1
|
O’Neill CE, Sun K, Sundararaman S, Chang JC, Glynn SA. The impact of nitric oxide on HER family post-translational modification and downstream signaling in cancer. Front Physiol 2024; 15:1358850. [PMID: 38601214 PMCID: PMC11004480 DOI: 10.3389/fphys.2024.1358850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 04/12/2024] Open
Abstract
The human epidermal growth factor receptor (HER) family consists of four members, activated by two families of ligands. They are known for mediating cell-cell interactions in organogenesis, and their deregulation has been associated with various cancers, including breast and esophageal cancers. In particular, aberrant epidermal growth factor receptor (EGFR) and HER2 signaling drive disease progression and result in poorer patient outcomes. Nitric oxide (NO) has been proposed as an alternative activator of the HER family and may play a role in this aberrant activation due to its ability to induce s-nitrosation and phosphorylation of the EGFR. This review discusses the potential impact of NO on HER family activation and downstream signaling, along with its role in the efficacy of therapeutics targeting the family.
Collapse
Affiliation(s)
- Ciara E. O’Neill
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| | - Kai Sun
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | | | - Jenny C. Chang
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | - Sharon A. Glynn
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Chen M, Zhu J, Luo H, Mu W, Guo L. The journey towards physiology and pathology: Tracing the path of neuregulin 4. Genes Dis 2024; 11:687-700. [PMID: 37692526 PMCID: PMC10491916 DOI: 10.1016/j.gendis.2023.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/11/2023] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
Neuregulin 4 (Nrg4), an epidermal growth factor (EGF) family member, can bind to and activate the ErbB4 receptor tyrosine kinase. Nrg4 has five different isoforms by alternative splicing and performs a wide variety of functions. Nrg4 is involved in a spectrum of physiological processes including neurobiogenesis, lipid metabolism, glucose metabolism, thermogenesis, and angiogenesis. In pathological processes, Nrg4 inhibits inflammatory factor levels and suppresses apoptosis in inflammatory diseases. In addition, Nrg4 could ameliorate obesity, insulin resistance, and cardiovascular diseases. Furthermore, Nrg4 improves non-alcoholic fatty liver disease (NAFLD) by promoting autophagy, improving lipid metabolism, and inhibiting cell death of hepatocytes. Besides, Nrg4 is closely related to the development of cancer, hyperthyroidism, and some other diseases. Therefore, elucidation of the functional role and mechanisms of Nrg4 will provide a clearer view of the therapeutic potential and possible risks of Nrg4.
Collapse
Affiliation(s)
- Min Chen
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jieying Zhu
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Hongyang Luo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wangjing Mu
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
3
|
Udagawa H, Nilsson MB, Robichaux JP, He J, Poteete A, Jiang H, Heeke S, Elamin YY, Shibata Y, Matsumoto S, Yoh K, Okazaki S, Masuko T, Odintsov I, Somwar R, Ladanyi M, Goto K, Heymach JV. HER4 and EGFR Activate Cell Signaling in NRG1 Fusion-Driven Cancers: Implications for HER2-HER3-specific Versus Pan-HER Targeting Strategies. J Thorac Oncol 2024; 19:106-118. [PMID: 37678511 PMCID: PMC11161205 DOI: 10.1016/j.jtho.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
INTRODUCTION NRG1 gene fusions are clinically actionable alterations identified in NSCLC and other tumors. Previous studies have reported that NRG1 fusions signal through HER2 and HER3 but, thus far, strategies targeting HER3 specifically or HER2-HER3 signaling have exhibited modest activity in patients with NSCLC bearing NRG1 fusions. Although NRG1 fusion proteins can bind HER4 in addition to HER3, the contribution of HER4 and other HER family members in NRG1 fusion-positive cancers is not fully understood. METHODS We investigated the role of HER4 and EGFR-HER3 signaling in NRG1 fusion-positive cancers using Ba/F3 models engineered to express various HER family members in combination with NRG1 fusions and in vitro and in vivo models of NRG1 fusion-positive cancer. RESULTS We determined that NRG1 fusions can stimulate downstream signaling and tumor cell growth through HER4, independent of other HER family members. Moreover, EGFR-HER3 signaling is also activated in cells expressing NRG1 fusions, and inhibition of these receptors is also necessary to effectively inhibit tumor cell growth. We observed that cetuximab, an anti-EGFR antibody, in combination with anti-HER2 antibodies, trastuzumab and pertuzumab, yielded a synergistic effect. Furthermore, pan-HER tyrosine kinase inhibitors were more effective than tyrosine kinase inhibitors with greater specificity for EGFR, EGFR-HER2, or HER2-HER4, although the relative degree of dependence on EGFR or HER4 signaling varied between different NRG1 fusion-positive cancers. CONCLUSIONS Our findings indicate that pan-HER inhibition including HER4 and EGFR blockade is more effective than selectively targeting HER3 or HER2-HER3 in NRG1 fusion-positive cancers.
Collapse
Affiliation(s)
- Hibiki Udagawa
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Monique B Nilsson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jacqulyne P Robichaux
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junqin He
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alissa Poteete
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Jiang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuji Shibata
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shogo Okazaki
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Takashi Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Igor Odintsov
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
4
|
Bernard C, Exposito-Alonso D, Selten M, Sanalidou S, Hanusz-Godoy A, Aguilera A, Hamid F, Oozeer F, Maeso P, Allison L, Russell M, Fleck RA, Rico B, Marín O. Cortical wiring by synapse type-specific control of local protein synthesis. Science 2022; 378:eabm7466. [PMID: 36423280 DOI: 10.1126/science.abm7466] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Neurons use local protein synthesis to support their morphological complexity, which requires independent control across multiple subcellular compartments up to the level of individual synapses. We identify a signaling pathway that regulates the local synthesis of proteins required to form excitatory synapses on parvalbumin-expressing (PV+) interneurons in the mouse cerebral cortex. This process involves regulation of the TSC subunit 2 (Tsc2) by the Erb-B2 receptor tyrosine kinase 4 (ErbB4), which enables local control of messenger RNA {mRNA} translation in a cell type-specific and synapse type-specific manner. Ribosome-associated mRNA profiling reveals a molecular program of synaptic proteins downstream of ErbB4 signaling required to form excitatory inputs on PV+ interneurons. Thus, specific connections use local protein synthesis to control synapse formation in the nervous system.
Collapse
Affiliation(s)
- Clémence Bernard
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - David Exposito-Alonso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Martijn Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Stella Sanalidou
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Alicia Hanusz-Godoy
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Alfonso Aguilera
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Fazal Oozeer
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Patricia Maeso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Leanne Allison
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Matthew Russell
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Roland A Fleck
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| |
Collapse
|
5
|
An extracellular receptor tyrosine kinase motif orchestrating intracellular STAT activation. Nat Commun 2022; 13:6953. [PMID: 36376313 PMCID: PMC9663514 DOI: 10.1038/s41467-022-34539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
The ErbB4 receptor isoforms JM-a and JM-b differ within their extracellular juxtamembrane (eJM) domains. Here, ErbB4 isoforms are used as a model to address the effect of structural variation in the eJM domain of receptor tyrosine kinases (RTK) on downstream signaling. A specific JM-a-like sequence motif is discovered, and its presence or absence (in JM-b-like RTKs) in the eJM domains of several RTKs is demonstrated to dictate selective STAT activation. STAT5a activation by RTKs including the JM-a like motif is shown to involve interaction with oligosaccharides of N-glycosylated cell surface proteins such as β1 integrin, whereas STAT5b activation by JM-b is dependent on TYK2. ErbB4 JM-a- and JM-b-like RTKs are shown to associate with specific signaling complexes at different cell surface compartments using analyses of RTK interactomes and super-resolution imaging. These findings provide evidence for a conserved mechanism linking a ubiquitous extracellular motif in RTKs with selective intracellular STAT signaling.
