1
|
Lunerti V, Li H, Benvenuti F, Shen Q, Domi A, Soverchia L, Concetta Di Martino RM, Bottegoni G, Haass-Koffler CL, Cannella N. The multitarget FAAH inhibitor/D3 partial agonist ARN15381 decreases nicotine self-administration in male rats. Eur J Pharmacol 2022; 928:175088. [PMID: 35690082 DOI: 10.1016/j.ejphar.2022.175088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/18/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
Tobacco use disorder is a worldwide health problem for which available medications show limited efficacy. Nicotine is the psychoactive component of tobacco responsible for its addictive liability. Similar to other addictive drugs, nicotine enhances mesolimbic dopamine transmission. Inhibition of the fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of the endocannabinoid anandamide (AEA), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), reduces nicotine-enhanced dopamine transmission and acquisition of nicotine self-administration in rats. Down-regulation of dopamine transmission by antagonists or partial agonists of the dopamine D3 receptor (DRD3) also reduced nicotine self-administration and conditioned place preference. Based on these premises, we evaluated the effect of ARN15381, a multitarget compound showing FAAH inhibition and DRD3 partial agonist activity in the low nanomolar range, on nicotine self-administration in rats. Pretreatment with ARN15381 dose dependently decreased self-administration of a nicotine dose at the top of the nicotine dose/response (D/R) curve, while it did not affect self-administration of a nicotine dose laying on the descending limb of the D/R curve. Conversely, pretreatment with the selective FAAH inhibitor URB597 and the DRD3 partial agonist CJB090 failed to modify nicotine self-administration independent of the nicotine dose self-administered. Our data indicates that the concomitant FAAH inhibition and DRD3 partial agonism produced by ARN15381 is key to the observed reduction of nicotine self-administration, demonstrating that a multitarget approach may hold clinical importance for the treatment of tobacco use disorder.
Collapse
Affiliation(s)
- Veronica Lunerti
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Hongwu Li
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy; School of Chemical Engineering, Changchun University of Changchung, 130012, China
| | | | - Qianwei Shen
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Ana Domi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Laura Soverchia
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | | | - Giovanni Bottegoni
- School of Pharmacy, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom; Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Department of Behavioral and Social Sciences, School of Public Health, Carney Institute for Brain Science, Brown University, USA
| | | |
Collapse
|
2
|
Di Martino RMC, Cavalli A, Bottegoni G. Dopamine D3 receptor ligands: a patent review (2014-2020). Expert Opin Ther Pat 2022; 32:605-627. [PMID: 35235753 DOI: 10.1080/13543776.2022.2049240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Compelling evidence identified D3 dopamine receptor (D3R) as a suitable target for therapeutic intervention on CNS-associated disorders, cancer and other conditions. Several efforts have been made toward developing potent and selective ligands for modulating signalling pathways operated by these GPCRs. The rational design of D3R ligands endowed with a pharmacologically relevant profile has traditionally not encountered much support from computational methods due to a very limited knowledge of the receptor structure and of its conformational dynamics. We believe that recent progress in structural biology will change this state of affairs in the next decade. AREAS COVERED This review provides an overview of the recent (2014-2020) patent literature on novel classes of D3R ligands developed within the framework of CNS-related diseases, cancer and additional conditions. When possible, an in-depth description of both in vitro and in vivo generated data is presented. New therapeutic applications of known molecules with activity at D3R are discussed. EXPERT OPINION Building on current knowledge, future D3R-focused drug discovery campaigns will be propelled by a combination of unprecedented availability of structural information with advanced computational and analytical methods. The design of D3R ligands with the sought activity, efficacy and selectivity profile will become increasingly more streamlined.
Collapse
Affiliation(s)
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.,Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Bologna University, via Belmeloro 6, 40126, Bologna, Italy
| | - Giovanni Bottegoni
- Department of Biomolecular Sciences, Urbino University "Carlo Bo", Piazza Rinascimento 6, 61029, Urbino, Italy.,Institute of Clinical Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| |
Collapse
|
3
|
The Role of Dopamine D3 Receptors in Tobacco Use Disorder: A Synthesis of the Preclinical and Clinical Literature. Curr Top Behav Neurosci 2022; 60:203-228. [PMID: 36173599 DOI: 10.1007/7854_2022_392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tobacco smoking is a significant cause of preventable morbidity and mortality globally. Current pharmacological approaches to treat tobacco use disorder (TUD) are only partly effective and novel approaches are needed. Dopamine has a well-established role in substance use disorders, including TUD, and there has been a long-standing interest in developing agents that target the dopaminergic system to treat substance use disorders. Dopamine has 5 receptor subtypes (DRD1 to DRD5). Given the localization and safety profile of the dopamine receptor D3 (DRD3), it is of therapeutic potential for TUD. In this chapter, the preclinical and clinical literature investigating the role of DRD3 in processes relevant to TUD will be reviewed, including in nicotine reinforcement, drug reinstatement, conditioned stimuli and cue-reactivity, executive function, and withdrawal. Similarities and differences in findings from the animal and human work will be synthesized and findings will be discussed in relation to the therapeutic potential of targeting DRD3 in TUD.
Collapse
|
4
|
Sokoloff P, Le Foll B. A Historical Perspective on the Dopamine D3 Receptor. Curr Top Behav Neurosci 2022; 60:1-28. [PMID: 35467293 DOI: 10.1007/7854_2022_315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Before 1990, the multiplicity of dopamine receptors beyond D1 and D2 had remained a controversial concept, despite its substantial clinical implications, at a time when it was widely accepted that dopamine interacted with only two receptor subtypes, termed D1 and D2, differing one from the other by their pharmacological specificity and opposite effects on adenylyl cyclase. It was also generally admitted that the therapeutic efficacy of antipsychotics resulted from blockade of D2 receptors. Thanks to molecular biology techniques, the D3 receptor could be characterized as a distinct molecular entity having a restricted anatomical gene expression and different signaling, which could imply peculiar functions in controlling cognitive and emotional behaviors. Due to the structural similarities of D2 and D3 receptors, the search for D3-selective compounds proved to be difficult, but nevertheless led to the identification of fairly potent and in vitro and in vivo selective compounds. The latter permitted to confirm a role of D3 receptors in motor functions, addiction, cognition, and schizophrenia, which paved the way for the development of new drugs for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada. .,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada. .,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada. .,Departments of Family and Community Medicine, University of Toronto, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada. .,Waypoint Research Institute, Waypoint Centre for Mental Health Care, 5, Penetanguishene, ON, Canada.
| |
Collapse
|
5
|
Miladinovic T, Manwell LA, Raaphorst E, Malecki SL, Rana SA, Mallet PE. Effects of chronic nicotine exposure on Δ 9-tetrahydrocannabinol-induced locomotor activity and neural activation in male and female adolescent and adult rats. Pharmacol Biochem Behav 2020; 194:172931. [PMID: 32353393 DOI: 10.1016/j.pbb.2020.172931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 03/27/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE High rates of comorbid tobacco and cannabis use in adolescents and young adults may be related to functional interactions between the nicotinic cholinergic and cannabinoid systems in the brain during development. This study examined the effects of chronic exposure to nicotine (the psychoactive component in tobacco) on acute exposure to delta-9-tetrahydrocannabinol (THC) (the psychoactive component of cannabis). METHODS Male and female adolescent and adult Sprague-Dawley rats (N = 112) were injected daily with nicotine (1 mg/kg, i.p.) or vehicle for 14 days, followed by a 14-day drug-free period. On test day, rats were injected with THC (5 mg/kg, i.p.) or vehicle, locomotor activity was recorded for 2 h, and brains harvested for c-Fos immunoreactivity (IR). RESULTS Locomotor activity and c-Fos IR changes induced by THC challenge were altered by nicotine pre-exposure and modified by age and sex. THC-induced suppression of locomotor activity was attenuated by nicotine pre-exposure in adult but not adolescent males. THC-induced suppression of locomotor activity was potentiated by nicotine pre-exposure in female adolescents, with no effects of THC or nicotine observed in female adults. THC increased c-Fos IR in the caudate, nucleus accumbens, stria terminalis, septum, amygdala, hypothalamus, and thalamus. Nicotine pre-exposure potentiated this effect in all regions. Several brain regions showed age and sex differences in c-Fos IR such that expression was greater in adults than adolescents and in females than males. CONCLUSIONS Chronic nicotine pre-exposure produces lasting effects on cannabinoid-mediated signalling in the brain and on behaviour that are mediated by age and sex. FUNDING SUPPORT NSERC.
Collapse
Affiliation(s)
- T Miladinovic
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada
| | - L A Manwell
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada.
| | - E Raaphorst
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada
| | - S L Malecki
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada
| | - S A Rana
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada
| | - P E Mallet
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON N2L3C5, Canada
| |
Collapse
|
6
|
Manwell LA, Miladinovic T, Raaphorst E, Rana S, Malecki S, Mallet PE. Chronic nicotine exposure attenuates the effects of Δ 9 -tetrahydrocannabinol on anxiety-related behavior and social interaction in adult male and female rats. Brain Behav 2019; 9:e01375. [PMID: 31583843 PMCID: PMC6851810 DOI: 10.1002/brb3.1375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Anxiogenic and anxiolytic effects of cannabinoids are mediated by different mechanisms, including neural signaling via cannabinoid receptors (CBRs) and nicotinic cholinergic receptors (nAChRs). This study examined the effects of prior nicotine (the psychoactive component in tobacco) exposure on behavioral sensitivity to delta-9-tetrahydrocannabinol (THC; the psychoactive component of cannabis) challenge in animals. METHODS Male and female adult Sprague-Dawley rats (N = 96) were injected daily with nicotine (1 mg/kg, i.p.) or vehicle for 14 days, followed by a 14-day drug-free period. On test day, rats were injected with THC (0.5, 2.0, or 5.0 mg/kg, i.p.) or vehicle and anxiety-related behavior was assessed in the emergence (EM), elevated plus maze (EPM), and social interaction (SI) tests. RESULTS Chronic nicotine pretreatment attenuated some of the anxiogenic effects induced by THC challenge which can be summarized as follows: (a) THC dose-dependently affected locomotor activity, exploratory behavior, and social interaction in the EM, EPM, and SI tests of unconditioned anxiety; (b) these effects of acute THC challenge were greater in females compared with males except for grooming a conspecific; (c) prior nicotine exposure attenuated the effects of acute THC challenge for locomotor activity in the EPM test; and (d) prior nicotine exposure attenuated the effects of THC challenge for direct but not indirect physical interaction in the SI tests. CONCLUSIONS The ability of nicotine prior exposure to produce long-lasting changes that alter the effects of acute THC administration suggests that chronic nicotine may induce neuroplastic changes that influence the subsequent response to novel THC exposure.
