1
|
Lin X, Li Q, Pu M, Dong H, Zhang Q. Significance of nicotine and nicotinic acetylcholine receptors in Parkinson's disease. Front Aging Neurosci 2025; 17:1535310. [PMID: 40191787 PMCID: PMC11968747 DOI: 10.3389/fnagi.2025.1535310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Parkinson's disease (PD) is a multifaceted neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra and the aggregation of α-synuclein. According to epidemiological data, PD is the second most prevalent neurodegenerative disorder after Alzheimer's disease (AD) and has emerged as a significant global health concern. This review examines the intricate pathological mechanisms and high-risk factors associated with PD, and discusses the challenges in its clinical diagnosis and treatment. We elucidate the relationship between smoking and the reduced risk of PD, highlighting the potential neuroprotective effects of nicotine present in tobacco. The interaction between nicotine and nicotinic acetylcholine receptors (nAChRs) is analyzed in detail, emphasizing their neuroprotective capabilities and underlying molecular mechanisms. Furthermore, we analyze the structural and functional diversity of nAChRs and their roles in the pathological progression of PD. Our review aims to elucidate the complex interplay of genetic, environmental, and biochemical factors in PD and to propose future research directions that may facilitate therapeutic development.
Collapse
Affiliation(s)
- Xia Lin
- Department of Neurology, First People's Hospital of Tianshui, Tianshui, Gansu, China
| | - Qian Li
- First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Min Pu
- First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Hao Dong
- First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Qinghua Zhang
- Department of Neurology, First People's Hospital of Tianshui, Tianshui, Gansu, China
| |
Collapse
|
2
|
Guan Z. Alterations in Neuronal Nicotinic Acetylcholine Receptors in the Pathogenesis of Various Cognitive Impairments. CNS Neurosci Ther 2024; 30:e70069. [PMID: 39370620 PMCID: PMC11456617 DOI: 10.1111/cns.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024] Open
Abstract
Cognitive impairment is a typical symptom of both neurodegenerative and certain other diseases. In connection with these different pathologies, the etiology and neurological and metabolic changes associated with cognitive impairment must differ. Until these characteristics and differences are understood in greater detail, pharmacological treatment of the different forms of cognitive impairment remains suboptimal. Neurotransmitter receptors, including neuronal nicotinic acetylcholine receptors (nAChRs), dopamine receptors, and glutamine receptors, play key roles in the functions and metabolisms of the brain. Among these, the role of nAChRs in the development of cognitive impairment has attracted more and more attention. The present review summarizes what is presently known concerning the structure, distribution, metabolism, and function of nAChRs, as well as their involvement in major cognitive disorders such as Alzheimer's disease, Parkinson's disease, vascular dementia, schizophrenia, and diabetes mellitus. As will be discussed, the relevant scientific literature reveals clearly that the α4β2 and α7 nAChR subtypes and/or subunits of the receptors play major roles in maintaining cognitive function and in neuroprotection of the brain. Accordingly, focusing on these as targets of drug therapy can be expected to lead to breakthroughs in the treatment of cognitive disorders such as AD and schizophrenia.
Collapse
Affiliation(s)
- Zhi‐Zhong Guan
- Department of PathologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- Key Laboratory of Endemic and Ethnic DiseasesGuizhou Medical University, Ministry of Education and Provincial Key Laboratory of Medical Molecular BiologyGuiyangP.R. China
| |
Collapse
|
3
|
Arjmandi-Rad S, Vestergaard Nieland JD, Goozee KG, Vaseghi S. The effects of different acetylcholinesterase inhibitors on EEG patterns in patients with Alzheimer's disease: A systematic review. Neurol Sci 2024; 45:417-430. [PMID: 37843690 DOI: 10.1007/s10072-023-07114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common type of dementia. The early diagnosis of AD is an important factor for the control of AD progression. Electroencephalography (EEG) can be used for early diagnosis of AD. Acetylcholinesterase inhibitors (AChEIs) are also used for the amelioration of AD symptoms. In this systematic review, we reviewed the effect of different AChEIs including donepezil, rivastigmine, tacrine, physostigmine, and galantamine on EEG patterns in patients with AD. METHODS PubMed electronic database was searched and 122 articles were found. After removal of unrelated articles, 24 articles were selected for the present study. RESULTS AChEIs can decrease beta, theta, and delta frequency bands in patients with AD. However, conflicting results were found for alpha band. Some studies have shown increased alpha frequency, while others have shown decreased alpha frequency following treatment with AChEIs. The only difference was the type of drug. CONCLUSIONS We found that studies reporting the decreased alpha frequency used donepezil and galantamine, while studies reporting the increased alpha frequency used rivastigmine and tacrine. It was suggested that future studies should focus on the effect of different AChEIs on EEG bands, especially alpha frequency in patients with AD, to compare their effects and find the reason for their different influence on EEG patterns. Also, differences between the effects of AChEIs on oligodendrocyte differentiation and myelination may be another important factor. This is the first article investigating the effect of different AChEIs on EEG patterns in patients with AD.
Collapse
Affiliation(s)
- Shirin Arjmandi-Rad
- Institute for Cognitive & Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | | | - Kathryn G Goozee
- KaRa Institute of Neurological Diseases Pty Ltd, Macquarie, NSW, Australia
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
4
|
Emmi A, Campagnolo M, Stocco E, Carecchio M, Macchi V, Antonini A, De Caro R, Porzionato A. Neurotransmitter and receptor systems in the subthalamic nucleus. Brain Struct Funct 2023; 228:1595-1617. [PMID: 37479801 PMCID: PMC10471682 DOI: 10.1007/s00429-023-02678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/02/2023] [Indexed: 07/23/2023]
Abstract
The Subthalamic Nucleus (STh) is a lens-shaped subcortical structure located ventrally to the thalamus, that despite being embryologically derived from the diencephalon, is functionally implicated in the basal ganglia circuits. Because of this strict structural and functional relationship with the circuits of the basal ganglia, the STh is a current target for deep brain stimulation, a neurosurgical procedure employed to alleviate symptoms in movement disorders, such as Parkinson's disease and dystonia. However, despite the great relevance of this structure for both basal ganglia physiology and pathology, the neurochemical and molecular anatomy of the STh remains largely unknown. Few studies have specifically addressed the detection of neurotransmitter systems and their receptors within the structure, and even fewer have investigated their topographical distribution. Here, we have reviewed the scientific literature on neurotransmitters relevant in the STh function of rodents, non-human primates and humans including glutamate, GABA, dopamine, serotonin, noradrenaline with particular focus on their subcellular, cellular and topographical distribution. Inter-species differences were highlighted to provide a framework for further research priorities, particularly in humans.
Collapse
Affiliation(s)
- Aron Emmi
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Marta Campagnolo
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Elena Stocco
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Miryam Carecchio
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Veronica Macchi
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Raffaele De Caro
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy.
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy.
| | - Andrea Porzionato
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| |
Collapse
|
5
|
Amirghasemi F, Soleimani A, Bawarith S, Tabassum A, Morrel A, Mousavi MPS. FAST (Flexible Acetylcholine Sensing Thread): Real-Time Detection of Acetylcholine with a Flexible Solid-Contact Potentiometric Sensor. Bioengineering (Basel) 2023; 10:655. [PMID: 37370586 DOI: 10.3390/bioengineering10060655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Acetylcholine (ACh) is involved in memory and learning and has implications in neurodegenerative diseases; it is therefore important to study the dynamics of ACh in the brain. This work creates a flexible solid-contact potentiometric sensor for in vitro and in vivo recording of ACh in the brain and tissue homogenate. We fabricate this sensor using a 250 μm diameter cotton yarn coated with a flexible conductive ink and an ACh sensing membrane that contains a calix[4]arene ionophore. The exposed ion-to-electron transducer was sealed with a 2.5 μm thick Parylene C coating to maintain the flexibility of the sensor. The resulting diameter of the flexible ACh sensing thread (FAST) was 400 μm. The FAST showed a linear response range from 1.0 μM to 10.0 mM in deionized water, with a near-Nernstian slope of 56.11 mV/decade and a limit of detection of 2.6 μM. In artificial cerebrospinal fluid, the limit of detection increased to 20 μM due to the background signal of ionic content of the cerebrospinal fluid. The FAST showed a signal stability of 226 μV/h over 24 h. We show that FAST can measure ACh dynamics in sheep brain tissue and sheep brain homogenate after ACh spiking. FAST is the first flexible electrochemical sensor for monitoring ACh dynamics in the brain.
Collapse
Affiliation(s)
- Farbod Amirghasemi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Ali Soleimani
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Shahd Bawarith
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Asna Tabassum
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Alayne Morrel
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Maral P S Mousavi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Terry AV, Jones K, Bertrand D. Nicotinic acetylcholine receptors in neurological and psychiatric diseases. Pharmacol Res 2023; 191:106764. [PMID: 37044234 DOI: 10.1016/j.phrs.2023.106764] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that are widely distributed both pre- and post-synaptically in the mammalian brain. By modulating cation flux across cell membranes, neuronal nAChRs regulate neuronal excitability and the release of a variety of neurotransmitters to influence multiple physiologic and behavioral processes including synaptic plasticity, motor function, attention, learning and memory. Abnormalities of neuronal nAChRs have been implicated in the pathophysiology of neurologic disorders including Alzheimer's disease, Parkinson's disease, epilepsy, and Tourette´s syndrome, as well as psychiatric disorders including schizophrenia, depression, and anxiety. The potential role of nAChRs in a particular illness may be indicated by alterations in the expression of nAChRs in relevant brain regions, genetic variability in the genes encoding for nAChR subunit proteins, and/or clinical or preclinical observations where specific ligands showed a therapeutic effect. Over the past 25 years, extensive preclinical and some early clinical evidence suggested that ligands at nAChRs might have therapeutic potential for neurologic and psychiatric disorders. However, to date the only approved indications for nAChR ligands are smoking cessation and the treatment of dry eye disease. It has been argued that progress in nAChR drug discovery has been limited by translational gaps between the preclinical models and the human disease as well as unresolved questions regarding the pharmacological goal (i.e., agonism, antagonism or receptor desensitization) depending on the disease.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912.
