treated rats compared to placebo implanted animals whose food consumption was limited to that eaten by morphine implanted pairs. These results suggest reduced energy expenditure of morphine-treated animals. Chronic morphine exposure or pair feeding did not significantly affect hypothalamic expression of selected stress- and metabolic related neuropeptides - corticotropin-releasing hormone (CRH), urocortin 2 (UCN2) and proopiomelanocortin (POMC) compared to placebo implanted and pair fed animals. Naloxone precipitated morphine withdrawal resulted in a dramatic weight loss starting as early as 15–30 min after naloxone injection and increased adrenocorticotrophic hormone, prolactin and corticosterone plasma levels in morphine dependent rats. Using real-time quantitative PCR to monitor the time course of relative expression of neuropeptide mRNAs in the hypothalamus we found elevated CRH and UCN2 mRNA and dramatically reduced POMC expression. Neuropeptide Y (NPY) and arginine vasopressin (AVP) mRNA levels were transiently increased during opiate withdrawal. These data highlight that morphine withdrawal differentially affects expression of stress- and metabolic-related neuropeptides in the rat hypothalamus, while relative mRNA levels of these neuropeptides remain unchanged either in rats chronically treated with morphine or in their pair-fed controls.
Collapse
Affiliation(s)
- Bernadett Pintér-Kübler
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Cristina Núnez
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Edina Zelei
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ágnes Polyák
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - M. Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Krisztina J. Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
- * E-mail:
| |
Collapse
|
28
|
Suppression of hypothalamic-pituitary-adrenal axis by acute heroin challenge in rats during acute and chronic withdrawal from chronic heroin administration. Neurochem Res 2013; 38:1850-60. [PMID: 23771528 DOI: 10.1007/s11064-013-1091-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/29/2013] [Accepted: 06/05/2013] [Indexed: 12/25/2022]
Abstract
It is known that heroin dependence and withdrawal are associated with changes in the hypothalamic-pituitary-adrenal (HPA) axis. The objective of these studies in rats was to systematically investigate the level of HPA activity and response to a heroin challenge at two time points during heroin withdrawal, and to characterize the expression of associated stress-related genes 30 min after each heroin challenge. Rats received chronic (10-day) intermittent escalating-dose heroin administration (3 × 2.5 mg/kg/day on day 1; 3 × 20 mg/kg/day by day 10). Hormonal and neurochemical assessments were performed in acute (12 h after last heroin injection) and chronic (10 days after the last injection) withdrawal. Both plasma ACTH and corticosterone levels were elevated during acute withdrawal, and heroin challenge at 20 mg/kg (the last dose of chronic escalation) at this time point attenuated this HPA hyperactivity. During chronic withdrawal, HPA hormonal levels returned to baseline, but heroin challenge at 5 mg/kg decreased ACTH levels. In contrast, this dose of heroin challenge stimulated the HPA axis in heroin naïve rats. In the anterior pituitary, pro-opiomelanocortin (POMC) mRNA levels were increased during acute withdrawal and retuned to control levels after chronic withdrawal. In the medial hypothalamus, however, the POMC mRNA levels were decreased during acute withdrawal, and increased after chronic withdrawal. Our results suggest a long-lasting change in HPA abnormal responsivity during chronic heroin withdrawal.
Collapse
|
29
|
Blanco L, Yuste JE, Carrillo-de Sauvage MA, Gómez A, Fernández-Villalba E, Avilés-Olmos I, Limousin P, Zrinzo L, Herrero MT. Critical evaluation of the anatomical location of the Barrington nucleus: relevance for deep brain stimulation surgery of pedunculopontine tegmental nucleus. Neuroscience 2013; 247:351-63. [PMID: 23732233 DOI: 10.1016/j.neuroscience.2013.05.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/26/2013] [Accepted: 05/23/2013] [Indexed: 12/24/2022]
Abstract
Deep brain stimulation (DBS) has become the standard surgical procedure for advanced Parkinson's disease (PD). Recently, the pedunculopontine tegmental nucleus (PPN) has emerged as a potential target for DBS in patients whose quality of life is compromised by freezing of gait and falls. To date, only a few groups have published their long-term clinical experience with PPN stimulation. Bearing in mind that the Barrington (Bar) nucleus and some adjacent nuclei (also known as the micturition centre) are close to the PPN and may be affected by DBS, the aim of the present study was to review the anatomical location of this structure in human and other species. To this end, the Bar nucleus area was analysed in mouse, monkey and human tissues, paying particular attention to the anatomical position in humans, where it has been largely overlooked. Results confirm that anatomical location renders the Bar nucleus susceptible to influence by the PPN DBS lead or to diffusion of electrical current. This may have an undesirable impact on the quality of life of patients.