Collapse
Affiliation(s)
| | | | - Elana Raaphorst
- Department of PsychologyWilfrid Laurier UniversityWaterlooONCanada
| | - Shadna Rana
- Department of PsychologyWilfrid Laurier UniversityWaterlooONCanada
| | - Sarah Malecki
- Department of PsychologyWilfrid Laurier UniversityWaterlooONCanada
| | - Paul E. Mallet
- Department of PsychologyWilfrid Laurier UniversityWaterlooONCanada
| |
Collapse
|
7
|
Acharya S, Kim KM. α4β2 nicotinic acetylcholine receptor downregulates D 3 dopamine receptor expression through protein kinase C activation. Biochem Biophys Res Commun 2019; 514:665-671. [PMID: 31078264 DOI: 10.1016/j.bbrc.2019.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 02/08/2023]
Abstract
Receptor transactivation or crosstalk refers to instances in which the signaling of a given receptor is regulated by different classes of receptors. Functional crosstalk between α4β2 nicotinic acetylcholine receptor (nAChR) and D3 dopamine receptor (D3R) that belong to the family of ligand-gated ion channels and G protein-coupled receptors, respectively, has been reported from brain dopaminergic neurons. For example, D3R is involved in the development of reward-related behaviors induced by α4β2 nAChR stimulation. However, the molecular mechanisms involved in their crosstalk remain unclear. Among PKC isoforms (α, βII, γ, and δ) evaluated in this study, PKCβII interacted with D3R and potentiated D3R endocytosis. Following α4β2 nAChR stimulation, activated PKCβII translocated to the plasma membrane to induce clathrin-mediated endocytosis of D3R, resulting in downregulation and signal inhibition. Considering that D3R plays important roles in mediating reward-related physiological actions of α4β2 nAChR, this study could provide a new insight into the regulatory mechanism involved in nicotine addiction.
Collapse
Affiliation(s)
- Srijan Acharya
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Republic of Korea.
| |
Collapse
|
8
|
Bariselli S, Contestabile A, Tzanoulinou S, Musardo S, Bellone C. SHANK3 Downregulation in the Ventral Tegmental Area Accelerates the Extinction of Contextual Associations Induced by Juvenile Non-familiar Conspecific Interaction. Front Mol Neurosci 2018; 11:360. [PMID: 30364266 PMCID: PMC6193109 DOI: 10.3389/fnmol.2018.00360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/12/2018] [Indexed: 01/14/2023] Open
Abstract
Haploinsufficiency of the SHANK3 gene, encoding for a scaffolding protein located in the postsynaptic density of glutamatergic synapse, has been linked to forms of autism spectrum disorders (ASDs). It has been shown that SHANK3 controls the maturation of social reward circuits in the ventral tegmental area (VTA). Whether the impairments in associative learning observed in ASD relate to SHANK3 insufficiency restricted to the reward system is still an open question. Here, we first characterize a social-conditioned place preference (CPP) paradigm based on the direct and free interaction with a juvenile and non-familiar conspecific. In both group- and single-housed C57Bl6/j late adolescence male mice, this CPP protocol promotes the formation of social-induced contextual associations that undergo extinction. Interestingly, the downregulation of Shank3 expression in the VTA altered the habituation to a non-familiar conspecific during conditioning and accelerated the extinction of social-induced conditioned responses. Thus, inspired by the literature on drugs of abuse-induced contextual learning, we propose that acquisition and extinction of CPP might be used as behavioral assays to assess social-induced contextual association and “social-seeking” dysfunctions in animal models of psychiatric disorders.
Collapse
Affiliation(s)
- Sebastiano Bariselli
- Department of Fundamental Neuroscience, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Alessandro Contestabile
- Department of Fundamental Neuroscience, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Stamatina Tzanoulinou
- Department of Fundamental Neuroscience, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Stefano Musardo
- Department of Fundamental Neuroscience, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Camilla Bellone
- Department of Fundamental Neuroscience, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| |
Collapse
|
9
|
Dopamine D1 and D3 receptor polypharmacology as a potential treatment approach for substance use disorder. Neurosci Biobehav Rev 2018; 89:13-28. [PMID: 29577963 DOI: 10.1016/j.neubiorev.2018.03.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/29/2022]
Abstract
In the search for efficacious pharmacotherapies to treat cocaine addiction much attention has been given to agents targeting dopamine D1 or D3 receptors because of the involvement of these receptors in drug-related behaviors. D1-like and D3 receptor partial agonists and antagonists have been shown to reduce drug reward, reinstatement of drug seeking and conditioned place preference in rodents and non-human primates. However, translation of these encouraging results to clinical settings has been limited due to a number of factors including toxicity, poor pharmacokinetic properties and extrapyramidal and sedative side effects. This review highlights the role of D1 and D3 receptors in drug reward and seeking, the discovery of D1-D3 heteromers and their potential as targets in the treatment of addiction.
Collapse
|
10
|
Dopamine D3 and acetylcholine nicotinic receptor heteromerization in midbrain dopamine neurons: Relevance for neuroplasticity. Eur Neuropsychopharmacol 2017; 27:313-324. [PMID: 28187919 DOI: 10.1016/j.euroneuro.2017.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/07/2017] [Accepted: 01/28/2017] [Indexed: 11/22/2022]
Abstract
Activation of nicotinic acetylcholine receptors (nAChR) promotes the morphological remodeling of cultured dopamine (DA) neurons, an effect requiring functional DA D3 receptors (D3R). The aim of this study was to investigate the mechanisms mediating D3R-nAChR cross-talk in the modulation of DA neuron structural plasticity. By using bioluminescence resonance energy transfer2 (BRET2) and proximity ligation assay (PLA), evidence for the existence of D3R-nAChR heteromers has been obtained. In particular, BRET2 showed that the D3R directly and specifically interacts with the β2 subunit of the nAChR. The D3R-nAChR complex was also identified in cultured DA neurons and in mouse Substantia Nigra/Ventral Tegmental Area by PLA. Cell permeable interfering peptides, containing highly charged amino acid sequences from the third intracellular loop of D3R (TAT-D3R) or the second intracellular loop of the β2 subunit (TAT-β2), were developed. Both peptides, but not their scrambled counterparts, significantly reduced the BRET2 signal generated by D3R-GFP2 and β2-Rluc. Similarly, the PLA signal was undetectable in DA neurons exposed to the interfering peptides. Moreover, interfering peptides abolished the neurotrophic effects of nicotine on DA neurons. Taken together these data first demonstrate that a D3R-nAChR heteromer is present in DA neurons and represents the functional unit mediating the neurotrophic effects of nicotine.
Collapse
|
11
|
Hurtado MM, García R, Puerto A. Tiapride prevents the aversive but not the rewarding effect induced by parabrachial electrical stimulation in a place preference task. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Sokoloff P, Le Foll B. The dopamine D3 receptor, a quarter century later. Eur J Neurosci 2016; 45:2-19. [DOI: 10.1111/ejn.13390] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/23/2016] [Accepted: 08/28/2016] [Indexed: 12/16/2022]
Affiliation(s)
| | - Bernard Le Foll
- Centre for Addiction and Mental Health; Toronto ON Canada
- University of Toronto; Toronto ON Canada
| |
Collapse
|
13
|
Cortés A, Moreno E, Rodríguez-Ruiz M, Canela EI, Casadó V. Targeting the dopamine D3 receptor: an overview of drug design strategies. Expert Opin Drug Discov 2016; 11:641-64. [PMID: 27135354 DOI: 10.1080/17460441.2016.1185413] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Dopamine is a neurotransmitter widely distributed in both the periphery and the central nervous system (CNS). Its physiological effects are mediated by five closely related G protein-coupled receptors (GPCRs) that are divided into two major subclasses: the D1-like (D1, D5) and the D2-like (D2, D3, D4) receptors. D3 receptors (D3Rs) have the highest density in the limbic areas of the brain, which are associated with cognitive and emotional functions. These receptors are therefore attractive targets for therapeutic management. AREAS COVERED This review summarizes the functional and pharmacological characteristics of D3Rs, including the design and clinical relevance of full agonists, partial agonists and antagonists, as well as the capacity of these receptors to form active homodimers, heterodimers or higher order receptor complexes as pharmacological targets in several neurological and neurodegenerative disorders. EXPERT OPINION The high sequence homology between D3R and the D2-type challenges the development of D3R-selective compounds. The design of new D3R-preferential ligands with improved physicochemical properties should provide a better pharmacokinetic/bioavailability profile and lesser toxicity than is found with existing D3R ligands. It is also essential to optimize D3R affinity and, especially, D3R vs. D2-type binding and functional selectivity ratios. Developing allosteric and bitopic ligands should help to improve the D3R selectivity of these drugs. As most evidence points to the ability of GPCRs to form homomers and heteromers, the most promising therapeutic strategy in the future is likely to involve the application of heteromer-selective drugs. These selective ligands would display different affinities for a given receptor depending on the receptor partners within the heteromer. Therefore, designing novel compounds that specifically target and modulate D1R-D3R heteromers would be an interesting approach for the treatment of levodopa (L-DOPA)-induced dyskinesias.