| | - Keri Jones
- Educational Innovation Institute, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912
| | - Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland
| |
Collapse
|
7
|
Akinola LS, Bagdas D, Alkhlaif Y, Jackson A, Gurdap CO, Rahimpour E, Carroll FI, Papke RL, Damaj MI. Pharmacological characterization of 5-iodo-A-85380, a β2-selective nicotinic receptor agonist, in mice. J Psychopharmacol 2022; 36:1280-1293. [PMID: 36321267 PMCID: PMC9817006 DOI: 10.1177/02698811221132214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Because of their implications in several pathological conditions, α4β2* nicotinic acetylcholine receptors (nAChRs) are potential targets for the treatment of nicotine dependence, pain, and many psychiatric and neurodegenerative diseases. However, they exist in various subtypes, and finding selective tools to investigate them has proved challenging. The nicotinic receptor agonist, 5-iodo-A-85380 (5IA), has helped in delineating the function of β2-containing subtypes in vitro; however, much is still unknown about its behavioral effects. Furthermore, its effectiveness on α6-containing subtypes is limited. AIMS To investigate the effects of 5IA on nociception (formalin, hot-plate, and tail-flick tests), locomotion, hypothermia, and conditioned reward after acute and repeated administration, and to examine the potential role of β2 and α6 nAChR subunits in these effects. Lastly, its selectivity for expressed low sensitivity (LS) and high sensitivity (HS) α4β2 receptors is investigated. RESULTS 5IA dose-dependently induced hypothermia, locomotion suppression, conditioned place preference, and antinociception (only in the formalin test but not in the hot-plate or tail-flick tests). Furthermore, these effects were mediated by β2 but not α6 nicotinic subunits. Finally, we show that 5-iodo-A-85380 potently activates both stoichiometries of α4β2 nAChRs with differential efficacies, being a full agonist on HS α4(2)β2(3) nAChRs, and a partial agonist on LS α4(3)β2(2) nAChRs and α6-containing subtypes as well.
Collapse
Affiliation(s)
- Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, USA
| | - Deniz Bagdas
- Department of Psychiatry, School of Medicine, Yale University, USA
- Yale Tobacco Center of Regulatory Science, Yale University, USA
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, USA
| | - Asti Jackson
- Department of Psychiatry, School of Medicine, Yale University, USA
- Yale Tobacco Center of Regulatory Science, Yale University, USA
| | - Cenk O Gurdap
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Sweden
| | - Elnaz Rahimpour
- Yale Tobacco Center of Regulatory Science, Yale University, USA
| | - F Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, USA
- Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, USA
| |
Collapse
|
8
|
Tiepolt S, Meyer PM, Patt M, Deuther-Conrad W, Hesse S, Barthel H, Sabri O. PET Imaging of Cholinergic Neurotransmission in Neurodegenerative Disorders. J Nucl Med 2022; 63:33S-44S. [PMID: 35649648 DOI: 10.2967/jnumed.121.263198] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
As a neuromodulator, the neurotransmitter acetylcholine plays an important role in cognitive, mood, locomotor, sleep/wake, and olfactory functions. In the pathophysiology of most neurodegenerative diseases, such as Alzheimer disease (AD) or Lewy body disorder (LBD), cholinergic receptors, transporters, or enzymes are involved and relevant as imaging targets. The aim of this review is to summarize current knowledge on PET imaging of cholinergic neurotransmission in neurodegenerative diseases. For PET imaging of presynaptic vesicular acetylcholine transporters (VAChT), (-)-18F-fluoroethoxybenzovesamicol (18F-FEOBV) was the first PET ligand that could be successfully translated to clinical application. Since then, the number of 18F-FEOBV PET investigations on patients with AD or LBD has grown rapidly and provided novel, important findings concerning the pathophysiology of AD and LBD. Regarding the α4β2 nicotinic acetylcholine receptors (nAChRs), various second-generation PET ligands, such as 18F-nifene, 18F-AZAN, 18F-XTRA, (-)-18F-flubatine, and (+)-18F-flubatine, were developed and successfully translated to human application. In neurodegenerative diseases such as AD and LBD, PET imaging of α4β2 nAChRs is of special value for monitoring disease progression and drugs directed to α4β2 nAChRs. For PET of α7 nAChR, 18F-ASEM and 11C-MeQAA were successfully applied in mild cognitive impairment and AD, respectively. The highest potential for α7 nAChR PET is seen in staging, in evaluating disease progression, and in therapy monitoring. PET of selective muscarinic acetylcholine receptors (mAChRs) is still in an early stage, as the development of subtype-selective radioligands is complicated. Promising radioligands to image mAChR subtypes M1 (11C-LSN3172176), M2 (18F-FP-TZTP), and M4 (11C-MK-6884) were developed and successfully translated to humans. PET imaging of mAChRs is relevant for the assessment and monitoring of therapies in AD and LBD. PET of acetylcholine esterase activity has been investigated since the 1990s. Many PET studies with 11C-PMP and 11C-MP4A demonstrated cortical cholinergic dysfunction in dementia associated with AD and LBD. Recent studies indicated a solid relationship between subcortical and cortical cholinergic dysfunction and noncognitive dysfunctions such as balance and gait in LBD. Taken together, PET of distinct components of cholinergic neurotransmission is of great interest for diagnosis, disease monitoring, and therapy monitoring and to gain insight into the pathophysiology of different neurodegenerative disorders.
Collapse
Affiliation(s)
- Solveig Tiepolt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Philipp M Meyer
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | | | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| |
Collapse
|
9
|
Martín-Bastida A, Delgado-Alvarado M, Navalpotro-Gómez I, Rodríguez-Oroz MC. Imaging Cognitive Impairment and Impulse Control Disorders in Parkinson's Disease. Front Neurol 2021; 12:733570. [PMID: 34803882 PMCID: PMC8602579 DOI: 10.3389/fneur.2021.733570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
Dementia and mild forms of cognitive impairment as well as neuropsychiatric symptoms (i. e., impulse control disorders) are frequent and disabling non-motor symptoms of Parkinson's disease (PD). The identification of changes in neuroimaging studies for the early diagnosis and monitoring of the cognitive and neuropsychiatric symptoms associated with Parkinson's disease, as well as their pathophysiological understanding, are critical for the development of an optimal therapeutic approach. In the current literature review, we present an update on the latest structural and functional neuroimaging findings, including high magnetic field resonance and radionuclide imaging, assessing cognitive dysfunction and impulse control disorders in PD.
Collapse
Affiliation(s)
- Antonio Martín-Bastida
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, Pamplona, Spain
| | | | - Irene Navalpotro-Gómez
- Cognitive Impairment and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain.,Clinical and Biological Research in Neurodegenerative Diseases, Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain.,Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - María Cruz Rodríguez-Oroz
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
10
|
Ye Z, Mo C, Liu S, Hatch KS, Gao S, Ma Y, Hong LE, Thompson PM, Jahanshad N, Acheson A, Garavan H, Shen L, Nichols TE, Kochunov P, Chen S, Ma T. White Matter Integrity and Nicotine Dependence: Evaluating Vertical and Horizontal Pleiotropy. Front Neurosci 2021; 15:738037. [PMID: 34720862 PMCID: PMC8551454 DOI: 10.3389/fnins.2021.738037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 01/26/2023] Open
Abstract
Tobacco smoking is an addictive behavior that supports nicotine dependence and is an independent risk factor for cancer and other illnesses. Its neurogenetic mechanisms are not fully understood but may act through alterations in the cerebral white matter (WM). We hypothesized that the vertical pleiotropic pathways, where genetic variants influence a trait that in turn influences another trait, link genetic factors, integrity of cerebral WM, and nicotine addiction. We tested this hypothesis using individual genetic factors, WM integrity measured by fractional anisotropy (FA), and nicotine dependence-related smoking phenotypes, including smoking status (SS) and cigarettes per day (CPDs), in a large epidemiological sample collected by the UK Biobank. We performed a genome-wide association study (GWAS) to identify previously reported loci associated with smoking behavior. Smoking was found to be associated with reduced WM integrity in multiple brain regions. We then evaluated two competing vertical pathways: Genes → WM integrity → Smoking versus Genes → Smoking → WM integrity and a horizontal pleiotropy pathway where genetic factors independently affect both smoking and WM integrity. The causal pathway analysis identified 272 pleiotropic single-nucleotide polymorphisms (SNPs) whose effects on SS were mediated by FA, as well as 22 pleiotropic SNPs whose effects on FA were mediated by CPD. These SNPs were mainly located in important susceptibility genes for smoking-induced diseases NCAM1 and IREB2. Our findings revealed the role of cerebral WM in the maintenance of the complex addiction and provided potential genetic targets for future research in examining how changes in WM integrity contribute to the nicotine effects on the brain.