Collapse
Affiliation(s)
- Lisette Blanco
- Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, School of Medicine, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Javadian P, Salmanian B, Javadi-Paydar M, Shamshirsaz AA, Ejtemaei Mehr S, Gharedaghi MH, Dehpour AR. Effect of morphine on the reduced uteroplacental perfusion model of pre-eclampsia in rats. Eur J Obstet Gynecol Reprod Biol 2013; 168:161-6. [PMID: 23398725 DOI: 10.1016/j.ejogrb.2013.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 10/19/2012] [Accepted: 01/17/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate the effect of morphine on the reduced uteroplacental perfusion pressure (RUPP) model of pre-eclampsia in rats. STUDY DESIGN The abdominal aorta and ovarian arteries of pregnant rats were isolated and clipped on gestational day 14. The chronic morphine treatment group received naltrexone 5 mg/kg 1h before each dose of morphine. L-nitromonomethylarginine 2 mg/kg was administrated in the same pattern. The control group received saline 10 ml/kg. Systolic blood pressure, blood urea nitrogen (BUN), creatinine, creatinine clearance, urinary protein, urinary nitrite/nitrate excretion, and fetal and placental weights were determined. RESULTS Morphine significantly reduced systolic blood pressure, fetal and placental weights, plasma BUN, creatinine and urinary protein in RUPP rats compared with control rats. Urinary nitrite/nitrate excretion and creatinine clearance were significantly increased in response to morphine treatment. CONCLUSION Morphine reduced blood pressure and improved renal function in the RUPP model of pre-eclampsia, but this was associated with reduced fetal and placental weights.
Collapse
Affiliation(s)
- P Javadian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
31
|
Stinus L, Cador M, Caille S. Repeated episodes of heroin cause enduring alterations of circadian activity in protracted abstinence. Brain Sci 2012; 2:421-33. [PMID: 24961201 PMCID: PMC4061796 DOI: 10.3390/brainsci2030421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/04/2012] [Accepted: 09/11/2012] [Indexed: 12/31/2022] Open
Abstract
Opiate withdrawal is followed by a protracted abstinence syndrome consisting of craving and physiological changes. However, few studies have been dedicated to both the characterization and understanding of these long-term alterations in post-dependent subjects. The aim of the present study was to develop an opiate dependence model, which induces long-lasting behavioral changes in abstinent rats. Here, we first compared the effects of several protocols for the induction of opiate dependence (morphine pellets, repeated morphine or heroin injections) on the subsequent response to heroin challenges (0.25 mg/kg) at different time points during abstinence (3, 6, 9 and 18 weeks). In a second set of experiments, rats were exposed to increasing doses of heroin and subsequently monitored for general circadian activity up to 20 weeks of abstinence. Results show that heroin injections rather than the other methods of opiate administration have long-term consequences on rats’ sensitivity to heroin with its psychostimulant effects persisting up to 18 weeks of abstinence. Moreover, intermittent episodes of heroin dependence rather than a single exposure produce enduring alteration of the basal circadian activity both upon heroin cessation and protracted abstinence. Altogether, these findings suggest that the induction of heroin dependence through intermittent increasing heroin injections is the optimal method to model long-term behavioral alterations during protracted abstinence in rats. This animal model would be useful in further characterizing long-lasting changes in post-dependent subjects to help understand the prolonged vulnerability to relapse.
Collapse
Affiliation(s)
- Luis Stinus
- University of Bordeaux, INCIA, F-33076 Bordeaux, France.
| | - Martine Cador
- University of Bordeaux, INCIA, F-33076 Bordeaux, France.
| | | |
Collapse
|
32
|
Kurbanov DB, Currie PJ, Simonson DC, Borsook D, Elman I. Effects of naltrexone on food intake and body weight gain in olanzapine-treated rats. J Psychopharmacol 2012; 26:1244-51. [PMID: 22723540 DOI: 10.1177/0269881112450783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Blockade of opioidergic neurotransmission contributes to reduction in body weight. However, how such blockade affects body weight gain (BWG) attributed to second generation antipsychotic agents (SGAs) has not yet been established. Here we examined the effects of an opioid receptor antagonist, naltrexone (NTX), on food intake and BWG associated with an SGA, olanzapine (OL). Four groups of Wistar Han IGS rats were treated for 28 days with either OL (2 mg/kg twice daily, intraperitoneal (IP)), a combination of OL (2 mg/kg twice daily, IP) + extended-release NTX (50 mg/kg, one-time, intramuscular (IM)), extended-release NTX (50 mg/kg, one-time, IM) or vehicle and their food intake and body weight were measured daily for the first nine days and every other day thereafter. Food intake and BWG that were increased by OL were decreased by the added NTX while NTX alone had no significant effects on food intake or on BWG. Plasma leptin concentrations were significantly elevated in the three groups receiving pharmacological agents, but did not differ among each other, suggesting that changes in leptin secretion and/or clearance alone would not explain the food intake and the body weight findings. Our results extend prior reports on anorexigenic effects of opioid antagonists by demonstrating that such effects may generalize to food intake increases and BWG arising in the context of OL pharmacotherapy.