Collapse
|
6
|
Pitcher JL, Alexander N, Miranda PJ, Johns TG. ErbB4 in the brain: Focus on high grade glioma. Front Oncol 2022; 12:983514. [PMID: 36119496 PMCID: PMC9471956 DOI: 10.3389/fonc.2022.983514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases (RTKs) consists of EGFR, ErbB2, ErbB3, and ErbB4. These receptors play key roles in cell proliferation, angiogenesis, cell migration, and in some cases, tumor promotion. ErbB4 is a unique member of the EGFR family, implicated not only in pro-tumorigenic mechanisms, such as cell proliferation and migration, but also in anti-tumorigenic activities, including cell differentiation and apoptosis. ErbB4 is differentially expressed in a wide variety of tissues, and interestingly, as different isoforms that result in vastly different signalling outcomes. Most studies have either ignored the presence of these isoforms or used overexpression models that may mask the true function of ErbB4. ErbB4 is widely expressed throughout the body with significant expression in skeletal tissue, mammary glands, heart, and brain. Knockout models have demonstrated embryonic lethality due to disrupted heart and brain development. Despite high expression in the brain and a critical role in brain development, remarkably little is known about the potential signalling activity of ErbB4 in brain cancer.This review focuses on the unique biology of ErbB4 in the brain, and in particular, highlights brain cancer research findings. We end the review with a focus on high grade gliomas, primarily glioblastoma, a disease that has been shown to involve EGFR and its mutant forms. The role of the different ErbB4 isotypes in high grade gliomas is still unclear and future research will hopefully shed some light on this question.
Collapse
Affiliation(s)
- Jamie-Lee Pitcher
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Jamie-Lee Pitcher,
| | - Naomi Alexander
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, WA, Australia
| | - Panimaya Jeffreena Miranda
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, WA, Australia
- Division of Paediatrics/Centre for Child Health Research, University of Western Australia, Crawley, WA, Australia
| | - Terrance G. Johns
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, WA, Australia
- Division of Paediatrics/Centre for Child Health Research, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
7
|
Erben L, Welday JP, Murphy R, Buonanno A. Toxic and Phenotypic Effects of AAV_Cre Used to Transduce Mesencephalic Dopaminergic Neurons. Int J Mol Sci 2022; 23:9462. [PMID: 36012727 PMCID: PMC9408874 DOI: 10.3390/ijms23169462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
A popular approach to spatiotemporally target genes using the loxP/Cre recombination system is stereotaxic microinjection of adeno-associated virus (AAV) expressing Cre recombinase (AAV_Cre) in specific neuronal structures. Here, we report that AAV_Cre microinjection in the ventral tegmental area (VTA) of ErbB4 Cyt-1-floxed (ErbB4 Cyt-1fl/fl) mice at titers commonly used in the literature (~1012-1013 GC/mL) can have neurotoxic effects on dopaminergic neurons and elicit behavioral abnormalities. However, these effects of AAV_Cre microinjection are independent of ErbB4 Cyt-1 recombination because they are also observed in microinjected wild-type (WT) controls. Mice microinjected with AAV_Cre (1012-1013 GC/mL) exhibit reductions of tyrosine hydroxylase (TH) and dopamine transporter (DAT) expression, loss of dopaminergic neurons, and they behaviorally become hyperactive, fail to habituate in the open field and exhibit sensorimotor gating deficits compared to controls microinjected with AAV_GFP. Importantly, these AAV_Cre non-specific effects are: (1) independent of serotype, (2) occur with vectors expressing either Cre or Cre-GFP fusion protein and (3) preventable by reducing viral titers by 1000-fold (1010 GC/mL), which retains sufficient recombination activity to target floxed genes. Our studies emphasize the importance of including AAV_Cre-injected WT controls in experiments because recombination-independent effects on gene expression, neurotoxicity and behaviors could be erroneously attributed to consequences of gene ablation.
Collapse
Affiliation(s)
| | | | | | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Erben L, Welday JP, Cronin ME, Murphy R, Skirzewski M, Vullhorst D, Carroll SL, Buonanno A. Developmental, neurochemical, and behavioral analyses of ErbB4 Cyt-1 knockout mice. J Neurochem 2022; 161:435-452. [PMID: 35523590 PMCID: PMC9149141 DOI: 10.1111/jnc.15612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 01/26/2023]
Abstract
Neuregulins (NRGs) and their cognate neuronal receptor ERBB4, which is expressed in GABAergic and dopaminergic neurons, regulate numerous behaviors in rodents and have been identified as schizophrenia at-risk genes. ErbB4 transcripts are alternatively spliced to generate isoforms that either include (Cyt-1) or exclude (Cyt-2) exon 26, which encodes a cytoplasmic domain that imparts ErbB4 receptors the ability to signal via the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. Although ErbB4 Cyt-1/2 isoforms have been studied in transfected cultured cells, their functions in vivo remain unknown. Here, we generated ErbB4-floxed (ErbB4-Cyt1fl/fl ) mice to investigate the effects of germline (constitutive) and conditional (acute) deletions of the Cyt-1 exon. Overall receptor mRNA levels remain unchanged in germline ErbB4 Cyt-1 knockouts (Cyt-1 KOs), with all transcripts encoding Cyt-2 variants. In contrast to mice lacking all ErbB4 receptor function, GABAergic interneuron migration and number are unaltered in Cyt-1 KOs. However, basal extracellular dopamine (DA) levels in the medial prefrontal cortex are increased in Cyt-1 heterozygotes. Despite these neurochemical changes, Cyt-1 heterozygous and homozygous mice do not manifest behavioral abnormalities previously reported to be altered in ErbB4 null mice. To address the possibility that Cyt-2 variants compensate for the lack of Cyt-1 during development, we microinjected an adeno-associated virus expressing Cre-recombinase (AAV-Cre) into the DA-rich ventral tegmental area of adult ErbB4-Cyt1fl/fl mice to acutely target exon 26. These conditional Cyt-1 KOs were found to exhibit behavioral abnormalities in the elevated plus maze and startle response, consistent with the idea that late exon 26 ablations may circumvent compensation by Cyt-2 variants. Taken together, our observations indicate that ErbB4 Cyt-1 function in vivo is important for DA balance and behaviors in adults.