Collapse
Affiliation(s)
- Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Chen Mo
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Song Liu
- School of Computer Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Kathryn S Hatch
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Yizhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ashley Acheson
- Department of Psychiatry and Behavioral Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Hugh Garavan
- Department of Psychiatry, The University of Vermont, Burlington, VT, United States
| | - Li Shen
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Thomas E Nichols
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
11
|
Iarkov A, Mendoza C, Echeverria V. Cholinergic Receptor Modulation as a Target for Preventing Dementia in Parkinson's Disease. Front Neurosci 2021; 15:665820. [PMID: 34616271 PMCID: PMC8488354 DOI: 10.3389/fnins.2021.665820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Cristhian Mendoza
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
12
|
Sun Y, Zhao Z, Li Q, Wang C, Ge X, Wang X, Wang G, Qin Y. Dl-3-n-butylphthalide regulates cholinergic dysfunction in chronic cerebral hypoperfusion rats. J Int Med Res 2021; 48:300060520936177. [PMID: 32644834 PMCID: PMC7350057 DOI: 10.1177/0300060520936177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objectives To investigate whether dl-3-n-butylphthalide (NBP) affects cholinergic system function and ameliorates cognitive decline in a rat model of vascular dementia (VaD). Methods The VaD rat model was established by bilateral common carotid artery ligation (two-vessel occlusion, 2VO). Rats were divided into five groups: control, sham, 2VO, 2VO+NBP (80 mg/kg; intragastric), and 2VO+donepezil (1 mg/kg; intragastric). Treatments were administered once daily for 2 weeks from day 21 post-surgery. Spatial learning and memory were evaluated by Morris water maze performance. Hippocampal choline acetyltransferase (ChAT), acetylcholinesterase (AChE), vesicular acetylcholine transporter (VAChT), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF) expressions were detected using immunohistochemistry, immunofluorescence, and real-time polymerase chain reaction methods. Results The daily escape latency was significantly longer in 2VO rats than in the sham or control groups, while the time spent in the target quadrant was significantly shorter. The daily escape latency of the 2VO+NBP group was significantly shorter compared with the 2VO group. Following NBP treatment, ChAT, AChE, VAChT, and BDNF expressions were significantly upregulated in the hippocampus. Conclusions Central cholinergic dysfunction may be involved in VaD pathogenesis. NBP treatment significantly improved spatial learning and memory in VaD rats, and may enhance cholinergic system function via BDNF-mediated neuroprotection.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zilong Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi Li
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunyang Wang
- Scientific Research Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Ge
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Gang Wang
- Library of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Yu Qin
- Department of Diagnostics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Choi SJ, Ma TC, Ding Y, Cheung T, Joshi N, Sulzer D, Mosharov EV, Kang UJ. Alterations in the intrinsic properties of striatal cholinergic interneurons after dopamine lesion and chronic L-DOPA. eLife 2020; 9:56920. [PMID: 32687053 PMCID: PMC7380940 DOI: 10.7554/elife.56920] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022] Open
Abstract
Changes in striatal cholinergic interneuron (ChI) activity are thought to contribute to Parkinson's disease pathophysiology and dyskinesia from chronic L-3,4-dihydroxyphenylalanine (L-DOPA) treatment, but the physiological basis of these changes is unknown. We find that dopamine lesion decreases the spontaneous firing rate of ChIs, whereas chronic treatment with L-DOPA of lesioned mice increases baseline ChI firing rates to levels beyond normal activity. The effect of dopamine loss on ChIs was due to decreased currents of both hyperpolarization-activated cyclic nucleotide-gated (HCN) and small conductance calcium-activated potassium (SK) channels. L-DOPA reinstatement of dopamine normalized HCN activity, but SK current remained depressed. Pharmacological blockade of HCN and SK activities mimicked changes in firing, confirming that these channels are responsible for the molecular adaptation of ChIs to dopamine loss and chronic L-DOPA treatment. These findings suggest that targeting ChIs with channel-specific modulators may provide therapeutic approaches for alleviating L-DOPA-induced dyskinesia in PD patients.
Collapse
Affiliation(s)
- Se Joon Choi
- Department of Psychiatry, Columbia University Medical Center, New York, United States
| | - Thong C Ma
- Department of Neurology, Grossman School of Medicine, New York University, New York, United States
| | - Yunmin Ding
- Department of Neurology, Grossman School of Medicine, New York University, New York, United States
| | - Timothy Cheung
- Department of Neurology, Grossman School of Medicine, New York University, New York, United States
| | - Neal Joshi
- Department of Neurology, Grossman School of Medicine, New York University, New York, United States
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York, United States
| | - Eugene V Mosharov
- Department of Psychiatry, Columbia University Medical Center, New York, United States
| | - Un Jung Kang
- Department of Neurology, Grossman School of Medicine, New York University, New York, United States
| |
Collapse
|
14
|
Aksoz BE, Aksoz E. Vital Role of Monoamine Oxidases and Cholinesterases in Central Nervous System Drug Research: A Sharp Dissection of the Pathophysiology. Comb Chem High Throughput Screen 2020; 23:877-886. [PMID: 32077819 DOI: 10.2174/1386207323666200220115154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoamine oxidase and cholinesterase enzymes are very critical enzymes that regulate the level of neurotransmitters such as acetylcholine and monoamines. Monoamine neurotransmitters and acetylcholine play a very important role in many physiological events. An increase or decrease in the amount of these neurotransmitters is observed in a wide range of central nervous system pathologies. Balancing the amount of these neurotransmitters is important in improving the progression of these diseases. Inhibitors of monoamine oxidase and cholinesterase enzymes are important in symptomatic therapy and delaying progression of a group of central nervous system disease manifested with memory loss, cognitive decline and psychiatric disturbances like depression. OBJECTIVE In this article, the relationship between central nervous system diseases and the vital role of the enzymes, monoamine oxidase and cholinesterase, is discussed on the pathophysiologic basis, focusing on drug research. CONCLUSION Monoamine oxidase and cholinesterase enzymes are still a good target for the development of novel drug active substances with optimized pharmacokinetic and pharmacodynamic properties, which can maximize the benefits of current therapy modalities.
Collapse
Affiliation(s)
- Begum E Aksoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Turkey
| | - Erkan Aksoz
- Department of Pharmacology, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
15
|
Iarkov A, Barreto GE, Grizzell JA, Echeverria V. Strategies for the Treatment of Parkinson's Disease: Beyond Dopamine. Front Aging Neurosci 2020; 12:4. [PMID: 32076403 PMCID: PMC7006457 DOI: 10.3389/fnagi.2020.00004] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second-leading cause of dementia and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra alongside the presence of intraneuronal α-synuclein-positive inclusions. Therapies to date have been directed to the restoration of the dopaminergic system, and the prevention of dopaminergic neuronal cell death in the midbrain. This review discusses the physiological mechanisms involved in PD as well as new and prospective therapies for the disease. The current data suggest that prevention or early treatment of PD may be the most effective therapeutic strategy. New advances in the understanding of the underlying mechanisms of PD predict the development of more personalized and integral therapies in the years to come. Thus, the development of more reliable biomarkers at asymptomatic stages of the disease, and the use of genetic profiling of patients will surely permit a more effective treatment of PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - J Alex Grizzell
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
16
|
Matar E, Shine JM, Halliday GM, Lewis SJG. Cognitive fluctuations in Lewy body dementia: towards a pathophysiological framework. Brain 2019; 143:31-46. [DOI: 10.1093/brain/awz311] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/21/2019] [Accepted: 08/16/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract
Fluctuating cognition is a complex and disabling symptom that is seen most frequently in the context of Lewy body dementias encompassing dementia with Lewy bodies and Parkinson’s disease dementia. In fact, since their description over three decades ago, cognitive fluctuations have remained a core diagnostic feature of dementia with Lewy bodies, the second most common dementia in the elderly. In the absence of reliable biomarkers for Lewy body pathology, the inclusion of such patients in therapeutic trials depends on the accurate identification of such core clinical features. Yet despite their diagnostic relevance, cognitive fluctuations remain poorly understood, in part due to the lack of a cohesive clinical and scientific explanation of the phenomenon itself. Motivated by this challenge, the present review examines the history, clinical phenomenology and assessment of cognitive fluctuations in the Lewy body dementias. Based on these data, the key neuropsychological, neurophysiological and neuroimaging correlates of cognitive fluctuations are described and integrated into a novel testable heuristic framework from which new insights may be gained.
Collapse
Affiliation(s)
- Elie Matar
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW Australia
- Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, NSW, Australia
| | - James M Shine
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW Australia
- Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, NSW, Australia
| | - Glenda M Halliday
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW Australia
| | - Simon J G Lewis
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW Australia
- Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, NSW, Australia
| |
Collapse
|
17
|
Barrett MJ, Cloud LJ, Shah H, Holloway KL. Therapeutic approaches to cholinergic deficiency in Lewy body diseases. Expert Rev Neurother 2019; 20:41-53. [DOI: 10.1080/14737175.2020.1676152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Matthew J. Barrett
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Leslie J. Cloud
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Harsh Shah
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kathryn L. Holloway
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- The Southeast Parkinson’s Disease Research, Education, and Care Center, Hunter Holmes McGuire Veteran Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
18
|
Esmaeeli S, Murphy K, Swords GM, Ibrahim BA, Brown JW, Llano DA. Visual hallucinations, thalamocortical physiology and Lewy body disease: A review. Neurosci Biobehav Rev 2019; 103:337-351. [PMID: 31195000 DOI: 10.1016/j.neubiorev.2019.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 12/22/2022]
Abstract
One of the core diagnostic criteria for Dementia with Lewy Bodies (DLB) is the presence of visual hallucinations. The presence of hallucinations, along with fluctuations in the level of arousal and sleep disturbance, point to potential pathological mechanisms at the level of the thalamus. However, the potential role of thalamic dysfunction in DLB, particularly as it relates to the presence of formed visual hallucinations is not known. Here, we review the literature on the pathophysiology of DLB with respect to modern theories of thalamocortical function and attempt to derive an understanding of how such hallucinations arise. Based on the available literature, we propose that combined thalamic-thalamic reticular nucleus and thalamocortical pathology may explain the phenomenology of visual hallucinations in DLB. In particular, diminished α7 cholinergic activity in the thalamic reticular nucleus may critically disinhibit thalamocortical activity. Further, concentrated pathological changes within the posterior regions of the thalamus may explain the predilection for the hallucinations to be visual in nature.
Collapse
Affiliation(s)
- Shooka Esmaeeli
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kathleen Murphy
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Gabriel M Swords
- University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Baher A Ibrahim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jeffrey W Brown
- University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Daniel A Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carle Neuroscience Institute, Urbana, IL, United States.
| |
Collapse
|
19
|
Ztaou S, Amalric M. Contribution of cholinergic interneurons to striatal pathophysiology in Parkinson's disease. Neurochem Int 2019; 126:1-10. [PMID: 30825602 DOI: 10.1016/j.neuint.2019.02.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/25/2019] [Accepted: 02/24/2019] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of nigral dopaminergic neurons innervating the striatum, the main input structure of the basal ganglia. This creates an imbalance between dopaminergic inputs and cholinergic interneurons (ChIs) within the striatum. The efficacy of anticholinergic drugs, one of the earliest therapy for PD before the discovery of L-3,4-dihydroxyphenylalanine (L-DOPA) suggests an increased cholinergic tone in this disease. The dopamine (DA)-acetylcholine (ACh) balance hypothesis is now revisited with the use of novel cutting-edge techniques (optogenetics, pharmacogenetics, new electrophysiological recordings). This review will provide the background of the specific contribution of ChIs to striatal microcircuit organization in physiological and pathological conditions. The second goal of this review is to delve into the respective contributions of nicotinic and muscarinic receptor cholinergic subunits to the control of striatal afferent and efferent neuronal systems. Special attention will be given to the role played by muscarinic acetylcholine receptors (mAChRs) in the regulation of striatal network which may have important implications in the development of novel therapeutic strategies for motor and cognitive impairment in PD.