Collapse
|
33
|
Increased motivation to eat in opiate-withdrawn mice. Psychopharmacology (Berl) 2012; 221:675-84. [PMID: 22207240 DOI: 10.1007/s00213-011-2612-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
RATIONALE In drug-dependent individuals, the primary excessive motivation is for drugs. Studies also indicate altered interest for "natural" rewarding activities associated with motivational disorders that may be relevant to drug dependence. However, to date, the impact of drug dependence and withdrawal upon motivation for "natural" rewards remains unclear. METHODS AND OBJECTIVES In the present study, we use a food-driven operant behavior paradigm to assess the impact of opiate intake and withdrawal upon the motivational properties of highly palatable food (HPF) in mice. RESULTS Our findings indicate that early (8-h) opiate withdrawal does not affect either the motivational or the discriminative properties of HPF intake. However, starting 32 h after the last morphine injection, opiate withdrawal increases operant behavior aimed at obtaining HPF. The increased HPF-driven behavior lasts at least 12 days following opiate withdrawal, indicating long-lasting effects upon motivation. Using a paradigm of reward contingency reversal, we also address the impact of opiate withdrawal upon cognitive functions. Our results indicate that opiate withdrawal does not affect the ability to learn a new operant rule to obtain HPF. Indeed, opiate withdrawal ameliorates the acquisition of the new HPF-driven operant task, most probably due to the persistent and long-lasting increased motivation. Finally, analysis of ambulatory activity and body weight (BW) changes reveal that motivational and cognitive effects are totally independent of caloric and/or motor effects of opiate dosing and withdrawal. CONCLUSIONS These results clearly demonstrate that excessive opiate intake and withdrawal produces dramatic and long-lasting motivational disorders relevant to drug dependence.
Collapse
|
34
|
Cippitelli A, Damadzic R, Singley E, Thorsell A, Ciccocioppo R, Eskay RL, Heilig M. Pharmacological blockade of corticotropin-releasing hormone receptor 1 (CRH1R) reduces voluntary consumption of high alcohol concentrations in non-dependent Wistar rats. Pharmacol Biochem Behav 2011; 100:522-9. [PMID: 22036774 DOI: 10.1016/j.pbb.2011.10.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/15/2011] [Accepted: 10/14/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND A dysregulation of the corticotropin-releasing hormone (CRH) system has been implicated in the development of excessive alcohol consumption and dependence. The aim of the present study was to evaluate whether the CRH system is also recruited when non-dependent Wistar rats escalate to high alcohol intake in the intermittent (alternate days) model of drinking. METHODS We compared intermittent and continuous access to 20% (v/v) alcohol in a two-bottle free choice drinking paradigm. Following a total of twenty 24-hour exposures for every experimental group, we assessed signs of alcohol withdrawal, including anxiety-like behavior and sensitivity to stress. The selective CRH1 receptor (CRH1R) antagonist antalarmin (0, 10, 20 mg/kg, i.p.) was tested on alcohol consumption. RESULTS Intermittent access to 20% alcohol led non-selected Wistar rats to escalate their voluntary intake to a high and stable level, whereas continuously exposed animals maintained a lower consumption. These groups did not differ in physical withdrawal signs. In addition, no differences were found when anxiogenic-like behavior was studied, neither under basal conditions or following restraint stress. Nevertheless, sensitivity to the treatment with the CRH1R antalarmin was observed since a reduction of 20% alcohol intake was found in both groups of animals regardless of the regimen of alcohol exposure. In addition, antalarmin was effective when injected to animals exposed to intermittent 10% (v/v) alcohol whereas it failed to suppress 10% continuous alcohol intake. CONCLUSIONS Pharmacological blockade of CRH1R reduced alcohol drinking when sustained high levels of intake were achieved suggesting that the CRH system plays a key role when high doses of ethanol are consumed by non-dependent subjects. This supports the notion that CRH system not only maintains the dependent state but also engages the transition to dependence.
Collapse
Affiliation(s)
- Andrea Cippitelli
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD 20892-1108, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Dopamine Involved in the Nociceptive Modulation in the Parafascicular Nucleus of Morphine-Dependent Rat. Neurochem Res 2011; 37:428-35. [DOI: 10.1007/s11064-011-0629-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 06/27/2011] [Accepted: 10/01/2011] [Indexed: 10/14/2022]
|
36
|
Reyes BAS, Carvalho AF, Vakharia K, Van Bockstaele EJ. Amygdalar peptidergic circuits regulating noradrenergic locus coeruleus neurons: linking limbic and arousal centers. Exp Neurol 2011; 230:96-105. [PMID: 21515261 PMCID: PMC3112280 DOI: 10.1016/j.expneurol.2011.04.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/26/2011] [Accepted: 04/07/2011] [Indexed: 11/29/2022]
Abstract
The endogenous opioid peptides, met- or leu-enkephalin, and corticotropin-releasing factor (CRF) regulate noradrenergic neurons in the locus coeruleus (LC) in a convergent manner via projections from distinct brain areas. In contrast, the opioid peptide dynorphin (DYN) has been shown to serve as a co-transmitter with CRF in afferents to the LC. To further define anatomical substrates targeting noradrenergic neurons by DYN afferents originating from limbic sources, anterograde tract-tracing of biotinylated dextran amine (BDA) from the central amygdaloid complex was combined with immunocytochemical detection of DYN and tyrosine hydroxylase (TH) in the same section of tissue. Triple labeling immunocytochemistry was combined with electron microscopy in the LC where BDA was identified using an immunoperoxidase marker, and DYN and TH were distinguished by the use of sequential immunogold labeling and silver enhancement to produce different sized gold particles. Results show direct evidence of a monosynaptic pathway linking amygdalar DYN afferents with LC neurons. To determine whether DYN-containing amygdalar LC-projecting neurons colocalize CRF, retrograde tract-tracing using fluorescent latex microspheres injected into the LC was combined with immunocytochemical detection of DYN and CRF in single sections in the central amygdala. Retrogradely labeled neurons from the LC were distributed throughout the rostro-caudal extent of the central nucleus of the amygdala (CeA) as previously described. Cell counts showed that approximately 42% of LC-projecting neurons in the CeA contained both DYN and CRF. Taken with our previous studies showing monosynaptic projections from amygdalar CRF neurons to noradrenergic LC cells, the present study extends this by showing that DYN and CRF are co-transmitters in monosynaptic projections to the LC and are poised to coordinately impact LC neuronal activity.