Collapse
Affiliation(s)
- Antoni Cortés
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Estefanía Moreno
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Mar Rodríguez-Ruiz
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Enric I Canela
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Vicent Casadó
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| |
Collapse
|
14
|
Fraser KM, Haight JL, Gardner EL, Flagel SB. Examining the role of dopamine D2 and D3 receptors in Pavlovian conditioned approach behaviors. Behav Brain Res 2016; 305:87-99. [PMID: 26909847 DOI: 10.1016/j.bbr.2016.02.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/26/2016] [Accepted: 02/19/2016] [Indexed: 11/16/2022]
Abstract
Elucidating the neurobiological mechanisms underlying individual differences in the extent to which reward cues acquire the ability to act as incentive stimuli may contribute to the development of successful treatments for addiction and related disorders. We used the sign-tracker/goal-tracker animal model to examine the role of dopamine D2 and D3 receptors in the propensity to attribute incentive salience to reward cues. Following Pavlovian training, wherein a discrete lever-cue was paired with food reward, rats were classified as sign- or goal-trackers based on the resultant conditioned response. We examined the effects of D2/D3 agonists, 7-OH-DPAT (0.01-0.32mg/kg) or pramipexole (0.032-0.32mg/kg), the D2/D3 antagonist raclopride (0.1mg/kg), and the selective D3 antagonist, SB-277011A (6 or 24mg/kg), on the expression of sign- and goal-tracking conditioned responses. The lever-cue acquired predictive value and elicited a conditioned response for sign- and goal-trackers, but only for sign-trackers did it also acquire incentive value. Following administration of either 7-OH-DPAT, pramipexole, or raclopride, the performance of the previously acquired conditioned response was attenuated for both sign- and goal-trackers. For sign-trackers, the D2/D3 agonist, 7-OH-DPAT, also attenuated the conditioned reinforcing properties of the lever-cue. The selective D3 antagonist did not affect either conditioned response. Alterations in D2/D3 receptor signaling, but not D3 signaling alone, transiently attenuate a previously acquired Pavlovian conditioned response, regardless of whether the response is a result of incentive motivational processes. These findings suggest activity at the dopamine D2 receptor is critical for a reward cue to maintain either its incentive or predictive qualities.
Collapse
Affiliation(s)
- Kurt M Fraser
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI, United States; Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Joshua L Haight
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Eliot L Gardner
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Shelly B Flagel
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI, United States; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
15
|
Sabioni P, Di Ciano P, Le Foll B. Effect of a D3 receptor antagonist on context-induced reinstatement of nicotine seeking. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:149-54. [PMID: 26279138 DOI: 10.1016/j.pnpbp.2015.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/30/2015] [Accepted: 08/08/2015] [Indexed: 11/26/2022]
Abstract
Despite the existence of several treatment options for smoking cessation, the rate of relapse after treatment is very high. We and others have proposed that targeting the dopamine D3 receptor (DRD3) may be a good strategy for treatment of nicotine dependence. In human participants, reintroduction to an environment previously associated with drug-taking may induce relapse. In animals, such phenomenon can be studied using the context-induced reinstatement paradigm. As the role of DRD3 in context-induced reinstatement of nicotine-seeking has not yet been explored, we investigated the effects of different doses of the selective DRD3 antagonist SB-277011-A on this reinstatement. Sprague-Dawley adult rats were first trained to self-administer nicotine and subsequently underwent extinction in a second context for 5-7 days. We evaluated the effect of 1, 3 or 10mg/kg of SB-277011-A administered prior to the reintroduction to the training context. We used two different designs: 1) a between-subjects design with a unique reinstatement test; and 2) a counterbalanced within-subjects design, with 4 reinstatement tests. Our findings indicate that, in the within-subjects design, the magnitude of responding induced by the context-induced reinstatement of nicotine seeking was robust during the first reinstatement test, but significantly decreased with repeated testing. SB-277011-A (10mg/kg) blocked context-induced reinstatement of nicotine-seeking at first exposure to the context (between-subjects design), but not after repeated context exposure which produced weaker reinstatement over days. Our results support a role for DRD3 mediating context-induced reinstatement of nicotine seeking, but these effects may not be sustained over time. Further studies should explore this in human participants for validation.
Collapse
Affiliation(s)
- Pamela Sabioni
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Patricia Di Ciano
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Drago F. The dopamine D3 receptor: From preclinical studies to the treatment of psychiatric disorders. Eur Neuropsychopharmacol 2015; 25:1399-400. [PMID: 26278782 DOI: 10.1016/j.euroneuro.2015.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Filippo Drago
- Department of Biomedical and Biotechnological Sciences University of Catania, School of Medicine, Via S. Sofia 64, 95125 Catania, Italy.
| |
Collapse
|
17
|
John WS, Newman AH, Nader MA. Differential effects of the dopamine D3 receptor antagonist PG01037 on cocaine and methamphetamine self-administration in rhesus monkeys. Neuropharmacology 2015; 92:34-43. [PMID: 25576373 PMCID: PMC4346463 DOI: 10.1016/j.neuropharm.2014.12.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022]
Abstract
The dopamine D3 receptor (D3R) has been shown to mediate many of the behavioral effects of psychostimulants associated with high abuse potential. This study extended the assessment of the highly selective D3R antagonist PG01037 on cocaine and methamphetamine (MA) self-administration to include a food-drug choice procedure. Eight male rhesus monkeys (n=4/group) served as subjects in which complete cocaine and MA dose-response curves were determined daily in each session. When choice was stable, monkeys received acute and five-day treatment of PG01037 (1.0-5.6 mg/kg, i.v.). Acute administration of PG01037 was effective in reallocating choice from cocaine to food and decreasing cocaine intake, however, tolerance developed by day 5 of treatment. Up to doses that disrupted responding, MA choice and intake were not affected by PG01037 treatment. PG01037 decreased total reinforcers earned per session and the behavioral potency was significantly greater on MA-food choice compared to cocaine-food choice. Furthermore, the acute efficacy of PG01037 was correlated with the sensitivity of the D3/D2R agonist quinpirole to elicit yawning. These data suggest (1) that efficacy of D3R compounds in decreasing drug choice is greater in subjects with lower D3R, perhaps suggesting that it is percent occupancy that is the critical variable in determining efficacy and (2) differences in D3R activity in chronic cocaine vs. MA users. Although tolerance developed to the effects of PG01037 treatment on cocaine choice, tolerance did not develop to the disruptive effects on food-maintained responding. These findings suggest that combination treatments that decrease cocaine-induced elevations in DA may enhance the efficacy of D3R antagonists on cocaine self-administration.
Collapse
Affiliation(s)
- William S John
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
18
|
Paterson NE, Vocci F, Sevak RJ, Wagreich E, London ED. Dopamine D3 receptors as a therapeutic target for methamphetamine dependence. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2015; 40:1-9. [PMID: 24359505 DOI: 10.3109/00952990.2013.858723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Methamphetamine (MA) use disorders are major public health problems nationally and worldwide and treatment remains an unmet need. OBJECTIVES (1) To review preclinical and clinical studies identifying the dopamine D3 receptor as a therapeutic target for substance use disorders (SUDs), including MA dependence, (2) to consider buspirone (Buspar®) as a potential medication based on its dopamine D3 receptor antagonist properties, and (3) to evaluate the safety and initial efficacy of buspirone in a pilot study of MA-dependent individuals. METHODS Literature on the dopamine D3 receptor as a therapeutic target and on the potential of buspirone as a novel therapy for MA dependence was reviewed. The cardiovascular and subjective effects of intravenous MA challenge were assessed in five non-treatment seeking individuals. Participants met DSM-IV criteria for MA dependence and were treated subacutely (9 days) with buspirone (60 mg daily). RESULTS The literature identified the dopamine D3 receptor as a therapeutic target for MA dependence, a safe and approved medication, and a valuable opportunity to re-purpose buspirone for treating MA dependence and perhaps other SUDs. Pilot data (n = 5) indicated that buspirone is safe in MA-using individuals and comparison against historical placebo data from this laboratory suggested that at least some aspects of the subjective properties of MA may be diminished during buspirone treatment. CONCLUSION Future studies should include a small-scale, placebo-controlled Phase IIa trial of buspirone in MA dependence.
Collapse
Affiliation(s)
- Neil E Paterson
- Department of Psychiatry and Biobehavioral Sciences, University of California , Los Angeles, CA , USA
| | | | | | | | | |
Collapse
|
19
|
Dopamine D3 receptors in the basolateral amygdala and the lateral habenula modulate cue-induced reinstatement of nicotine seeking. Neuropsychopharmacology 2014; 39:3049-58. [PMID: 24998621 PMCID: PMC4229576 DOI: 10.1038/npp.2014.158] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 01/27/2023]
Abstract
Dopamine D3 receptors are implicated in cue-induced relapse to drug seeking. We have previously shown that systemic administration of a selective D3 antagonist reduces cue-induced reinstatement of nicotine seeking in rats. The current study sought to investigate potential neural substrates mediating this effect. The D3 antagonist SB-277011-A (0.01-1 μg/0.5 μl/side) infused into the basolateral amygdala or the lateral habenula, but not the nucleus accumbens, significantly attenuated cue-induced reinstatement of nicotine seeking. Moreover, infusion of SB-277011-A (1 μg/0.5 μl/side) into the basolateral amygdala or lateral habenula had no effect on food self-administration. Together with the finding that systemic SB-277011-A had no effect on extinction responding, this suggests that the effects observed here were on reinstatement and cue seeking, and not due to nonspecific motor activation or contextual-modified residual responding. The further finding of binding of [(125)I]7-OH-PIPAT to D3 receptors in the lateral habenula and in the basolateral amygdala is consistent with an important role of D3 receptors in these areas in nicotine seeking. It was also found that systemic administration of the selective D2 antagonist L741626 decreased cue-induced reinstatement, consistent with a role of D2 and D3 receptors in modulating this behavior. The current study supports an important role for D3 receptors in the basolateral amygdala and lateral habenula in cue-induced reinstatement.
Collapse
|
20
|
Uguen M, Perrin D, Belliard S, Ligneau X, Beardsley PM, Lecomte JM, Schwartz JC. Preclinical evaluation of the abuse potential of Pitolisant, a histamine H₃ receptor inverse agonist/antagonist compared with Modafinil. Br J Pharmacol 2014; 169:632-44. [PMID: 23472741 DOI: 10.1111/bph.12149] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/15/2012] [Accepted: 01/01/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Pitolisant, a histamine H₃ receptor inverse agonist/antagonist is currently under Phase III clinical trials for treatment of excessive daytime sleepiness namely in narcoleptic patients. Its drug abuse potential was investigated using in vivo models in rodents and monkeys and compared with those of Modafinil, a psychostimulant currently used in the same indications. EXPERIMENTAL APPROACH Effects of Pitolisant on dopamine release in the nucleus accumbens, on spontaneous and cocaine-induced locomotion, locomotor sensitization were monitored. It was also tested in three standard drug abuse tests i.e. conditioned place preference in rats, self-administration in monkeys and cocaine discrimination in mice as well as in a physical dependence model. KEY RESULTS Pitolisant did not elicit any significant changes in dopaminergic indices in rat nucleus accumbens whereas Modafinil increased dopamine release. In rodents, Pitolisant was without any effect on locomotion and reduced the cocaine-induced hyperlocomotion. In addition, no locomotor sensitization and no conditioned hyperlocomotion were evidenced with this compound in rats whereas significant effects were elicited by Modafinil. Finally, Pitolisant was devoid of any significant effects in the three standard drug abuse tests (including self-administration in monkeys) and in the physical dependence model. CONCLUSIONS AND IMPLICATIONS No potential drug abuse liability for Pitolisant was evidenced in various in vivo rodent and primate models, whereas the same does not seem so clear in the case of Modafinil.