Collapse
Affiliation(s)
- Samira Ztaou
- Aix Marseille Univ, CNRS, LNC, FR3C, Marseille, France; Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY, 10032, USA
| | | |
Collapse
|
20
|
Mousavi MPS, Abd El-Rahman MK, Mahmoud AM, Abdelsalam RM, Bühlmann P. In Situ Sensing of the Neurotransmitter Acetylcholine in a Dynamic Range of 1 nM to 1 mM. ACS Sens 2018; 3:2581-2589. [PMID: 30398333 DOI: 10.1021/acssensors.8b00950] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neurotransmitter acetylcholine (ACh) plays a key role in the pathophysiology of brain disorders such as Alzheimer's disease. Understanding the dynamics of ACh concentration changes and kinetics of ACh degradation in the living brain is crucial to unravel the pathophysiology of such diseases and the rational design of therapeutics. In this work, an electrochemical sensor capable of dynamic, label-free, selective, and in situ detection of ACh in a range of 1 nM to 1 mM (with temporal resolution of less than one second) was developed. The sensor was employed for the direct detection of ACh in artificial cerebrospinal fluid and rat brain homogenate, without any prior separation steps. A potentiometric receptor-doped ion-selective electrode (ISE) with selectivity for ACh was designed by taking advantage of the positive charge of ACh. The dynamic range, limit of detection (LOD), and the selectivity of the sensor were optimized stepwise by (i) screening of hydrophobic biomimetic calixarenes to identify receptors that strongly bind to ACh based on shape-selective multitopic recognition, (ii) doping of the ISE sensing membrane with an ACh-binding hydrophobic calixarene to enable selective detection of ACh in complex matrices, (iii) utilizing a hydrophilic calixarene in the inner filling solution of the ISE to buffer the concentration of ACh and, thereby, lower the LOD of the sensor, and (iv) introducing a surface treatment step prior to the measurement by placing the sensor for ∼1 min in a solution of a hydrophilic calixarene to lower the LOD of the sensor even further.
Collapse
Affiliation(s)
- Maral P. S. Mousavi
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | | | | | | | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Subramaniam SR, Magen I, Bove N, Zhu C, Lemesre V, Dutta G, Elias CJ, Lester HA, Chesselet MF. Chronic nicotine improves cognitive and social impairment in mice overexpressing wild type α-synuclein. Neurobiol Dis 2018; 117:170-180. [PMID: 29859873 PMCID: PMC6051902 DOI: 10.1016/j.nbd.2018.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 05/29/2018] [Indexed: 11/23/2022] Open
Abstract
In addition to dopaminergic and motor deficits, patients with Parkinson's disease (PD) suffer from non-motor symptoms, including early cognitive and social impairment, that do not respond well to dopaminergic therapy. Cholinergic deficits may contribute to these problems, but cholinesterase inhibitors have limited efficacy. Mice over-expressing α-synuclein, a protein critically associated with PD, show deficits in cognitive and social interaction tests, as well as a decrease in cortical acetylcholine. We have evaluated the effects of chronic administration of nicotine in mice over-expressing wild type human α-synuclein under the Thy1-promoter (Thy1-aSyn mice). Nicotine was administered subcutaneously by osmotic minipump for 6 months from 2 to 8 months of age at 0.4 mg/kg/h and 2.0 mg/kg/h. The higher dose was toxic in the Thy1-aSyn mice, but the low dose was well tolerated and both doses ameliorated cognitive impairment in Y-maze performance after 5 months of treatment. In a separate cohort of Thy1-aSyn mice, nicotine was administered at the lower dose for one month beginning at 5 months of age. This treatment partially eliminated the cognitive deficit in novel object recognition and social impairment. In contrast, chronic nicotine did not improve motor deficits after 2, 4 or 6 months of treatment, nor modified α-synuclein aggregation, tyrosine hydroxylase immunostaining, synaptic and dendritic markers, or microglial activation in Thy1-aSyn mice. These results suggest that cognitive and social impairment in synucleinopathies like PD may result from deficits in cholinergic neurotransmission and may benefit from chronic administration of nicotinic agonists.
Collapse
Affiliation(s)
- Sudhakar R Subramaniam
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Iddo Magen
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nicholas Bove
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Chunni Zhu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vincent Lemesre
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Garima Dutta
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Chris Jean Elias
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Marie-Francoise Chesselet
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Palomero-Gallagher N, Zilles K. Cyto- and receptor architectonic mapping of the human brain. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:355-387. [PMID: 29496153 DOI: 10.1016/b978-0-444-63639-3.00024-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.
| |
Collapse
|
23
|
Coughlin JM, Slania S, Du Y, Rosenthal HB, Lesniak WG, Minn I, Smith GS, Dannals RF, Kuwabara H, Wong DF, Wang Y, Horti AG, Pomper MG. 18F-XTRA PET for Enhanced Imaging of the Extrathalamic α4β2 Nicotinic Acetylcholine Receptor. J Nucl Med 2018; 59:1603-1608. [PMID: 29496987 DOI: 10.2967/jnumed.117.205492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 02/03/2018] [Indexed: 11/16/2022] Open
Abstract
Reduced density of the α4β2 nicotinic acetylcholine receptor (α4β2-nAChR) in the cortex and hippocampus of the human brain has been reported in aging and patients with neurodegenerative disease. This study assessed the pharmacokinetic behavior of 18F-(-)-JHU86428 (18F-XTRA), a new radiotracer for in vivo PET imaging of the α4β2-nAChR, particularly in extrathalamic regions of interest in which the α4β2-nAChR is less densely expressed than in thalamus. 18F-XTRA was also used to evaluate the α4β2-nAChR in the hippocampus in human aging. Methods: Seventeen healthy nonsmoker adults (11 men, 6 women; age, 30-82 y) underwent PET neuroimaging over 90 or 180 min in a high-resolution research tomograph after bolus injection of 18F-XTRA. Methods to quantify binding of 18F-XTRA to the α4β2-nAChR in the human brain were compared, and the relationship between age and binding in the hippocampus was tested. Results: 18F-XTRA rapidly entered the brain, and time-activity curves peaked within 10 min after injection for extrathalamic regions and at approximately 70 min in the thalamus. The 2-tissue-compartment model (2TCM) predicted the regional time-activity curves better than the 1-tissue-compartment model, and total distribution volume (VT) was well identified by the 2TCM in all ROIs. VT values estimated using Logan analysis with metabolite-corrected arterial input were highly correlated with those from the 2TCM in all regions, and values from 90-min scan duration were on average within 5% of those values from 180 min of data. Parametric images of VT were consistent with the known distribution of the α4β2-nAChR across the brain. Finally, an inverse correlation between VT in the hippocampus and age was observed. Conclusion: Our results extend support for use of 18F-XTRA with 90 min of emission scanning in quantitative human neuroimaging of the extrathalamic α4β2-nAChR, including in studies of aging.
Collapse
Affiliation(s)
- Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Stephanie Slania
- Department of Biomedical Engineering, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Yong Du
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Hailey B Rosenthal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Wojciech G Lesniak
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Gwenn S Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Robert F Dannals
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Hiroto Kuwabara
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Dean F Wong
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Department of Neuroscience, Johns Hopkins Medical Institutions, Baltimore, Maryland; and.,Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Yuchuan Wang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Andrew G Horti
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Martin G Pomper
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland .,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Department of Biomedical Engineering, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
24
|
Ting HC, Chang CY, Lu KY, Chuang HM, Tsai SF, Huang MH, Liu CA, Lin SZ, Harn HJ. Targeting Cellular Stress Mechanisms and Metabolic Homeostasis by Chinese Herbal Drugs for Neuroprotection. Molecules 2018; 23:E259. [PMID: 29382106 PMCID: PMC6017457 DOI: 10.3390/molecules23020259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/14/2022] Open
Abstract
Traditional Chinese medicine has been practiced for centuries in East Asia. Herbs are used to maintain health and cure disease. Certain Chinese herbs are known to protect and improve the brain, memory, and nervous system. To apply ancient knowledge to modern science, some major natural therapeutic compounds in herbs were extracted and evaluated in recent decades. Emerging studies have shown that herbal compounds have neuroprotective effects or can ameliorate neurodegenerative diseases. To understand the mechanisms of herbal compounds that protect against neurodegenerative diseases, we summarize studies that discovered neuroprotection by herbal compounds and compound-related mechanisms in neurodegenerative disease models. Those compounds discussed herein show neuroprotection through different mechanisms, such as cytokine regulation, autophagy, endoplasmic reticulum (ER) stress, glucose metabolism, and synaptic function. The interleukin (IL)-1β and tumor necrosis factor (TNF)-α signaling pathways are inhibited by some compounds, thus attenuating the inflammatory response and protecting neurons from cell death. As to autophagy regulation, herbal compounds show opposite regulatory effects in different neurodegenerative models. Herbal compounds that inhibit ER stress prevent neuronal death in neurodegenerative diseases. Moreover, there are compounds that protect against neuronal death by affecting glucose metabolism and synaptic function. Since the progression of neurodegenerative diseases is complicated, and compound-related mechanisms for neuroprotection differ, therapeutic strategies may need to involve multiple compounds and consider the type and stage of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hsiao-Chien Ting
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
| | - Chia-Yu Chang
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Kang-Yun Lu
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
| | - Hong-Meng Chuang
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Agricultural Biotechnology Center, Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Sheng-Feng Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Mao-Hsuan Huang
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Ching-Ann Liu
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Horng-Jyh Harn
- Bio-innovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (H.-C.T.); (C.-Y.C.); (K.-Y.L.); (H.-M.C.); (M.-H.H.); (C.-A.L.)
- Department of Pathology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
25
|
Behavioral changes after nicotine challenge are associated with α7 nicotinic acetylcholine receptor-stimulated glutamate release in the rat dorsal striatum. Sci Rep 2017; 7:15009. [PMID: 29118361 PMCID: PMC5678080 DOI: 10.1038/s41598-017-15161-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/23/2017] [Indexed: 01/28/2023] Open
Abstract
Neurochemical alterations associated with behavioral responses induced by re-exposure to nicotine have not been sufficiently characterized in the dorsal striatum. Herein, we report on changes in glutamate concentrations in the rat dorsal striatum associated with behavioral alterations after nicotine challenge. Nicotine challenge (0.4 mg/kg/day, subcutaneous) significantly increased extracellular glutamate concentrations up to the level observed with repeated nicotine administration. This increase occurred in parallel with an increase in behavioral changes in locomotor and rearing activities. In contrast, acute nicotine administration and nicotine withdrawal on days 1 and 6 did not alter glutamate levels or behavioral changes. Blockade of α7 nicotinic acetylcholine receptors (nAChRs) significantly decreased the nicotine challenge-induced increases in extracellular glutamate concentrations and locomotor and rearing activities. These findings suggest that behavioral changes in locomotor and rearing activities after re-exposure to nicotine are closely associated with hyperactivation of the glutamate response by stimulating α7 nAChRs in the rat dorsal striatum.