Collapse
Affiliation(s)
- Larissa Erben
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Jacqueline P Welday
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Marie E Cronin
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Ricardo Murphy
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Miguel Skirzewski
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Detlef Vullhorst
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Chakroborty D, Ojala VK, Knittle AM, Drexler J, Tamirat MZ, Ruzicka R, Bosch K, Woertl J, Schmittner S, Elo LL, Johnson MS, Kurppa KJ, Solca F, Elenius K. An Unbiased Functional Genetics Screen Identifies Rare Activating ERBB4 Mutations. CANCER RESEARCH COMMUNICATIONS 2022; 2:10-27. [PMID: 36860695 PMCID: PMC9973412 DOI: 10.1158/2767-9764.crc-21-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 12/21/2021] [Indexed: 06/18/2023]
Abstract
UNLABELLED Despite the relatively high frequency of somatic ERBB4 mutations in various cancer types, only a few activating ERBB4 mutations have been characterized, primarily due to lack of mutational hotspots in the ERBB4 gene. Here, we utilized our previously published pipeline, an in vitro screen for activating mutations, to perform an unbiased functional screen to identify potential activating ERBB4 mutations from a randomly mutated ERBB4 expression library. Ten potentially activating ERBB4 mutations were identified and subjected to validation by functional and structural analyses. Two of the 10 ERBB4 mutants, E715K and R687K, demonstrated hyperactivity in all tested cell models and promoted cellular growth under two-dimensional and three-dimensional culture conditions. ERBB4 E715K also promoted tumor growth in in vivo Ba/F3 cell mouse allografts. Importantly, all tested ERBB4 mutants were sensitive to the pan-ERBB tyrosine kinase inhibitors afatinib, neratinib, and dacomitinib. Our data indicate that rare ERBB4 mutations are potential candidates for ERBB4-targeted therapy with pan-ERBB inhibitors. STATEMENT OF SIGNIFICANCE ERBB4 is a member of the ERBB family of oncogenes that is frequently mutated in different cancer types but the functional impact of its somatic mutations remains unknown. Here, we have analyzed the function of over 8,000 randomly mutated ERBB4 variants in an unbiased functional genetics screen. The data indicate the presence of rare activating ERBB4 mutations in cancer, with potential to be targeted with clinically approved pan-ERBB inhibitors.
Collapse
Affiliation(s)
- Deepankar Chakroborty
- Institute of Biomedicine, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Veera K. Ojala
- Institute of Biomedicine, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Anna M. Knittle
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Mahlet Z. Tamirat
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Graduate School of Åbo Akademi University (Informational and Structural Biology Doctoral Network), Turku, Finland
| | | | - Karin Bosch
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | | | - Laura L. Elo
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Kari J. Kurppa
- Institute of Biomedicine, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Klaus Elenius
- Institute of Biomedicine, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Oncology, Turku University Hospital, Turku, Finland
| |
Collapse
|
10
|
Lucas LM, Dwivedi V, Senfeld JI, Cullum RL, Mill CP, Piazza JT, Bryant IN, Cook LJ, Miller ST, Lott JH, Kelley CM, Knerr EL, Markham JA, Kaufmann DP, Jacobi MA, Shen J, Riese DJ. The Yin and Yang of ERBB4: Tumor Suppressor and Oncoprotein. Pharmacol Rev 2022; 74:18-47. [PMID: 34987087 PMCID: PMC11060329 DOI: 10.1124/pharmrev.121.000381] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022] Open
Abstract
ERBB4 (HER4) is a member of the ERBB family of receptor tyrosine kinases, a family that includes the epidermal growth factor receptor (EGFR/ERBB1/HER1), ERBB2 (Neu/HER2), and ERBB3 (HER3). EGFR and ERBB2 are oncoproteins and validated targets for therapeutic intervention in a variety of solid tumors. In contrast, the role that ERBB4 plays in human malignancies is ambiguous. Thus, here we review the literature regarding ERBB4 function in human malignancies. We review the mechanisms of ERBB4 signaling with an emphasis on mechanisms of signaling specificity. In the context of this signaling specificity, we discuss the hypothesis that ERBB4 appears to function as a tumor suppressor protein and as an oncoprotein. Next, we review the literature that describes the role of ERBB4 in tumors of the bladder, liver, prostate, brain, colon, stomach, lung, bone, ovary, thyroid, hematopoietic tissues, pancreas, breast, skin, head, and neck. Whenever possible, we discuss the possibility that ERBB4 mutants function as biomarkers in these tumors. Finally, we discuss the potential roles of ERBB4 mutants in the staging of human tumors and how ERBB4 function may dictate the treatment of human tumors. SIGNIFICANCE STATEMENT: This articles reviews ERBB4 function in the context of the mechanistic model that ERBB4 homodimers function as tumor suppressors, whereas ERBB4-EGFR or ERBB4-ERBB2 heterodimers act as oncogenes. Thus, this review serves as a mechanistic framework for clinicians and scientists to consider the role of ERBB4 and ERBB4 mutants in staging and treating human tumors.
Collapse
Affiliation(s)
- Lauren M Lucas
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Vipasha Dwivedi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jared I Senfeld
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Richard L Cullum
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Christopher P Mill
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - J Tyler Piazza
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Ianthe N Bryant
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Laura J Cook
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - S Tyler Miller
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - James H Lott
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Connor M Kelley
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Elizabeth L Knerr
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jessica A Markham
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - David P Kaufmann
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Megan A Jacobi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - David J Riese
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| |
Collapse
|
11
|
Veikkolainen V, Ali N, Doroszko M, Kiviniemi A, Miinalainen I, Ohlsson C, Poutanen M, Rahman N, Elenius K, Vainio SJ, Naillat F. Erbb4 regulates the oocyte microenvironment during folliculogenesis. Hum Mol Genet 2021; 29:2813-2830. [PMID: 32716031 DOI: 10.1093/hmg/ddaa161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders leading to infertility in women affecting reproductive, endocrine and metabolic systems. Recent genomewide association studies on PCOS cohorts revealed a single nucleotide polymorphism (SNP) in the ERBB4 receptor tyrosine kinase 4 gene, but its role in ovary development or during folliculogenesis remains poorly understood. Since no genetic animal models mimicking all PCOS reproductive features are available, we conditionally deleted Erbb4 in murine granulosa cells (GCs) under the control of Amh promoter. While we have demonstrated that Erbb4 deletion displayed aberrant ovarian function by affecting the reproductive function (asynchronous oestrous cycle leading to few ovulations and subfertility) and metabolic function (obesity), their ovaries also present severe structural and functional abnormalities (impaired oocyte development). Hormone analysis revealed an up-regulation of serum luteinizing hormone, hyperandrogenism, increased production of ovarian and circulating anti-Müllerian hormone. Our data implicate that Erbb4 deletion in GCs leads to defective intercellular junctions between the GCs and oocytes, causing changes in the expression of genes regulating the local microenvironment of the follicles. In vitro culture assays reducing the level of Erbb4 via shRNAs confirm that Erbb4 is essential for regulating Amh level. In conclusion, our results indicate a functional role for Erbb4 in the ovary, especially during folliculogenesis and its reduced expression plays an important role in reproductive pathophysiology, such as PCOS development.
