1
|
Marghmaleki VS, Radahmadi M, Alaei H, Khanahmad H. Effects of prolonged escitalopram administration on long-term potentiation within the hippocampal CA1 area in rats under predictable and unpredictable chronic mild stress. Metab Brain Dis 2024; 39:1481-1494. [PMID: 39240474 DOI: 10.1007/s11011-024-01399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024]
Abstract
Exposure to chronic stress impairs memory. Also, escitalopram's impact on memory remains paradoxical. Therefore, this study examined how prolonged escitalopram administration affects input-output (I/O) functions, paired-pulse ratio (PPR), and long-term potentiation (LTP) in the hippocampal CA1 area in rats that underwent predictable and unpredictable chronic mild stress (PCMS and UCMS, respectively). Male rats were randomly assigned to different groups of control (Co), sham (Sh), PCMS and UCMS (PSt and USt, respectively; 2 h/day, for 21 consecutive days), escitalopram (Esc; 10 mg/kg, i.p., for 21 days), as well as PCMS and UCMS with escitalopram (PSt-Esc and USt-Esc, respectively). The fEPSP slope, amplitude, and area under the curve (AUC) were assessed in the hippocampal CA1 area using I/O functions, PP responses, and LTP. Serum corticosterone (CORT) levels were quantified in all experimental animals. The slope, amplitude, and AUC of fEPSP in the I/O functions, and all three PP phases prior and subsequent to LTP induction significantly declined in the USt and PSt groups. Escitalopram significantly enhanced these parameters in the PSt-Esc, but not in the USt-Esc group. Serum CORT levels corroborated the electrophysiological findings among experimental groups. Both PCMS and UCMS impaired neural excitability, neurotransmission, and memory within the hippocampal CA1 area. Escitalopram improved memory impairment only under PCMS, potentially attributed to reduced serum CORT levels. However, no influence on neural excitability, neurotransmission, and memory was observed under UCMS. This suggests different escitalopram doses might be required to ameliorate simultaneous mechanisms in response to various types of chronic mild stress.
Collapse
Affiliation(s)
- Vajihe Saedi Marghmaleki
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Girotti M, Bulin SE, Carreno FR. Effects of chronic stress on cognitive function - From neurobiology to intervention. Neurobiol Stress 2024; 33:100670. [PMID: 39295772 PMCID: PMC11407068 DOI: 10.1016/j.ynstr.2024.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Exposure to chronic stress contributes considerably to the development of cognitive impairments in psychiatric disorders such as depression, generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and addictive behavior. Unfortunately, unlike mood-related symptoms, cognitive impairments are not effectively treated by available therapies, a situation in part resulting from a still incomplete knowledge of the neurobiological substrates that underly cognitive domains and the difficulty in generating interventions that are both efficacious and safe. In this review, we will present an overview of the cognitive domains affected by stress with a specific focus on cognitive flexibility, behavioral inhibition, and working memory. We will then consider the effects of stress on neuronal correlates of cognitive function and the factors which may modulate the interaction of stress and cognition. Finally, we will discuss intervention strategies for treatment of stress-related disorders and gaps in knowledge with emerging new treatments under development. Understanding how cognitive impairment occurs during exposure to chronic stress is crucial to make progress towards the development of new and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Sarah E. Bulin
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Flavia R. Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| |
Collapse
|
3
|
Eladawy RM, Ahmed LA, Salem MB, Hammam OA, Mohamed AF, Salem HA, El-Sayed RM. Impact of different gastric acid suppressants on chronic unpredictable mild stress-induced cognitive impairment in rats: A possible involvement of gut dysbiosis. Toxicol Appl Pharmacol 2024; 492:117126. [PMID: 39406336 DOI: 10.1016/j.taap.2024.117126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Recently, clinical evidence indicates that gastric acid suppressants are associated with an increased risk of the development of cognitive impairment and dementia, especially in elderly patients and those with mild cognitive impairment. Therefore, the aim of this research was to explore the impact of different gastric acid suppressants use, famotidine (Famo), esomeprazole (Esome) and vonoprazan (Vono) in the absence or the presence of chronic unpredictable mild stress (CUMS) on several memory tasks with examination of the role of gut dysbiosis. In the present study, rats received famotidine (3.7 mg/kg/day, p.o.) or esomeprazole (3.7 mg/kg/day, p.o.) or vonoprazan (1.85 mg/kg/day, p.o.) for 7 weeks with or without exposure to CUMS. Remarkably, CUMS with different acid suppressants caused a significant decrease in all memory tasks in late CUMS in the current investigation. CUMS with acid suppressants also revealed a marked alteration in the fecal Firmicutes/Bacteroidetes ratio compared to CUMS alone. This gut microbiome alteration was associated with an alteration in gut membrane integrity, as revealed by colonic histopathology and an elevation of systemic inflammatory markers. Besides, upregulation of hippocampal amyloid β and p-tau proteins and modification of brain histopathology were noticed. Our findings support the detrimental effect of gastric acid suppressants, especially proton pump inhibitors, on cognitive impairment in the presence of stress, with the possible involvement of gut dysbiosis.
Collapse
Affiliation(s)
- Reem M Eladawy
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Sinai University - Arish Branch, Arish 45511, Egypt.
| | - Lamiaa A Ahmed
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Maha B Salem
- Pharmacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Olfat A Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ahmed F Mohamed
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| | - Hesham A Salem
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rehab M El-Sayed
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Sinai University - Arish Branch, Arish 45511, Egypt
| |
Collapse
|
4
|
Neziri S, Köseoğlu AE, Deniz Köseoğlu G, Özgültekin B, Özgentürk NÖ. Animal models in neuroscience with alternative approaches: Evolutionary, biomedical, and ethical perspectives. Animal Model Exp Med 2024. [PMID: 39375824 DOI: 10.1002/ame2.12487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024] Open
Abstract
Animal models have been a crucial tool in neuroscience research for decades, providing insights into the biomedical and evolutionary mechanisms of the nervous system, disease, and behavior. However, their use has raised concerns on several ethical, clinical, and scientific considerations. The welfare of animals and the 3R principles (replacement, reduction, refinement) are the focus of the ethical concerns, targeting the importance of reducing the stress and suffering of these models. Several laws and guidelines are applied and developed to protect animal rights during experimenting. Concurrently, in the clinic and biomedical fields, discussions on the relevance of animal model findings on human organisms have increased. Latest data suggest that in a considerable amount of time the animal model results are not translatable in humans, costing time and money. Alternative methods, such as in vitro (cell culture, microscopy, organoids, and micro physiological systems) techniques and in silico (computational) modeling, have emerged as potential replacements for animal models, providing more accurate data in a minimized cost. By adopting alternative methods and promoting ethical considerations in research practices, we can achieve the 3R goals while upholding our responsibility to both humans and other animals. Our goal is to present a thorough review of animal models used in neuroscience from the biomedical, evolutionary, and ethical perspectives. The novelty of this research lies in integrating diverse points of views to provide an understanding of the advantages and disadvantages of animal models in neuroscience and in discussing potential alternative methods.
Collapse
Affiliation(s)
- Sabina Neziri
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Yıldız Technical University, Istanbul, Turkey
| | | | | | - Buminhan Özgültekin
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acıbadem University, Istanbul, Turkey
| | - Nehir Özdemir Özgentürk
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
5
|
Mohamed ZI, Sivalingam M, Radhakrishnan AK, Jaafar F, Zainal Abidin SA. Chronic unpredictable stress (CUS) reduced phoenixin expression, induced abnormal sperm and testis morphology in male rats. Neuropeptides 2024; 107:102447. [PMID: 38870753 DOI: 10.1016/j.npep.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Chronic stress caused by prolonged emotional pressure can lead to various physiological issues, including reproductive dysfunction. Although reproductive problems can also induce chronic stress, the impact of chronic stress-induced reproductive dysfunction remains contentious. This study investigates the effects of chronic unpredictable stress (CUS) on reproductive neuropeptides, sperm quality, and testicular morphology. Sixteen twelve-week-old Sprague Dawley rats were divided into two groups: a non-stress control group and a CUS-induced group. The CUS regimen involved various stressors over 28 days, with both groups undergoing behavioural assessments through sucrose-preference and forced-swim tests. Hypothalamic gene expression levels of CRH, PNX, GPR173, kisspeptin, GnRH, GnIH, and spexin neuropeptides were measured via qPCR, while plasma cortisol, luteinizing hormone (LH), and testosterone concentrations were quantified using ELISA. Seminal fluid and testis samples were collected for sperm analysis and histopathological evaluation, respectively. Results showed altered behaviours in CUS-induced rats, reflecting stress impacts. Hypothalamic corticotropin-releasing hormone (CRH) expression and plasma cortisol levels were significantly higher in CUS-induced rats compared to controls (p < 0.05). Conversely, phoenixin (PNX) expression decreased in the CUS group (p < 0.05), while kisspeptin, spexin, and gonadotropin-inhibitory hormone (GnIH) levels showed no significant differences between groups. Despite a significant increase in GnRH expression (p < 0.05), plasma LH and testosterone concentrations were significantly lower (p < 0.05) in CUS-induced rats. Histopathological analysis revealed abnormal testis morphology in CUS-induced rats, including disrupted architecture, visible interstitial spaces between seminiferous tubules, and absence of spermatogenesis. In conclusion, CUS affects reproductive function by modulating PNX and GnRH expression, influencing cortisol levels, and subsequently reducing plasma LH and testosterone concentrations. This study highlights the complex interplay between chronic stress and reproductive health, emphasizing the significant impact of stress on reproductive functions.
Collapse
Affiliation(s)
- Zahra Isnaini Mohamed
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Mageswary Sivalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Faizul Jaafar
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
6
|
Park SB, Lur G. Repeated exposure to multiple concurrent stressors alters visual processing in the adult posterior parietal cortex. Neurobiol Stress 2024; 31:100660. [PMID: 39100726 PMCID: PMC11296072 DOI: 10.1016/j.ynstr.2024.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 08/06/2024] Open
Abstract
Chronic stress is well known to erode cognitive functions. Yet, our understanding of how repeated stress exposure impacts one of the fundamental bases of cognition: sensory processing, remains limited. The posterior parietal cortex (PPC) is a high order visual region, known for its role in visually guided decision making, multimodal integration, attention, and working memory. Here, we used functional measures to determine how repeated exposure to multiple concurrent stressors (RMS) affects sensory processing in the PPC in adult male mice. A longitudinal experimental design, repeatedly surveying the same population of neurons using in vivo two-photon imaging, revealed that RMS disrupts the balanced turnover of visually responsive cells in layer 2/3 of the PPC. Across the population, RMS-induced changes in visual responsiveness followed a bimodal distribution suggesting idiosyncratic stress effects. In cells that maintained their responsiveness across recording sessions, we found that stress reduced visual response magnitudes and feature selectivity. While we did not observe stress-induced elimination of excitatory synapses, noise correlation statistics indicated that RMS altered visual input to the neuronal population. The impact of RMS was restricted to visually evoked responses and was not evident in neuronal activity associated with locomotion onset. Together, our results indicate that despite no apparent synaptic reorganization, stress exposure in adulthood can disrupt sensory processing in the PPC, with the effects showing remarkable individual variation.
Collapse
Affiliation(s)
- Soo Bin Park
- Department of Neurobiology and Behavior, University of California, Irvine, CA USA, 92697
| | - Gyorgy Lur
- Department of Neurobiology and Behavior, University of California, Irvine, CA USA, 92697
| |
Collapse
|
7
|
Page CE, Epperson CN, Novick AM, Duffy KA, Thompson SM. Beyond the serotonin deficit hypothesis: communicating a neuroplasticity framework of major depressive disorder. Mol Psychiatry 2024:10.1038/s41380-024-02625-2. [PMID: 38816586 DOI: 10.1038/s41380-024-02625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The serotonin deficit hypothesis explanation for major depressive disorder (MDD) has persisted among clinicians and the general public alike despite insufficient supporting evidence. To combat rising mental health crises and eroding public trust in science and medicine, researchers and clinicians must be able to communicate to patients and the public an updated framework of MDD: one that is (1) accessible to a general audience, (2) accurately integrates current evidence about the efficacy of conventional serotonergic antidepressants with broader and deeper understandings of pathophysiology and treatment, and (3) capable of accommodating new evidence. In this article, we summarize a framework for the pathophysiology and treatment of MDD that is informed by clinical and preclinical research in psychiatry and neuroscience. First, we discuss how MDD can be understood as inflexibility in cognitive and emotional brain circuits that involves a persistent negativity bias. Second, we discuss how effective treatments for MDD enhance mechanisms of neuroplasticity-including via serotonergic interventions-to restore synaptic, network, and behavioral function in ways that facilitate adaptive cognitive and emotional processing. These treatments include typical monoaminergic antidepressants, novel antidepressants like ketamine and psychedelics, and psychotherapy and neuromodulation techniques. At the end of the article, we discuss this framework from the perspective of effective science communication and provide useful language and metaphors for researchers, clinicians, and other professionals discussing MDD with a general or patient audience.