Collapse
Affiliation(s)
- M Uguen
- Bioprojet-Biotech, Saint Grégoire Cedex, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Le Foll B, Wilson AA, Graff A, Boileau I, Di Ciano P. Recent methods for measuring dopamine D3 receptor occupancy in vivo: importance for drug development. Front Pharmacol 2014; 5:161. [PMID: 25071579 PMCID: PMC4090596 DOI: 10.3389/fphar.2014.00161] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 06/19/2014] [Indexed: 01/09/2023] Open
Abstract
There is considerable interest in developing highly selective dopamine (DA) D3 receptor ligands for a variety of mental health disorders. DA D3 receptors have been implicated in Parkinson's disease, schizophrenia, anxiety, depression, and substance use disorders. The most concrete evidence suggests a role for the D3 receptor in drug-seeking behaviors. D3 receptors are a subtype of D2 receptors, and traditionally the functional role of these two receptors has been difficult to differentiate. Over the past 10-15 years a number of compounds selective for D3 over D2 receptors have been developed. However, translating these findings into clinical research has been difficult as many of these compounds cannot be used in humans. Therefore, the functional data involving the D3 receptor in drug addiction mostly comes from pre-clinical studies. Recently, with the advent of [(11)C]-(+)-PHNO, it has become possible to image D3 receptors in the human brain with increased selectivity and sensitivity. This is a significant innovation over traditional methods such as [(11)C]-raclopride that cannot differentiate between D2 and D3 receptors. The use of [(11)C]-(+)-PHNO will allow for further delineation of the role of D3 receptors. Here, we review recent evidence that the role of the D3 receptor has functional importance and is distinct from the role of the D2 receptor. We then introduce the utility of analyzing [(11)C]-(+)-PHNO binding by region of interest. This novel methodology can be used in pre-clinical and clinical approaches for the measurement of occupancy of both D3 and D2 receptors. Evidence that [(11)C]-(+)-PHNO can provide insights into the function of D3 receptors in addiction is also presented.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada ; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health Toronto, ON, Canada ; Department of Family and Community Medicine, University of Toronto Toronto, ON, Canada ; Department of Pharmacology, University of Toronto Toronto, ON, Canada ; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Institute of Medical Sciences, University of Toronto Toronto, ON, Canada
| | - Alan A Wilson
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada ; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Ariel Graff
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada ; Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Isabelle Boileau
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada ; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Institute of Medical Sciences, University of Toronto Toronto, ON, Canada ; Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada ; Addiction Imaging Research Group, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Patricia Di Ciano
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada
| |
Collapse
|
22
|
Aubin HJ, Luquiens A, Berlin I. Pharmacotherapy for smoking cessation: pharmacological principles and clinical practice. Br J Clin Pharmacol 2014; 77:324-36. [PMID: 23488726 PMCID: PMC4014023 DOI: 10.1111/bcp.12116] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 02/11/2013] [Indexed: 11/30/2022] Open
Abstract
Strategies for assisting smoking cessation include behavioural counselling to enhance motivation and to support attempts to quit and pharmacological intervention to reduce nicotine reinforcement and withdrawal from nicotine. Three drugs are currently used as first line pharmacotherapy for smoking cessation, nicotine replacement therapy, bupropion and varenicline. Compared with placebo, the drug effect varies from 2.27 (95% CI 2.02, 2.55) for varenicline, 1.69 (95% CI 1.53, 1.85) for bupropion and 1.60 (95% CI 1.53, 1.68) for any form of nicotine replacement therapy. Despite some controversy regarding the safety of bupropion and varenicline, regulatory agencies consider these drugs as having a favourable benefit/risk profile. However, given the high rate of psychiatric comorbidity in dependent smokers, practitioners should closely monitor patients for neuropsychiatric symptoms. Second-line pharmacotherapies include nortriptyline and clonidine. This review also offers an overview of pipeline developments and issues related to smoking cessation in special populations such as persons with psychiatric comorbidity and pregnant and adolescent smokers.
Collapse
Affiliation(s)
- Henri-Jean Aubin
- Centre d'enseignement, de recherche, et de traitement des addictions, Hôpital Paul Brousse, Pars-Sud 11 UniversityINSERM U669, 94800, Villejuif, France
| | - Amandine Luquiens
- Centre d'enseignement, de recherche, et de traitement des addictions, Hôpital Paul Brousse, Pars-Sud 11 UniversityINSERM U669, 94800, Villejuif, France
| | - Ivan Berlin
- Département de Pharmacologie, Université P.&M. Curie, Faculté de médecine, Hôpital Pitié-Salpêtrière75013, Paris, France
| |
Collapse
|
23
|
Le Foll B, Collo G, Rabiner EA, Boileau I, Merlo Pich E, Sokoloff P. Dopamine D3 receptor ligands for drug addiction treatment: update on recent findings. PROGRESS IN BRAIN RESEARCH 2014; 211:255-75. [PMID: 24968784 DOI: 10.1016/b978-0-444-63425-2.00011-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The dopamine D3 receptor is located in the limbic area and apparently mediates selective effects on motivation to take drugs and drug-seeking behaviors, so that there has been considerable interest on the possible use of D3 receptor ligands to treat drug addiction. However, only recently selective tools allowing studying this receptor have been developed. This chapter presents an overview of findings that were presented at a symposium on the conference Dopamine 2013 in Sardinia in May 2013. Novel neurobiological findings indicate that drugs of abuse can lead to significant structural plasticity in rodent brain and that this is dependent on the availability of functional dopamine D3 autoreceptor, whose activation increased phosphorylation in the ERK pathway and in the Akt/mTORC1 pathway indicating the parallel engagement of a series of intracellular signaling pathways all involved in cell growth and survival. Preclinical findings using animal models of drug-seeking behaviors confirm that D3 antagonists have a promising profile to treat drug addiction across drugs of abuse type. Imaging the D3 is now feasible in human subjects. Notably, the development of (+)-4-propyl-9-hydroxynaphthoxazine ligand used in positron emission tomography (PET) studies in humans allows to measure D3 and D2 receptors based on the area of the brain under study. This PET ligand has been used to confirm up-regulation of D3 sites in psychostimulant users and to reveal that tobacco smoking produces elevation of dopamine at the level of D3 sites. There are now novel antagonists being developed, but also old drugs such as buspirone, that are available to test the D3 hypothesis in humans. The first results of clinical investigations are now being provided. Overall, those recent findings support further exploration of D3 ligands to treat drug addiction.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Family and Community Medicine, Pharmacology and Toxicology, Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Ginetta Collo
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eugenii A Rabiner
- Imanova, Centre for Imaging Sciences, London, UK; Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College, London, UK
| | - Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | |
Collapse
|
24
|
Elevation of dopamine induced by cigarette smoking: novel insights from a [11C]-+-PHNO PET study in humans. Neuropsychopharmacology 2014; 39:415-24. [PMID: 23954846 PMCID: PMC3870776 DOI: 10.1038/npp.2013.209] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 12/23/2022]
Abstract
Positron emission tomography (PET) has convincingly provided in vivo evidence that psychoactive drugs increase dopamine (DA) levels in human brain, a feature thought critical to their reinforcing properties. Some controversy still exists concerning the role of DA in reinforcing smoking behavior and no study has explored whether smoking increases DA concentrations at the D3 receptor, speculated to have a role in nicotine's addictive potential. Here, we used PET and [(11)C]-(+)-PHNO ([(11)C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol) to test the hypothesis that smoking increases DA release (decreases [(11)C]-(+)-PHNO binding) in D2-rich striatum and D3-rich extra-striatal regions and is related to craving, withdrawal and smoking behavior. Ten participants underwent [(11)C]-(+)-PHNO scans after overnight abstinence and after smoking a cigarette. Motivation to smoke (smoking topography), mood, and craving were recorded. Smoking significantly decreased self-reported craving, withdrawal, and [(11)C]-(+)-PHNO binding in D2 and D3-rich areas (-12.0 and -15.3%, respectively). We found that motivation to smoke (puff rate) predicted magnitude of DA release in limbic striatum, and the latter was correlated with decreased craving and withdrawal symptoms. This is the first report suggesting that, in humans, DA release is increased in D3-rich areas in response to smoking. Results also support the preferential involvement of the limbic striatum in motivation to smoke, anticipation of pleasure from cigarettes and relief of withdrawal symptoms. We propose that due to the robust effect of smoking on [(11)C]-(+)-PHNO binding, this radiotracer represents an ideal translational tool to investigate novel therapeutic strategies targeting DA transmission.
Collapse
|
25
|
Le Houezec J, Aubin HJ. Pharmacotherapies and harm-reduction options for the treatment of tobacco dependence. Expert Opin Pharmacother 2013; 14:1959-67. [PMID: 23978314 DOI: 10.1517/14656566.2013.818978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Tobacco dependence, a chronic relapsing condition, requires repeated interventions and multiple attempts to quit. AREAS COVERED Strategies for assisting smoking cessation include behavioural counselling and pharmacotherapy. Three drugs are currently used as first-line pharmacotherapy: nicotine replacement therapy (NRT), bupropion and varenicline. Compared to placebo, the drug effect varies from RR = 2.27 for varenicline, to 1.69 for bupropion, and 1.60 for any form of NRT. Cytisine (similar to varenicline) has a RR = 3.98 compared to placebo (two trials). Second-line pharmacotherapies include nortriptyline and clonidine. This review also offers an overview of pipeline developments. EXPERT OPINION Effective medications exist, and clinicians should encourage and offer treatment to every smoker. However, most smokers try to quit by themselves, with only about 3% quitting successfully each year. Alternative interventions are needed. Harm reduction has not received much support to date. Safer alternative to tobacco smoking (smoke-free products, long-term use of cessation drugs, or electronic cigarettes) could save lives and reduce the burden of tobacco-related deaths and diseases. Despite some encouragement to develop a research agenda for e-cigarettes, particularly on the safety issues, too little attention has been brought to this area of research.