Collapse
Affiliation(s)
- Ville Veikkolainen
- Institute of Biomedicine and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland
| | - Nsrein Ali
- Organogenesis Laboratory, Department of Medical Biochemistry and Molecular Biology, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Milena Doroszko
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland.,Department of Immunology Genetics and Pathology, Section for Neuro-oncology, Uppsala University, 752 36 Uppsala, Sweden
| | - Antti Kiviniemi
- Organogenesis Laboratory, Department of Medical Biochemistry and Molecular Biology, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Ilkka Miinalainen
- Electron Microscopy Unit, Biocenter Oulu, University of Oulu, FI-90220 Oulu, Finland
| | - Claes Ohlsson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland.,Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | - Nafis Rahman
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland.,Department of Oncology, Turku University Hospital, FI-20520 Turku, Finland
| | - Seppo J Vainio
- Department of Immunology Genetics and Pathology, Section for Neuro-oncology, Uppsala University, 752 36 Uppsala, Sweden.,InfoTech Oulu, Oulu University and Biobank Borealis of Northern Finland, Oulu University Hospital, University of Oulu, FI-90014 Oulu, FINLAND
| | - Florence Naillat
- Organogenesis Laboratory, Department of Medical Biochemistry and Molecular Biology, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| |
Collapse
|
12
|
Wang Z, Chan HW, Gambarotta G, Smith NJ, Purdue BW, Pennisi DJ, Porrello ER, O'Brien SL, Reichelt ME, Thomas WG, Paravicini TM. Stimulation of the four isoforms of receptor tyrosine kinase ErbB4, but not ErbB1, confers cardiomyocyte hypertrophy. J Cell Physiol 2021; 236:8160-8170. [PMID: 34170016 DOI: 10.1002/jcp.30487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/11/2022]
Abstract
Epidermal growth factor (EGF) receptors (ErbB1-ErbB4) promote cardiac development and growth, although the specific EGF ligands and receptor isoforms involved in growth/repair versus pathology remain undefined. We challenged ventricular cardiomyocytes with EGF-like ligands and observed that selective activation of ErbB4 (the receptor for neuregulin 1 [NRG1]), but not ErbB1 (the receptor for EGF, EGFR), stimulated hypertrophy. This lack of direct ErbB1-mediated hypertrophy occurred despite robust activation of extracellular-regulated kinase 1/2 (ERK) and protein kinase B. Hypertrophic responses to NRG1 were unaffected by the tyrosine kinase inhibitor (AG1478) at concentrations that are selective for ErbB1 over ErbB4. NRG1-induced cardiomyocyte enlargement was suppressed by small interfering RNA (siRNA) knockdown of ErbB4 and ErbB2, whereas ERK phosphorylation was only suppressed by ErbB4 siRNA. Four ErbB4 isoforms exist (JM-a/JM-b and CYT-1/CYT-2), generated by alternative splicing, and their expression declines postnatally and following cardiac hypertrophy. Silencing of all four isoforms in cardiomyocytes, using an ErbB4 siRNA, abrogated NRG1-induced hypertrophic promoter/reporter activity, which was rescued by coexpression of knockdown-resistant versions of the ErbB4 isoforms. Thus, ErbB4 confers cardiomyocyte hypertrophy to NRG1, and all four ErbB4 isoforms possess the capacity to mediate this effect.
Collapse
Affiliation(s)
- Zhen Wang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Hsiu-Wen Chan
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino, Italy
| | - Nicola J Smith
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Brooke W Purdue
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Pennisi
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shannon L O'Brien
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tamara M Paravicini
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Han J, Zhang Y, Xu J, Zhang T, Wang H, Wang Z, Jiang Y, Zhou L, Yang M, Hua Y, Cai Z. Her4 promotes cancer metabolic reprogramming via the c-Myc-dependent signaling axis. Cancer Lett 2020; 496:57-71. [PMID: 33038488 DOI: 10.1016/j.canlet.2020.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 10/04/2020] [Indexed: 12/27/2022]
Abstract
Despite the growing recognition of metabolic reprogramming as an important hallmark of cancer in the past few years, the molecular mechanisms underlying metabolic alterations during tumorigenesis remain unclear. In this study, we identified a critical role of Her4 in rewiring cancer metabolism toward tumor-promoting metabolic processes, including increased glycolysis, glutaminolysis, mitochondrial biogenesis, and oxidative phosphorylation, which may in part cooperate to promote tumorigenesis. We found that overexpression of Her4 promoted the stabilization of c-Myc through a CIP2A-mediated increase in c-MycS62 phosphorylation and GSK3β-mediated decrease in c-MycT58 phosphorylation, both of which decreased c-Myc degradation. Furthermore, Her4 was found to increase glucose uptake and tumor growth in an osteosarcoma xenograft model. Overall, these findings provide a better understanding of the involvement of Her4 in tumorigenesis and document its potential role in metabolic reprogramming for the first time. We believe that our study might lead to promising opportunities for targeted metabolic therapy for cancer.
Collapse
Affiliation(s)
- Jing Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Yangfeng Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Tao Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Hongsheng Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Yafei Jiang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Lei Zhou
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Mengkai Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China.
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai 200080, PR China.
| |
Collapse
|
14
|
Ojala VK, Knittle AM, Kirjalainen P, Merilahti JAM, Kortesoja M, Tvorogov D, Vaparanta K, Lin S, Kast J, Pulliainen AT, Kurppa KJ, Elenius K. The guanine nucleotide exchange factor VAV3 participates in ERBB4-mediated cancer cell migration. J Biol Chem 2020; 295:11559-11571. [PMID: 32561640 DOI: 10.1074/jbc.ra119.010925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/06/2020] [Indexed: 11/06/2022] Open
Abstract
ERBB4 is a member of the epidermal growth factor receptor (EGFR)/ERBB subfamily of receptor tyrosine kinases that regulates cellular processes including proliferation, migration, and survival. ERBB4 signaling is involved in embryogenesis and homeostasis of healthy adult tissues, but also in human pathologies such as cancer, neurological disorders, and cardiovascular diseases. Here, an MS-based analysis revealed the Vav guanine nucleotide exchange factor 3 (VAV3), an activator of Rho family GTPases, as a critical ERBB4-interacting protein in breast cancer cells. We confirmed the ERBB4-VAV3 interaction by targeted MS and coimmunoprecipitation experiments and further defined it by demonstrating that kinase activity and Tyr-1022 and Tyr-1162 of ERBB4, as well as the intact phosphotyrosine-interacting SH2 domain of VAV3, are necessary for this interaction. We found that ERBB4 stimulates tyrosine phosphorylation of the VAV3 activation domain, known to be required for guanine nucleotide exchange factor (GEF) activity of VAV proteins. In addition to VAV3, the other members of the VAV family, VAV1 and VAV2, also coprecipitated with ERBB4. Analyses of the effects of overexpression of dominant-negative VAV3 constructs or shRNA-mediated down-regulation of VAV3 expression in breast cancer cells indicated that active VAV3 is involved in ERBB4-stimulated cell migration. These results define the VAV GEFs as effectors of ERBB4 activity in a signaling pathway relevant for cancer cell migration.