Collapse
Affiliation(s)
- Chloe E Page
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Family Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Helen and Arthur E. Johnson Depression Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew M Novick
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Korrina A Duffy
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Scott M Thompson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
8
|
Feng L, Wang H, Chen C, Fu J, Zhao L, Zhao X, Geng M, Ren M, Tong L, Li Y, Gu J, Wang C. MKP1 may be involved in the occurrence of depression by regulating hippocampal autophagy in rats. Behav Brain Res 2024; 465:114962. [PMID: 38499157 DOI: 10.1016/j.bbr.2024.114962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in the hippocampus of patients with depression, while pharmacological inhibition of hippocampal MKP1 can mitigate depression-like behaviors in rodents. In addition, MAPK signaling regulates autophagy, and antidepressants were recently shown to target autophagic signaling pathways. We speculated that MKP1 contributes to depression by enhancing hippocampal autophagy through dephosphorylation of the MAPK isoform ERK1/2. METHODS We established a rat depression model by exposure to chronic unpredictable mild stress (CUMS), and then examined depression-like behaviors in the sucrose preference test (SPT) and forced swimming test (FST) as well as expression changes in hippocampal MKP1, ERK1/2, phosphorylated ERK1/2, and autophagy-related proteins LC3II by Western blotting and immunostaining. These same measurements were repeated in rats exposed to CUMS following hippocampal infusion of a MKP1-targeted shRNA. Finally, the effects of MKP1 expression level on autophagy we examined in rat GMI-R1 microglia. RESULTS CUMS-exposed rats demonstrated anhedonia in the SPT and helplessness in the FST, two core depression-like behaviors. Expression levels of MKP1 and LC3II were upregulated in the hippocampus of CUMS rats, suggesting enhanced autophagy, while pERK/ERK was downregulated. Knockdown of hippocampal MKP1 mitigated depression-like behaviors, downregulated hippocampal LC3II expression, and upregulated hippocampal pERK/ERK. Similarly, MKP1 knockdown in GMI-R1 cells upregulated pERK/ERK and reduced the number of LC3II autophagosomes, while MKP1 overexpression had the opposite effects. CONCLUSION Enhanced hippocampal autophagy via MKP1-mediated ERK dephosphorylation may contribute to the development of depression.
Collapse
Affiliation(s)
- Laipeng Feng
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China
| | - Huiying Wang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China
| | - Chen Chen
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jiacheng Fu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China
| | - Liqin Zhao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xia Zhao
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Mengjun Geng
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Mengdi Ren
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China
| | - Lidan Tong
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China
| | - Yan Li
- Zhengzhou University, Zhengzhou, China
| | - Jingyang Gu
- Chaohu Hospital of Anhui Medical University, Hefei, China.
| | - Changhong Wang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
9
|
Wang Z, Wang Z, Zhou Q. Modulation of learning safety signals by acute stress: paraventricular thalamus and prefrontal inhibition. Neuropsychopharmacology 2024; 49:961-973. [PMID: 38182776 PMCID: PMC11039638 DOI: 10.1038/s41386-023-01790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Distinguishing between cues predicting safety and danger is crucial for survival. Impaired learning of safety cues is a central characteristic of anxiety-related disorders. Despite recent advances in dissecting the neural circuitry underlying the formation and extinction of conditioned fear, the neuronal basis mediating safety learning remains elusive. Here, we showed that safety learning reduces the responses of paraventricular thalamus (PVT) neurons to safety cues, while activation of these neurons controls both the formation and expression of safety memory. Additionally, the PVT preferentially activates prefrontal cortex somatostatin interneurons (SOM-INs), which subsequently inhibit parvalbumin interneurons (PV-INs) to modulate safety memory. Importantly, we demonstrate that acute stress impairs the expression of safety learning, and this impairment can be mitigated when the PVT is inhibited, indicating PVT mediates the stress effect. Altogether, our findings provide insights into the mechanism by which acute stress modulates safety learning.
Collapse
Affiliation(s)
- Zongliang Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zeyi Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qiang Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Saedi Marghmaleki V, Radahmadi M, Alaei H, Khanahmad H. Protective Effects of Long-Term Escitalopram Administration on Memory and Hippocampal BDNF and BCL-2 Gene Expressions in Rats Exposed to Predictable and Unpredictable Chronic Mild Stress. Brain Sci 2024; 14:420. [PMID: 38790399 PMCID: PMC11118218 DOI: 10.3390/brainsci14050420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Stress and escitalopram (an anti-stress medication) can affect brain functions and related gene expression. This study investigated the protective effects of long-term escitalopram administration on memory, as well as on hippocampal BDNF and BCL-2 gene expressions in rats exposed to predictable and unpredictable chronic mild stress (PCMS and UCMS, respectively). Male rats were randomly assigned to different groups: control (Co), sham (Sh), predictable and unpredictable stress (PSt and USt, respectively; 2 h/day for 21 consecutive days), escitalopram (Esc; 10 mg/kg for 21 days), and predictable and unpredictable stress with escitalopram (PSt-Esc and USt-Esc, respectively). The passive avoidance test was used to assess behavioral variables. The expressions of the BDNF and BCL-2 genes were assessed using real-time quantitative PCR. Latency significantly decreased in the PSt and USt groups. Additionally, latency showed significant improvement in the PSt-Esc group compared to the PSt group. The expression of the BDNF gene significantly decreased only in the USt group. BDNF gene expression significantly increased in the PSt-Esc and USt-Esc groups compared to their respective stress-related groups, whereas the expression of the BCL-2 gene did not change significantly in both PSt-Esc and USt-Esc groups. PCMS and UCMS had devastating effects on memory. Escitalopram improved memory only under PCMS conditions. PCMS and UCMS exhibited fundamental differences in hippocampal BDNF and BCL-2 gene expressions. Furthermore, escitalopram increased hippocampal BDNF gene expression in the PCMS and UCMS subjects. Hence, neurogenesis occurred more significantly than anti-apoptosis under both PCMS and UCMS conditions with escitalopram.
Collapse
Affiliation(s)
- Vajihe Saedi Marghmaleki
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| |
Collapse
|
11
|
Yao J, Chen C, Sun Y, Lin Y, Tian Z, Liu X, Wang H, Long J, Yan Q, Lin M, Ai Q, Gao Y, Chen N, Yang Y, Yang S. Higenamine exerts antidepressant effect by improving the astrocytic gap junctions and inflammatory response. J Affect Disord 2024; 348:107-115. [PMID: 38101523 DOI: 10.1016/j.jad.2023.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/01/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Depression is a refractory psychiatric disorder closely associated with dysfunction of the gap junctions (GJs) between astrocytes as well as neuroinflammation. Higenamine (Hig) is a potent cardiotonic ingredient in Fuzi (i.e., Aconitum carmichaeli Debx.) with anti-inflammatory and antioxidant effects, which has a significant protective effect on damaged nerve cells and has great potential for the treatment of neuropsychiatric diseases. METHODS Rats were stimulated by chronic unpredictable stress (CUS) for 28 days while given Hig (5, 10, 20 mg/kg) and then analyzed behaviorally by the open field test, sucrose preference test, and forced swimming test. Changes in astrocyte GJs function and morphology were observed by dye transfer and transmission electron microscopy, respectively. Expression and phosphorylation of connexin 43 (Cx43) were analyzed by Western blot. Also, considering the close relationship between depression and neuroinflammation, we determined the inflammatory response in serum with ELISA kits and analyzed the expression of inflammation-related proteins with Western blot. RESULTS Hig ameliorated CUS-induced depression-like behavior in rats. Hig administration improved gap junctional dysfunction in astrocytes, reduced gap junctional gaps and elevated the expression of Cx43 and decreased the phosphorylation of Cx43. Meanwhile, Hig administration was also able to attenuate the inflammatory response that occurs after CUS in rats. LIMITATIONS For the role of Cx43 in depression, we did not validate it more deeply in animal models with knockout Cx43. In addition, GJs dysfunction might be associated with the inflammatory response seen in depression, but this needs to be further investigated. CONCLUSIONS Hig ameliorates depression and exerts its antidepressant effect possibly by improving the dysfunctional GJs between astrocytes and the inflammatory response.
Collapse
Affiliation(s)
- Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Cong Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Zhifeng Tian
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Xinya Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Yan Gao
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China.
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China.
| |
Collapse
|
12
|
Kim J, Seol S, Kim TE, Lee J, Koo JW, Kang HJ. Synaptotagmin-4 induces anhedonic responses to chronic stress via BDNF signaling in the medial prefrontal cortex. Exp Mol Med 2024; 56:329-343. [PMID: 38297157 PMCID: PMC10907712 DOI: 10.1038/s12276-024-01156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 02/02/2024] Open
Abstract
Stressful circumstances are significant contributors to mental illnesses such as major depressive disorder. Anhedonia, defined as loss of the ability to enjoy pleasure in pleasurable situations, including rewarding activities or social contexts, is considered a key symptom of depression. Although stress-induced depression is associated with anhedonia in humans and animals, the underlying molecular mechanisms of anhedonic responses remain poorly understood. In this study, we demonstrated that synaptotagmin-4 (SYT4), which is involved in the release of neurotransmitters and neurotrophic factors, is implicated in chronic stress-induced anhedonia. Employing chronic unpredictable stress (CUS), we evaluated two subpopulations of mice, susceptible (SUS, anhedonic) and resilient (RES, nonanhedonic), based on sucrose preference, which was strongly correlated with social reward. The FosTRAP (targeted recombination in active populations) system and optogenetic approach revealed that neural activity in the medial prefrontal cortex (mPFC) was significantly associated with CUS-induced anhedonic behavioral phenotypes. By conducting weighted gene coexpression network analysis of RNA sequencing data from the mPFC of SUS and RES mice, we identified Syt4 as a hub gene in a gene network that was unique to anhedonia. We also confirmed that Syt4 overexpression in the mPFC was pro-susceptible, while Syt4 knockdown was pro-resilient; the pro-susceptible effects of SYT4 were mediated through a reduction in brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TrkB) signaling in the mPFC. These findings suggest that SYT4-BDNF interactions in the mPFC represent a crucial regulatory mechanism of anhedonic susceptibility to chronic stress.
Collapse
Affiliation(s)
- Jeongseop Kim
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Dong-gu, Daegu, 41062, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Sihwan Seol
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Tae-Eun Kim
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Dong-gu, Daegu, 41062, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Joonhee Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Dong-gu, Daegu, 41062, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gun, Daegu, 42988, Republic of Korea.
| | - Hyo Jung Kang
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
13
|
Yuan Q, Lei Y, Yu K, Wu J, Xu Z, Wen C, Liu Y, Wang W, He J. Repetitive transcranial magnetic stimulation and fluoxetine attenuate astroglial activation and benefit behaviours in a chronic unpredictable mild stress mouse model of depression. World J Biol Psychiatry 2024; 25:82-94. [PMID: 37942712 DOI: 10.1080/15622975.2023.2279958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Objectives: Repetitive transcranial magnetic stimulation (rTMS) has been considered as an effective antidepressant treatment; however, the mechanism of its antidepressant effect is still unclear. Fluoxetine, a selective serotonin reuptake inhibitor antidepressant, may be neuroprotective. The objective of the present study was to evaluate the effect and underlying possible neuroprotective mechanism of rTMS and fluoxetine on abnormal behaviours in a depressive mouse model induced by chronic unpredictable mild stress (CUMS).Methods: After 28 days of CUMS exposure, mice were chronically treated with rTMS (10 Hz for 5 s per train, total 20 trains per day) and (or) fluoxetine (5 mg/kg/day, intraperitoneally) for 28 days targeting on the frontal cortex. After the behavioural tests, the protein expressions of glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) were measured by immunohistochemistry and (or) Western Blot.Results: The results showed rTMS and (or) fluoxetine attenuated the locomotion decrease, anxiety and depressive like behaviours in the CUMS-exposed mice.Conclusion: Our results suggest that both rTMS and fluoxetine could benefit the CUMS-induced abnormal behaviours including depressive-like behaviours, and the beneficial effects of rTMS as well as fluoxetine on depression might be partly related to their neuroprotective effect on attenuating astroglial activation and BDNF decrease.