Collapse
Affiliation(s)
- B A S Reyes
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
37
|
Goeldner C, Lutz PE, Darcq E, Halter T, Clesse D, Ouagazzal AM, Kieffer BL. Impaired emotional-like behavior and serotonergic function during protracted abstinence from chronic morphine. Biol Psychiatry 2011; 69:236-44. [PMID: 20947067 PMCID: PMC3014999 DOI: 10.1016/j.biopsych.2010.08.021] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 08/10/2010] [Accepted: 08/13/2010] [Indexed: 11/18/2022]
Abstract
BACKGROUND Opiate abuse is a chronic relapsing disorder, and maintaining prolonged abstinence remains a major challenge. Protracted abstinence is characterized by lowered mood, and clinical studies show elevated comorbidity between addiction and depressive disorders. At present, their relationship remains unclear and has been little studied in animal models. Here we investigated emotional alterations during protracted abstinence, in mice with a history of chronic morphine exposure. METHODS C57BL6J mice were exposed to a chronic intermittent escalating morphine regimen (20-100 mg/kg). Physical dependence (naloxone-precipitated withdrawal), despair-related behaviors (tail suspension test), and social behaviors were examined after 1 or 4 weeks of abstinence. Stress hormones and forebrain bioamine levels were analyzed at the end of morphine regimen and after 4 weeks of abstinence. Finally, we examined the effects of chronic fluoxetine during abstinence on morphine-induced behavioral deficits. RESULTS Acute naloxone-induced withdrawal was clearly measurable after 1 week, and became undetectable after 4 weeks. In contrast, social and despair-related behaviors were unchanged after 1 week, but low sociability and despair-like behavior became significant after 4 weeks. Chronic morphine regimen increased both corticosterone levels and forebrain serotonin turnover, but only serotonergic activity in the dorsal raphe remained impaired after 4 weeks. Remarkably, chronic fluoxetine prevented depressive-like behavioral deficits in 4-week abstinent mice. CONCLUSIONS During protracted abstinence, the immediate consequences of morphine exposure attenuate, whereas fluoxetine-sensitive emotional alterations strengthen with time. Our study establishes a direct link between morphine abstinence and depressive-like symptoms and strongly suggests that serotonin dysfunction represents a main mechanism contributing to mood disorders in opiate abstinence.
Collapse
Affiliation(s)
- Celia Goeldner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Pierre-Eric Lutz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Emmanuel Darcq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Thomas Halter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Daniel Clesse
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique UPR3212, 5 Rue Blaise Pascal, 67084 Strasbourg, France
| | - Abdel-Mouttalib Ouagazzal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Brigitte L. Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
| |
Collapse
|
38
|
Rothwell PE, Gewirtz JC, Thomas MJ. Episodic withdrawal promotes psychomotor sensitization to morphine. Neuropsychopharmacology 2010; 35:2579-89. [PMID: 20811341 PMCID: PMC3055568 DOI: 10.1038/npp.2010.134] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The relative intermittency or continuity of drug delivery is a major determinant of addictive liability, and also influences the impact of drug exposure on brain function and behavior. Events that occur during the offset of drug action (ie, acute withdrawal) may have an important role in the consequences of intermittent drug exposure. We assessed whether recurrent episodes of acute withdrawal contribute to the development of psychomotor sensitization in rodents during daily morphine exposure. The acoustic startle reflex--a measure of anxiety induced by opiate withdrawal-was used to resolve and quantify discrete withdrawal episodes, and pharmacological interventions were used to manipulate withdrawal severity. Startle potentiation was observed during spontaneous withdrawal from a single morphine exposure, and individual differences in initial withdrawal severity positively predicted the subsequent development of sensitization. Manipulations that reduce or exacerbate withdrawal severity also produced parallel changes in the degree of sensitization. These results demonstrate that the episodic experience of withdrawal during daily drug exposure has a novel role in promoting the development of psychomotor sensitization--a prominent model of drug-induced neurobehavioral plasticity. Episodic withdrawal may have a pervasive role in many effects of intermittent drug exposure and contribute to the development of addiction.