Collapse
Affiliation(s)
- Jacques Le Houezec
- Consultant in Public Health, Tobacco dependence, Amzer Glas , 176 rue de Brest, 35000 Rennes , France +332 99 33 72 67 ;
| | | |
Collapse
|
26
|
Mello NK, Fivel PA, Kohut SJ. Effects of chronic buspirone treatment on nicotine and concurrent nicotine+cocaine self-administration. Neuropsychopharmacology 2013; 38:1264-75. [PMID: 23337868 PMCID: PMC3656370 DOI: 10.1038/npp.2013.25] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/27/2012] [Accepted: 01/14/2013] [Indexed: 11/09/2022]
Abstract
Nicotine dependence and cocaine abuse are major public health problems, and most cocaine abusers also smoke cigarettes. An ideal pharmacotherapy would reduce both cigarette smoking and cocaine abuse. Buspirone (Buspar) is a clinically available, non-benzodiazepine anxiolytic medication that acts on serotonin and dopamine systems. In preclinical studies, it reduced cocaine self-administration following both acute and chronic treatment in rhesus monkeys. The present study evaluated the effectiveness of chronic buspirone treatment on self-administration of intravenous (IV) nicotine and IV nicotine+cocaine combinations. Five cocaine-experienced adult rhesus monkeys (Macaca mulatta) were trained to self-administer nicotine or nicotine+cocaine combinations, and food pellets (1 g) during four 1-h daily sessions under a second-order schedule of reinforcement (FR 2 (VR16:S)). Each nicotine+cocaine combination maintained significantly higher levels of drug self-administration than nicotine or cocaine alone (P<0.05-0.001). Buspirone (0.032-0.56 mg/kg/h) was administered IV through one lumen of a double-lumen catheter every 20 min for 23 h each day, for 7-10 consecutive days. Each 7-10-day sequence of buspirone treatment was followed by saline-control treatment for at least 3 days until food- and drug-maintained responding returned to baseline. Buspirone dose-dependently reduced responding maintained by nicotine alone (0.001-0.1 mg/kg/inj; P<0.01) and by nicotine (0.001 or 0.0032 mg/kg/inj)+cocaine combinations (0.0032 mg/kg/inj; P<0.05-0.001) with no significant effects on food-maintained responding. We conclude that buspirone selectively attenuates the reinforcing effects of nicotine alone and nicotine+cocaine polydrug combinations in a nonhuman primate model of drug self-administration.
Collapse
Affiliation(s)
- Nancy K Mello
- Alcohol and Drug Abuse Research Center, McLean Hospital-Harvard Medical School, Belmont, MA 02478, USA.
| | | | | |
Collapse
|
27
|
Caine SB, Thomsen M, Barrett AC, Collins GT, Grundt P, Newman AH, Butler P, Xu M. Cocaine self-administration in dopamine D₃ receptor knockout mice. Exp Clin Psychopharmacol 2012; 20:352-63. [PMID: 22867038 PMCID: PMC3587777 DOI: 10.1037/a0029135] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dopamine D₃ receptor has received attention over the last two decades as a target for medications development for substance abuse disorders. Results have remained mixed. Despite emergence of more D₃-selective ligands, possible attribution of observed effects to D₂ receptors remains a concern. Knockout mice may help shed light on mechanisms. Here we evaluated the effect of constitutive D₃ receptor inactivation ("knockout") on the reinforcing effects of cocaine. We tested D₃ wild-type (WT), heterozygous (D₃⁺/⁻), and knockout (D₃⁻/⁻), mice in acquisition and maintenance of intravenous self-administration across a broad range of cocaine doses, using a fixed ratio (FR) 1 and a progressive ratio (PR) schedule of reinforcement, along with parallel food-reinforced studies. Generally, D₃⁻/⁻ mice showed cocaine self-administration comparable to WT controls across assays. Moderate and nonsignificant trends toward lesser reinforcing effects of a low cocaine dose (0.32 mg/kg) were apparent in acquisition and PR studies, consistent with the idea that the D₃ receptor may play a subtle role in the reinforcing effects of low cocaine doses under low FR conditions. However, those effects with cocaine self-administration were more subtle than the lower responding of D₃ knockout mice observed with food-maintained behavior. In addition, the D₃ antagonist PG01037 failed to affect cocaine self-administration under an FR 1 schedule in WT mice. The present data do not support a necessary role for the D₃ receptor in the direct reinforcing effects of cocaine.
Collapse
Affiliation(s)
- S Barak Caine
- Alcohol and Drug Abuse Research Center, McLean Hospital/Harvard Medical School, MA 02478, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Varenicline decreases nicotine self-administration and cue-induced reinstatement of nicotine-seeking behaviour in rats when a long pretreatment time is used. Int J Neuropsychopharmacol 2012; 15:1265-74. [PMID: 21939589 PMCID: PMC3707493 DOI: 10.1017/s1461145711001398] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Effects of varenicline (Champix), a nicotinic partial agonist, were evaluated on subjective effects of nicotine (drug discrimination), motivation for nicotine taking (progressive-ratio schedule of intravenous nicotine self-administration) and reinstatement (cue-induced reinstatement of previously extinguished nicotine-seeking behaviour). Effects on motor performance were assessed in rats trained to discriminate nicotine (0.4 mg/kg) from saline under a fixed-ratio (FR 10) schedule of food delivery and in rats trained to respond for food under a progressive-ratio schedule. At short pretreatment times (5-40 min), varenicline produced full or high levels of partial generalization to nicotine's discriminative-stimulus effects and disrupted responding for food, while there were low levels of partial generalization and no disruption of responding for food at 2- or 4-h pretreatment times. Varenicline (1 and 3 mg/kg, 2-h pretreatment time) enhanced discrimination of low doses of nicotine and to a small extent decreased discrimination of the training dose of nicotine. It also dose-dependently decreased nicotine-taking behaviour, but had no effect on food-taking behaviour under progressive-ratio schedules. Finally, varenicline significantly reduced the ability of a nicotine-associated cue to reinstate extinguished nicotine-seeking behaviour. The ability of varenicline to reduce both nicotine-taking and nicotine-seeking behaviour can contribute to its relatively high efficacy in treating human smokers.
Collapse
|
29
|
Banasikowski TJ, Beninger RJ. Reduced expression of haloperidol conditioned catalepsy in rats by the dopamine D3 receptor antagonists nafadotride and NGB 2904. Eur Neuropsychopharmacol 2012; 22:761-8. [PMID: 22410316 DOI: 10.1016/j.euroneuro.2012.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/30/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
Haloperidol, a dopamine (DA) D2 receptor-preferring antagonist, produces catalepsy whereby animals maintain awkward posture for a period of time. Sub-threshold doses of haloperidol fail to produce catalepsy initially, however, when the drug is given repeatedly in the same test environment, gradual day-to-day increases in catalepsy are observed. More importantly, if sensitized rats are injected with saline instead of haloperidol they continue to be cataleptic in the test environment suggesting that environment-drug associations may play a role. DA D3 receptors have been implicated in a number of conditioned behaviors. We were interested if DA D3 receptors contribute to catalepsy sensitization and conditioning in rats. We tested this hypothesis using the DA D3 receptor-selective antagonist NGB 2904 (0.5, 1.8 mg/kg) and the DA D3 receptor-preferring antagonist nafadotride (0.1, 0.5 mg/kg). For 10 consecutive conditioning days rats were treated with one of the D3 receptor antagonists alone or in combination with haloperidol (0.25 mg/kg) and tested for catalepsy, quantified by the time a rat remained with its forepaws on a horizontal bar. On test day (day 11), rats were injected with saline or the D3 receptor antagonist and tested for conditioned catalepsy in the previously drug-paired environment. Rats treated with NGB 2904 or nafadotride alone did not develop catalepsy. Rats treated with haloperidol or haloperidol plus NGB 2904 or nafadotride developed catalepsy sensitization with repeated conditioning. When injected with saline they continued to exhibit catalepsy in the test environment--now conditioned. On the other hand, NGB 2904 (1.8 mg/kg) or nafadotride (0.5 mg/kg) given on the test day (after sensitization to haloperidol) significantly attenuated the expression of conditioned catalepsy. Our data suggest that the D3 receptor antagonist NGB 2904 (1.8 mg/kg) and nafadotride (0.5 mg/kg) significantly attenuate conditioned catalepsy in rats when given in test but not when given during sensitization. Results implicate DA D3 receptors in regulating the expression of conditioned catalepsy.