Collapse
Affiliation(s)
- Veera K Ojala
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Anna M Knittle
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Peppi Kirjalainen
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johannes A M Merilahti
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Maarit Kortesoja
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Denis Tvorogov
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Katri Vaparanta
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Shujun Lin
- Biomedical Research Centre, Department of Chemistry, and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jürgen Kast
- Biomedical Research Centre, Department of Chemistry, and Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arto T Pulliainen
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Kari J Kurppa
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine and Medicity Research Laboratories, University of Turku, Turku, Finland .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| |
Collapse
|
15
|
Li X, Huang Q, Wang S, Huang Z, Yu F, Lin J. HER4 promotes the growth and metastasis of osteosarcoma via the PI3K/AKT pathway. Acta Biochim Biophys Sin (Shanghai) 2020; 52:345-362. [PMID: 32181480 DOI: 10.1093/abbs/gmaa004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 01/05/2020] [Accepted: 01/20/2020] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor, which occurs in adolescents. As reported by our previous studies, HER4 indicates a poor prognosis of primary osteosarcoma. However, its mechanisms in the pathogenesis of osteosarcoma have not yet been studied. The purpose of this study was to investigate the role of HER4 in osteosarcoma and whether the PI3K/AKT pathway is involved. In this study, western blot analysis was used to investigate the expression of HER4 protein in osteosarcoma tissues and cell lines. CCK8 and transwell assays were used to detect the effects of HER4 on the proliferation, migration, and invasion of osteosarcoma cells in vitro. The effects of HER4 on the growth and metastasis of osteosarcoma in vivo were detected by tumor formation and immunofluorescence in nude mice. The role of the PI3K/AKT pathway in HER4 regulation of the growth and metastasis of osteosarcoma was examined by western blot analysis and immunofluorescence assay. We found that HER4 protein was highly expressed in clinical osteosarcoma specimens and osteosarcoma cells. HER4 markedly promoted the proliferation, migration, and invasion of osteosarcoma cells in vitro as well as the growth and metastasis of osteosarcoma in vivo. HER4 overexpression upregulated the expression of phosphorylated protein kinase B (pAKT), proliferation marker antigen Ki67, and metastasis cell marker matrix metalloproteinase 9 (MMP9). Notably, PI3K/AKT inhibitor LY294002 significantly inhibited the effects of HER4 via the downregulation of pAKT, Ki67, and MMP9. Moreover, LY294002 markedly blocked the effects of HER4-induced upregulation of tumor malignancy. The present study suggests that HER4 may promote the growth and metastasis of osteosarcoma via the PI3K/AKT pathway. The HER4/PI3K/AKT pathway could serve as a potential target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Qingshan Huang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Shenglin Wang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Zhen Huang
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Fengqiang Yu
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Jianhua Lin
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
16
|
Segers VFM, Dugaucquier L, Feyen E, Shakeri H, De Keulenaer GW. The role of ErbB4 in cancer. Cell Oncol (Dordr) 2020; 43:335-352. [PMID: 32219702 DOI: 10.1007/s13402-020-00499-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The epidermal growth factor receptor family consists of four members, ErbB1 (epidermal growth factor receptor-1), ErbB2, ErbB3, and ErbB4, which all have been found to play important roles in tumor development. ErbB4 appears to be unique among these receptors, because it is the only member with growth inhibiting properties. ErbB4 plays well-defined roles in normal tissue development, in particular the heart, the nervous system, and the mammary gland system. In recent years, information on the role of ErbB4 in a number of tumors has emerged and its general direction points towards a tumor suppressor role for ErbB4. However, there are some controversies and conflicting data, warranting a review on this topic. CONCLUSIONS Here, we discuss the role of ErbB4 in normal physiology and in breast, lung, colorectal, gastric, pancreatic, prostate, bladder, and brain cancers, as well as in hepatocellular carcinoma, cholangiocarcinoma, and melanoma. Understanding the role of ErbB4 in cancer is not only important for the treatment of tumors, but also for the treatment of other disorders in which ErbB4 plays a major role, e.g. cardiovascular disease.
Collapse
Affiliation(s)
- Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium. .,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium.
| | - Lindsey Dugaucquier
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Eline Feyen
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Hadis Shakeri
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Department of Cardiology, ZNA Hospital, Antwerp, Belgium
| |
Collapse
|
17
|
Veloso ES, Gonçalves INN, Silveira TL, Oliveira FS, Vieira DS, Cassali GD, Del Puerto HL, Ferreira E. Diverse roles of epidermal growth factors receptors in oral and cutaneous canine melanomas. BMC Vet Res 2020; 16:24. [PMID: 31996230 PMCID: PMC6988198 DOI: 10.1186/s12917-020-2249-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The epidermal growth factor receptors participate in the physiological processes such as regulation of morphogenesis, proliferation and cell migration, but when overexpressed or overactivated they may play an important role in neoplastic progression. Melanoma is the most aggressive skin neoplasm and is characterized by elevated invasion and low survival rates in both humans and dogs. In human melanomas the overexpression of EGFR, HER3 or HER4 is associated with poor prognosis. In canine melanomas the epidermal growth factor receptors expression has not been evaluated. Therefore, this study evaluated the expression of epidermal growth factor receptors by immunohistochemistry and investigated their relationship with morphological characteristics and proliferative indices in cutaneous and oral canine melanoma. RESULTS In cutaneous melanoma an increased proliferative index was associated with increased cytoplasmic HER4 and reduced EGFR and HER3 protein expression. In oral melanomas, membranous HER2 protein expression correlated with occurrence of emboli, but ERBB2 gene amplification wasn't observed. CONCLUSION Thus, our work evidenced the relationship between HER4 and the stimulus to cell proliferation in cutaneous melanomas, in addition to the relationship between HER2 and the occurrence of emboli in oral melanomas.
Collapse
Affiliation(s)
- Emerson Soares Veloso
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Ivy Nayra Nascimento Gonçalves
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Tatiany Luiza Silveira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Fernando Soares Oliveira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Déborah Soares Vieira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Helen Lima Del Puerto
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Enio Ferreira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| |
Collapse
|
18
|
Black LE, Longo JF, Carroll SL. Mechanisms of Receptor Tyrosine-Protein Kinase ErbB-3 (ERBB3) Action in Human Neoplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1898-1912. [PMID: 31351986 DOI: 10.1016/j.ajpath.2019.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022]
Abstract
It is well established that the epidermal growth factor (EGF) receptor, receptor tyrosine-protein kinase erbB-2 (ERBB2)/human EGF receptor 2 (HER2), and, to a lesser extent, ERBB4/HER4, promote the pathogenesis of many types of human cancers. In contrast, the role that ERBB3/HER3, the fourth member of the ERBB family of receptor tyrosine kinases, plays in these diseases is poorly understood and, until recently, underappreciated. In large part, this was because early structural and functional studies suggested that ERBB3 had little, if any, intrinsic tyrosine kinase activity and, thus, was unlikely to be an important therapeutic target. Since then, however, numerous publications have demonstrated an important role for ERBB3 in carcinogenesis, metastasis, and acquired drug resistance. Furthermore, somatic ERBB3 mutations are frequently encountered in many types of human cancers. Dysregulation of ERBB3 trafficking as well as cooperation with other receptor tyrosine kinases further enhance ERBB3's role in tumorigenesis and drug resistance. As a result of these advances in our understanding of the structure and biochemistry of ERBB3, and a growing focus on the development of precision and combinatorial therapeutic regimens, ERBB3 is increasingly considered to be an important therapeutic target in human cancers. In this review, we discuss the unique structural and functional features of ERBB3 and how this information is being used to develop effective new therapeutic agents that target ERBB3 in human cancers.
Collapse
Affiliation(s)
- Laurel E Black
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Jody F Longo
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
19
|
Haryuni RD, Watabe S, Yamaguchi A, Fukushi Y, Tanaka T, Kawasaki Y, Zhou Y, Yokoyama S, Sakurai H. Negative feedback regulation of ErbB4 tyrosine kinase activity by ERK-mediated non-canonical phosphorylation. Biochem Biophys Res Commun 2019; 514:456-461. [PMID: 31053301 DOI: 10.1016/j.bbrc.2019.04.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
Abstract
ErbB4 receptor tyrosine kinase has four different isoforms that are classified based on variants in the extracellular juxtamembrane domain (JM-a and JM-b) and the C-terminal region (CYT-1 and CYT-2). Here, we used the JM-b/CYT-1 isoform to investigate the roles of serine/threonine phosphorylation in MEK-ERK-dependent feedback inhibition. TPA as an activator of the ERK pathway markedly induced ErbB4 phosphorylation at Thr-674, the conserved common feedback site in the intracellular JM domain, which resulted in the downregulation of tyrosine autophosphorylation. We also identified Ser-1026 as an ErbB4-specific ERK target site in the CYT-1 region. Moreover, double mutations (Thr-674/Ser-1026 to Ala) significantly upregulated ErbB4 activation, indicating that Thr-674 and Ser-1026 are cooperatively involved in negative feedback regulation. Given the fact that ErbB4 mutation is one of the most common genetic alterations in melanoma cells, we demonstrated that a typical oncogenic ErbB4 mutant was resistant to the negative feedback regulation to maintain a highly active status of tyrosine kinase activity. Together, these findings indicate that feedback mechanisms are key switches determining oncogenic potentials of ErbB receptor kinases.