Collapse
Affiliation(s)
- Patrick E Rothwell
- Graduate Program in Neuroscience and Departments of Neuroscience and Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Jonathan C Gewirtz
- Graduate Program in Neuroscience and Departments of Neuroscience and Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Mark J Thomas
- Graduate Program in Neuroscience and Departments of Neuroscience and Psychology, University of Minnesota, Minneapolis, MN, USA,University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA. Tel: 6 12 624 4963, Fax: +6 12 624 7910, E-mail:
| |
Collapse
|
39
|
Cooper ZD, Shi YG, Woods JH. Reinforcer-dependent enhancement of operant responding in opioid-withdrawn rats. Psychopharmacology (Berl) 2010; 212:369-78. [PMID: 20686752 PMCID: PMC3001287 DOI: 10.1007/s00213-010-1966-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 07/12/2010] [Indexed: 11/24/2022]
Abstract
RATIONALE AND OBJECTIVE Opioid withdrawal increases the reinforcing effectiveness of the μ-opioid agonist remifentanil in rodents. The current study explored the selectivity of this effect by assessing operant behavior maintained by drug and non-drug reinforcers, remifentanil, cocaine, a palatable liquid food, and standard food pellets, as a function of opioid dependence and withdrawal. MATERIALS AND METHODS Operant responding exhibited by nondependent, morphine-naïve groups was compared with responding exhibited by morphine-dependent and withdrawn groups. Dependence was established using a noncontingent morphine dosing procedure that has been previously verified to maintain dependence while allowing for daily behavioral observation during a withdrawn state. Behavior maintained by remifentanil (0.10-10.0 μg/kg/infusion), cocaine (0.032-1.0 mg/kg/infusion), a palatable liquid food reinforcer (3.2-100.0% Vanilla Ensure® and water), or food pellets was assessed in dependent and nondependent groups. RESULTS Morphine withdrawal enhanced remifentanil self-administration, resulting in an upward and rightward shift of the descending limb of the dose-response curve, and increased operant responding for both food reinforcers. However, opioid withdrawal did not affect cocaine self-administration, nor did it affect responding for water. CONCLUSIONS Enhanced operant responding observed under opioid-dependent and withdrawn conditions, while selective, is generalized to some nonopioid reinforcers.
Collapse
Affiliation(s)
- Ziva D. Cooper
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York State Psychiatric Institute, Substance Use Research Center, 1051 Riverside Dr, New York, NY 10032, USA,
| | - Yong-Gong Shi
- Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, 1150W Medical Center Drive, Ann Arbor, MI 48109-0632, USA
| | - James H. Woods
- Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, 1150W Medical Center Drive, Ann Arbor, MI 48109-0632, USA
| |
Collapse
|
40
|
Van Bockstaele EJ, Reyes BAS, Valentino RJ. The locus coeruleus: A key nucleus where stress and opioids intersect to mediate vulnerability to opiate abuse. Brain Res 2010; 1314:162-74. [PMID: 19765557 PMCID: PMC3274960 DOI: 10.1016/j.brainres.2009.09.036] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/19/2009] [Accepted: 09/10/2009] [Indexed: 12/29/2022]
Abstract
The interaction between the stress axis and endogenous opioid systems has gained substantial clinical attention as it is increasingly recognized that stress predisposes to opiate abuse. For example, stress has been implicated as a risk factor in vulnerability to the initiation and maintenance of opiate abuse and is thought to play an important role in relapse in subjects with a history of abuse. Numerous reports indicating that stress alters individual sensitivity to opiates suggest that prior stress can influence the pharmacodynamics of opiates that are used in clinical settings. Conversely, the effects of opiates on different components of the stress axis can impact on individual responsivity to stressors and potentially predispose individuals to stress-related psychiatric disorders. One site at which opiates and stress substrates may interact to have global effects on behavior is within the locus coeruleus (LC), the major brain norepinephrine (NE)-containing nucleus. This review summarizes our current knowledge regarding the anatomical and neurochemical afferent regulation of the LC. It then presents physiological studies demonstrating opposing interactions between opioids and stress-related neuropeptides in the LC and summarizes results showing that chronic morphine exposure sensitizes the LC-NE system to corticotropin releasing factor and stress. Finally, new evidence for novel presynaptic actions of kappa-opioids on LC afferents is provided that adds another dimension to our model of how this central NE system is co-regulated by opioids and stress-related peptides.
Collapse
Affiliation(s)
- E J Van Bockstaele
- Department of Neurosurgery, Thomas Jefferson University, Farber Institute for Neurosciences, 900 Walnut Street, Suite 400, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
41
|
Abstract
The negative motivational aspects of withdrawal include symptoms of both anxiety and depression, and emerge after termination of chronic drug use as well as after acute drug exposure. States of acute withdrawal are an inherent part of intermittent drug use in humans, but the contribution of acute withdrawal to the development of addiction has received limited systematic investigation, because of a lack of preclinical models for withdrawal states that emerge spontaneously after acute drug exposure. Here, we have characterized a spontaneous increase in the magnitude of the acoustic startle reflex (ie, spontaneous withdrawal-potentiated startle) that emerges after acute morphine administration in rats, and compared the time course of startle potentiation and place conditioning. We find that startle potentiation seems to be related to a decrease in opiate receptor occupancy and reflects an anxiety-like state with a pharmacological profile similar to other signs of opiate withdrawal. Spontaneous startle potentiation emerges before the rewarding effects of morphine have subsided, even though naloxone administration after a single morphine exposure causes both startle potentiation and conditioned place aversion (CPA). These results show that negative emotional signs of withdrawal develop after just one exposure to morphine, and are likely a recurrent aspect of intermittent drug use that may contribute to the earliest adaptations underlying the development of addiction. Furthermore, the dissociation between spontaneous startle potentiation and CPA suggests anxiogenic and dysphoric manifestations of opiate withdrawal may be mediated by distinct neural mechanisms that are progressively engaged as withdrawal unfolds.