Collapse
Affiliation(s)
- Tomek J Banasikowski
- Center Neurosci Studies, Department Psychology, Queen's University, Kingston, ON, Canada K7L 3 N6
| | | |
Collapse
|
30
|
Gamaleddin I, Wertheim C, Zhu AZX, Coen KM, Vemuri K, Makryannis A, Goldberg SR, Le Foll B. Cannabinoid receptor stimulation increases motivation for nicotine and nicotine seeking. Addict Biol 2012; 17:47-61. [PMID: 21521420 DOI: 10.1111/j.1369-1600.2011.00314.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cannabinoid system appears to play a critical facilitative role in mediating the reinforcing effects of nicotine and relapse to nicotine-seeking behaviour in abstinent subjects based on the actions of cannabinoid (CB) receptor antagonists. However, the effects of CB receptor stimulation on nicotine self-administration and reinstatement have not been systematically studied. Here, we studied the effects of WIN 55,212-2, a CB1/2 agonist, on intravenous nicotine self-administration under fixed-ratio (FR) and progressive-ratio (PR) schedules of reinforcement in rats. The effects of WIN 55,212-2 on responding for food under similar schedules were also studied. In addition, the effects of WIN 55,212-2 on nicotine- and cue-induced reinstatement of nicotine seeking were also studied, as well as the effects of WIN 55,212-2 on nicotine discrimination. WIN 55,212-2 decreased nicotine self-administration under the FR schedule. However, co-administration of WIN 55,212-2 with nicotine decreased responding for food, which suggests that this effect was non-selective. In contrast, WIN 55,212-2 increased both nicotine self-administration and responding for food under the PR schedule, produced dose-dependent reinstatement of nicotine seeking, and enhanced the reinstatement effects of nicotine-associated cues. Some of these effects were reversed by the CB1 antagonist rimonabant, but not by the CB2 antagonist AM630. In the drug discrimination tests between saline and 0.4 mg/kg nicotine, WIN 55,212-2 produced no nicotine-like discriminative effects but significantly potentiated discriminative stimulus effects of nicotine at the low dose through a CB1-receptor-dependent mechanism. These findings indicate that cannabinoid CB1-receptor stimulation increases the reinforcing effects of nicotine and precipitates relapse to nicotine-seeking behaviour in abstinent subjects. Thus, modulating CB1-receptor signalling might have therapeutic value for treating nicotine dependence.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Addictive/chemically induced
- Behavior, Animal
- Benzoxazines/pharmacology
- Conditioning, Operant/drug effects
- Cues
- Discrimination, Psychological/drug effects
- Dose-Response Relationship, Drug
- Extinction, Psychological/drug effects
- Feeding Behavior/drug effects
- Male
- Morpholines/pharmacology
- Motivation/drug effects
- Motor Activity/drug effects
- Naphthalenes/pharmacology
- Nicotine/administration & dosage
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Long-Evans
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Reinforcement, Psychology
- Rimonabant
- Self Administration/statistics & numerical data
- Tobacco Use Disorder
Collapse
Affiliation(s)
- Islam Gamaleddin
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Liang J, Zheng X, Chen J, Li Y, Xing X, Bai Y, Li Y. Roles of BDNF, dopamine D(3) receptors, and their interactions in the expression of morphine-induced context-specific locomotor sensitization. Eur Neuropsychopharmacol 2011; 21:825-34. [PMID: 21277174 DOI: 10.1016/j.euroneuro.2010.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/03/2010] [Accepted: 12/28/2010] [Indexed: 11/28/2022]
Abstract
Drug seeking, craving, and relapse can be triggered by environmental stimuli that acquire motivational salience through repeated associations with the drug's effects. Previous studies indicated that the dopamine D(3) receptor (Drd3) might be involved in the expression of drug-conditioned responses in rats, and brain-derived neurotrophic factor (BDNF) could modulate Drd3 expression in the nucleus accumbens (NAc). However, the involvement of neural regions with Drd3 activation and the underlying interaction between BDNF and Drd3 in the expression of behavioral responses controlled by a drug-associated environment have remained poorly understood. The present study used a conditioning procedure to assess the roles of BDNF, Drd3, and their interactions in the NAc in the expression of morphine-induced context-specific locomotor sensitization. We showed that the expression of locomotor sensitization in the morphine-paired environment was accompanied by significantly increased expression of Drd3 mRNA and BDNF mRNA and protein levels. Both sensitized locomotion in morphine-paired rats and enhanced Drd3 mRNA were suppressed by intra-NAc infusion of anti-tyrosine kinase receptor B (TrkB) IgG. Furthermore, intra-NAc infusion of the Drd3-selective antagonist SB-277011A significantly decreased the expression of context-specific locomotor sensitization and upregulated BDNF mRNA. Altogether, these results suggest that BDNF/TrkB signaling and activation of Drd3 in the NAc are required for the expression of morphine-induced context-specific locomotor sensitization.
Collapse
Affiliation(s)
- Jing Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | | | | | |
Collapse
|
32
|
Mascia P, Pistis M, Justinova Z, Panlilio LV, Luchicchi A, Lecca S, Scherma M, Fratta W, Fadda P, Barnes C, Redhi GH, Yasar S, Le Foll B, Tanda G, Piomelli D, Goldberg SR. Blockade of nicotine reward and reinstatement by activation of alpha-type peroxisome proliferator-activated receptors. Biol Psychiatry 2011; 69:633-41. [PMID: 20801430 PMCID: PMC2994947 DOI: 10.1016/j.biopsych.2010.07.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Recent findings indicate that inhibitors of fatty acid amide hydrolase (FAAH) counteract the rewarding effects of nicotine in rats. Inhibition of FAAH increases levels of several endogenous substances in the brain, including the endocannabinoid anandamide and the noncannabinoid fatty acid ethanolamides oleoylethanolamide (OEA) and palmitoylethanolamide, which are ligands for alpha-type peroxisome proliferator-activated nuclear receptors (PPAR-α). Here, we evaluated whether directly acting PPAR-α agonists can modulate reward-related effects of nicotine. METHODS We combined behavioral, neurochemical, and electrophysiological approaches to evaluate effects of the PPAR-α agonists [[4-Chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid (WY14643) and methyl oleoylethanolamide (methOEA; a long-lasting form of OEA) on 1) nicotine self-administration in rats and squirrel monkeys; 2) reinstatement of nicotine-seeking behavior in rats and monkeys; 3) nicotine discrimination in rats; 4) nicotine-induced electrophysiological activity of ventral tegmental area dopamine neurons in anesthetized rats; and 5) nicotine-induced elevation of dopamine levels in the nucleus accumbens shell of freely moving rats. RESULTS The PPAR-α agonists dose-dependently decreased nicotine self-administration and nicotine-induced reinstatement in rats and monkeys but did not alter food- or cocaine-reinforced operant behavior or the interoceptive effects of nicotine. The PPAR-α agonists also dose-dependently decreased nicotine-induced excitation of dopamine neurons in the ventral tegmental area and nicotine-induced elevations of dopamine levels in the nucleus accumbens shell of rats. The ability of WY14643 and methOEA to counteract the behavioral, electrophysiological, and neurochemical effects of nicotine was reversed by the PPAR-α antagonist 1-[(4-Chlorophenyl)methyl]-3-[(1,1-dimethylethyl)thio]-a,a-dimethyl-5-(1-methylethyl)-1H-Indole-2-propanoic acid (MK886). CONCLUSIONS These findings indicate that PPAR-α might provide a valuable new target for antismoking medications.
Collapse
Affiliation(s)
- Paola Mascia
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Medications Discovery Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Higley AE, Spiller K, Grundt P, Newman AH, Kiefer SW, Xi ZX, Gardner EL. PG01037, a novel dopamine D3 receptor antagonist, inhibits the effects of methamphetamine in rats. J Psychopharmacol 2011; 25:263-73. [PMID: 20142301 PMCID: PMC3729962 DOI: 10.1177/0269881109358201] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our previous studies have shown that the selective dopamine D(3) receptor antagonists SB-277011A or NGB 2904 significantly attenuate cocaine self-administration under a progressive-ratio reinforcement schedule and cocaine-, methamphetamine- or nicotine-enhanced brain stimulation reward. However, the poor bioavailability of SB-277011A has limited its potential use in humans. In the present study, we investigated the effects of the novel D(3) receptor antagonist PG01037 on methamphetamine self-administration, methamphetamine-associated cue-induced reinstatement of drug seeking and methamphetamine-enhanced brain stimulation reward. Rats were allowed to intravenously self-administer methamphetamine under fixed-ratio 2 and progressive-ratio reinforcement conditions, and then the effects of PG01037 on methamphetamine self-administration and cue-induced reinstatement were assessed. Additional groups of rats were trained for intracranial electrical brain stimulation reward and the effects of PG01037 and methamphetamine on brain stimulation reward were assessed. Acute intraperitoneal administration of PG01037 (3, 10, 30 mg/kg) failed to alter methamphetamine or sucrose self-administration under fixed-ratio 2 reinforcement, but significantly lowered the break-point levels for methamphetamine or sucrose self-administration under progressive-ratio reinforcement. In addition, PG01037 significantly inhibited methamphetamine-associated cue-triggered reinstatement of drug-seeking behavior and methamphetamine-enhanced brain stimulation reward. These data suggest that the novel D(3) antagonist PG01037 significantly attenuates the rewarding effects as assessed by progressive-ratio self-administration and brain stimulation reward, and inhibits methamphetamine-associated cue-induced reinstatement of drug-seeking behavior These findings support the potential use of PG01037 or other selective D(3) antagonists in the treatment of methamphetamine addiction.
Collapse
Affiliation(s)
- Amanda E Higley
- Neuropsychopharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institute of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224 USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Orio L, Wee S, Newman AH, Pulvirenti L, Koob GF. The dopamine D3 receptor partial agonist CJB090 and antagonist PG01037 decrease progressive ratio responding for methamphetamine in rats with extended-access. Addict Biol 2010; 15:312-23. [PMID: 20456290 DOI: 10.1111/j.1369-1600.2010.00211.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous work suggests a role for dopamine D3-like receptors in psychostimulant reinforcement. The development of new compounds acting selectively at dopamine D3 receptors has opened new possibilities to explore the role of these receptors in animal models of psychostimulant dependence. Here we investigated whether the dopamine D3 partial agonist CJB090 (1-10 mg/kg, i.v) and the D3 antagonist PG01037 (8-32 mg/kg, s.c.) modified methamphetamine (0.05 mg/kg/injection) intravenous self-administration under fixed- (FR) and progressive- (PR) ratio schedules in rats allowed limited (short access, ShA; 1-hour sessions 3 days/week) or extended access (long access, LgA; 6 hour sessions 6 days/week). Under a FR1 schedule, the highest dose of the D3 partial agonist CJB090 selectively reduced methamphetamine self-administration in LgA but not in ShA rats, whereas the full D3 antagonist PG01037 produced no effect in either group. Under a PR schedule of reinforcement, the D3 partial agonist CJB090 reduced the maximum number of responses performed ('breakpoint') for methamphetamine in LgA rats at the doses of 5 and 10 mg/kg, and also it produced a significant reduction in the ShA group at the highest dose. However, the D3 full antagonist PG01037 only reduced PR methamphetamine self-administration in LgA rats at the highest dose of 32 mg/kg with no effect in the ShA group. The results suggest that rats might be more sensitive to pharmacological modulation of dopamine D3 receptors following extended access to methamphetamine self-administration, opening the possibility that D3 receptors play a role in excessive methamphetamine intake.