Collapse
Affiliation(s)
- Ratna Dini Haryuni
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; Center for Radioisotope and Radiopharmaceutical Technology, National Nuclear Energy Agency of Indonesia, Serpong, Tangerang Selatan, Indonesia
| | - Satoko Watabe
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Asako Yamaguchi
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yayoi Fukushi
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tomohiro Tanaka
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yuki Kawasaki
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; Laboratory of Public Health, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Yue Zhou
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Satoru Yokoyama
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
20
|
Takahashi Y, Uchino A, Shioya A, Sano T, Matsumoto C, Numata-Uematsu Y, Nagano S, Araki T, Murayama S, Saito Y. Altered immunoreactivity of ErbB4, a causative gene product for ALS19, in the spinal cord of patients with sporadic ALS. Neuropathology 2019; 39:268-278. [PMID: 31124187 PMCID: PMC6852233 DOI: 10.1111/neup.12558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/30/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
Abstract
ErbB4 is the protein implicated in familial amyotrophic lateral sclerosis (ALS), designated as ALS19. ErbB4 is a receptor tyrosine kinase activated by its ligands, neuregulins (NRG), and plays an essential role in the function and viability of motor neurons. Mutations in the ALS19 gene lead to the reduced autophosphorylation capacity of the ErbB4 protein upon stimulation with NRG‐1, suggesting that the disruption of the NRG–ErbB4 pathway causes motor neuron degeneration. We used immunohistochemistry to study ErbB4 in the spinal cord of patients with sporadic ALS (SALS) to test the hypothesis that ErbB4 may be involved in the pathogenesis of SALS. ErbB4 was specifically immunoreactive in the cytoplasm of motor neurons in the anterior horns of the spinal cord. In patients with SALS, some of the motor neurons lost immunoreactivity with ErbB4, with the proportion of motor neurons with a loss of immunoreactivity correlated with the severity of motor neuron loss. The subcellular localization was altered, demonstrating nucleolar or nuclear localization, threads/dots and spheroids. The ectopic glial immunoreactivity was observed, mainly in the oligodendrocytes of the lateral columns and anterior horns. The reduction in the ErbB4 immunoreactivity was significantly correlated with the cytoplasmic mislocalization of transactivation response DNA‐binding protein 43 kDa (TDP‐43) in the motor neurons. No alteration in immunoreactivity was observed in the motor neurons of mice carrying atransgene for mutant form of the superoxide dismutase 1 gene (SOD1). This study provided compelling evidence that ErbB4 is also involved in the pathophysiology of SALS, and that the disruption of the NRG–ErbB4 pathway may underlie the TDP‐43‐dependent motor neuron degeneration in ALS.
Collapse
Affiliation(s)
- Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Akiko Uchino
- Department of Neurology and Neuropathology and Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Ayako Shioya
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Terunori Sano
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Chihiro Matsumoto
- Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan.,Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yurika Numata-Uematsu
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Seiichi Nagano
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shigeo Murayama
- Department of Neurology and Neuropathology and Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yuko Saito
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
21
|
Donoghue JF, Kerr LT, Alexander NW, Greenall SA, Longano AB, Gottardo NG, Wang R, Tabar V, Adams TE, Mischel PS, Johns TG. Activation of ERBB4 in Glioblastoma Can Contribute to Increased Tumorigenicity and Influence Therapeutic Response. Cancers (Basel) 2018; 10:cancers10080243. [PMID: 30044378 PMCID: PMC6116191 DOI: 10.3390/cancers10080243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma (GBM) is often resistant to conventional and targeted therapeutics. ErbB2 Receptor Tyrosine Kinase 4 (ERBB4) is expressed throughout normal brain and is an oncogene in several pediatric brain cancers; therefore, we investigated ERBB4 as a prognostic marker and therapeutic target in GBM. Using RT-qPCR, we quantified mRNA encoding total ERBB4 and known ERBB4 variants in GBM and non-neoplastic normal brain (NNB) samples. Using immunohistochemistry, we characterized the localization of total and phosphorylated ERBB4 (p-ERBB4) and EGFR protein in archived GBM samples and assessed their association with patient survival. Furthermore, we evaluated the effect of ERBB4 phosphorylation on angiogenesis and tumorigenicity in GBM xenograft models. Total ERBB4 mRNA was significantly lower in GBM than NNB samples, with the juxtamembrane JM-a and cytoplasmic CYT-2 variants predominating. ERBB4 protein was ubiquitously expressed in GBM but was not associated with patient survival. However, high p-ERBB4 in 11% of archived GBM samples, independent of p-EGFR, was associated with shorter patient survival (12.0 ± 3.2 months) than was no p-ERBB4 (22.5 ± 9.5 months). Increased ERBB4 activation was also associated with increased proliferation, angiogenesis, tumorigenicity and reduced sensitivity to anti-EGFR treatment in xenograft models. Despite low ERBB4 mRNA in GBM, the functional effects of increased ERBB4 activation identify ERBB4 as a potential prognostic and therapeutic target.
Collapse
Affiliation(s)
- Jacqueline F Donoghue
- Oncogenic Signalling Group, Hudson Institute of Medical Research, 21⁻37 Wright Street, Clayton, VIC 3168, Australia.
| | - Lauren T Kerr
- Oncogenic Signalling Group, Hudson Institute of Medical Research, 21⁻37 Wright Street, Clayton, VIC 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia.
| | - Naomi W Alexander
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6008, Australia.
| | - Sameer A Greenall
- Oncogenic Signalling Group, Hudson Institute of Medical Research, 21⁻37 Wright Street, Clayton, VIC 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia.
| | - Anthony B Longano
- Department of Anatomical Pathology, Monash Medical Centre, Clayton, VIC 3168, Australia.
| | - Nicholas G Gottardo
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6008, Australia.
| | - Rong Wang
- Department of Neurosurgery and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Viviane Tabar
- Department of Neurosurgery and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Timothy E Adams
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia.
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA.
| | - Terrance G Johns
- Oncogenic Signalling Group, Hudson Institute of Medical Research, 21⁻37 Wright Street, Clayton, VIC 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia.
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA 6008, Australia.
| |
Collapse
|
22
|
Erben L, He MX, Laeremans A, Park E, Buonanno A. A Novel Ultrasensitive In Situ Hybridization Approach to Detect Short Sequences and Splice Variants with Cellular Resolution. Mol Neurobiol 2018; 55:6169-6181. [PMID: 29264769 PMCID: PMC5994223 DOI: 10.1007/s12035-017-0834-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/08/2017] [Indexed: 01/30/2023]
Abstract
Investigating the expression of RNAs that differ by short or single nucleotide sequences at a single-cell level in tissue has been limited by the sensitivity and specificity of in situ hybridization (ISH) techniques. Detection of short isoform-specific sequences requires RNA isolation for PCR analysis-an approach that loses the regional and cell-type-specific distribution of isoforms. Having the capability to distinguish the differential expression of RNA variants in tissue is critical because alterations in mRNA splicing and editing, as well as coding single nucleotide polymorphisms, have been associated with numerous cancers, neurological and psychiatric disorders. Here we introduce a novel highly sensitive single-probe colorimetric/fluorescent ISH approach that targets short exon/exon RNA splice junctions using single-pair oligonucleotide probes (~ 50 bp). We use this approach to investigate, with single-cell resolution, the expression of four transcripts encoding the neuregulin (NRG) receptor ErbB4 that differ by alternative splicing of exons encoding two juxtamembrane (JMa/JMb) and two cytoplasmic (CYT-1/CYT-2) domains that alter receptor stability and signaling modes, respectively. By comparing ErbB4 hybridization on sections from wild-type and ErbB4 knockout mice (missing exon 2), we initially demonstrate that single-pair probes provide the sensitivity and specificity to visualize and quantify the differential expression of ErbB4 isoforms. Using cell-type-specific GFP reporter mice, we go on to demonstrate that expression of ErbB4 isoforms differs between neurons and oligodendrocytes, and that this differential expression of ErbB4 isoforms is evolutionarily conserved to humans. This single-pair probe ISH approach, known as BaseScope, could serve as an invaluable diagnostic tool to detect alternative spliced isoforms, and potentially single base polymorphisms, associated with disease.