Collapse
|
42
|
Abstract
The survival and well-being of all species requires appropriate physiological responses to environmental and homeostatic challenges. The re- establishment and maintenance of homeostasis entails the coordinated activation and control of neuroendocrine and autonomic stress systems. These collective stress responses are mediated by largely overlapping circuits in the limbic forebrain, the hypothalamus and the brainstem, so that the respective contributions of the neuroendocrine and autonomic systems are tuned in accordance with stressor modality and intensity. Limbic regions that are responsible for regulating stress responses intersect with circuits that are responsible for memory and reward, providing a means to tailor the stress response with respect to prior experience and anticipated outcomes.
Collapse
|
43
|
Foster MT, Warne JP, Ginsberg AB, Horneman HF, Pecoraro NC, Akana SF, Dallman MF. Palatable foods, stress, and energy stores sculpt corticotropin-releasing factor, adrenocorticotropin, and corticosterone concentrations after restraint. Endocrinology 2009; 150:2325-33. [PMID: 19106219 PMCID: PMC2671911 DOI: 10.1210/en.2008-1426] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous studies have shown reduced hypothalamo-pituitary-adrenal responses to both acute and chronic restraint stressors in rats allowed to ingest highly palatable foods (32% sucrose +/- lard) prior to restraint. In this study we tested the effects of prior access (7 d) to chow-only, sucrose/chow, lard/chow, or sucrose/lard/chow diets on central corticotropin-releasing factor (CRF) expression in rats studied in two experiments, 15 and 240 min after onset of restraint. Fat depot, particularly intraabdominal fat, weights were increased by prior access to palatable food, and circulating leptin concentrations were elevated in all groups. Metabolite concentrations were appropriate for values obtained after stressors. For unknown reasons, the 15-min experiment did not replicate previous results. In the 240-min experiment, ACTH and corticosterone responses were inhibited, as previously, and CRF mRNA in the hypothalamus and oval nucleus of the bed nuclei of the stria terminalis were reduced by palatable foods, suggesting strongly that both neuroendocrine and autonomic outflows are decreased by increased caloric deposition and palatable food. In the central nucleus of the amygdala, CRF was increased in the sucrose-drinking group and decreased in the sucrose/lard group, suggesting that the consequence of ingestion of sucrose uses different neural networks from the ingestion of lard. The results suggest strongly that ingestion of highly palatable foods reduces activity in the central stress response network, perhaps reducing the feeling of stressors.
Collapse
Affiliation(s)
- Michelle T Foster
- Department of Physiology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0444, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Xiao H, Zhai DX, Yan BB, Wang JH, Xu WS, Wang GY, Bai SS, Kong QF, Sun B, Wang DD, Jin DJ, Li HL. A role for the parafascicular thalamic nucleus in the development of morphine dependence and withdrawal. Brain Res 2009; 1271:74-82. [PMID: 19332040 DOI: 10.1016/j.brainres.2009.02.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 01/20/2009] [Accepted: 02/27/2009] [Indexed: 11/26/2022]
Abstract
The parafascicular thalamic nucleus (nPf) is a critical relay in the ascending system that mediates motor control in the central nervous system (CNS). Yet, little is known about whether or not the nPf is involved in the development of morphine dependence and withdrawal. In the present study, kainic acid was used to chemically destroy the nPf in Wistar rats, and morphine dependence and withdrawal models were established. Morphine withdrawal symptoms score was evaluated in each group. An electrophysiological method was used to measure the changes in spontaneous discharge of nPf neurons. mu-Opioid receptor (MOR) mRNA level in nPf was detected using semi-quantitative RT-PCR. The ultrastructural alterations were examined by transmission electron microscopy. Results showed that the bilateral lesion of nPf had a marked influence on the development of morphine dependence and withdrawal. In order to address the mechanisms underlying, we found: (1) the average frequency and sum of nPf neurons that exhibited spontaneous discharge were increased in the morphine withdrawal group in comparison with the sham model group (P<0.05); (2) MOR mRNA level in the nPf of the morphine dependence group was decreased in comparison with that of the sham model group (1.45+/-0.38 vs. 5.37+/-0.94, P<0.01). In the morphine withdrawal group, which underwent 40 h withdrawal, the MOR mRNA level was higher than that in the morphine dependence group (2.97+/-0.73 vs. 1.45+/-0.38, P<0.05) but still lower than that in the sham model group (P<0.05); (3) the ultrastructural injuries of nPf neurons, which were in the nucleus, organelles and neuropil, were marked in the morphine dependent and withdrawal groups. Our study indicated that nPf played an important role in the development of morphine dependence and withdrawal. The results suggest that nPf may become a therapeutic target for treating morphine withdrawal syndrome.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Otorhinolaryngology, the Second Affiliated Clinic College of Harbin Medical University, 150081, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Warne JP, Akana SF, Ginsberg AB, Horneman HF, Pecoraro NC, Dallman MF. Disengaging insulin from corticosterone: roles of each on energy intake and disposition. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1366-75. [PMID: 19279289 DOI: 10.1152/ajpregu.91016.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Corticosterone and insulin play complex roles in the amount and composition of calories ingested, and the utilization and deposition of this energy. Understanding the interplay of these two hormones is complicated because increasing concentrations of corticosterone dose-dependently increase circulating insulin levels. We addressed individual contributions of each hormone by controlling, at steady-state levels, corticosterone (by adrenalectomy and exogenous replacement) and insulin (by streptozotocin-induced destruction of pancreatic beta-cells and exogenous replacement) across a spectrum of concentrations in rats, creating 8 hormonal combinations. For 5 days after surgery, all rats received chow. At day 5, they were subdivided into those that continued to receive chow and those that had a choice between chow, lard, and 32% sucrose for a further 5 days. During the choice/chow period, total calories ingested were stimulated by corticosterone and choice diet, and subject to a corticosterone-insulin interaction. Sucrose, but not lard, intake was stimulated by insulin. Body weight was increased by insulin, decreased by high corticosterone, and unaffected by diet. White adipose tissue depot weights were stimulated by insulin, corticosterone, and diet. Plasma triglycerides, free fatty acids, total ketone bodies, glucose, and glycerol were all significantly increased by corticosterone and the choice diet but inhibited by insulin. In contrast, plasma leptin was only increased by insulin and diet, plasma glucagon and liver glycogen was only affected by insulin and liver triglycerides, and arcuate nucleus proopiomelanocortin mRNA was only influenced by diet. Collectively, these data show that corticosterone and insulin determine the intake, form, and compartmentalization of energy both independently and interactively.