Collapse
Affiliation(s)
- Qianfa Yuan
- Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen Xian Yue Hospital, Xian Yue Hospital Affiliated with Xiamen Medical College, Xiamen, Fujian, China
| | - Yuying Lei
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kai Yu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junnan Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhizhong Xu
- Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen Xian Yue Hospital, Xian Yue Hospital Affiliated with Xiamen Medical College, Xiamen, Fujian, China
| | - Chunyan Wen
- Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen Xian Yue Hospital, Xian Yue Hospital Affiliated with Xiamen Medical College, Xiamen, Fujian, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenqiang Wang
- Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen Xian Yue Hospital, Xian Yue Hospital Affiliated with Xiamen Medical College, Xiamen, Fujian, China
| | - Jue He
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Neurological Disease, First Affiliated Hospital, Henan University, Kaifeng, Henan, China
| |
Collapse
|
14
|
Gandy HM, Hollis F, Hernandez CM, McQuail JA. Aging or chronic stress impairs working memory and modulates GABA and glutamate gene expression in prelimbic cortex. Front Aging Neurosci 2024; 15:1306496. [PMID: 38259638 PMCID: PMC10800675 DOI: 10.3389/fnagi.2023.1306496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The glucocorticoid (GC) hypothesis posits that effects of stress and dysregulated hypothalamic-pituitary-adrenal axis activity accumulate over the lifespan and contribute to impairment of neural function and cognition in advanced aging. The validity of the GC hypothesis is bolstered by a wealth of studies that investigate aging of the hippocampus and decline of associated mnemonic functions. The prefrontal cortex (PFC) mediates working memory which also decreases with age. While the PFC is susceptible to stress and GCs, few studies have formally assessed the application of the GC hypothesis to PFC aging and working memory. Using parallel behavioral and molecular approaches, we compared the effects of normal aging versus chronic variable stress (CVS) on working memory and expression of genes that encode for effectors of glutamate and GABA signaling in male F344 rats. Using an operant delayed match-to-sample test of PFC-dependent working memory, we determined that normal aging and CVS each significantly impaired mnemonic accuracy and reduced the total number of completed trials. We then determined that normal aging increased expression of Slc6a11, which encodes for GAT-3 GABA transporter expressed by astrocytes, in the prelimbic (PrL) subregion of the PFC. CVS increased PrL expression of genes associated with glutamatergic synapses: Grin2b that encodes the GluN2B subunit of NMDA receptor, Grm4 that encodes for metabotropic glutamate receptor 4 (mGluR4), and Plcb1 that encodes for phospholipase C beta 1, an intracellular signaling enzyme that transduces signaling of Group I mGluRs. Beyond the identification of specific genes that were differentially expressed between the PrL in normal aging or CVS, examination of Log2 fold-changes for all expressed glutamate and GABA genes revealed a positive association between molecular phenotypes of aging and CVS in the PrL but no association in the infralimbic subregion. Consistent with predictions of the GC hypothesis, PFC-dependent working memory and PrL glutamate/GABA gene expression demonstrate comparable sensitivity to aging and chronic stress. However, changes in expression of specific genes affiliated with regulation of extracellular GABA in normal aging vs. genes encoding for effectors of glutamatergic signaling during CVS suggest the presence of unique manifestations of imbalanced inhibitory and excitatory signaling in the PFC.
Collapse
Affiliation(s)
- Hannah M. Gandy
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Health Care System, Columbia, SC, United States
| | - Caesar M. Hernandez
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Joseph A. McQuail
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Gorthy AS, Balleste AF, Placeres-Uray F, Atkins CM. Chronic Stress in Early Development and Effects on Traumatic Brain Injury Outcome. ADVANCES IN NEUROBIOLOGY 2024; 42:179-204. [PMID: 39432043 DOI: 10.1007/978-3-031-69832-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
In recent years, significant advances have been made in the study of mild traumatic brain injury (mTBI). Complete recovery from mTBI normally requires days to weeks, yet a subset of the population suffers from symptoms for weeks to months after injury. The risk factors for these prolonged symptoms have not yet been fully understood. In this chapter, we address one proposed risk factor, early life stress (ELS) and its influence on mTBI recovery. To study the effects of ELS on mTBI recovery, accepted animal models of ELS, including maternal separation, limited bedding and nesting, and chronic unpredictable stress, have been implemented. Combining these ELS models with standardized mTBI models, such as fluid percussion injury or controlled cortical impact, has allowed for a deeper understanding of the neuronal, hormonal, and cognitive changes that occur after mTBI following ELS. These preclinical findings are being used to understand how adverse childhood experiences may predispose a subset of individuals to poorer recovery after mTBI.
Collapse
Affiliation(s)
- Aditi S Gorthy
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alyssa F Balleste
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fabiola Placeres-Uray
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Coleen M Atkins
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
16
|
Willadsen M, Schwarting RKW, Wöhr M. Acute anxiogenic effects of escitalopram are associated with mild alterations in D-amphetamine-induced behavior and social approach evoked by playback of 50-kHz ultrasonic vocalizations in rats. Neuropharmacology 2023; 241:109734. [PMID: 37813275 DOI: 10.1016/j.neuropharm.2023.109734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Rats communicate through auditory signals in the ultrasonic range, so-called ultrasonic vocalizations (USV). Short, high-frequency 50-kHz USV are associated with positive affective states and are emitted in appetitive situations, often rewarding social interactions, such as rough-and-tumble play and mating. Exaggerated levels of 50-kHz USV emission can be observed in response to psychostimulants, most notably d-amphetamine (AMPH). There is robust evidence suggesting that 50-kHz USV serve as affiliative signals and help to maintain or re-establish social proximity. A key neurotransmitter involved in behavioral regulation is serotonin (5-hydroxytryptamine, 5-HT). This includes both, the regulation of anxiety-related behavior and ultrasonic communication. Here, we show that acute treatment with the selective 5-HT reuptake inhibitor (SSRI) escitalopram (ESC) leads to increased anxiety-related behavior in the elevated plus maze and tested whether such acute anxiogenic effects of ESC result in alterations in ultrasonic communication in sender and/or receiver. To this aim, we conducted a dose-response study in male rats and assessed AMPH-induced hyperactivity and 50-kHz ultrasonic calling in the sender and social approach behavior evoked by playback of pro-social 50-kHz USV in the receiver. Acute ESC treatment affected both, sender and receiver. This was reflected in a lack of AMPH-induced changes in acoustic features of 50-kHz USV and absence of social exploratory behavior evoked by 50-kHz USV playback, respectively. Albeit the SSRI effects were relatively mild, this supports the notion that the 5-HT system is involved in the regulation of a key aspect of the social behavior repertoire of rodents, namely socio-affective communication through 50-kHz USV.
Collapse
Affiliation(s)
- Maria Willadsen
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, D-35032, Marburg, Germany; Philipps-University of Marburg, Center for Mind, Brain and Behavior, D-35032, Marburg, Germany
| | - Rainer K W Schwarting
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, D-35032, Marburg, Germany; Philipps-University of Marburg, Center for Mind, Brain and Behavior, D-35032, Marburg, Germany
| | - Markus Wöhr
- Philipps-University of Marburg, Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, D-35032, Marburg, Germany; Philipps-University of Marburg, Center for Mind, Brain and Behavior, D-35032, Marburg, Germany; KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, B-3000, Leuven, Belgium; KU Leuven, Leuven Brain Institute, B-3000, Leuven, Belgium.
| |
Collapse
|
17
|
Bridgeland-Stephens L, Thorpe SKS, Chappell J. Potential resilience treatments for orangutans ( Pongo spp.): Lessons from a scoping review of interventions in humans and other animals. Anim Welf 2023; 32:e77. [PMID: 38487448 PMCID: PMC10937215 DOI: 10.1017/awf.2023.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 03/17/2024]
Abstract
Wild orangutans (Pongo spp.) rescued from human-wildlife conflict must be adequately rehabilitated before being returned to the wild. It is essential that released orangutans are able to cope with stressful challenges such as food scarcity, navigating unfamiliar environments, and regaining independence from human support. Although practical skills are taught to orangutans in rehabilitation centres, post-release survival rates are low. Psychological resilience, or the ability to 'bounce back' from stress, may be a key missing piece of the puzzle. However, there is very little knowledge about species-appropriate interventions which could help captive orangutans increase resilience to stress. This scoping review summarises and critically analyses existing human and non-human animal resilience literature and provides suggestions for the development of interventions for orangutans in rehabilitation. Three scientific databases were searched in 2021 and 2023, resulting in 63 human studies and 266 non-human animal studies. The first section brings together human resilience interventions, identifying common themes and assessing the applicability of human interventions to orangutans in rehabilitation. The second section groups animal interventions into categories of direct stress, separation stress, environmental conditions, social stress, and exercise. In each category, interventions are critically analysed to evaluate their potential for orangutans in rehabilitation. The results show that mild and manageable forms of intervention have the greatest potential benefit with the least amount of risk. The study concludes by emphasising the need for further investigation and experimentation, to develop appropriate interventions and measure their effect on the post-release survival rate of orangutans.
Collapse
Affiliation(s)
| | | | - Jackie Chappell
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
18
|
Chan KL, Poller WC, Swirski FK, Russo SJ. Central regulation of stress-evoked peripheral immune responses. Nat Rev Neurosci 2023; 24:591-604. [PMID: 37626176 PMCID: PMC10848316 DOI: 10.1038/s41583-023-00729-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Stress-linked psychiatric disorders, including anxiety and major depressive disorder, are associated with systemic inflammation. Recent studies have reported stress-induced alterations in haematopoiesis that result in monocytosis, neutrophilia, lymphocytopenia and, consequently, in the upregulation of pro-inflammatory processes in immunologically relevant peripheral tissues. There is now evidence that this peripheral inflammation contributes to the development of psychiatric symptoms as well as to common co-morbidities of psychiatric disorders such as metabolic syndrome and immunosuppression. Here, we review the specific brain and spinal regions, and the neuronal populations within them, that respond to stress and transmit signals to peripheral tissues via the autonomic nervous system or neuroendocrine pathways to influence immunological function. We comprehensively summarize studies that have employed retrograde tracing to define neurocircuits linking the brain to the bone marrow, spleen, gut, adipose tissue and liver. Moreover, we highlight studies that have used chemogenetic or optogenetic manipulation or intracerebroventricular administration of peptide hormones to control somatic immune responses. Collectively, this growing body of literature illustrates potential mechanisms through which stress signals are conveyed from the CNS to immune cells to regulate stress-relevant behaviours and comorbid pathophysiology.
Collapse
Affiliation(s)
- Kenny L Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Wolfram C Poller
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Tabassum S, Misrani A, Huang HX, Zhang ZY, Li QW, Long C. Resveratrol Attenuates Chronic Unpredictable Mild Stress-Induced Alterations in the SIRT1/PGC1α/SIRT3 Pathway and Associated Mitochondrial Dysfunction in Mice. Mol Neurobiol 2023; 60:5102-5116. [PMID: 37256428 DOI: 10.1007/s12035-023-03395-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/18/2023] [Indexed: 06/01/2023]
Abstract
Environmental challenges, specifically chronic stress, have long been associated with neuropsychiatric disorders, including anxiety and depression. Sirtuin-1 (SIRT1) is a NAD+-dependent deacetylase that is widely distributed in the cortex and is involved in stress responses and neuropsychiatric disorders. Nevertheless, how chronic stress modulates the SIRT1 pathway and associated signaling remains unclear. In this study, we first explored the impact of chronic unpredictable mild stress (CUMS) on the SIRT1/PGC1α/SIRT3 pathway, on GABAergic mechanisms, and on mitophagy, autophagy and apoptosis in mice. We also asked whether activation of SIRT1 by resveratrol (RSV) can attenuate CUMS-induced molecular and behavioral alterations. Two-month-old C57/BL6J mice were subjected to three weeks of CUMS and one week of RSV treatment (30 mg/kg; i.p.) during the third week of CUMS. CUMS caused downregulation of the SIRT1/PGC1α/SIRT3 pathway leading to impaired mitochondrial morphology and function. CUMS also resulted in a reduction in numbers of parvalbumin-positive interneurons and increased oxidative stress leading to reduced expression of autophagy- and mitophagy-related proteins. Strikingly, activation of SIRT1 by RSV ameliorated expression of SIRT1/PGC1α/SIRT3, and also improved mitochondrial function, GABAergic mechanisms, mitophagy, autophagy and apoptosis. RSV also rescued CUMS-induced anxiety-like and depressive-like behavior in mice. Our results raise the compelling possibility that RSV treatment might be a viable therapeutic method of blocking stress-induced behavioral alterations.