Collapse
|
26
|
The diabetic brain and cognition. J Neural Transm (Vienna) 2017; 124:1431-1454. [PMID: 28766040 DOI: 10.1007/s00702-017-1763-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022]
Abstract
The prevalence of both Alzheimer's disease (AD) and vascular dementia (VaD) is increasing with the aging of the population. Studies from the last several years have shown that people with diabetes have an increased risk for dementia and cognitive impairment. Therefore, the authors of this consensus review tried to elaborate on the role of diabetes, especially diabetes type 2 (T2DM) in both AD and VaD. Based on the clinical and experimental work of scientists from 18 countries participating in the International Congress on Vascular Disorders and on literature search using PUBMED, it can be concluded that T2DM is a risk factor for both, AD and VaD, based on a pathology of glucose utilization. This pathology is the consequence of a disturbance of insulin-related mechanisms leading to brain insulin resistance. Although the underlying pathological mechanisms for AD and VaD are different in many aspects, the contribution of T2DM and insulin resistant brain state (IRBS) to cerebrovascular disturbances in both disorders cannot be neglected. Therefore, early diagnosis of metabolic parameters including those relevant for T2DM is required. Moreover, it is possible that therapeutic options utilized today for diabetes treatment may also have an effect on the risk for dementia. T2DM/IRBS contribute to pathological processes in AD and VaD.
Collapse
|
27
|
Strauss V, Rey Moreno MC, Vogt J, Dammann M, Schneider S, Gröters S, van Ravenzwaay B. Acetylcholinesterase measurement in various brain regions and muscles of juvenile, adolescent, and adult rats. Toxicol Mech Methods 2017; 27:666-676. [DOI: 10.1080/15376516.2017.1349849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Volker Strauss
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | | - Jeanette Vogt
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Martina Dammann
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Steffen Schneider
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Sibylle Gröters
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | |
Collapse
|
28
|
Sultzer DL, Melrose RJ, Riskin-Jones H, Narvaez TA, Veliz J, Ando TK, Juarez KO, Harwood DG, Brody AL, Mandelkern MA. Cholinergic Receptor Binding in Alzheimer Disease and Healthy Aging: Assessment In Vivo with Positron Emission Tomography Imaging. Am J Geriatr Psychiatry 2017; 25:342-353. [PMID: 28162919 DOI: 10.1016/j.jagp.2016.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To compare regional nicotinic cholinergic receptor binding in older adults with Alzheimer disease (AD) and healthy older adults in vivo and to assess relationships between receptor binding and clinical symptoms. METHODS Using cross-sectional positron emission tomography (PET) neuroimaging and structured clinical assessment, outpatients with mild to moderate AD (N = 24) and healthy older adults without cognitive complaints (C group; N = 22) were studied. PET imaging of α4β2* nicotinic cholinergic receptor binding using 2-[18F]fluoro-3-(2(S)azetidinylmethoxy)pyridine (2FA) and clinical measures of global cognition, attention/processing speed, verbal memory, visuospatial memory, and neuropsychiatric symptoms were used. RESULTS 2FA binding was lower in the AD group compared with the C group in the medial thalamus, medial temporal cortex, anterior cingulate, insula/opercula, inferior caudate, and brainstem (p < 0.05, corrected cluster), but binding was not associated with cognition. The C group had significant inverse correlations between 2FA binding in the thalamus (left: rs = -0.55, p = 0.008; right: rs = -0.50, p = 0.02; N = 22) and hippocampus (left: rs = -0.65, p = 0.001; right: rs = -0.55, p = 0.009; N = 22) and the Trails A score. The AD group had inverse correlation between 2FA binding in anterior cingulate (left: rs = -0.50, p = 0.01; right: rs = -0.50, p = 0.01; N = 24) and Neurobehavioral Rating Scale agitation/disinhibition factor score. CONCLUSION Cholinergic receptor binding is reduced in specific brain regions in mild to moderate AD and is related to neuropsychiatric symptoms. Among healthy older adults, lower receptor binding may be associated with slower processing speed. Cholinergic receptor binding in vivo may reveal links to other key brain changes associated with aging and AD and may provide a potential molecular treatment target.
Collapse
Affiliation(s)
- David L Sultzer
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA.
| | - Rebecca J Melrose
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Hannah Riskin-Jones
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Theresa A Narvaez
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Joseph Veliz
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Timothy K Ando
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Kevin O Juarez
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Dylan G Harwood
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Arthur L Brody
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Mark A Mandelkern
- Imaging Service, VA Greater Los Angeles Healthcare Center, Los Angeles, CA; Department of Physics, University of California-Irvine, Irvine, CA
| |
Collapse
|
29
|
Yuille MB, Olmstead CK, Wells AK, Hahn B. A test of the cognitive-enhancing potential of low-dose mecamylamine in healthy non-smokers. Psychopharmacology (Berl) 2017; 234:109-116. [PMID: 27678550 PMCID: PMC5209795 DOI: 10.1007/s00213-016-4443-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/16/2016] [Indexed: 11/30/2022]
Abstract
RATIONALE The beneficial effects of nicotinic acetylcholine receptor (nAChR) agonists on cognitive performance have been widely shown. Paradoxically, recent preclinical studies employing extremely low doses of nAChR antagonists have also found cognitive enhancement, perhaps pointing to a novel treatment mechanism for cognitive deficits. OBJECTIVES The aim was to test whether low doses of the nAChR antagonist mecamylamine would benefit performance in human volunteers. METHODS The study employed a double-blind within-subject design. Over four separate days, healthy adult non-smokers (n = 23) were tested with placebo and three trace doses of mecamylamine (0.25-1 mg, p.o.), adjusted for body weight. Participants performed three computerized tasks: a task of spatial selective attention and stimulus detection, the rapid visual information processing task (RVIPT) taxing sustained attention and working memory, and a change detection short-term memory task. Subjective state and vital signs were assessed repeatedly. RESULTS Mecamylamine did not improve performance in any of the tasks. Any trends that were observed instead pointed toward performance impairment. Mecamylamine also had no effects on subjective state or vital signs. CONCLUSIONS The present results do not support the hypothesized cognitive-enhancing potential of low doses of mecamylamine. Contrary to preclinical reports, these findings speak against low-dose nAChR antagonism as a novel avenue for treating cognitive deficits.
Collapse
Affiliation(s)
| | | | | | - Britta Hahn
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD, 21228, USA.
| |
Collapse
|
30
|
McOmish C, Pavey G, McLean C, Horne M, Dean B, Scarr E. Muscarinic receptor binding changes in postmortem Parkinson's disease. J Neural Transm (Vienna) 2016; 124:227-236. [PMID: 27873015 DOI: 10.1007/s00702-016-1629-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/27/2016] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a devastating disorder, affecting approximately 2% of people aged 60 and above. It is marked by progressive neurodegeneration that has long been known to impact dopaminergic cells and circuits, but more recently the acetylcholine system has also been implicated in the complex aetiology and symptomatology of the disease. While broad changes in cholinergic markers have been described, insight into the contribution of specific acetylcholine receptors is less clear. To address this important unknown, in this study we performed [3H] pirenzepine, [3H] 4DAMP, and [3H] AF-DX 384 in situ radioligand binding on postmortem tissues from Brodmann's area 6, 9, 46, and the caudate putamen, from PD and matched controls to detect muscarinic M1, M3, and M1/2/4 receptors, respectively. We found no difference in [3H] pirenzepine binding between PD and controls across all regions assessed. [3H] 4DAMP binding was found to be higher in PD CPu and BA9 than in controls. [3H] AF-DX 384 was higher in BA9 of PD compared with controls. In sum, we show selective increase in M3 receptors in cortical and subcortical regions, as well as increased M2/M4 in cortical area BA9, which together support a role for cholinergic dysfunction in PD.
Collapse
Affiliation(s)
- Caitlin McOmish
- The Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Howard Florey Laboratories, The Florey Neuroscience Institute, University of Melbourne, 30 Royal Parade, cnr Genetics Lane, Melbourne, VIC, 3052, Australia.
| | - Geoff Pavey
- The Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Catriona McLean
- Department Anatomical Pathology, Alfred Hospital, Melbourne, VIC, Australia
| | - Malcolm Horne
- The Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Elizabeth Scarr
- The Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Xiao Y, Zhao L, Kuang SX, Guan ZZ. Inhibited Expression of α 4β 2 Nicotinic Acetylcholine Receptor in Blood Leukocytes of Chinese Patients with Vascular Dementia and in Blood Leukocytes as Well as the Hippocampus of Brain from Ischemic Rats. Cell Mol Neurobiol 2016; 36:1377-1387. [PMID: 26858154 PMCID: PMC11482402 DOI: 10.1007/s10571-016-0337-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
Our present aim was to investigate whether changes in the expression of α4β2 nicotinic acetylcholine receptor (nAChR) in patients with vascular dementia (VaD) and ischemic rats are related to cognitive scores. Blood leukocytes for 59 Chinese patients with VaD (diagnosed on the basis of clinical guidelines) and 31 cases as age-matched controls were examined, and the animal model established employing Pulsinelli's four-vessel occlusion. The levels of α4 and β2 subunit mRNA in leukocytes and the hippocampus were analyzed by real-time PCR, and the protein level in the hippocampus by Western blotting. The mini-mental state examination was utilized to characterize the intellectual capacity of the patients with reference to the DSM IV diagnosis and Hachinski Ischemic Scale score, and the Morris Water Maze test to assess the ability of learning and memory of the rats. In patients, the level of α4 mRNA, but not β2, in blood leukocytes was clearly lowered, which was significantly correlated to their clinical cognitive test scores. Smoking exerted no impact on the level of α4 mRNA in the present study. In the blood leukocytes and the hippocampus of the brains of the ischemic rats, the levels of both α4 and β2 mRNA were lowered, and the proteins of these subunits in the hippocampus were decreased. The changes of α4 and β2 mRNA in blood leukocytes, and their protein levels in the hippocampus were significantly correlated with impaired learning and memory. These findings indicate that alterations in expression of the α4β2 subtype of nAChR may be involved in the molecular mechanism(s) underlying the cognitive deficit associated with VaD.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- The Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Liang Zhao
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Shi-Xiang Kuang
- Department of Neurology, The Second Affiliated Hospital of Guiyang Traditional Chinese Medical College, Guiyang, 550003, China
| | - Zhi-Zhong Guan
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.