Collapse
Affiliation(s)
- James P Warne
- Department of Physiology,University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
46
|
Warne JP. Shaping the stress response: interplay of palatable food choices, glucocorticoids, insulin and abdominal obesity. Mol Cell Endocrinol 2009; 300:137-46. [PMID: 18984030 DOI: 10.1016/j.mce.2008.09.036] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/24/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
Abstract
Activity of the hypothalamo-pituitary-adrenal (HPA) axis is regulated by a negative feedback loop that dampens central drive of the axis via the actions of the secreted glucocorticoids. Conversely, under conditions of chronic stress, glucocorticoids delivered centrally increase hypothalamic paraventricular nucleus (PVN) corticotrophin-releasing factor (CRF) expression and the response to restraint. However, HPA axis activity and PVN CRF mRNA expression under chronic stress conditions are often reduced, implying other indirect peripheral or extra-hypothalamic glucocorticoid actions. Glucocorticoids chronically increase palatable food intake, which increases abdominal fat depots and circulating insulin levels, both of which negatively correlate with PVN CRF mRNA expression and may in turn dampen the response to stress. Such an effect is dependent on food choices, rather than total calories ingested. Considering stress is omnipresent in the workplace, palatable food ingestion may represent a means to combat the feeling of stress which is ultimately maladaptive when unresolved.
Collapse
Affiliation(s)
- James P Warne
- Diabetes Center, University of California San Francisco, 513 Parnassus Avenue, Box 0534, San Francisco, CA 94143-0534, USA.
| |
Collapse
|
47
|
Goletiani NV, Mendelson JH, Sholar MB, Siegel AJ, Mello NK. Opioid and cocaine combined effect on cocaine-induced changes in HPA and HPG axes hormones in men. Pharmacol Biochem Behav 2008; 91:526-36. [PMID: 18848957 DOI: 10.1016/j.pbb.2008.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 09/08/2008] [Accepted: 09/11/2008] [Indexed: 01/23/2023]
Abstract
Nalbuphine, a mixed micro-/kappa-opioid analgesic, may have potential as a new medication for the treatment of cocaine abuse. Kappa-opioid agonists functionally antagonize some abuse-related and locomotor effects of cocaine, and both kappa-selective and mixed micro-/kappa-opioids reduce cocaine self-administration by rhesus monkeys. Because cocaine's interactions with the hypothalamic-pituitary-adrenal and (HPA) hypothalamic-pituitary-gonadal (HPG) axes may contribute to its reinforcing properties, we examined the effects of cocaine alone and in combination with nalbuphine. Neuroendocrine effects of a single dose of cocaine alone (0.2 mg/kg, IV), with nalbuphine (5 mg/70 kg, IV)+cocaine (0.2 mg/kg, IV) in combination were compared in seven adult men (ages 18-35) who met DSM-IV criteria for current cocaine abuse. Cocaine alone, and in combination with nalbuphine was administered on separate test days under placebo-controlled, double blind conditions. Cocaine stimulated ACTH, cortisol, and LH, whereas cocaine+nalbuphine in combination produced a smaller increase in ACTH, and decreased cortisol and LH. Thus it appears that nalbuphine attenuated cocaine's effects on ACTH, cortisol, and LH. These data are consistent with our earlier report that nalbuphine modestly attenuated cocaine's positive subjective effects, and that the subjective and cardiovascular effects of cocaine+nalbuphine in combination were not additive.
Collapse
Affiliation(s)
- Nathalie V Goletiani
- Alcohol and Drug Abuse Research Center, Harvard Medical School and McLean Hospital, Belmont, MA 02478, USA.