Collapse
Affiliation(s)
- Sidra Tabassum
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, China
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Afzal Misrani
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, China
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hui-Xian Huang
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, China
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zai-Yong Zhang
- Department of Cardiology, Panyu Central Hospital, Guangzhou, 511400, China
- Cardiovascular Institute of Panyu District, Guangzhou, 511400, China
| | - Qiao-Wei Li
- Department of Neurology, Panyu District Central Hospital, Guangzhou, 511400, China
| | - Cheng Long
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, China.
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
20
|
KrishnaRaju AV, Somepalli V, Thanawala S, Shah R. Efficacy and Anti-Inflammatory Activity of Ashwagandha Sustained-Release Formulation on Depression and Anxiety Induced by Chronic Unpredictable Stress: in vivo and in vitro Studies. J Exp Pharmacol 2023; 15:291-305. [PMID: 37521489 PMCID: PMC10386834 DOI: 10.2147/jep.s407906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Background Stress is the psychological, physiological, and behavioral response of an individual's body when they perceive a lack of equilibrium between the demands placed upon them and their ability to meet those demands. Adaptogens are herbs that help with stress management, and Ashwagandha is one such safe and effective adaptogen. Objective We evaluated the anti-neuroinflammatory potential of Ashwagandha sustained-release formulation (AshwaSR) by estimating the in vitro expression of pro-inflammatory cytokines, and its efficacy on anxiety and depression in an in vivo study. Methods Our in vitro study investigated the anti-inflammatory potential of AshwaSR by estimating the expression of tumour necrosis factor [TNF]-α and interleukin [IL]-1β levels in LPS-induced THP-1 human monocytes, and the antioxidant effects by its potential to inhibit the superoxide [SO] generation in PMA-induced HL-60 human monocytic cells. The in vivo study assessed the efficacy of AshwaSR on chronic unpredictable stress (CUS)-induced comorbid anxiety and depression in Sprague Dawley rats. Antidepressant and anxiolytic effects of AshwaSR were evaluated by open field test (OFT), elevated plus maze (EPM), forced swim test (FST), and Morris water maze (MWM) test. Results AshwaSR inhibited TNF-α, IL-1β and superoxide production in a dose-dependent manner in the in vitro study. The in vivo CUS model induced depression-like and anxiety-like behaviour. Treatments with AshwaSR and escitalopram showed improvement in the EPM and MWM models compared to the CUS-group. Conclusion In vitro study demonstrated that AshwaSR inhibits expressions of pro-inflammatory cytokines, IL-1β and TNF-α, and superoxide production. Further, the in vivo study confirmed its anxiolytic and stress-relieving effects in the CUS model that confirmed AshwaSR's potential in managing stress and stress-related symptoms.
Collapse
Affiliation(s)
- Alluri Venkata KrishnaRaju
- Department of Pharmacology and Clinical Research, Laila Nutraceuticals, Vijayawada, Andhra Pradesh, India
| | - Venkateswarlu Somepalli
- Department of Research and Development, Laila Nutraceuticals, Vijayawada, Andhra Pradesh, India
| | | | - Rajat Shah
- Medical Affairs, Nutriventia Limited, Mumbai, Maharashtra, India
| |
Collapse
|
21
|
Campeau S, McNulty C, Stanley JT, Gerber AN, Sasse SK, Dowell RD. Determination of steady-state transcriptome modifications associated with repeated homotypic stress in the rat rostral posterior hypothalamic region. Front Neurosci 2023; 17:1173699. [PMID: 37360161 PMCID: PMC10288150 DOI: 10.3389/fnins.2023.1173699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Chronic stress is epidemiologically correlated with physical and psychiatric disorders. Whereas many animal models of chronic stress induce symptoms of psychopathology, repeated homotypic stressors to moderate intensity stimuli typically reduce stress-related responses with fewer, if any, pathological symptoms. Recent results indicate that the rostral posterior hypothalamic (rPH) region is a significant component of the brain circuitry underlying response reductions (habituation) associated with repeated homotypic stress. To test whether posterior hypothalamic transcriptional regulation associates with the neuroendocrine modifications induced by repeated homotypic stress, RNA-seq was performed in the rPH dissected from adult male rats that experienced either no stress, 1, 3, or 7 stressful loud noise exposures. Plasma samples displayed reliable increases of corticosterone in all stressed groups, with the smallest increase in the group exposed to 7 loud noises, indicating significant habituation compared to the other stressed groups. While few or no differentially expressed genes were detected 24-h after one or three loud noise exposures, relatively large numbers of transcripts were differentially expressed between the group exposed to 7 loud noises when compared to the control or 3-stress groups, respectively, which correlated with the corticosterone response habituation observed. Gene ontology analyses indicated multiple significant functional terms related to neuron differentiation, neural membrane potential, pre- and post-synaptic elements, chemical synaptic transmission, vesicles, axon guidance and projection, glutamatergic and GABAergic neurotransmission. Some of the differentially expressed genes (Myt1l, Zmat4, Dlx6, Csrnp3) encode transcription factors that were independently predicted by transcription factor enrichment analysis to target other differentially regulated genes in this study. A similar experiment employing in situ hybridization histochemical analysis in additional animals validated the direction of change of the 5 transcripts investigated (Camk4, Gabrb2, Gad1, Grin2a and Slc32a) with a high level of temporal and regional specificity for the rPH. In aggregate, the results suggest that distinct patterns of gene regulation are obtained in response to a repeated homotypic stress regimen; they also point to a significant reorganization of the rPH region that may critically contribute to the phenotypic modifications associated with repeated homotypic stress habituation.
Collapse
Affiliation(s)
- Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
| | - Connor McNulty
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
| | - Jacob T. Stanley
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States
- BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Anthony N. Gerber
- Department of Medicine, National Jewish Health, Denver, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Sarah K. Sasse
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Robin D. Dowell
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States
- BioFrontiers Institute, University of Colorado, Boulder, CO, United States
- Department of Computer Science, University of Colorado, Boulder, CO, United States
| |
Collapse
|
22
|
Odland AU, Sandahl R, Andreasen JT. Chronic corticosterone improves perseverative behavior in mice during sequential reversal learning. Behav Brain Res 2023; 450:114479. [PMID: 37169127 DOI: 10.1016/j.bbr.2023.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Stressful life events can both trigger development of psychiatric disorders and promote positive behavioral changes in response to adversities. The relationship between stress and cognitive flexibility is complex, and conflicting effects of stress manifest in both humans and laboratory animals. OBJECTIVE To mirror the clinical situation where stressful life events impair mental health or promote behavioral change, we examined the post-exposure effects of stress on cognitive flexibility in mice. METHODS We tested female C57BL/6JOlaHsd mice in the touchscreen-based sequential reversal learning test. Corticosterone (CORT) was used as a model of stress and was administered in the drinking water for two weeks before reversal learning. Control animals received drinking water without CORT. Behaviors in supplementary tests were included to exclude non-specific confounding effects of CORT and improve interpretation of the results. RESULTS CORT-treated mice were similar to controls on all touchscreen parameters before reversal. During the low accuracy phase of reversal learning, CORT reduced perseveration index, a measure of perseverative responding, but did not affect acquisition of the new reward contingency. This effect was not related to non-specific deficits in chamber activity. CORT increased anxiety-like behavior in the elevated zero maze test and repetitive digging in the marble burying test, reduced locomotor activity, but did not affect spontaneous alternation behavior. CONCLUSION CORT improved cognitive flexibility in the reversal learning test by extinguishing prepotent responses that were no longer rewarded, an effect possibly related to a stress-mediated increase in sensitivity to negative feedback that should be confirmed in a larger study.
Collapse
Affiliation(s)
- Anna U Odland
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Rune Sandahl
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
23
|
Pradhan LK, Sahoo PK, Sarangi P, Chauhan NR, Das SK. Suppression of Chronic Unpredictable Stress-Persuaded Increased Monoamine Oxidase Activity by Taurine Promotes Significant Neuroprotection in Zebrafish Brain. Neurochem Res 2023; 48:82-95. [PMID: 36001190 DOI: 10.1007/s11064-022-03724-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/11/2023]
Abstract
Neuropsychiatric upshots following chronic exposure to unpredictable adverse stressors have been well documented in the literature. Considering the significant impact of chronic unpredictable stress (CUS), the literature is elusive regarding the neuroprotective efficacy of taurine against CUS-induced oxidative stress and chromatin condensation in the zebrafish brain. In this study, to ameliorate CUS-persuaded neurological outcomes, waterborne treatment of taurine as a prophylactic intervention was undertaken. Further, our approach also focused on the gross neurobehavioral response of zebrafish, oxidative stress indices and neuromorphology of the zebrafish brain following CUS exposure with taurine treatment. Because taurine provides significant neuroprotection against oxidative insult, the cytosolic level of monoamine oxidase (MAO) in the zebrafish brain following CUS exposure is worth investigating. Further, as heightened MAO activity is associated with augmented oxidative and chromatin condensation, the focus of this study was on whether taurine provides neuroprotection by downregulating MAO levels in the brain. Our findings show that CUS-persuaded altered neurobehavioral response was significantly rescued by taurine. Moreover, our findings firmly support the hypothesis that taurine acts as a radical neuroprotector by restoring glutathione biosynthesis in the zebrafish brain subsequent to CUS exposure. Additionally, the rising level of brain MAO following chronic exposure to CUS is ameliorated by taurine treatment. These findings strongly advocate the role of taurine as a natural MAO inhibitor through the neuroprotection it provides against CUS-instigated oxidative stress in zebrafish. However, the fundamental neuroprotective mechanism of such natural compounds needs to be elucidated to determine their neuroprotective efficacy against stress regimens.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Prerana Sarangi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Nishant Ranjan Chauhan
- Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India.
| |
Collapse
|
24
|
Craine TJ, Race NS, Kutash LA, Iouchmanov AL, Moschonas EH, O'Neil DA, Sunleaf CR, Patel A, Patel N, Grobengeiser KO, Marshall IP, Magdelinic TN, Cheng JP, Bondi CO. Milnacipran Ameliorates Executive Function Impairments following Frontal Lobe Traumatic Brain Injury in Male Rats: A Multimodal Behavioral Assessment. J Neurotrauma 2023; 40:112-124. [PMID: 35979888 PMCID: PMC10024072 DOI: 10.1089/neu.2022.0289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Traumatic brain injuries (TBIs) affect more than 10 million patients annually worldwide, causing long-term cognitive and psychosocial impairments. Frontal lobe TBIs commonly impair executive function, but laboratory models typically focus primarily on spatial learning and declarative memory. We implemented a multi-modal approach for clinically relevant cognitive-behavioral assessments of frontal lobe function in rats with TBI and assessed treatment benefits of the serotonin-norepinephrine reuptake inhibitor, milnacipran (MLN). Two attentional set-shifting tasks (AST) evaluated cognitive flexibility via the rats' ability to locate food-based rewards by learning, unlearning, and relearning sequential rule sets with shifting salient cues. Adult male rats reached stable pre-injury operant AST (oAST) performance in 3-4 weeks, then were isoflurane-anesthetized, subjected to a unilateral frontal lobe controlled cortical impact (2.4 mm depth, 4 m/sec velocity) or Sham injury, and randomized to treatment conditions. Milnacipran (30 mg/kg/day) or vehicle (VEH; 10% ethanol in saline) was administered intraperitoneally via implanted osmotic minipumps (continuous infusions post-surgery, 60 μL/h). Rats had a 10-day recovery post-TBI/Sham before performing light/location-based oAST for 10 days and, subsequently, odor/media-based digging AST (dAST) on the last test day (26-27 days post-injury) before sacrifice. Both AST tests revealed significant deficits in TBI+VEH rats, seen as elevated total trials and errors (p < 0.05), which generally normalized in MLN-treated rats (p < 0.05). This first simultaneous dual AST assessment demonstrates oAST and dAST are sufficiently sensitive and robust to detect subtle attentional and cognitive flexibility executive impairments after frontal lobe TBI in rats. Chronic MLN administration shows promise for attenuation of post-TBI executive function deficits, thus meriting further investigation.