Collapse
Affiliation(s)
- Larissa Erben
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bldg. 35, Room 2C-1000, Bethesda, MD, 20892, USA
- Institute of Molecular Psychiatry, University Bonn, 53127, Bonn, Germany
| | - Ming-Xiao He
- Advanced Cell Diagnostics, Newark, CA, 94560, USA
| | | | - Emily Park
- Advanced Cell Diagnostics, Newark, CA, 94560, USA
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bldg. 35, Room 2C-1000, Bethesda, MD, 20892, USA.
| |
Collapse
|
23
|
Hoesl C, Röhrl JM, Schneider MR, Dahlhoff M. The receptor tyrosine kinase ERBB4 is expressed in skin keratinocytes and influences epidermal proliferation. Biochim Biophys Acta Gen Subj 2018; 1862:958-966. [PMID: 29410073 DOI: 10.1016/j.bbagen.2018.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) and associated receptors ERBB2 and ERBB3 are important for skin development and homeostasis. To date, ERBB4 could not be unambiguously identified in the epidermis. The aim of this study was to analyze the ERBB-receptor family with a special focus on ERBB4 in vitro in human keratinocytes and in vivo in human and murine epidermis. METHODS We compared the transcript levels of all ERBB-receptors and the seven EGFR-ligands in HaCaT and A431 cells. ERBB-receptor activity was analyzed after epidermal growth factor (EGF) stimulation by Western blot analysis. The location of the receptors was investigated by immunofluorescence in human keratinocytes and skin. Finally, we investigated the function of ERBB4 in the epidermis of skin-specific ERBB4-knockout mice. RESULTS After EGF stimulation, all ligands were upregulated except for epigen. Expression levels of EGFR were unchanged, but all other ERBB-receptors were down-regulated after EGF stimulation, although all ERBB-receptors were phosphorylated. We detected ERBB4 at mRNA and protein levels in both human epidermal cell lines and in the basal layer of human and murine epidermis. Skin-specific ERBB4-knockout mice revealed a significantly reduced epidermal thickness with a decreased proliferation rate. CONCLUSIONS ERBB4 is expressed in the basal layer of human epidermis and cultured keratinocytes as well as in murine epidermis. Moreover, ERBB4 is phosphorylated in HaCaT cells due to EGF stimulation, and its deletion in murine epidermis affects skin thickness by decreasing proliferation. GENERAL SIGNIFICANCE ERBB4 is expressed in human keratinocytes and plays a role in murine skin homeostasis.
Collapse
Affiliation(s)
- Christine Hoesl
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Jennifer M Röhrl
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Maik Dahlhoff
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.
| |
Collapse
|
24
|
Wang H, Sun W, Sun M, Fu Z, Zhou C, Wang C, Zuo D, Zhou Z, Wang G, Zhang T, Xu J, Chen J, Wang Z, Yin F, Duan Z, Hornicek FJ, Cai Z, Hua Y. HER4 promotes cell survival and chemoresistance in osteosarcoma via interaction with NDRG1. Biochim Biophys Acta Mol Basis Dis 2018. [PMID: 29524631 DOI: 10.1016/j.bbadis.2018.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. The abilities of chemotherapy resistance are major roadblock in the successful treatment of OS. The clarification of mechanism regarding cell survival during OS chemotherapy are important. Here, we examined HER4 expression by immunohistochemistry in a large series of OS tissues, and found HER4 expression correlated with tumor characteristics and patient survival rates. HER4 knockdown by shRNA inhibited OS cell growth and tumorigenesis, and induced cell senescence and apoptosis in vitro and in vivo. We demonstrated that HER4 expression upregulated in the adverse conditions, such as serum starvation and sphere culture. Moreover, HER4 knockdown cells became more sensitive in stressful conditions such as loss of attachment, cytotoxic agents or nutrition insufficiency. Mechanism studies revealed that HER4 interacted with NDRG1, and NDRG1 overexpression could antagonize HER4 knockdown-mediated cell growth and apoptosis in stressed conditions. There was a positive correlation between HER4 and NDRG1 immunoreactivity in OS patients. Together, our present study shows that HER4 and/or NDRG1 might play a critical role for the cell survival and chemo-resistance of OS, and could be used as potential therapeutic targets in OS.
Collapse
Affiliation(s)
- Hongsheng Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China; Department of Orthopedics, Yangpu Hospital, Tongji University, Shanghai, China
| | - Wei Sun
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Mengxiong Sun
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zeze Fu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Chenghao Zhou
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Chongren Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Dongqing Zuo
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zifei Zhou
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Gangyang Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Tao Zhang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Jian Chen
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Fei Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhenfeng Duan
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery David Geffen School of Medicine at UCLA Los Angeles, USA
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China.
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China.
| |
Collapse
|
25
|
Knittle AM, Helkkula M, Johnson MS, Sundvall M, Elenius K. SUMOylation regulates nuclear accumulation and signaling activity of the soluble intracellular domain of the ErbB4 receptor tyrosine kinase. J Biol Chem 2017; 292:19890-19904. [PMID: 28974580 DOI: 10.1074/jbc.m117.794271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/22/2017] [Indexed: 01/24/2023] Open
Abstract
Erb-B2 receptor tyrosine kinase 4 (ErbB4) is a kinase that can signal via a proteolytically released intracellular domain (ICD) in addition to classical receptor tyrosine kinase-activated signaling cascades. Previously, we have demonstrated that ErbB4 ICD is posttranslationally modified by the small ubiquitin-like modifier (SUMO) and functionally interacts with the PIAS3 SUMO E3 ligase. However, direct evidence of SUMO modification in ErbB4 signaling has remained elusive. Here, we report that the conserved lysine residue 714 in the ErbB4 ICD undergoes SUMO modification, which was reversed by sentrin-specific proteases (SENPs) 1, 2, and 5. Although ErbB4 kinase activity was not necessary for the SUMOylation, the SUMOylated ErbB4 ICD was tyrosine phosphorylated to a higher extent than unmodified ErbB4 ICD. Mutation of the SUMOylation site compromised neither ErbB4-induced phosphorylation of the canonical signaling pathway effectors Erk1/2, Akt, or STAT5 nor ErbB4 stability. In contrast, SUMOylation was required for nuclear accumulation of the ErbB4 ICD. We also found that Lys-714 was located within a leucine-rich stretch, which resembles a nuclear export signal, and could be inactivated by site-directed mutagenesis. Furthermore, SUMOylation modulated the interaction of ErbB4 with chromosomal region maintenance 1 (CRM1), the major nuclear export receptor for proteins. Finally, the SUMO acceptor lysine was functionally required for ErbB4 ICD-mediated inhibition of mammary epithelial cell differentiation in a three-dimensional cell culture model. Our findings indicate that a SUMOylation-mediated mechanism regulates nuclear localization and function of the ICD of ErbB4 receptor tyrosine kinase.