| | | | | | | | | |
Collapse
|
48
|
Cooper ZD, Truong YNT, Shi YG, Woods JH. Morphine deprivation increases self-administration of the fast- and short-acting mu-opioid receptor agonist remifentanil in the rat. J Pharmacol Exp Ther 2008; 326:920-9. [PMID: 18515643 DOI: 10.1124/jpet.108.139196] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opiate dependence and withdrawal have long been hypothesized to enhance the reinforcing effects of opiates; however, opiate agonist self-administration in these states has yet to be systematically assessed. To address this issue, the reinforcing property of the short-acting mu-opioid agonist, remifentanil, was assessed in morphine-dependent (MD), morphine-dependent and -withdrawn (MW), and nondependent, control (C) rats. Dependence was established by twice daily administration of increasing doses of morphine for 4 days (10, 20, 30, and 40 mg/kg s.c.) and then maintained with a daily injection of the large dose. Morphine deprivation-induced withdrawal (defined by weight loss and hyperalgesia) was apparent 24, but not 12, h after morphine treatment. Remifentanil self-administration (0.4, 0.8, 1.6, 3.2, or 6.4 mug/kg/infusion) was assessed over 20 successive, daily, 1-h sessions, either 12 or 24 h after the maintenance dose of morphine. Compared with the control group, the MD group demonstrated suppressed remifentanil self-administration, whereas the MW group exhibited enhanced responding for every dose of remifentanil. The increased responding observed in the MW group compared with the control and MD groups resulted in an upward shift in the remifentanil dose-response curve, an effect that was expressed only after repeated exposure to the contingency, demonstrating that morphine withdrawal ultimately enhances the reinforcing effects of remifentanil.
Collapse
Affiliation(s)
- Ziva D Cooper
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
| | | | | | | |
Collapse
|
49
|
Kakko J, von Wachenfeldt J, Svanborg KD, Lidström J, Barr CS, Heilig M. Mood and neuroendocrine response to a chemical stressor, metyrapone, in buprenorphine-maintained heroin dependence. Biol Psychiatry 2008; 63:172-7. [PMID: 17850768 DOI: 10.1016/j.biopsych.2007.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/28/2007] [Accepted: 05/01/2007] [Indexed: 11/21/2022]
Abstract
BACKGROUND Heroin dependence is associated with a hyperactive hypothalamic-pituitary-adrenal (HPA) axis, proposed as a biological correlate of craving. Maintenance treatment with methadone normalizes HPA axis activity. Here, we examined HPA axis activity under maintenance treatment with the increasingly utilized partial opiate agonist buprenorphine. METHODS Responses to a metyrapone challenge were compared in 20 buprenorphine-maintained heroin addicts and 20 healthy volunteers (10 received a single 50 mg naltrexone dose [NTX+] and 10 received no naltrexone [NTX-]). Patients were 16 male subjects and 4 female subjects, aged 30 to 38 years, heroin-dependent and relapse-free under buprenorphine maintenance (BUP) for a minimum of 6 months. Healthy volunteers were 9 male subjects and 11 female subjects, aged 36 to 49 years, with no history of dependence. Serial measures were obtained of plasma adrenocorticotropic hormone (ACTH) and cortisol and Profile of Mood States (POMS) ratings over time. Subjects were genotyped for the OPRM1 118A/G polymorphism. RESULTS Buprenorphine maintenance showed a dampened HPA axis response to metyrapone, with OPRM1 118G carriers showing a significantly attenuated response compared with 118A carriers. The response of the NTX+ group was markedly increased. In contrast, negative affect was elevated in the BUP group but did not differ between NTX- and NTX+. Buprenorphine maintenance and NTX- groups did not differ in positive affect, whereas the NTX+ group was lower. CONCLUSIONS In contrast to exaggerated HPA axis responsiveness reported in untreated heroin dependence, response to metyrapone was subnormal in heroin addicts maintained on buprenorphine. Despite this, increased measures of negative affect were seen in this group. This implies a dissociation of HPA axis responsiveness and affect in heroin dependence.
Collapse
Affiliation(s)
- Johan Kakko
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
50
|
Zhou Y, Leri F, Cummins E, Hoeschele M, Kreek MJ. Involvement of arginine vasopressin and V1b receptor in heroin withdrawal and heroin seeking precipitated by stress and by heroin. Neuropsychopharmacology 2008; 33:226-36. [PMID: 17443128 DOI: 10.1038/sj.npp.1301419] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A previous study has shown that the stress responsive neurohormone arginine vasopressin (AVP) is activated in the amygdala during early withdrawal from cocaine. The present studies were undertaken to determine whether (1) AVP mRNA levels in the amygdala or hypothalamus, as well as hypothalamic-pituitary-adrenal (HPA) activity, would be altered during chronic intermittent escalating heroin administration (10 days; 7.5-60 mg/kg/day) or during early (12 h) and late (10 days) spontaneous withdrawal; (2) foot shock stress would alter AVP mRNA levels in the amygdala or hypothalamus in rats withdrawn from heroin self-administration (7 days, 3 h/day, 0.05 mg/kg/infusion); and (3) the selective V1b receptor antagonist SSR149415 (1 and 30 mg/kg, intraperitoneal) would alter heroin seeking during tests of reinstatement induced by foot shock stress and by heroin primes (0.25 mg/kg), as well as HPA hormonal responses to foot shock. We found that AVP mRNA levels were increased during early spontaneous withdrawal in the amygdala only. This amygdalar AVP mRNA increase was no longer observed at the later stage of heroin withdrawal. Foot shock stress increased AVP mRNA levels in the amygdala of rats withdrawn from heroin self-administration, but not in heroin naïve rats. Behaviorally, SSR149415 dose-dependently attenuated foot shock-induced reinstatement and blocked heroin-induced reinstatement. Finally, SSR149415 blunted the HPA activation by foot shock. Together, these data in rats suggest that stress responsive AVP/V1b receptor systems (including the amygdala) may be critical components of the neural circuitry underlying the aversive emotional consequences of drug withdrawal, as well as the effect of negative emotional states on drug-seeking behavior.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|