Collapse
Affiliation(s)
- Timothy J. Craine
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Bath, Claverton Down, Bath, United Kingdom
| | - Nicholas S. Race
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Association of Academic Physiatrists Rehabilitation Medicine Scientist Training Program, Owings Mills, Maryland, USA
| | - Lindsay A. Kutash
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna L. Iouchmanov
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eleni H. Moschonas
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Darik A. O'Neil
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carlson R. Sunleaf
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aarti Patel
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nima Patel
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine O. Grobengeiser
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ian P. Marshall
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Taylor N. Magdelinic
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeffrey P. Cheng
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Corina O. Bondi
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurobiology, and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Thompson SM. Plasticity of synapses and reward circuit function in the genesis and treatment of depression. Neuropsychopharmacology 2023; 48:90-103. [PMID: 36057649 PMCID: PMC9700729 DOI: 10.1038/s41386-022-01422-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/08/2022]
Abstract
What changes in brain function cause the debilitating symptoms of depression? Can we use the answers to this question to invent more effective, faster acting antidepressant drug therapies? This review provides an overview and update of the converging human and preclinical evidence supporting the hypothesis that changes in the function of excitatory synapses impair the function of the circuits they are embedded in to give rise to the pathological changes in mood, hedonic state, and thought processes that characterize depression. The review also highlights complementary human and preclinical findings that classical and novel antidepressant drugs relieve the symptoms of depression by restoring the functions of these same synapses and circuits. These findings offer a useful path forward for designing better antidepressant compounds.
Collapse
Affiliation(s)
- Scott M Thompson
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, 80045, CO, USA.
| |
Collapse
|
26
|
Ahmed Z, Tokhi A, Arif M, Rehman NU, Sheibani V, Rauf K, Sewell RDE. Fraxetin attenuates disrupted behavioral and central neurochemical activity in a model of chronic unpredictable stress. Front Pharmacol 2023; 14:1135497. [PMID: 37033640 PMCID: PMC10078985 DOI: 10.3389/fphar.2023.1135497] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Purpose: Chronic unpredictable stress (CUS) induces long-term neuronal and synaptic plasticity with a neurohormonal disbalance leading to the development of co-existing anxiety, depression, and cognitive decline. The side effects and delayed onset of current clinically used antidepressants has prompted a quest for antidepressants with minimum drawbacks. Fraxetin is a natural coumarin derivative with documented antioxidant and neuroprotective activity though its effects on stress are unknown. This study therefore aimed to investigate any possible acute effect of fraxetin in behavioral tests including a CUS paradigm in correlation with brain regional neurochemical changes. Methods: Mice were subjected to a series of mild stressors for 14 days to induce CUS. Furthermore, behavioral performance in the open field test, forced swim test (FST), Y-maze and elevated plus-maze were evaluated. Postmortem frontal cortical, hippocampal and striatal tissues were analyzed via high-performance liquid chromatography (HPLC) for neurochemical changes. Result: Acute administration of fraxetin (20-60 mg/kg, orally) decreased depression-like behavior in the FST and behavioral anxiety in both the open field test and elevated plus-maze. Memory deficits induced during the CUS paradigm were markedly improved as reflected by enhanced Y maze performance. Concurrent biochemical and neurochemical analyses revealed that only the two higher fraxetin doses decreased elevated serum corticosterone levels while diminished serotonin levels in the frontal cortex, striatum and hippocampus were reversed, though noradrenaline was only raised in the striatum. Concomitantly, dopamine levels were restored by fraxetin at the highest dose exclusively in the frontal cortex. Conclusion: Acute treatment with fraxetin attenuated CUS-induced behavioral deficits, ameliorated the increased corticosterone level and restored altered regional neurotransmitter levels and this may indicate a potential application of fraxetin in the management of anxiety and depression modeled by CUS. However, further studies are warranted regarding the chronic effects of fraxetin behaviorally and neurochemically.
Collapse
Affiliation(s)
- Zainab Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan
| | - Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan
| | - Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of MedicalSciences, Kerman, Iran
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan
- *Correspondence: Khalid Rauf,
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
27
|
Henriquez AR, Snow SJ, Jackson TW, House JS, Alewel DI, Schladweiler MC, Valdez MC, Freeborn DL, Miller CN, Grindstaff R, Kodavanti PRS, Kodavanti UP. Social isolation exacerbates acute ozone inhalation induced pulmonary and systemic health outcomes. Toxicol Appl Pharmacol 2022; 457:116295. [PMID: 36341779 PMCID: PMC9722630 DOI: 10.1016/j.taap.2022.116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Psychosocially-stressed individuals might have exacerbated responses to air pollution exposure. Acute ozone exposure activates the neuroendocrine stress response leading to systemic metabolic and lung inflammatory changes. We hypothesized chronic mild stress (CS) and/or social isolation (SI) would cause neuroendocrine, inflammatory, and metabolic phenotypes that would be exacerbated by an acute ozone exposure. Male 5-week-old Wistar-Kyoto rats were randomly assigned into 3 groups: no stress (NS) (pair-housed, regular-handling); SI (single-housed, minimal-handling); CS (single-housed, subjected to mild unpredicted-randomized stressors [restraint-1 h, tilted cage-1 h, shaking-1 h, intermittent noise-6 h, and predator odor-1 h], 1-stressor/day*5-days/week*8-weeks. All animals then 13-week-old were subsequently exposed to filtered-air or ozone (0.8-ppm) for 4 h and immediately necropsied. CS, but not SI animals had increased adrenal weights. However, relative to NS, both CS and SI had lower circulating luteinizing hormone, prolactin, and follicle-stimulating hormone regardless of exposure (SI > CS), and only CS demonstrated lower thyroid-stimulating hormone levels. SI caused more severe systemic inflammation than CS, as evidenced by higher circulating cytokines and cholesterol. Ozone exposure increased urine corticosterone and catecholamine metabolites with no significant stressor effect. Ozone-induced lung injury, and increases in lavage-fluid neutrophils and IL-6, were exacerbated by SI. Ozone severely lowered circulating thyroid-stimulating hormone, prolactin, and luteinizing hormone in all groups and exacerbated systemic inflammation in SI. Ozone-induced increases in serum glucose, leptin, and triglycerides were consistent across stressors; however, increases in cholesterol were exacerbated by SI. Collectively, psychosocial stressors, especially SI, affected the neuroendocrine system and induced adverse metabolic and inflammatory effects that were exacerbated by ozone exposure.
Collapse
Affiliation(s)
- Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Thomas W Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - John S House
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Matthew C Valdez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Danielle L Freeborn
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Colette N Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Rachel Grindstaff
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Prasada Rao S Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
28
|
Demin KA, Krotova NA, Ilyin NP, Galstyan DS, Kolesnikova TO, Strekalova T, de Abreu MS, Petersen EV, Zabegalov KN, Kalueff AV. Evolutionarily conserved gene expression patterns for affective disorders revealed using cross-species brain transcriptomic analyses in humans, rats and zebrafish. Sci Rep 2022; 12:20836. [PMID: 36460699 PMCID: PMC9718822 DOI: 10.1038/s41598-022-22688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Widespread, debilitating and often treatment-resistant, depression and other stress-related neuropsychiatric disorders represent an urgent unmet biomedical and societal problem. Although animal models of these disorders are commonly used to study stress pathogenesis, they are often difficult to translate across species into valuable and meaningful clinically relevant data. To address this problem, here we utilized several cross-species/cross-taxon approaches to identify potential evolutionarily conserved differentially expressed genes and their sets. We also assessed enrichment of these genes for transcription factors DNA-binding sites down- and up- stream from their genetic sequences. For this, we compared our own RNA-seq brain transcriptomic data obtained from chronically stressed rats and zebrafish with publicly available human transcriptomic data for patients with major depression and their respective healthy control groups. Utilizing these data from the three species, we next analyzed their differential gene expression, gene set enrichment and protein-protein interaction networks, combined with validated tools for data pooling. This approach allowed us to identify several key brain proteins (GRIA1, DLG1, CDH1, THRB, PLCG2, NGEF, IKZF1 and FEZF2) as promising, evolutionarily conserved and shared affective 'hub' protein targets, as well as to propose a novel gene set that may be used to further study affective pathogenesis. Overall, these approaches may advance cross-species brain transcriptomic analyses, and call for further cross-species studies into putative shared molecular mechanisms of affective pathogenesis.
Collapse
Affiliation(s)
- Konstantin A Demin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| | - Nataliya A Krotova
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Nikita P Ilyin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | | | | | | | | | | | - Allan V Kalueff
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia.
- Institute of Neurosciences and Medicine, Novosibirsk, Russia.
- Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
29
|
Chronic stress causes striatal disinhibition mediated by SOM-interneurons in male mice. Nat Commun 2022; 13:7355. [PMID: 36446783 PMCID: PMC9709160 DOI: 10.1038/s41467-022-35028-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic stress (CS) is associated with a number of neuropsychiatric disorders, and it may also contribute to or exacerbate motor function. However, the mechanisms by which stress triggers motor symptoms are not fully understood. Here, we report that CS functionally alters dorsomedial striatum (DMS) circuits in male mice, by affecting GABAergic interneuron populations and somatostatin positive (SOM) interneurons in particular. Specifically, we show that CS impairs communication between SOM interneurons and medium spiny neurons, promoting striatal overactivation/disinhibition and increased motor output. Using probabilistic machine learning to analyze animal behavior, we demonstrate that in vivo chemogenetic manipulation of SOM interneurons in DMS modulates motor phenotypes in stressed mice. Altogether, we propose a causal link between dysfunction of striatal SOM interneurons and motor symptoms in models of chronic stress.
Collapse
|
30
|
Huang CX, Xiao Q, Zhang L, Gao Y, Ma J, Liang X, Tang J, Wang SR, Luo YM, Chao FL, Xiu Y, Tang Y. Stress-induced myelin damage in the hippocampal formation in a rat model of depression. J Psychiatr Res 2022; 155:401-409. [PMID: 36182770 DOI: 10.1016/j.jpsychires.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND According to previous studies, myelin damage may be involved in the occurrence of depression. However, to date, no study has quantitatively investigated the changes in myelinated fibers and myelin sheaths in the hippocampal formation (HF) and hippocampal subfields in the context of depression. METHODS Male Sprague-Dawley (SD) rats (aged 4-5 weeks) were evenly divided into the control group and chronic unpredictable stress (CUS) group. Behavioral tests were performed, and then changes in myelinated fibers and myelin ultrastructure in hippocampal subfields in depression model rats were investigated using modern stereological methods and transmission electron microscopy techniques. RESULTS After a four-week CUS protocol, CUS rats showed depressive-like and anxiety-like behaviors. The total length and total volume of myelinated fibers were reduced in the CA1 region and DG in the CUS group compared with the control group. The total volumes of myelin sheaths and axons in the CA1 region but not in the DG were significantly lower in the CUS group than in the control group. The decrease in the total length of myelinated nerve fibers in the CA1 region in CUS rats was mainly due to a decrease in the length of myelinated fibers with a myelin sheath thickness of 0.15 μm-0.20 μm. LIMITATIONS The exact relationship between the degeneration of myelin sheaths and depression-like, anxiety-like behaviors needs to be further investigated. CONCLUSIONS CUS induces depression- and anxiety-like behaviors, and the demyelination in the CA1 region induced by 4 weeks of CUS might be an important structural basis for these behaviors.