- The Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
32
|
Imaging α4β2 Nicotinic Acetylcholine Receptors (nAChRs) in Baboons with [18F]XTRA, a Radioligand with Improved Specific Binding in Extra-Thalamic Regions. Mol Imaging Biol 2016; 19:280-288. [DOI: 10.1007/s11307-016-0999-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Roy R, Niccolini F, Pagano G, Politis M. Cholinergic imaging in dementia spectrum disorders. Eur J Nucl Med Mol Imaging 2016; 43:1376-86. [PMID: 26984612 PMCID: PMC4865532 DOI: 10.1007/s00259-016-3349-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/18/2016] [Indexed: 12/31/2022]
Abstract
The multifaceted nature of the pathology of dementia spectrum disorders has complicated their management and the development of effective treatments. This is despite the fact that they are far from uncommon, with Alzheimer's disease (AD) alone affecting 35 million people worldwide. The cholinergic system has been found to be crucially involved in cognitive function, with cholinergic dysfunction playing a pivotal role in the pathophysiology of dementia. The use of molecular imaging such as SPECT and PET for tagging targets within the cholinergic system has shown promise for elucidating key aspects of underlying pathology in dementia spectrum disorders, including AD or parkinsonian dementias. SPECT and PET studies using selective radioligands for cholinergic markers, such as [(11)C]MP4A and [(11)C]PMP PET for acetylcholinesterase (AChE), [(123)I]5IA SPECT for the α4β2 nicotinic acetylcholine receptor and [(123)I]IBVM SPECT for the vesicular acetylcholine transporter, have been developed in an attempt to clarify those aspects of the diseases that remain unclear. This has led to a variety of findings, such as cortical AChE being significantly reduced in Parkinson's disease (PD), PD with dementia (PDD) and AD, as well as correlating with certain aspects of cognitive function such as attention and working memory. Thalamic AChE is significantly reduced in progressive supranuclear palsy (PSP) and multiple system atrophy, whilst it is not affected in PD. Some of these findings have brought about suggestions for the improvement of clinical practice, such as the use of a thalamic/cortical AChE ratio to differentiate between PD and PSP, two diseases that could overlap in terms of initial clinical presentation. Here, we review the findings from molecular imaging studies that have investigated the role of the cholinergic system in dementia spectrum disorders.
Collapse
Affiliation(s)
- Roman Roy
- Neurodegeneration Imaging Group, Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Flavia Niccolini
- Neurodegeneration Imaging Group, Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
34
|
Weng PH, Chen JH, Chen TF, Sun Y, Wen LL, Yip PK, Chu YM, Chen YC. CHRNA7 Polymorphisms and Dementia Risk: Interactions with Apolipoprotein ε4 and Cigarette Smoking. Sci Rep 2016; 6:27231. [PMID: 27249957 PMCID: PMC4890170 DOI: 10.1038/srep27231] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/15/2016] [Indexed: 12/16/2022] Open
Abstract
α7 nicotinic acetylcholine receptor (α7nAChR, encoded by CHRNA7) is involved in dementia pathogenesis through cholinergic neurotransmission, neuroprotection and interactions with amyloid-β. Smoking promotes atherosclerosis and increases dementia risk, but nicotine exerts neuroprotective effect via α7nAChR in preclinical studies. No studies explored the gene-gene, gene-environment interactions between CHRNA7 polymorphism, apolipoprotein E (APOE) ε4 status and smoking on dementia risk. This case-control study recruited 254 late-onset Alzheimer’s disease (LOAD) and 115 vascular dementia (VaD) cases (age ≥65) from the neurology clinics of three teaching hospitals in Taiwan during 2007–2010. Controls (N = 435) were recruited from health checkup programs and volunteers during the same period. Nine CHRNA7 haplotype-tagging single nucleotide polymorphisms representative for Taiwanese were genotyped. Among APOE ε4 non-carriers, CHRNA7 rs7179008 variant carriers had significantly decreased LOAD risk after correction for multiple tests (GG + AG vs. AA: adjusted odds ratio = 0.29, 95% confidence interval = 0.13–0.64, P = 0.002). Similar findings were observed for carriers of GT haplotype in CHRNA7 block4. A significant interaction was found between rs7179008, GT haplotype in block4 and APOE ε4 on LOAD risk. rs7179008 variant also reduced the detrimental effect of smoking on LOAD risk. No significant association was found between CHRNA7 and VaD. These findings help to understand dementia pathogenesis.
Collapse
Affiliation(s)
- Pei-Hsuan Weng
- Department of Family Medicine, Taiwan Adventist Hospital, Taipei, Taiwan.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jen-Hau Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu Sun
- Department of Neurology, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Li-Li Wen
- Department of Laboratory Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Ping-Keung Yip
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.,Center of Neurological Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Yi-Min Chu
- Department of Laboratory Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Yen-Ching Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.,Research Center for Genes, Environment and Human Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
35
|
Declercq LD, Vandenberghe R, Van Laere K, Verbruggen A, Bormans G. Drug Development in Alzheimer's Disease: The Contribution of PET and SPECT. Front Pharmacol 2016; 7:88. [PMID: 27065872 PMCID: PMC4814730 DOI: 10.3389/fphar.2016.00088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Clinical trials aiming to develop disease-altering drugs for Alzheimer’s disease (AD), a neurodegenerative disorder with devastating consequences, are failing at an alarming rate. Poorly defined inclusion-and outcome criteria, due to a limited amount of objective biomarkers, is one of the major concerns. Non-invasive molecular imaging techniques, positron emission tomography and single photon emission (computed) tomography (PET and SPE(C)T), allow visualization and quantification of a wide variety of (patho)physiological processes and allow early (differential) diagnosis in many disorders. PET and SPECT have the ability to provide biomarkers that permit spatial assessment of pathophysiological molecular changes and therefore objectively evaluate and follow up therapeutic response, especially in the brain. A number of specific PET/SPECT biomarkers used in support of emerging clinical therapies in AD are discussed in this review.
Collapse
Affiliation(s)
- Lieven D Declercq
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven Leuven, Belgium
| | - Alfons Verbruggen
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| |
Collapse
|
36
|
Abstract
The glutamatergic subthalamic nucleus (STN) exerts control over motor output through nuclei of the basal ganglia. High-frequency electrical stimuli in the STN effectively alleviate motor symptoms in movement disorders, and cholinergic stimulation boosts this effect. To gain knowledge about the mechanisms of cholinergic modulation in the STN, we studied cellular and circuit aspects of nicotinic acetylcholine receptors (nAChRs) in mouse STN. We discovered two largely divergent microcircuits in the STN; these are regulated in part by either α4β2 or α7 nAChRs. STN neurons containing α4β2 nAChRs (α4β2 neurons) received more glutamatergic inputs, and preferentially innervated GABAergic neurons in the substantia nigra pars reticulata. In contrast, STN neurons containing α7 nAChRs (α7 neurons) received more GABAergic inputs, and preferentially innervated dopaminergic neurons in the substantia nigra pars compacta. Interestingly, local electrical stimuli excited a majority (79%) of α4β2 neurons but exerted strong inhibition in 58% of α7 neurons, indicating an additional diversity of STN neurons: responses to electrical stimulation. Chronic exposure to nicotine selectively affects α4β2 nAChRs in STN: this treatment increased the number of α4β2 neurons, upregulated α4-containing nAChR number and sensitivity, and enhanced the basal firing rate of α4β2 neurons both ex vivo and in vivo. Thus, chronic nicotine enhances the function of the microcircuit involving α4β2 nAChRs. This indicates chronic exposure to nicotinic agonist as a potential pharmacological intervention to alter selectively the balance between these two microcircuits, and may provide a means to inhibit substantia nigra dopaminergic neurons.
Collapse
|
37
|
Abstract
BACKGROUND Dementia with Lewy body (DLB) is considered to be the second most common form of neurodegenerative disorders after Alzheimer's disease (AD), affecting as many as 100,000 people in the UK and up to 1.3 million in the USA. However, nearly half of patients with DLB remain undiagnosed thus depriving many of them from an early and adequate treatment of their distressing symptoms. Accurate and early diagnosis of DLB is important for both patients and their caregivers, since the neuropsychiatric symptoms require specific management. METHODS In the current study, we review the most recent developments in the field of molecular nuclear imaging to diagnose DLB. RESULTS The review addresses, the neurotransmitter based (dopaminergic, cholinergic, and glutamatergic) nuclear imaging techniques, role of the autonomic dysfunction and its visualization in DLB with myocardial sympathetic imaging and vesicular catecholamine uptake, as well as the use of amyloid polypeptides and glial markers as molecular imaging probes in the clinical diagnosis of DLB. CONCLUSIONS Most of the above nuclear imaging methods are restricted to highly specialized clinical centers, and thus not applicable to a large number of patients requiring dementia (e.g. DLB) diagnosis in routine clinical setting. Validating them against more readily accessible peripheral biomarkers, e.g. CSF and blood biomarkers linked to the DLB process, may facilitate their use in wider clinical settings.
Collapse
|
38
|
Matsumoto M. Dopamine signals and physiological origin of cognitive dysfunction in Parkinson's disease. Mov Disord 2015; 30:472-83. [PMID: 25773863 DOI: 10.1002/mds.26177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 01/08/2015] [Accepted: 01/19/2015] [Indexed: 11/12/2022] Open
Abstract
The pathological hallmark of Parkinson's disease (PD) is the degeneration of midbrain dopamine neurons. Cognitive dysfunction is a feature of PD patients even at the early stages of the disease. Electrophysiological studies on dopamine neurons in awake animals provide contradictory accounts of the role of dopamine. These studies have established that dopamine neurons convey a unique signal associated with rewards rather than cognitive functions. Emphasizing their role in reward processing leads to difficulty in developing hypothesis as to how cognitive impairments in PD are associated with the degeneration of dopamine circuitry. A hint to resolve this contradiction came from recent electrophysiological studies reporting that dopamine neurons transmit more diverse signals than previously thought. These studies suggest that dopamine neurons are divided into at least two functional subgroups, one signaling "motivational value" and the other signaling "salience." The former subgroup fits well with the conventional reward theory, whereas the latter subgroup has been shown to transmit signals related to salient but non-rewarding experiences such as aversive stimulations and cognitively demanding situations. This article reviews recent advances in understanding the non-reward functions of dopamine, and then discusses the possibility that cognitive dysfunction in PD is at least partially caused by the degeneration of the dopamine neuron subgroup signaling the salience of events in the environment.