Collapse
Affiliation(s)
- Laura Orio
- The Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
35
|
Thanos PK, Bermeo C, Rubinstein M, Suchland KL, Wang GJ, Grandy DK, Volkow ND. Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors. J Psychopharmacol 2010; 24:897-904. [PMID: 19282420 PMCID: PMC2878389 DOI: 10.1177/0269881109102613] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Methylphenidate (MP) and amphetamine (AMPH) are the most frequently prescribed medications for the treatment of attention-deficit/hyperactivity disorder (ADHD). Both drugs are believed to derive their therapeutic benefit by virtue of their dopamine (DA)-enhancing effects, yet an explanation for the observation that some patients with ADHD respond well to one medication but not to the other remains elusive. The dopaminergic effects of MP and AMPH are also thought to underlie their reinforcing properties and ultimately their abuse. Polymorphisms in the human gene that codes for the DA D4 receptor (D4R) have been repeatedly associated with ADHD and may correlate with the therapeutic as well as the reinforcing effects of responses to these psychostimulant medications. Conditioned place preference (CPP) for MP, AMPH and cocaine were evaluated in wild-type (WT) mice and their genetically engineered littermates, congenic on the C57Bl/6J background, that completely lack D4Rs (knockout or KO). In addition, the locomotor activity in these mice during the conditioning phase of CPP was tested in the CPP chambers. D4 receptor KO and WT mice showed CPP and increased locomotor activity in response to each of the three psychostimulants tested. D4R differentially modulates the CPP responses to MP, AMPH and cocaine. While the D4R genotype affected CPP responses to MP (high dose only) and AMPH (low dose only) it had no effects on cocaine. Inasmuch as CPP is considered an indicator of sensitivity to reinforcing responses to drugs these data suggest a significant but limited role of D4Rs in modulating conditioning responses to MP and AMPH. In the locomotor test, D4 receptor KO mice displayed attenuated increases in AMPH-induced locomotor activity whereas responses to cocaine and MP did not differ. These results suggest distinct mechanisms for D4 receptor modulation of the reinforcing (perhaps via attenuating dopaminergic signalling) and locomotor properties of these stimulant drugs. Thus, individuals with D4 receptor polymorphisms might show enhanced reinforcing responses to MP and AMPH and attenuated locomotor response to AMPH.
Collapse
Affiliation(s)
- P K Thanos
- Laboratory of Neuroimaging, NIAAA Intramural Program, NIH, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Novak G, LeBlanc M, Zai C, Shaikh S, Renou J, DeLuca V, Bulgin N, Kennedy JL, Le Foll B. Association of polymorphisms in the BDNF, DRD1 and DRD3 genes with tobacco smoking in schizophrenia. Ann Hum Genet 2010; 74:291-8. [DOI: 10.1111/j.1469-1809.2010.00578.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
The selective dopamine D3 receptor antagonist SB 277011-A, but not the partial agonist BP 897, blocks cue-induced reinstatement of nicotine-seeking. Int J Neuropsychopharmacol 2010; 13:181-90. [PMID: 19995481 DOI: 10.1017/s1461145709991064] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The dopamine D3 receptor (DRD3) has been suggested to be involved in the mechanisms underlying stimulus-controlled drug-seeking behaviour. Ligands acting as DRD3 antagonists (SB 277011-A) or DRD3 partial agonists (BP 897) have shown some promise for reducing the influence of drug-associated cues on motivational behaviour. Here, effects of SB 277011-A and BP 897 were evaluated on cue-induced reinstatement of nicotine-seeking in rats. The effects of BP 897 on nicotine self-administration under a fixed-ratio 5 (FR5) schedule of reinforcement were also evaluated. SB 277011-A (1-10 mg/kg) was able to block cue-induced reinstatement of nicotine-seeking, indicating that DRD3 selective antagonism may be an effective approach to prevent relapse for nicotine. In contrast, BP 897 did not block the cue-induced reinstatement of nicotine-seeking or nicotine-taking under the FR5 schedule. In a control study, rats did not respond to the light stimuli without nicotine delivery, indicating that the responding for the drug-associated cues was induced by the previous pairing of light stimuli with nicotine's effects. These findings validate the role of DRD3 on reactivity to drug-associated stimuli and suggest that the DRD3 antagonist, but perhaps not the DRD3 partial agonist, could be used to prevent relapse in tobacco smokers.
Collapse
|
38
|
Jupp B, Lawrence AJ. New horizons for therapeutics in drug and alcohol abuse. Pharmacol Ther 2010; 125:138-68. [DOI: 10.1016/j.pharmthera.2009.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 11/25/2022]
|
39
|
Harrod SB, Van Horn ML. Sex differences in tolerance to the locomotor depressant effects of lobeline in periadolescent rats. Pharmacol Biochem Behav 2009; 94:296-304. [PMID: 19766134 PMCID: PMC2766100 DOI: 10.1016/j.pbb.2009.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 08/12/2009] [Accepted: 09/09/2009] [Indexed: 12/31/2022]
Abstract
Lobeline is being tested in clinical trials as a pharmacotherapy for methamphetamine abuse and attention deficit hyperactivity disorder. Preclinical research demonstrates that lobeline produces locomotor hypoactivity apart from its therapeutic effects; however, the hypothesis that there are sex differences in hypoactivity or in the development of tolerance to its locomotor depressant effects has not been investigated. Periadolescent rats were injected with saline to determine baseline locomotor activity. Animals received saline or lobeline (1.0-10mg/kg) daily for 7 consecutive days (post natal days 29-35), and were challenged with saline 24h later to assess baseline activity. Lobeline produced hypoactivity in total horizontal activity and center distance travelled. Tolerance developed to the lobeline-induced hypoactivity and sex differences in lobeline tolerance were observed on both measures. Females acquired tolerance to lobeline 5.6 mg/kg at a slower rate than males. Saline challenge revealed a linear dose-dependent trend of hyperactivity on both measures, which indicates that rats exhibited altered locomotor behavior 24h after the final lobeline treatment. These findings demonstrate sex differences in the hypoactive response to lobeline prior to puberty and suggest that females may experience more locomotor depressant effects than males. Chronic lobeline may induce hyperactivity following cessation of treatment.
Collapse
Affiliation(s)
- Steven B Harrod
- Department of Psychology, University of South Carolina, United States.
| | | |
Collapse
|
40
|
Nicotine-induced conditioned place preference in rats: sex differences and the role of mGluR5 receptors. Neuropharmacology 2009; 58:374-82. [PMID: 19833142 DOI: 10.1016/j.neuropharm.2009.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/30/2009] [Accepted: 10/03/2009] [Indexed: 11/21/2022]
Abstract
To elucidate sex differences in nicotine addiction and the underlying mechanisms of the conditioning aspects of nicotine, nicotine-induced conditioned place preference (CPP) was evaluated in male and female Sprague Dawley rats using a three-chambered CPP apparatus and a biased design. In a series of experiments, the dose-response curve was obtained, pairings between the drug and initially non-preferred versus preferred compartments were compared, and the involvement of mGluR5 receptors in nicotine-induced CPP was evaluated. Modulation of nicotine-induced CPP with mGluR5 inhibition was obtained by MPEP (2-methyl-6-(phenylethynyl)-pyridine hydrochloride). Our results show that nicotine induces CPP dose-dependently in male rats but not in female rats. The comparison of the biased protocol, pairing nicotine with the initially preferred and non-preferred chambers, indicated that nicotine-induced CPP in male rats under both conditions, but the effect was stronger when nicotine was paired with the initially non-preferred side. The selective mGluR5 antagonist MPEP inhibited nicotine-induced CPP in male rats. In conclusion, the results of the current study in rats demonstrate that the conditioning effect of nicotine is more important in males than in females. Furthermore, in line with reported findings, our results suggest that mGluR5 antagonism may be therapeutically useful in smoking cessation during the maintenance of smoking behavior when conditioning plays an important role, notwithstanding the fact that this effect is observed only in male rats, not in females.
Collapse
|
41
|
Achat-Mendes C, Platt DM, Newman AH, Spealman RD. The dopamine D3 receptor partial agonist CJB 090 inhibits the discriminative stimulus but not the reinforcing or priming effects of cocaine in squirrel monkeys. Psychopharmacology (Berl) 2009; 206:73-84. [PMID: 19513698 PMCID: PMC2753862 DOI: 10.1007/s00213-009-1581-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 05/24/2009] [Indexed: 01/31/2023]
Abstract
RATIONALE Dopamine D3 receptor mechanisms have been implicated in the abuse-related behavioral effects of cocaine. OBJECTIVES The purpose of this study was to investigate the effects of the D3 receptor partial agonist CJB 090 on the discriminative stimulus, reinforcing and priming effects of cocaine in squirrel monkeys. Complementary studies were conducted to compare CJB 090's effects on food-maintained behavior and species-typical unconditioned behaviors. METHODS Monkeys were trained to: (1) discriminate cocaine from saline using a two-lever choice procedure, (2) self-administer cocaine on a second-order fixed-interval, fixed-ratio schedule of i.v. drug injection, or (3) self-administer food on a comparable second-order schedule of food delivery. A final group of monkeys served in quantitative observational studies of unconditioned behaviors. RESULTS In cocaine discrimination studies, pretreatment with CJB 090 significantly attenuated cocaine's discriminative stimulus effects. CJB 090 also significantly attenuated the partial cocaine-like stimulus effects of the preferential D3 receptor agonist PD 128907 but not the preferential D2 receptor agonist sumanirole. CJB 090 did not attenuate either self-administration of cocaine or cocaine-induced reinstatement of extinguished drug-seeking at a dose that reduced responding maintained by food. CJB 090 did not induce scratching or biting (species-typical effects of D2/3 receptor agonists) or catalepsy (typical effect of D2/3 receptor antagonists). CONCLUSIONS The results provide no evidence that CJB 090 reduced either the reinforcing or priming effects of cocaine but do suggest that CJB 090, acting via a D3 receptor mechanism, antagonized the discriminative stimulus effects of cocaine at a dose that did not induce adverse side effects.