Collapse
Affiliation(s)
- Chun-Xia Huang
- Department of Physiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China.
| | - Qian Xiao
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Department of Radioactive Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Lei Zhang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Yuan Gao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Jing Ma
- Department of Anatomy, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Xin Liang
- Department of Pathophysiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Jing Tang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - San-Rong Wang
- Department of Rehabilitation, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Yan-Min Luo
- Department of Physiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Feng-Lei Chao
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China
| | - Yun Xiu
- Institute of Life Science, Chongqing Medical University, Chongqing, PR China
| | - Yong Tang
- Laboratory of Stem Cell and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
31
|
Habit Formation and the Effect of Repeated Stress Exposures on Cognitive Flexibility Learning in Horses. Animals (Basel) 2022; 12:ani12202818. [DOI: 10.3390/ani12202818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Horse training exposes horses to an array of cognitive and ethological challenges. Horses are routinely required to perform behaviours that are not aligned to aspects of their ethology, which may delay learning. While horses readily form habits during training, not all of these responses are considered desirable, resulting in the horse being subject to retraining. This is a form of cognitive flexibility and is critical to the extinction of habits and the learning of new responses. It is underpinned by complex neural processes which can be impaired by chronic or repeated stress. Domestic horses may be repeatedly exposed to multiples stressors. The potential contribution of stress impairments of cognitive flexibility to apparent training failures is not well understood, however research from neuroscience can be used to understand horses’ responses to training. We trained horses to acquire habit-like responses in one of two industry-style aversive instrumental learning scenarios (moving away from the stimulus-instinctual or moving towards the stimulus-non-instinctual) and evaluated the effect of repeated stress exposures on their cognitive flexibility in a reversal task. We measured heart rate as a proxy for noradrenaline release, salivary cortisol and serum Brain Derived Neurotrophic Factor (BDNF) to infer possible neural correlates of the learning outcomes. The instinctual task which aligned with innate equine escape responses to aversive stimuli was acquired significantly faster than the non-instinctual task during both learning phases, however contrary to expectations, the repeated stress exposure did not impair the reversal learning. We report a preliminary finding that serum BDNF and salivary cortisol concentrations in horses are positively correlated. The ethological salience of training tasks and cognitive flexibility learning can significantly affect learning in horses and trainers should adapt their practices where such tasks challenge innate equine behaviour.
Collapse
|
32
|
Minocycline Ameliorates Chronic Unpredictable Mild Stress-Induced Neuroinflammation and Abnormal mPFC-HIPP Oscillations in Mice. Mol Neurobiol 2022; 59:6874-6895. [PMID: 36048340 DOI: 10.1007/s12035-022-03018-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Stress-induced neuroinflammation is a hallmark of modern society and has been linked to various emotional disorders, including anxiety. However, how microglia-associated neuroinflammation under chronic unpredictable mild stress (CUMS) alters mitochondrial function and subsequent medial prefrontal cortex-hippocampus (mPFC-HIPP) connectivity remains obscure. We speculated that CUMS might induce neuroinflammation, which involves altered mitochondrial protein levels, blockade of neuroinflammation by a microglial modulator, minocycline, protects against CUMS-induced alterations. Mice were exposed to CUMS for 3 weeks and received minocycline (50 mg/kg) intraperitoneally for 7 consecutive days during the 3rd week of CUMS. Novelty-suppressed feeding test and contextual anxiety test assessed anxiety-like behavior. Western blotting and immunofluorescent staining were employed to evaluate levels of proteins involved in neuroinflammation and mitochondrial function. In vivo dual-site extracellular recordings of local field potential (LFP) were conducted to evaluate the oscillatory activity and brain connectivity in mPFC-HIPP circuitry. We show that CUMS results in excessive microglial activation accompanied by aberrant levels of mitochondrial proteins, such as ATP-5A and the fission protein, Drp-1, increased oxidative stress indicated by elevated levels of nitrotyrosine, and decreased Nrf-2 levels. Furthermore, CUMS causes downregulation of α1 subunit of GABAAR, vesicular GABA transporter (Vgat), and glutamine synthetase (GS), leading to impaired LFP and connectivity of the mPFC-HIPP circuitry. Strikingly, blockage of microglial activation by minocycline ameliorates CUMS-induced aberrant levels of mitochondrial and GABAergic signaling proteins and prevents CUMS-induced anxiety-like behavior in mice. To the end, the study revealed that microglia is critically involved in stress-induced neuroinflammation, which may underlie the molecular mechanism of CUMS-induced anxiety behavior.
Collapse
|
33
|
Mohseni-Moghaddam P, Dogani M, Hatami M, Roohollahi S, Amiresmaeli A, Askari N. A behavioral and molecular study; ameliorated anxiety-like behavior and cognitive dysfunction in a rat model of chronic unpredictable stress treated with oregano extract. Brain Behav 2022; 12:e2727. [PMID: 35898162 PMCID: PMC9392516 DOI: 10.1002/brb3.2727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/01/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Chronic stress is considered a severe risk factor leading to various disorders, including anxiety and cognitive decline. The present study aimed to investigate the effects of Origanum vulgare (oregano) extract on improving anxiety-like behavior and learning and memory defection caused by chronic unpredictable stress (CUS). METHOD A 10-day CUS protocol was executed on male rats, and on day 10, their anxiety, learning, and memory status were evaluated. After that, in addition to the CUS, the rats were treated with the oregano extract for 2 weeks. Then, the expression of BDNF, TrkB, and TLR2/4 genes in the hippocampus and prefrontal cortex of the rats was evaluated. Also, the liver- and kidney-related serum parameters, including triglycerides, total cholesterol, HDL, LDL, creatinine, urea, serum glucose, alanine aminotransferase, and aspartate aminotransferase were assessed. Further, the extract's lethal effect and its impact on animals' body weight were investigated. RESULTS Behavioral tests confirmed the anxiety-like behavior and learning-memory function impairment caused by CUS. In contrast, the administration of the extract could significantly alleviate the mental deficiencies and diminished anxiety-like behaviors. Molecular assessments showed that CUS could markedly decrease the BDNF and TrkB genes' expression levels while increasing that of TLR2 and TLR4. In contrast, in extract-treated animals, mRNA levels of BDNF and TrkB considerably increased, yet TLR2 and TLR4 mRNA levels reduced. Additionally, consumption of the extract caused weight gain, while having no lethality and detrimental effect on the liver and kidneys functions. CONCLUSIONS These findings indicate the anxiolytic properties of the extract and its improving effect on cognitive dysfunction.
Collapse
Affiliation(s)
- Parvaneh Mohseni-Moghaddam
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Manijeh Dogani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Motahare Hatami
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Roohollahi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Azam Amiresmaeli
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Nayereh Askari
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.,Immunoregulation Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
34
|
|
35
|
Kositsyn YMHB, Volgin AD, de Abreu MS, Demin KA, Zabegalov KN, Maslov GO, Petersen EV, Kolesnikova TO, Strekalova T, Kalueff AV. Towards translational modeling of behavioral despair and its treatment in zebrafish. Behav Brain Res 2022; 430:113906. [PMID: 35489477 DOI: 10.1016/j.bbr.2022.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/03/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
Abstract
Depression is a widespread and severely debilitating neuropsychiatric disorder whose key clinical symptoms include low mood, anhedonia and despair (the inability or unwillingness to overcome stressors). Experimental animal models are widely used to improve our mechanistic understanding of depression pathogenesis, and to develop novel antidepressant therapies. In rodents, various experimental models of 'behavioral despair' have already been developed and rigorously validated. Complementing rodent studies, the zebrafish (Danio rerio) is emerging as a powerful model organism to assess pathobiological mechanisms of depression and other related affective disorders. Here, we critically discuss the developing potential and important translational implications of zebrafish models for studying despair and its mechanisms, and the utility of such aquatic models for antidepressant drug screening.
Collapse
Affiliation(s)
- Yuriy M H B Kositsyn
- School of Pharmacy, Southwest University, Chongqing, China; Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew D Volgin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Murilo S de Abreu
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia; Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil; Sirius University of Science and Technology, Sochi, Russia.
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medcial Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | | | - Gleb O Maslov
- Ural Federal University, Ekaterinburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | | | | | - Tatiana Strekalova
- University of Maastricht, Maastricht, Netherlands; Sirius University of Science and Technology, Sochi, Russia
| | - Allan V Kalueff
- Ural Federal University, Ekaterinburg, Russia; University of Maastricht, Maastricht, Netherlands; Sirius University of Science and Technology, Sochi, Russia.
| |
Collapse
|
36
|
Mao Y, Xu Y, Yuan X. Validity of chronic restraint stress for modeling anhedonic-like behavior in rodents: a systematic review and meta-analysis. J Int Med Res 2022; 50:3000605221075816. [PMID: 35196899 PMCID: PMC8891861 DOI: 10.1177/03000605221075816] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Chronic restraint stress (CRS) is widely used to recapitulate depression phenotypes in rodents but is frequently criticized for a perceived lack of efficacy. The aim of this study was to evaluate anhedonic-like behavior in the CRS model in rodents by performing a meta-analysis of studies that included sucrose preference tests. METHODS This meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations. We comprehensively searched for eligible studies published before June 2021 in the PubMed, Embase, Medline, and Web of Science databases. We chose sucrose preference ratio as the indicative measure of anhedonia because it is a core symptom of depression in humans. RESULTS Our pooled analysis included 34 articles with 57 studies and seven rodent species/strains and demonstrated decreased sucrose preference in the stress group compared with controls. The duration of CRS differentially affected the validity of anhedonic-like behavior in the models. Rats exhibited greater susceptibility to restraint stress than mice, demonstrating inter-species variability. CONCLUSIONS Our meta-analysis of studies that used the CRS paradigm to evaluate anhedonic-like behavior in rodents was focused on a core symptom of depression (anhedonia) as the main endpoint of the model and identified species-dependent susceptibility to restraint stress.
Collapse
Affiliation(s)
- Ye Mao
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yongkang Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia Yuan
- Department of Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
37
|
Wu C, Zheng W, Jia X, Li Y, Shen F, Haghparast A, Liang J, Sui N, Zhang J. Adolescent chronic unpredictable stress causes a bias in goal‐directed behavior and distinctively changes the expression of NMDA and dopamine receptors in the dorsomedial and dorsolateral striatum in male rats. Dev Psychobiol 2022; 64:e22235. [DOI: 10.1002/dev.22235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/10/2021] [Accepted: 12/05/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Chao Wu
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Wei Zheng
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Xiaohua Jia
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences Institute of Automation Chinese Academy of Sciences Beijing China
| | - Yonghui Li
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Fang Shen
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Abbas Haghparast
- Neuroscience Research Center School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Jing Liang
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Nan Sui
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Jian‐Jun Zhang
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
38
|
The effect of stress and exercise on the learning performance of horses. Sci Rep 2022; 12:1918. [PMID: 35121736 PMCID: PMC8816904 DOI: 10.1038/s41598-021-03582-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
Domestic horses are widely used for physically demanding activities but the effect of exercise on their learning abilities has not been explored. Horses are also frequently exposed to stressors that may affect their learning. Stress and exercise result in the release of glucocorticoids, noradrenaline and other neurotransmitters that can influence learning. It is not currently possible to directly measure concentrations of neurotransmitters in the brains of behaving horses, however the inference of neurobiological processes from peripheral markers have been widely used in studies of human cognition. We assigned 41 horses to either ridden exercise, uncontrollable stress or inactivity and evaluated their acquisition of an industry-style aversive instrumental learning task. Exercised horses achieved the learning criterion in the fewest number of trials compared to the stressed and inactive horses whose performance did not differ. The exercised horses’ salivary cortisol concentrations decreased during learning whereas the concentrations of the other groups increased. Spearman’s correlations revealed that horses with the highest cortisol concentrations required the most trials to reach the criterion. We present novel data that exercise prior to learning may enhance the acquisition of learning in horses. Conversely, activities that expose horses to uncontrollable stressors causing strong cortisol release may impair learning. It is proposed that these effects may be due to the influence of neurotransmitters such as cortisol and noradrenaline on brain regions responsible for learning.
Collapse
|
39
|
Mitragynine improves cognitive performance in morphine-withdrawn rats. Psychopharmacology (Berl) 2022; 239:313-325. [PMID: 34693456 DOI: 10.1007/s00213-021-05996-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE The treatment of opiate addiction is an unmet medical need. Repeated exposure to opiates disrupts cognitive performance. Opioid substitution therapy, with, e.g., methadone, may further exacerbate the cognitive deficits. Growing evidence suggests that mitragynine, the primary alkaloid from the Kratom (Mitragyna speciosa) leaves, may serve as a promising alternative therapy for opiate addiction. However, the knowledge of its health consequences is still limited. OBJECTIVES We aimed to examine the cognitive effects of mitragynine substitution in morphine-withdrawn rats. Furthermore, we asked whether neuronal addiction markers like the brain-derived neurotrophic factor (BDNF) and Ca2+/calmodulin-dependent kinase II alpha (αCaMKII) might mediate the observed effects. METHODS Male Sprague-Dawley rats were given morphine at escalating doses before treatment was discontinued to induce a spontaneous morphine withdrawal. Then, vehicle or mitragynine (5 mg/kg, 15 mg/kg, or 30 mg/kg) substitution was given for 3 days. A vehicle-treated group was used as a control. Withdrawal signs were scored after 24 h, 48 h, and 72 h, while novel object recognition (NOR) and attentional set-shifting (ASST) were tested during the substitution period. RESULTS Discontinuation of morphine significantly induced morphine withdrawal signs and cognitive deficit in the ASST. The substitution with mitragynine was able to alleviate the withdrawal signs. Mitragynine did not affect the recognition memory in the NOR but significantly improved the reversal learning deficit in the morphine-withdrawn rats. CONCLUSIONS These data support the idea that mitragynine could be used as safe medication therapy to treat opiate addiction with beneficial effects on cognitive deficits.