Collapse
Affiliation(s)
- Masayuki Matsumoto
- Laboratory of Cognitive and Behavioral Neuroscience, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
39
|
Matsunaga S, Kishi T, Iwata N. Combination therapy with cholinesterase inhibitors and memantine for Alzheimer's disease: a systematic review and meta-analysis. Int J Neuropsychopharmacol 2015; 18:pyu115. [PMID: 25548104 PMCID: PMC4376554 DOI: 10.1093/ijnp/pyu115] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We performed an updated meta-analysis of randomized controlled trials of combination therapy with cholinesterase inhibitors and memantine in patients with Alzheimer's disease. METHODS We reviewed cognitive function, activities of daily living, behavioral disturbance, global assessment, discontinuation rate, and individual side effects. RESULTS Seven studies (total n=2182) were identified. Combination therapy significantly affected behavioral disturbance scores (standardized mean difference=-0.13), activity of daily living scores (standardized mean difference=-0.10), and global assessment scores (standardized mean difference=-0.15). In addition, cognitive function scores (standardized mean difference=-0.13, P=.06) exhibited favorable trends with combination therapy. The effects of combination therapy were more significant in the moderate-to-severe Alzheimer's disease subgroup in terms of all efficacy outcome scores. The discontinuation rate was similar in both groups, and there were no significant differences in individual side effects. CONCLUSIONS Combination therapy was beneficial for the treatment of moderate-to-severe Alzheimer's disease in terms of cognition, behavioral disturbances, activities of daily living, and global assessment was well tolerated.
Collapse
Affiliation(s)
- Shinji Matsunaga
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.
| | | | | |
Collapse
|
40
|
Abstract
Facilitation of different attentional functions by nicotinic acetylcholine receptor (nAChR) agonists may be of therapeutic potential in disease conditions such as Alzheimer's disease or schizophrenia. For this reason, the neuronal mechanisms underlying these effects have been the focus of research in humans and in preclinical models. Attention-enhancing effects of the nonselective nAChR agonist nicotine can be observed in human nonsmokers and in laboratory animals, suggesting that benefits go beyond a reversal of withdrawal deficits in smokers. The ultimate aim is to develop compounds acting with greater selectivity than nicotine at a subset of nAChRs, with an effects profile narrowly matching the targeted cognitive deficits and minimizing unwanted effects. To date, compounds tested clinically target the nAChR subtypes most abundant in the brain. To help pinpoint more selectively expressed subtypes critical for attention, studies have aimed at identifying the secondary neurotransmitter systems whose stimulation mediates the attention-enhancing properties of nicotine. Evidence indicates that noradrenaline and glutamate, but not dopamine release, are critical mediators. Thus, attention-enhancing nAChR agents could spare the system central to nicotine dependence. Neuroimaging studies suggest that nAChR agonists act on a variety of brain systems by enhancing activation, reducing activation, and enhancing deactivation by attention tasks. This supports the notion that effects on different attentional functions may be mediated by distinct central mechanisms, consistent with the fact that nAChRs interact with a multitude of brain sites and neurotransmitter systems. The challenge will be to achieve the optimal tone at the right subset of nAChR subtypes to modulate specific attentional functions, employing not just direct agonist properties, but also positive allosteric modulation and low-dose antagonism.
Collapse
Affiliation(s)
- Britta Hahn
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA,
| |
Collapse
|
41
|
Savjani RR, Velasquez KM, Thompson-Lake DGY, Baldwin PR, Eagleman DM, De La Garza R, Salas R. Characterizing white matter changes in cigarette smokers via diffusion tensor imaging. Drug Alcohol Depend 2014; 145:134-42. [PMID: 25457737 DOI: 10.1016/j.drugalcdep.2014.10.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/18/2014] [Accepted: 10/04/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Tobacco use remains the most preventable cause of death; however, its effects on the brain, and particularly white matter, remain elusive. Previous diffusion tensor imaging (DTI) studies have failed to yield consistent findings, with some reporting elevated measures of fractional anisotropy (FA) and others reporting lowered FA. METHODS In our study, we sought to elucidate the effects of tobacco on white matter by using enhanced imaging acquisition parameters and multiple analysis methods, including tract-based spatial statistics (TBSS) with crossing fiber measures and probabilistic tractography. RESULTS Our TBSS results revealed that chronic cigarette smokers have decreased FA in corpus callosum and bilateral anterior internal capsule, as well as specific reduced anisotropy in the two major fiber directions in a crossing fiber model. Further, our tractography results indicated that smokers have decreased FA in tracts projecting to the frontal cortex from (1) nucleus accumbens, (2) habenula, and (3) motor cortex. We also observed that smokers have greater disruptions in those regions when they had recently smoked compared to when they abstained from smoking for 24h. Our results also support previous evidence showing hemispheric asymmetry, with greater damage to the left side compared to the right. CONCLUSIONS These findings provide more conclusive evidence of white matter disruptions caused by nicotine use. By better understanding the neural disruptions correlating with cigarette smoking we can elucidate the addictive course and explore targeted treatment regimens for nicotine dependence.
Collapse
Affiliation(s)
- Ricky R Savjani
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Kenia M Velasquez
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Daisy Gemma Yan Thompson-Lake
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Philip Rupert Baldwin
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - David M Eagleman
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Richard De La Garza
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Ramiro Salas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States.
| |
Collapse
|
42
|
Lorenz R, Samnick S, Dillmann U, Schiller M, Ong MF, Faßbender K, Buck A, Spiegel J. Nicotinic α4β2 acetylcholine receptors and cognitive function in Parkinson's disease. Acta Neurol Scand 2014; 130:164-71. [PMID: 24762290 DOI: 10.1111/ane.12259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Idiopathic Parkinson's disease (IPD) is characterized by the clinical motor symptoms of hypokinesia, rigidity, and tremor. Apart from these motor symptoms, cognitive deficits often occur in IPD. The positive effect of cholinesterase inhibitors on cognitive deficits in IPD and findings of earlier molecular imaging studies suggest that the cholinergic system plays an important role in the origin of cognitive decline in IPD. METHODS Twenty-five non-demented patients with IPD underwent a 5-[123I]iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380) SPECT to visualize α4β2 nicotinic acetylcholine receptors (nAchR) and cognitive testing with the CERAD (Consortium to Establish a Registry for Alzheimer's Disease) battery to identify domains of cognitive dysfunction. RESULTS In the CERAD, the IPD patients exhibited deficits in non-verbal memory, attention, psychomotor velocity, visuoconstructive ability, and executive functions. After Bonferroni correction for multiple comparisons, we found significant correlations between performance of the CERAD subtests Boston Naming Test (a specific test for visual perception and for detection of word-finding difficulties) and Word List Intrusions (a specific test for learning capacity and memory for language information) vs binding of α4β2 nAchR in cortical (the right superior parietal lobule) and subcortical areas (the left thalamus, the left posterior subcortical region, and the right posterior subcortical region). CONCLUSIONS These significant correlations between the results of the CERAD subtests and the cerebral α4β2 nAchR density, as assessed by 5-I-A-85380 SPECT, indicate that cerebral cholinergic pathways are relevant to cognitive processing in IPD.
Collapse
Affiliation(s)
- R. Lorenz
- Department of Nuclear Medicine; University of Würzburg; Würzburg Germany
| | - S. Samnick
- Department of Nuclear Medicine; University of Würzburg; Würzburg Germany
| | - U. Dillmann
- Department of Neurology; Saarland University; Homburg/Saar Germany
| | - M. Schiller
- Department of Nuclear Medicine; University of Würzburg; Würzburg Germany
| | - M. F. Ong
- Department of Biometry; Epidemiology and Medical Informatics; Saarland University; Homburg/Saar Germany
| | - K. Faßbender
- Department of Neurology; Saarland University; Homburg/Saar Germany
| | - A. Buck
- Department of Nuclear Medicine; University of Würzburg; Würzburg Germany
| | - J. Spiegel
- Department of Neurology; Saarland University; Homburg/Saar Germany
| |
Collapse
|
43
|
Abstract
There is increasing interest in the clinical effects of cholinergic basal forebrain and tegmental pedunculopontine complex (PPN) projection degeneration in Parkinson's disease (PD). Recent evidence supports an expanded role beyond cognitive impairment, including effects on olfaction, mood, REM sleep behavior disorder, and motor functions. Cholinergic denervation is variable in PD without dementia and may contribute to clinical symptom heterogeneity. Early in vivo imaging evidence that impaired cholinergic integrity of the PPN associates with frequent falling in PD is now confirmed by human post-mortem evidence. Brainstem cholinergic lesioning studies in primates confirm the role of the PPN in mobility impairment. Degeneration of basal forebrain cholinergic projections correlates with decreased walking speed. Cumulatively, these findings provide evidence for a new paradigm to explain dopamine-resistant features of mobility impairments in PD. Recognition of the increased clinical role of cholinergic system degeneration may motivate new research to expand indications for cholinergic therapy in PD.