Collapse
Affiliation(s)
- Cindy Achat-Mendes
- Division of Neuroscience, New England Primate Research Center, Harvard Medical School, One Pine Hill Dr., P.O. Box 9102, Southborough, MA 01772, USA.
| | | | | | | |
Collapse
|
42
|
Mechanism-based medication development for the treatment of nicotine dependence. Acta Pharmacol Sin 2009; 30:723-39. [PMID: 19434058 DOI: 10.1038/aps.2009.46] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tobacco use is a global problem with serious health consequences. Though some treatment options exist, there remains a great need for new effective pharmacotherapies to aid smokers in maintaining long-term abstinence. In the present article, we first discuss the neural mechanisms underlying nicotine reward, and then review various mechanism-based pharmacological agents for the treatment of nicotine dependence. An oversimplified hypothesis of addiction to tobacco is that nicotine is the major addictive component of tobacco. Nicotine binds to alpha4beta2 and alpha7 nicotinic acetylcholine receptors (nAChRs) located on dopaminergic, glutamatergic and GABAergic neurons in the mesolimbic dopamine (DA) system, which causes an increase in extracellular DA in the nucleus accumbens (NAc). That increase in DA reinforces tobacco use, particularly during the acquisition phase. Enhanced glutamate transmission to DA neurons in the ventral tegmental area appears to play an important role in this process. In addition, chronic nicotine treatment increases endocannabinoid levels in the mesolimbic DA system, which indirectly modulates NAc DA release and nicotine reward. Accordingly, pharmacological agents that target brain acetylcholine, DA, glutamate, GABA, or endocannabonoid signaling systems have been proposed to interrupt nicotine action. Furthermore, pharmacokinetic strategies that alter plasma nicotine availability, metabolism and clearance also significantly alter nicotine's action in the brain. Progress using these pharmacodynamic and pharmacokinetic agents is reviewed. For drugs in each category, we discuss the mechanistic rationale for their potential anti-nicotine efficacy, major findings in preclinical and clinical studies, and future research directions.
Collapse
|
43
|
Abstract
Drug dependence is a chronic, relapsing disorder in which compulsive drug-seeking and drug-taking behaviours persist despite serious negative consequences. Addictive substances, such as opioids, ethanol, psychostimulants and nicotine, induce pleasant states or relieve distress, effects that contribute to their recreational use. Dopamine is critically involved in drug addiction processes. However, the role of the various dopaminergic receptor subtypes has been difficult to delineate. Here, we will review the information collected implicating the receptors of the D1 family (DRD1 and DRD5) and of the D2 family (DRD2, DRD3 and DRD4) in drug addiction. We will summarize the distribution of these receptors in the brain, the preclinical experiments carried out with pharmacological and transgenic approaches and the genetic studies carried out linking genetic variants of these receptors to drug addiction phenotypes. A meta-analysis of the studies carried out evaluating DRD2 and alcohol dependence is also provided, which indicates a significant association. Overall, this review indicates that different aspects of the addiction phenotype are critically influenced by dopaminergic receptors and that variants of those genes seem to influence some addiction phenotypes in humans.
Collapse
|
44
|
Hayes DJ, Mosher TM, Greenshaw AJ. Differential effects of 5-HT2C receptor activation by WAY 161503 on nicotine-induced place conditioning and locomotor activity in rats. Behav Brain Res 2009; 197:323-30. [DOI: 10.1016/j.bbr.2008.08.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 08/21/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
|
45
|
Dopaminergic mechanism of reward-related incentive learning: focus on the dopamine D(3) receptor. Neurotox Res 2009; 14:57-70. [PMID: 18790725 DOI: 10.1007/bf03033575] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dopamine D(3) receptors (Drd3) have been implicated in the control of responding by drug-related conditioned incentive stimuli. We review recent studies of the effects of Drd3 antagonists or partial agonists on the control of self-administration of intravenous (IV) cocaine, IV morphine and oral ethanol on reward-rich and lean schedules, in reinstatement tests, on second-order schedules and on the acquisition and expression of conditioned place preference (CPP) and conditioned motor activity. For comparison, related studies where conditioned stimuli are based on nutritional reward also are considered. When self-administration depends more heavily on conditioned cues for its maintenance, for example on second-order schedules or lean ratio schedules, Drd3 antagonists or partial agonists reduce responding. Although data are limited, similar effects may be seen for responding for cues based on drugs or nutritional rewards. Drd3 agents also block the ability of conditioned cues to reinstate responding for cocaine or food. Published results suggest that Drd3 plays a more important role in the expression than in the acquisition of a CPP or conditioned motor activity. The mechanism mediating the role of Drd3 in the control of responding by conditioned incentive stimuli remains unknown but it has been found that Drd3 receptors increase in number in the nucleus accumbens during conditioning. Perhaps Drd3 participates in the molecular mechanisms underlying the role of dopamine and of dopamine receptor subtypes in reward-related incentive learning.
Collapse
|
46
|
Abstract
Pharmacotherapy can provide effective treatment of tobacco dependence and withdrawal, and thereby facilitate efforts to achieve and sustain tobacco abstinence. Currently approved medications for smoking cessation are nicotine replacement medications (NRT), including nicotine patch, gum, lozenge, sublingual tablet, inhaler and nasal spray, the antidepressant bupropion, and the nicotinic partial agonist varenicline. This review discusses the pharmacological basis for the use of these medications, and the properties that might contribute to their efficacy, safety, and abuse liability. The review also discusses how pharmacological principles can be used to improve existing medications, as well as assist in the development of new medications.
Collapse
|
47
|
Le Foll B, Goldberg SR. Effects of nicotine in experimental animals and humans: an update on addictive properties. Handb Exp Pharmacol 2009:335-67. [PMID: 19184655 PMCID: PMC2687081 DOI: 10.1007/978-3-540-69248-5_12] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tobacco use through cigarette smoking is the leading preventable cause of death in the developed world. Nicotine, a psychoactive component of tobacco, appears to play a major role in tobacco dependence, but the reinforcing effects of nicotine have often been difficult to demonstrate directly in controlled studies with laboratory animals or human subjects. Here we update our earlier review published in Psychopharmacology (Berl) in 2006 on findings obtained with various procedures developed to study dependence-related behavioral effects of nicotine in experimental animals and humans. Results obtained with drug self-administration, conditioned place preference, subjective reports of nicotine effects and nicotine discrimination indicate that nicotine can function as an effective reinforcer of drug-seeking and drug-taking behavior both in experimental animals and humans under appropriate conditions. Interruption of chronic nicotine exposure produces ratings of drug withdrawal and withdrawal symptoms that may contribute to relapse. Difficulties encountered in demonstrating reinforcing effects of nicotine under some conditions, relative to other drugs of abuse, may be due to weaker primary reinforcing effects of nicotine, to aversive effects produced by nicotine, or to a more critical contribution of environmental stimuli to the maintenance of drug-seeking and drug-taking behavior with nicotine than with other drugs of abuse. Several recent reports suggest that other chemical substances inhaled along with nicotine in tobacco smoke may play a role in sustaining smoking behavior. However, conflicting results have been obtained with mice and rats and these findings have not yet been validated in nonhuman primates or human subjects. Taken together, these findings suggest that nicotine acts as a typical drug of abuse in experimental animals and humans in appropriate situations.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Steven R. Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Elkashef A, Vocci F, Hanson G, White J, Wickes W, Tiihonen J. Pharmacotherapy of methamphetamine addiction: an update. Subst Abus 2008; 29:31-49. [PMID: 19042205 DOI: 10.1080/08897070802218554] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Methamphetamine dependence is a serious public health problem worldwide for which there are no approved pharmacological treatments. Psychotherapy is still the mainstay of treatment; however, relapse rates are high. The search for effective pharmacological treatment has intensified in the last decade. This review will highlight progress in pharmacological interventions to treat methamphetamine dependence as well as explore new pharmacological targets. Published data from clinical trials for stimulant addiction were searched using PubMed and summarized, as well as highlights from a recent symposium on methamphetamine pharmacotherapy presented at the ISAM 2006 meeting, including interim analysis data from an ongoing D-amphetamine study in Australia. Early pilot data are encouraging for administering D-amphetamine and methylphenidate as treatment for heavy amphetamine users. Abilify at 15 mg/day dose increased amphetamine use in an outpatient pilot study. Sertraline, ondansetron, baclofen, tyrosine, and imipramine were ineffective in proof-of-concept studies. Development of pharmacotherapy for methamphetamine dependence is still in an early stage. Data suggesting D-amphetamine and methylphenidate as effective pharmacotherapy for methamphetamine addiction will need to be confirmed by larger trials. Preclinical data suggest that use of GVG, CB1 antagonist, and lobeline are also promising therapeutic strategies.
Collapse
Affiliation(s)
- Ahmed Elkashef
- Clinical Medical Branch, Division of Pharmacotherapies and Medical Consequences of Drug Abuse, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Le Foll B, Wertheim CE, Goldberg SR. Effects of baclofen on conditioned rewarding and discriminative stimulus effects of nicotine in rats. Neurosci Lett 2008; 443:236-40. [PMID: 18682277 DOI: 10.1016/j.neulet.2008.07.074] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/17/2008] [Accepted: 07/28/2008] [Indexed: 12/20/2022]
Abstract
Neurochemical studies suggest that baclofen, an agonist at GABA(B) receptors, may be useful for treatment of nicotine dependence. However, its ability to selectively reduce nicotine's abuse-related behavioral effects remains in question. We assessed effects of baclofen doses ranging from 0.1 to 3mg/kg on nicotine-induced conditioned place preferences (CPPs), nicotine discrimination, locomotor activity and food-reinforced behavior in male Sprague-Dawley rats. The high dose of baclofen (3mg/kg) totally eliminated food-reinforced responding and significantly decreased locomotor activity. Lower doses of baclofen did not have nicotine-like discriminative effects in rats trained to discriminate 0.4mg/kg nicotine from saline under a fixed-ratio 10 schedule of food delivery. Lower doses of baclofen also did not reduce discriminative stimulus effects of the training dose of nicotine and did not significantly shift the dose-response curve for nicotine discrimination. Rats treated with the high 3mg/kg dose of baclofen did not express nicotine-induced CPP. These experiments, along with previous reports that baclofen can reduce intravenous nicotine self-administration behavior, confirm the potential utility of baclofen as a tool for smoking cessation.
Collapse
Affiliation(s)
- Bernard Le Foll
- National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA.
| | | | | |
Collapse
|
50
|
Abstract
The effects of topiramate, a potential treatment for drug dependence, were evaluated in two groups of rats trained to discriminate the administration of either 0.4 mg/kg nicotine or 10 mg/kg cocaine from that of saline, under a fixed-ratio 10 schedule of food delivery. Topiramate (1-60 mg/kg, intraperitoneal) did not produce any nicotine-like or cocaine-like discriminative effects by itself and did not produce any shift in the dose-response curves for nicotine or cocaine discrimination. Thus, the ability to discriminate the effects of nicotine or cocaine does not appear to be altered by topiramate administration. Furthermore, topiramate, given either alone or in combination with nicotine or cocaine, did not depress rates of responding. These experiments indicate that topiramate does not enhance or reduce the ability of rats to discriminate the effects of nicotine or cocaine.
Collapse
|