Collapse
|
40
|
Pizzagalli DA, Roberts AC. Prefrontal cortex and depression. Neuropsychopharmacology 2022; 47:225-246. [PMID: 34341498 PMCID: PMC8617037 DOI: 10.1038/s41386-021-01101-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023]
Abstract
The prefrontal cortex (PFC) has emerged as one of the regions most consistently impaired in major depressive disorder (MDD). Although functional and structural PFC abnormalities have been reported in both individuals with current MDD as well as those at increased vulnerability to MDD, this information has not translated into better treatment and prevention strategies. Here, we argue that dissecting depressive phenotypes into biologically more tractable dimensions - negative processing biases, anhedonia, despair-like behavior (learned helplessness) - affords unique opportunities for integrating clinical findings with mechanistic evidence emerging from preclinical models relevant to depression, and thereby promises to improve our understanding of MDD. To this end, we review and integrate clinical and preclinical literature pertinent to these core phenotypes, while emphasizing a systems-level approach, treatment effects, and whether specific PFC abnormalities are causes or consequences of MDD. In addition, we discuss several key issues linked to cross-species translation, including functional brain homology across species, the importance of dissecting neural pathways underlying specific functional domains that can be fruitfully probed across species, and the experimental approaches that best ensure translatability. Future directions and clinical implications of this burgeoning literature are discussed.
Collapse
Affiliation(s)
- Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School & McLean Hospital, Belmont, MA, USA.
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
41
|
Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022; 239:663-693. [PMID: 35072761 PMCID: PMC8785013 DOI: 10.1007/s00213-021-05982-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE The chronic mild stress (CMS) paradigm was first described almost 40 years ago and has become a widely used model in the search for antidepressant drugs for major depression disorder (MDD). It has resulted in the publication of almost 1700 studies in rats alone. Under the original CMS procedure, the expression of an anhedonic response, a key symptom of depression, was seen as an essential feature of both the model and a depressive state. The prolonged exposure of rodents to unpredictable/uncontrollable mild stressors leads to a reduction in the intake of palatable liquids, behavioral despair, locomotor inhibition, anxiety-like changes, and vegetative (somatic) abnormalities. Many of the CMS studies do not report these patterns of behaviors, and they often fail to include consistent molecular, neuroanatomical, and physiological phenotypes of CMS-exposed animals. OBJECTIVES To critically review the CMS studies in rats so that conceptual and methodological flaws can be avoided in future studies. RESULTS Analysis of the literature supports the validity of the CMS model and its impact on the field. However, further improvements could be achieved by (i) the stratification of animals into 'resilient' and 'susceptible' cohorts within the CMS animals, (ii) the use of more refined protocols in the sucrose test to mitigate physiological and physical artifacts, and (iii) the systematic evaluation of the non-specific effects of CMS and implementation of appropriate adjustments within the behavioral tests. CONCLUSIONS We propose methodological revisions and the use of more advanced behavioral tests to refine the rat CMS paradigm, which offers a valuable tool for developing new antidepressant medications.
Collapse
|
42
|
Lv Y, Fan Y, Tian X, Yu B, Song C, Feng C, Zhang L, Ji X, Zablotskii V, Zhang X. The Anti-Depressive Effects of Ultra-High Static Magnetic Field. J Magn Reson Imaging 2021; 56:354-365. [PMID: 34921571 DOI: 10.1002/jmri.28035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ultra-high field magnetic resonance imaging (MRI) has obvious advantages in acquiring high-resolution images. 7 T MRI has been clinically approved and 21.1 T MRI has also been tested on rodents. PURPOSE To examine the effects of ultra-high field on mice behavior and neuron activity. STUDY TYPE Prospective, animal model. ANIMAL MODEL Ninety-eight healthy C57BL/6 mice and 18 depression model mice. FIELD STRENGTH 11.1-33.0 T SMF (static magnetic field) for 1 hour and 7 T for 8 hours. Gradients were not on and no imaging sequence was used. ASSESSMENT Open field test, elevated plus maze, three-chambered social test, Morris water maze, tail suspension test, sucrose preference test, blood routine, biochemistry examinations, enzyme-linked immunosorbent assay, immunofluorescent assay. STATISTICAL TESTS The normality of the data was assessed by Shapiro-Wilk test, followed by Student's t test or the Mann-Whitney U test for statistical significance. The statistical cut-off line is P < 0.05. RESULTS Compared to the sham group, healthy C57/6 mice spent more time in the center area (35.12 ± 4.034, increased by 47.19%) in open field test and improved novel index (0.6201 ± 0.02522, increased by 16.76%) in three-chambered social test a few weeks after 1 hour 11.1-33.0 T SMF exposure. 7 T SMF exposure for 8 hours alleviated the depression state of depression mice, including less immobile time in tail suspension test (58.32% reduction) and higher sucrose preference (increased by 8.80%). Brain tissue analysis shows that 11.1-33.0 T and 7 T SMFs can increase oxytocin by 164.65% and 36.03%, respectively. Moreover, the c-Fos level in hippocampus region was increased by 14.79%. DATA CONCLUSION 11.1-33.0 T SMFs exposure for 1 hour or 7 T SMF exposure for 8 hours did not have detrimental effects on healthy or depressed mice. Instead, these ultra-high field SMFs have anti-depressive potentials. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Yue Lv
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yixiang Fan
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Xiaofei Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Biao Yu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Chao Song
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Chuanlin Feng
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Vitalii Zablotskii
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.,International Magnetobiology Frontier Research Center, Hefei, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China.,International Magnetobiology Frontier Research Center, Hefei, China
| |
Collapse
|
43
|
Woodward EM, Coutellier L. Age- and sex-specific effects of stress on parvalbumin interneurons in preclinical models: Relevance to sex differences in clinical neuropsychiatric and neurodevelopmental disorders. Neurosci Biobehav Rev 2021; 131:1228-1242. [PMID: 34718048 PMCID: PMC8642301 DOI: 10.1016/j.neubiorev.2021.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 01/06/2023]
Abstract
Stress is a major risk factor for neurodevelopmental and neuropsychiatric disorders, with the capacity to impact susceptibility to disease as well as long-term neurobiological and behavioral outcomes. Parvalbumin (PV) interneurons, the most prominent subtype of GABAergic interneurons in the cortex, are uniquely responsive to stress due to their protracted development throughout the highly plastic neonatal period and into puberty and adolescence. Additionally, PV + interneurons appear to respond to stress in a sex-specific manner. This review aims to discuss existing preclinical studies that support our overall hypothesis that the sex-and age-specific impacts of stress on PV + interneurons contribute to differences in individual vulnerability to stress across the lifespan, particularly in regard to sex differences in the diagnostic rate of neurodevelopmental and neuropsychiatric diseases in clinical populations. We also emphasize the importance of studying sex as a biological variable to fully understand the mechanistic and behavioral differences between males and females in models of neuropsychiatric disease.
Collapse
Affiliation(s)
- Emma M Woodward
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, United States
| | - Laurence Coutellier
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, United States; Department of Psychology, Ohio State University, 53 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, United States.
| |
Collapse
|
44
|
Xiong TW, Liu B, Wu Q, Xu YY, Liu P, Wang Y, Liu J, Shi JS. Beneficial effects of Dendrobium nobile Lindl. Alkaloids (DNLA) on anxiety and depression induced by chronic unpredictable stress in rats. Brain Res 2021; 1771:147647. [PMID: 34481787 DOI: 10.1016/j.brainres.2021.147647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022]
Abstract
Dendrobium nobile Lindl. alkaloid (DNLA) is effective against animal models of Alzheimer's disease. This study further examined its effect on anxiety and depression produced by chronic unpredictable stress (CUS). Rats were subjected to CUS for 42 days, followed by DNLA treatment (20 mg/kg/day, po) for 28 days. The behavioral tests, histopathology, neurotransmitters and RNA-Seq were examined. DNLA attenuated body weight loss and CUS-induced anxiety/depressive-like behaviors, as evidenced by the elevated-plus-maze test, open-field test and sucrose preference. DNLA alleviated neuronal damage and loss and increased Nissl bodies in the hippocampus CA2 region and cortex. DNLA decreased CUS-elevated 5-hydroxytryptamine, dopamine and monoamine oxidase and catechol-O-methyltransferase activities in the brain. DNLA attenuated HPA activation by decreasing adrenocorticotropic hormones and the expression of corticotropin-releasing hormone receptor-1, and increased the expression of glucocorticoid receptor in the brain. RNA-Seq revealed distinct gene expression patterns among groups. Gene ontology revealed the cell projection assembly, postsynapse and centrosome as top biological processes, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed the cAMP, cGMP-PKG, glutamatergic synapse and circadian as major pathways for DNLA effects. Using DESeq2, CUS modulated 1700 differentially expressed genes (DEGs), which were prevented or attenuated by DNLA. CUS-induced DEGs were highly correlated with the Gene Expression Omnibus (GEO) database for anxiety and depression and were ameliorated by DNLA. Taken together, DNLA attenuated anxiety/depression-like behavior and neuronal damage induced by CUS in rats. The mechanisms could be related to regulation of the monoamine neurotransmitters and the HPA axis, and modulation of gene expression in the hippocampus.
Collapse
Affiliation(s)
- Ting-Wang Xiong
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China; Zunyi Medical and Pharmaceutical College, Zunyi, China.
| | - Bo Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Qin Wu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Yun-Yan Xu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Ping Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Clinical Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Yan Wang
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Jing-Shan Shi
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
45
|
Abstract
Obsessive-compulsive disorder (OCD) has a worldwide prevalence of 2%-3%. Characterized by the presence of either one or two core symptoms-obsessions and compulsions-it generally runs a chronic course and may cause serious functional impairment. Though previously thought to be of psychogenic origin, the pathophysiology of OCD is now understood to be more complex. A multitude of environmental factors have been shown to contribute to the development of OCD, including infection, neonatal complications, childhood trauma, occurrence of stressful events, and brain injury. It has also been proposed that genetic vulnerability may play a role in OCD pathology, although candidate genes have yet to be identified. Likewise, although it is widely accepted that stress plays a role in OCD pathophysiology, the mechanisms remain unclear. Observations from the clinics indicate that stress may serve as both a triggering and aggravating factor, meaning it can prompt symptoms to appear while also contributing to their exacerbation. Additionally, dysfunction of the hypothalamic-pituitary-adrenal axis and impaired stress response have been identified in OCD patients. In this review, we analyze the role of stress in the pathophysiology of OCD, complemented by relevant findings from recent animal studies.