Collapse
Affiliation(s)
- Martijn L T M Müller
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, Division of Nuclear Medicine, University of Michigan, 24 Frank Lloyd Wright Dr, Box #362, Ann Arbor, MI 48105, USA.
| | | |
Collapse
|
44
|
A randomized, double-blind, placebo-controlled crossover study of α4β 2* nicotinic acetylcholine receptor agonist AZD1446 (TC-6683) in adults with attention-deficit/hyperactivity disorder. Psychopharmacology (Berl) 2014; 231:1251-65. [PMID: 23640072 PMCID: PMC3838503 DOI: 10.1007/s00213-013-3116-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Stimulation of nicotinic cholinergic systems has been shown to alleviate ADHD symptoms and to improve cognitive performance. AZD1446 is a selective α4β2* nicotinic acetylcholine receptor agonist with potential effect on the symptoms of ADHD. OBJECTIVES The purpose of this study is to evaluate the efficacy, safety, and pharmacokinetics of AZD1446 in adults with ADHD treated for 2 weeks. METHOD This was a randomized, double-blind, placebo-controlled crossover trial. Participants were 79 adults with ADHD, grouped according to their use of nicotine-containing products. Nicotine non-users received placebo and two of three AZD1446 treatment regimens (80 mg tid, 80 mg qd, 10 mg tid). Nicotine users received placebo, AZD1446 80 mg tid and 80 mg qd. Efficacy measures included the Conners' Adult ADHD Rating Scale and cognitive measures of immediate and delayed verbal episodic memory, learning, attention, working memory, executive functioning, and spatial problem solving (CogState computerized test battery). RESULTS There was no significant effect of AZD1446 on any of the clinical scores irrespective of dose, schedule, or concomitant use of nicotine products. A statistically significant improvement was seen on the Groton Maze Learning Task, a measure of executive functioning, in nicotine non-users after treatment with AZD1446 80 mg qd. CONCLUSIONS AZD1446 was well tolerated, but did not significantly improve ADHD symptoms after 2 weeks of treatment compared to placebo. While the present study does not support the therapeutic utility of AZD1446 in ADHD, its potential pro-cognitive effects remain to be explored in other neuropsychiatric disorders.
Collapse
|
45
|
Role of acetylcholine in control of sexual behavior of male and female mammals. Pharmacol Biochem Behav 2014; 120:50-6. [PMID: 24561063 DOI: 10.1016/j.pbb.2014.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/04/2014] [Accepted: 02/13/2014] [Indexed: 11/22/2022]
Abstract
The results of studies using systemic or central applications of cholinergic drugs suggest that acetylcholine makes important contributions to the neurochemical control of male- and female-typical reproductive behaviors. In males, cholinergic control seems largely specific to some elements or aspects of copulatory behavior that can vary significantly across species. Synapses in or near the medial preoptic area represent part of this mechanism, but the entire system appears to extend more widely, perhaps especially to one or more structures flanking some part of the lateral ventricle. In females, the lordosis response that essentially defines sexual receptivity is clearly responsive to cholinergic drugs. The same seems likely to be true of other elements of female sexual behavior, but additional studies will be needed to confirm this. Changes in cholinergic activity may help to mediate estrogenic effects on female sexual behavior. However, estrogen exposure can increase or decrease cholinergic effects, suggesting a relationship that is complex and requires further analysis. Also presently unclear is the localization of the cholinergic effects on female sexual responses. Though periventricular sites again have been implicated, their identity is presently unknown. This review discusses these and other aspects of the central cholinergic systems affecting male and female sexual behaviors.
Collapse
|
46
|
Thiriez C, Villafane G, Grapin F, Fenelon G, Remy P, Cesaro P. Can nicotine be used medicinally in Parkinson’s disease? Expert Rev Clin Pharmacol 2014; 4:429-36. [DOI: 10.1586/ecp.11.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
47
|
Smits R, Fischer S, Hiller A, Deuther-Conrad W, Wenzel B, Patt M, Cumming P, Steinbach J, Sabri O, Brust P, Hoepping A. Synthesis and biological evaluation of both enantiomers of [(18)F]flubatine, promising radiotracers with fast kinetics for the imaging of α4β2-nicotinic acetylcholine receptors. Bioorg Med Chem 2013; 22:804-12. [PMID: 24369841 DOI: 10.1016/j.bmc.2013.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/29/2013] [Accepted: 12/05/2013] [Indexed: 11/30/2022]
Abstract
Both enantiomers of the epibatidine analogue flubatine display high affinity towards the α4β2 nicotinic acetylcholine receptor (nAChR) in vitro, accompanied by negligible interactions with diverse off-target proteins. Extended single dose toxicity studies in rodent indicated a NOEL (No Observed Effect Level) of 6.2μg/kg for (-)-flubatine and 1.55μg/kg for (+)-flubatine. We developed syntheses for both flubatine enantiomers and their corresponding precursors for radiolabeling. The newly synthesized trimethylammonium precursors allowed for highly efficient (18)F-radiolabelling in radiochemical yields >60% and specific activities >750GBq/μmol, thus making the radioligands practical for clinical investigation.
Collapse
Affiliation(s)
- René Smits
- ABX Advanced Biochemical Compounds GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454 Radeberg, Germany
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Achim Hiller
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Liebigstrasse 18, D-04103 Leipzig, Germany
| | - Paul Cumming
- ABX Advanced Biochemical Compounds GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454 Radeberg, Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Liebigstrasse 18, D-04103 Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Alexander Hoepping
- ABX Advanced Biochemical Compounds GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454 Radeberg, Germany.
| |
Collapse
|
48
|
Holland JP, Liang SH, Rotstein BH, Collier TL, Stephenson NA, Greguric I, Vasdev N. Alternative approaches for PET radiotracer development in Alzheimer's disease: imaging beyond plaque. J Labelled Comp Radiopharm 2013; 57:323-31. [PMID: 24327420 DOI: 10.1002/jlcr.3158] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/29/2013] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) and related dementias show increasing clinical prevalence, yet our understanding of the etiology and pathobiology of disease-related neurodegeneration remains limited. In this regard, noninvasive imaging with radiotracers for positron emission tomography (PET) presents a unique tool for quantifying spatial and temporal changes in characteristic biological markers of brain disease and for assessing potential drug efficacy. PET radiotracers targeting different protein markers are being developed to address questions pertaining to the molecular and/or genetic heterogeneity of AD and related dementias. For example, radiotracers including [(11) C]-PiB and [(18) F]-AV-45 (Florbetapir) are being used to measure the density of Aβ-plaques in AD patients and to interrogate the biological mechanisms of disease initiation and progression. Our focus is on the development of novel PET imaging agents, targeting proteins beyond Aβ-plaques, which can be used to investigate the broader mechanism of AD pathogenesis. Here, we present the chemical basis of various radiotracers which show promise in preclinical or clinical studies for use in evaluating the phenotypic or biochemical characteristics of AD. Radiotracers for PET imaging neuroinflammation, metal ion association with Aβ-plaques, tau protein, cholinergic and cannabinoid receptors, and enzymes including glycogen-synthase kinase-3β and monoamine oxidase B amongst others, and their connection to AD are highlighted.
Collapse
Affiliation(s)
- Jason P Holland
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, 55 Fruit St., White 427, Boston, Massachusetts, 02114, USA; Life Sciences, Australian Nuclear Science and Technology Organisation, Kirrawee, New South Wales, 2232, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Hillmer AT, Wooten DW, Slesarev MS, Ahlers EO, Barnhart TE, Schneider ML, Mukherjee J, Christian BT. Measuring α4β2* nicotinic acetylcholine receptor density in vivo with [(18)F]nifene PET in the nonhuman primate. J Cereb Blood Flow Metab 2013; 33:1806-14. [PMID: 23942367 PMCID: PMC3824181 DOI: 10.1038/jcbfm.2013.136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/07/2013] [Accepted: 07/05/2013] [Indexed: 11/09/2022]
Abstract
[(18)F]Nifene is an agonist PET radioligand developed to image α4β2* nicotinic acetylcholine receptors (nAChRs). This work aims to quantify the receptor density (Bmax) of α4β2* nAChRs and the in vivo (apparent) dissociation constant (KDapp) of [(18)F]nifene. Multiple-injection [(18)F]nifene experiments with varying cold nifene masses were conducted on four rhesus monkeys with a microPET P4 scanner. Compartment modeling techniques were used to estimate regional Bmax values and a global value of KDapp. The fast kinetic properties of [(18)F]nifene also permitted alternative estimates of Bmax and KDapp at transient equilibrium with the same experimental data using Scatchard-like methodologies. Averaged across subjects, the compartment modeling analysis yielded Bmax values of 4.8±1.4, 4.3±1.0, 1.2±0.4, and 1.2±0.3 pmol/mL in the regions of antereoventral thalamus, lateral geniculate, frontal cortex, and subiculum, respectively. The KDapp of nifene was 2.4±0.3 pmol/mL. The Scatchard analysis based on graphical evaluation of the data after transient equilibrium yielded Bmax estimations comparable to the modeling results with a positive bias of 28%. These findings show the utility of [(18)F]nifene for measuring α4β2* nAChR Bmax in vivo in the rhesus monkey with a single PET experiment.
Collapse
Affiliation(s)
- Ansel T Hillmer
- 1] Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA [2] Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kochunov P, Du X, Moran LV, Sampath H, Wijtenburg SA, Yang Y, Rowland LM, Stein EA, Hong LE. Acute nicotine administration effects on fractional anisotropy of cerebral white matter and associated attention performance. Front Pharmacol 2013; 4:117. [PMID: 24065920 PMCID: PMC3776159 DOI: 10.3389/fphar.2013.00117] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/29/2013] [Indexed: 11/16/2022] Open
Abstract
Introduction: Nicotinic acetylcholine receptors are present in the cerebral white matter (WM). We hypothesized that WM response to nicotine can be detected by diffusion tensor imaging (DTI); and that such responses may be associated with nicotine-led cognitive enhancement in sustained attention. Methods: A randomized, nicotine-placebo patch, crossover, double-blind clinical trial in two non-overlapping cohorts of smokers was used to test the hypothesis. The discovery cohort consisted of 39 subjects (N = 20/19 controls/schizophrenic patients, age = 36.8 ± 10.1 years) and the replication cohorts consisted of 38 healthy smokers (31.7 ± 10.5 years). WM integrity was measured by fractional anisotropy (FA) values for the whole brain and nine preselected WM tracts using tract-based-spatial-statistics. Results: Nicotine significantly enhanced FA values for the genu of corpus callosum compared with placebo (ΔFAgenu) (p = 0.01) in smokers with low recent smoking exposure as measured by low average cotinine level. This finding was replicated in the second cohort (p = 0.02). ΔFAgenu values explained 22% of variance in performance of a sustained attention task during the nicotine session (p = 0.006). However, this effect was limited to schizophrenia patients (r = 0.62 and 0.09; p = 0.003 and 0.7 for patients and controls, respectively). Conclusion: Acute pharmacological influence of nicotine patch on WM integrity appeared present, but was dependent on nicotine intake from recent smoking. Change in the WM integrity in the genu of corpus callosum was associated with a significant proportion of variability of nicotine-led changes in sustained attention/working memory of the smokers. Further studies will be necessary to understand biophysical underpinning of the nicotine-related changes in FA.
Collapse
Affiliation(s)
- Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Physics, University of Maryland Baltimore County, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|