Collapse
|
46
|
Muhammad RN, Ahmed LA, Abdul Salam RM, Ahmed KA, Attia AS. Crosstalk Among NLRP3 Inflammasome, ET BR Signaling, and miRNAs in Stress-Induced Depression-Like Behavior: a Modulatory Role for SGLT2 Inhibitors. Neurotherapeutics 2021; 18:2664-2681. [PMID: 34664178 PMCID: PMC8804152 DOI: 10.1007/s13311-021-01140-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Depression is an overwhelming health concern, and many patients fail to optimally respond to available standard therapies. Neuroplasticity and blood-brain barrier (BBB) integrity are the cornerstones of a well-functioning central nervous system, but they are vulnerable to an overly active NLRP3 inflammasome pathway that can also indirectly trigger the release of ET-1 and contribute to the ET system disturbance, which further damages stress resilience mechanisms. Here, the promising yet unexplored antidepressant potential of dapagliflozin (Dapa), a sodium-glucose co-transporter-2 inhibitor, was investigated by assessing its role in the modulation of the NLRP3 inflammasome pathway and ETBR signal transduction, and their impact on neuroplasticity and BBB integrity in an animal model of depression. Dapa (1 mg/kg/day; p.o.) with and without BQ-788 (1 mg/kg/day; i.p.), a specific ETBR blocker, were administered to adolescent male Wistar rats exposed to a 5-week chronic unpredictable stress protocol. The depressive animals demonstrated marked activation of the NLRP3 inflammasome pathway (NF-κB/NLRP3/caspase-1/IL/TNF-α), which was associated with both peripheral and central inflammatory responses. The ET system was disrupted, with noticeable reduction in miR-125a-5p and ETBR gene expression. Cortical ZO-1 expression was downregulated under the influence of NLRP3/TNF-α/miR-501-3p signaling, along with a prominent reduction in hippocampal BDNF and synapsin-1. With ETBR up-regulation being a cornerstone outcome, Dapa administration efficiently created an overall state of resilience, improved histopathological and behavioral variables, and preserved BBB function. These observations were further verified by the results obtained with BQ-788 co-administration. Thus, Dapa may exert its antidepressant action by reinforcing BBB integrity and promoting neuroplasticity through manipulation of the NLRP3/ET-1/ETBR/BDNF/ZO-1 axis, with a significant role for ETBR signaling. Graphical illustration for the proposed mechanisms of the anti-depressant potential of Dapa. Dapa suppressed NLRP3 inflammasome activation and assembly with subsequent inhibition of pro-inflammatory ILs. This results in attenuation of neuro-inflammation, BBB disruption, glial cell activation, TNF-α and ET-1 release, and the enhanced production of neurotrophins. The role of ETBR signaling was emphasized; Dapa possibly augmented ETBR expression, which is thought to boost neurotrophins production. The ETBR blocker, BQ-788, suppressed most of the positive outcomes of Dapa. Finally, miR-125a-5p and miR-501-3p that played major roles in these pathological pathways were modulated by Dapa. It is not yet clear whether Dapa has a direct or rather indirect effect on their expression. BBB, blood-brain barrier; Dapa, dapagliflozin; ET-1, endothelin-1; ETBR, endothelin B receptor; IL, interleukin; NF-κB, nuclear factor kappa B; NLRP3, nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing protein 3; TNF-α, tumor necrosis factor-α. Created with BioRender.com.
Collapse
Affiliation(s)
- Radwa N Muhammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Rania M Abdul Salam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Biology, School of Pharmacy, New Giza University, Giza, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Amina S Attia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
47
|
Robinson S, Mogul AS, Taylor-Yeremeeva EM, Khan A, Tirabassi AD, Wang HY. Stress Diminishes BDNF-stimulated TrkB Signaling, TrkB-NMDA Receptor Linkage and Neuronal Activity in the Rat Brain. Neuroscience 2021; 473:142-158. [PMID: 34298123 PMCID: PMC8455453 DOI: 10.1016/j.neuroscience.2021.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022]
Abstract
Exposure to intense or repeated stressors can lead to depression or post-traumatic stress disorder (PTSD). Neurological changes induced by stress include impaired neurotrophin signaling, which is known to influence synaptic integrity and plasticity. The present study used an ex vivo approach to examine the impact of acute or repeated stress on BDNF-stimulated TrkB signaling in hippocampus (HIPPO) and prefrontal cortex (PFC). Rats in an acute multiple stressor group experienced five stressors in one day whereas rats in a repeated unpredictable stressor group experienced 20 stressors across 10 days. After stress exposure, slices were incubated with vehicle or BDNF, followed by immunoprecipitation and immunoblot assays to assess protein levels, activation states and protein-protein linkage associated with BDNF-TrkB signaling. Three key findings are (1) exposure to stressors significantly diminished BDNF-stimulated TrkB signaling in HIPPO and PFC such that reductions in TrkB activation, diminished recruitment of adaptor proteins to TrkB, reduced activation of downstream signaling molecules, disruption of TrkB-NMDAr linkage, and changes in basal and BDNF-stimulated Arc expression were observed. (2) After stress, BDNF stimulation enhanced TrkB-NMDAr linkage in PFC, suggestive of compensatory mechanisms in this region. (3) We discovered an uncoupling between TrkB signaling, TrkB-NMDAr linkage and Arc expression in PFC and HIPPO. In addition, a robust surge in pro-inflammatory cytokines was observed in both regions after repeated exposure to stressors. Collectively, these data provide therapeutic targets for future studies that investigate how to reverse stress-induced downregulation of BDNF-TrkB signaling and underscore the need for functional studies that examine stress-related TrkB-NMDAr activities in PFC.
Collapse
Affiliation(s)
- Siobhan Robinson
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY, USA.
| | - Allison S Mogul
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY, USA
| | | | - Amber Khan
- Department of Molecular, Cellular & Biomedical Sciences, The City University of New York School of Medicine, New York, NY, USA; Department of Biology, Neuroscience Program, Graduate School of the City University of New York, New York, NY, USA
| | - Anthony D Tirabassi
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY, USA
| | - Hoau-Yan Wang
- Department of Molecular, Cellular & Biomedical Sciences, The City University of New York School of Medicine, New York, NY, USA; Department of Biology, Neuroscience Program, Graduate School of the City University of New York, New York, NY, USA
| |
Collapse
|
48
|
Dalmaz C, Barth B, Pokhvisneva I, Wang Z, Patel S, Quillfeldt JA, Mendonça Filho EJ, de Lima RMS, Arcego DM, Sassi RB, Hall GBC, Kobor MS, Meaney MJ, Silveira PP. Prefrontal cortex VAMP1 gene network moderates the effect of the early environment on cognitive flexibility in children. Neurobiol Learn Mem 2021; 185:107509. [PMID: 34454100 DOI: 10.1016/j.nlm.2021.107509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023]
Abstract
During development, genetic and environmental factors interact to modify specific phenotypes. Both in humans and in animal models, early adversities influence cognitive flexibility, an important brain function related to behavioral adaptation to variations in the environment. Abnormalities in cognitive functions are related to changes in synaptic connectivity in the prefrontal cortex (PFC), and altered levels of synaptic proteins. We investigated if individual variations in the expression of a network of genes co-expressed with the synaptic protein VAMP1 in the prefrontal cortex moderate the effect of early environmental quality on the performance of children in cognitive flexibility tasks. Genes overexpressed in early childhood and co-expressed with the VAMP1 gene in the PFC were selected for study. SNPs from these genes (post-clumping) were compiled in an expression-based polygenic score (PFC-ePRS-VAMP1). We evaluated cognitive performance of the 4 years-old children in two cohorts using similar cognitive flexibility tasks. In the first cohort (MAVAN) we utilized two CANTAB tasks: (a) the Intra-/Extra-dimensional Set Shift (IED) task, and (b) the Spatial Working Memory (SWM) task. In the second cohort, GUSTO, we used the Dimensional Change Card Sort (DCCS) task. The results show that in 4 years-old children, the PFC-ePRS-VAMP1 network moderates responsiveness to the effects of early adversities on the performance in attentional flexibility tests. The same result was observed for a spatial working memory task. Compared to attentional flexibility, reversal learning showed opposite effects of the environment, as moderated by the ePRS. A parallel ICA analysis was performed to identify relationships between whole-brain voxel based gray matter density and SNPs that comprise the PFC-ePRS-VAMP1. The early environment predicts differences in gray matter content in regions such as prefrontal and temporal cortices, significantly associated with a genetic component related to Wnt signaling pathways. Our data suggest that a network of genes co-expressed with VAMP1 in the PFC moderates the influence of early environment on cognitive function in children.
Collapse
Affiliation(s)
- Carla Dalmaz
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Depto Bioquimica e PPG CB Bioquimica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Barbara Barth
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Zihan Wang
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Sachin Patel
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Jorge A Quillfeldt
- PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Depto Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Euclides J Mendonça Filho
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Randriely Merscher Sobreira de Lima
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Danusa M Arcego
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Roberto Britto Sassi
- Mood Disorders Program, Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Geoffrey B C Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, 938 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Patrícia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; PPG Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
49
|
Minchew HM, Radabaugh HL, LaPorte ML, Free KE, Cheng JP, Bondi CO. A combined therapeutic regimen of citalopram and environmental enrichment ameliorates attentional set-shifting performance after brain trauma. Eur J Pharmacol 2021; 904:174174. [PMID: 34004206 PMCID: PMC8906929 DOI: 10.1016/j.ejphar.2021.174174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 01/09/2023]
Abstract
Traumatic brain injuries (TBI) have led to lasting deficits for an estimated 5.3 million American patients. Effective therapies for these patients remain scarce and each of the clinical trials stemming from success in experimental models has failed. We believe that the failures may be, in part, due to the lack of preclinical assessment of cognitive domains that widely affect clinical TBI. Specifically, the behavioral tasks in the TBI literature often do not focus on common executive impairments related to the frontal lobe such as cognitive flexibility. In previous work, we have demonstrated that the attentional set-shifting test (AST), a task analogous to the clinically-employed Wisconsin Card Sorting Test (WCST), could be used to identify cognitive flexibility impairments following controlled cortical impact (CCI) injury. In this study, we hypothesized that both the administration of the antidepressant drug citalopram (CIT) and exposure to a preclinical model of neurorehabilitation, environmental enrichment (EE), would attenuate cognitive performance deficits on AST when provided alone and lead to greater benefits when administered in combination. Adult male rats were subjected to a moderate-severe CCI or sham injury. Rats were randomly divided into experimental groups that included surgical injury, drug therapy, and housing condition. We observed that both CIT and EE provided significant cognitive recovery when administered alone and reversal learning performance recovery increased the most when the therapies were combined (p < 0.05). Ongoing studies continue to evaluate novel ways of assessing more clinically relevant measurements of high order cognitive TBI-related impairments in the rat model.
Collapse
Affiliation(s)
- Heather M Minchew
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Hannah L Radabaugh
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Megan L LaPorte
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kristin E Free
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
50
|
Dionisie V, Ciobanu AM, Toma VA, Manea MC, Baldea I, Olteanu D, Sevastre-Berghian A, Clichici S, Manea M, Riga S, Filip GA. Escitalopram Targets Oxidative Stress, Caspase-3, BDNF and MeCP2 in the Hippocampus and Frontal Cortex of a Rat Model of Depression Induced by Chronic Unpredictable Mild Stress. Int J Mol Sci 2021; 22:ijms22147483. [PMID: 34299103 PMCID: PMC8304451 DOI: 10.3390/ijms22147483] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, escitalopram (ESC) has been suggested to have different mechanisms of action beyond its well known selective serotonin reuptake inhibition. The aim of this study is to investigate the effects of escitalopram on oxidative stress, apoptosis, brain-derived neurotrophic factor (BDNF), Methyl-CpG-binding protein 2 (MeCP2), and oligodendrocytes number in the brain of chronic unpredictable mild stress-induced depressed rats. The animals were randomised in four groups (8 in each group): control, stress, stress + ESC 5 and stress + ESC 5/10. ESC was administered for 42 days in a fixed dose (5 mg/kg b.w.) or in an up-titration regimen (21 days ESC 5 mg/kg b.w. then 21 days ESC 10 mg/kg b.w.). Sucrose preference test (SPT) and elevated plus maze (EPM) were also performed. ESC improved the percentage of sucrose preference, locomotion and anxiety. ESC5/10 reduced the oxidative damage in the hippocampus and improved the antioxidant defence in the hippocampus and frontal lobe. ESC5/10 lowered caspase 3 activity in the hippocampus. Escitalopram had a modulatory effect on BDNF and the number of oligodendrocytes in the hippocampus and frontal lobe and also improved the MeCP2 expressions. The results confirm the multiple pathways implicated in the pathogenesis of depression and suggest that escitalopram exerts an antidepressant effect via different intricate mechanisms.
Collapse
Affiliation(s)
- Vlad Dionisie
- Department of Psychiatry and Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.D.); (M.M.)
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
| | - Adela Magdalena Ciobanu
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
- Neuroscience Department, Discipline of Psychiatry, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Vlad Alexandru Toma
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400028 Cluj-Napoca, Romania
- Department of Biochemistry and Experimental Biology, Institute of Biological Research, Branch of NIRDBS Bucharest, 400113 Cluj-Napoca, Romania
- Department of Molecular and Biomolecular Physics, NIRD for Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
- Correspondence: (V.A.T.); (M.C.M.)
| | - Mihnea Costin Manea
- Department of Psychiatry and Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.D.); (M.M.)
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
- Correspondence: (V.A.T.); (M.C.M.)
| | - Ioana Baldea
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| | - Diana Olteanu
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| | - Alexandra Sevastre-Berghian
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| | - Simona Clichici
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| | - Mirela Manea
- Department of Psychiatry and Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.D.); (M.M.)
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
| | - Sorin Riga
- Department of Stress Research and Prophylaxis, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
- Romanian Academy of Medical Sciences, 927180 Bucharest, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| |
Collapse
|