Collapse
Affiliation(s)
- Anna M Knittle
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland.,Turku Doctoral Programmes of Biomedical Sciences and Molecular Medicine, University of Turku, FI-20014 Turku, Finland
| | - Maria Helkkula
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland, and
| | - Maria Sundvall
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland, .,Department of Oncology and Radiotherapy, University of Turku and Turku University Hospital, FI-20014 Turku, Finland
| | - Klaus Elenius
- From the Department of Medical Biochemistry and Genetics, and MediCity Research Laboratory, University of Turku, FI-20520 Turku, Finland, .,Department of Oncology and Radiotherapy, University of Turku and Turku University Hospital, FI-20014 Turku, Finland
| |
Collapse
|
26
|
Schumacher MA, Hedl M, Abraham C, Bernard JK, Lozano PR, Hsieh JJ, Almohazey D, Bucar EB, Punit S, Dempsey PJ, Frey MR. ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation. Cell Death Dis 2017; 8:e2622. [PMID: 28230865 PMCID: PMC5386486 DOI: 10.1038/cddis.2017.42] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Efficient clearance of pro-inflammatory macrophages from tissues after resolution of a challenge is critical to prevent prolonged inflammation. Defects in clearance can contribute to conditions such as inflammatory bowel disease, and thus may be therapeutically targetable. However, the signaling pathways that induce termination of pro-inflammatory macrophages are incompletely defined. We tested whether the ErbB4 receptor tyrosine kinase, previously not known to have role in macrophage biology, is involved in this process. In vitro, pro-inflammatory activation of cultured murine and human macrophages induced ErbB4 expression; in contrast, other ErbB family members were not induced in pro-inflammatory cells, and other innate immune lineages (dendritic cells, neutrophils) did not express detectable ErbB4 levels. Treatment of activated pro-inflammatory macrophages with the ErbB4 ligand neuregulin-4 (NRG4) induced apoptosis. ErbB4 localized to the mitochondria in these cells. Apoptosis was accompanied by loss of mitochondrial membrane potential, and was dependent upon the proteases that generate the cleaved ErbB4 intracellular domain fragment, suggesting a requirement for this fragment and mitochondrial pathway apoptosis. In vivo, ErbB4 was highly expressed on pro-inflammatory macrophages but not neutrophils during experimental DSS colitis in C57Bl/6 mice. Active inflammation in this model suppressed NRG4 expression, which may allow for macrophage persistence and ongoing inflammation. Consistent with this notion, NRG4 levels rebounded during the recovery phase, and administration of exogenous NRG4 during colitis reduced colonic macrophage numbers and ameliorated inflammation. These data define a novel role for ErbB4 in macrophage apoptosis, and outline a mechanism of feedback inhibition that may promote resolution of colitis.
Collapse
Affiliation(s)
- Michael A Schumacher
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Departments of Pediatrics and of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Matija Hedl
- Department of Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Clara Abraham
- Department of Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jessica K Bernard
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Departments of Pediatrics and of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA.,University of Southern California Herman Ostrow School of Dentistry, Los Angeles, CA 90089, USA
| | - Patricia R Lozano
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jonathan J Hsieh
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Departments of Pediatrics and of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Dana Almohazey
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Departments of Pediatrics and of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA.,University of Southern California Herman Ostrow School of Dentistry, Los Angeles, CA 90089, USA
| | - Edie B Bucar
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Departments of Pediatrics and of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Shivesh Punit
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Peter J Dempsey
- Department of Pediatrics, University of Colorado Medical School, Aurora, CO 80045, USA
| | - Mark R Frey
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Departments of Pediatrics and of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
27
|
Neuregulin1 alpha activates migration of neuronal progenitors expressing ErbB4. Mol Cell Neurosci 2016; 77:87-94. [PMID: 27989735 DOI: 10.1016/j.mcn.2016.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 12/27/2022] Open
Abstract
Deficits in neuronal migration during development in the central nervous system may contribute to psychiatric diseases. The ligand neuregulin1 (NRG1) and its receptor ErbB4 are genes conferring susceptibility to schizophrenia, playing a key role in the control of neuronal migration both during development and adulthood. Several NRG1 and ErbB4 isoforms were identified, which deeply differ in their characteristics. Here we focused on the four ErbB4 isoforms and the two NRG1 isoforms differing in their EGF-like domain, namely α and β. We hypothesized that these isoforms, which are differently regulated in schizophrenic patients, could play different roles in neuronal migration. Our hypothesis was strengthened by the observation that both NRG1α and NRG1β and the four ErbB4 isoforms are expressed in the medial and lateral ganglionic eminences and in the cortex during development in rat. We analysed in vitro the signal transduction pathways activated by the different ErbB4 isoforms following the treatment with soluble recombinant NRG1α or NRG1β and the ability to stimulate migration. Our data show that two ErbB4 isoforms, namely JMa-cyt2 and JMb-cyt1, following NRG1α and NRG1β treatment, strongly activate AKT phosphorylation, conferring high migratory activity to neuronal progenitors, thus demonstrating that both NRG1α and NRG1β can play a role in neuronal migration.
Collapse
|
28
|
Hu X, Fan Q, Hou H, Yan R. Neurological dysfunctions associated with altered BACE1-dependent Neuregulin-1 signaling. J Neurochem 2016; 136:234-49. [PMID: 26465092 PMCID: PMC4833723 DOI: 10.1111/jnc.13395] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023]
Abstract
Inhibition of BACE1 is being pursued as a therapeutic target to treat patients suffering from Alzheimer's disease because BACE1 is the sole β-secretase that generates β-amyloid peptide. Knowledge regarding other cellular functions of BACE1 is therefore critical for the safe use of BACE1 inhibitors in human patients. Neuregulin-1 (Nrg1) is a BACE1 substrate and BACE1 cleavage of Nrg1 is critical for signaling functions in myelination, remyelination, synaptic plasticity, normal psychiatric behaviors, and maintenance of muscle spindles. This review summarizes the most recent discoveries associated with BACE1-dependent Nrg1 signaling in these areas. This body of knowledge will help to provide guidance for preventing unwanted Nrg1-based side effects following BACE1 inhibition in humans. To initiate its signaling cascade, membrane anchored Neuregulin (Nrg), mainly type I and III β1 Nrg1 isoforms and Nrg3, requires ectodomain shedding. BACE1 is one of such indispensable sheddases to release the functional Nrg signaling fragment. The dependence of Nrg on the cleavage by BACE1 is best manifested by disrupting the critical role of Nrg in the control of axonal myelination, schizophrenic behaviors as well as the formation and maintenance of muscle spindles.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Hailong Hou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
29
|
Mohd Nafi SN, Generali D, Kramer-Marek G, Gijsen M, Strina C, Cappelletti M, Andreis D, Haider S, Li JL, Bridges E, Capala J, Ioannis R, Harris AL, Kong A. Nuclear HER4 mediates acquired resistance to trastuzumab and is associated with poor outcome in HER2 positive breast cancer. Oncotarget 2015; 5:5934-49. [PMID: 25153719 PMCID: PMC4171603 DOI: 10.18632/oncotarget.1904] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The role of HER4 in breast cancer is controversial and its role in relation to trastuzumab resistance remains unclear. We showed that trastuzumab treatment and its acquired resistance induced HER4 upregulation, cleavage and nuclear translocation. However, knockdown of HER4 by specific siRNAs increased trastuzumab sensitivity and reversed its resistance in HER2 positive breast cancer cells. Preventing HER4 cleavage by a γ-secretase inhibitor and inhibiting HER4 tyrosine kinase activity by neratinib decreased trastuzumab-induced HER4 nuclear translocation and enhanced trastuzumab response. There was also increased nuclear HER4 staining in the tumours from BT474 xenograft mice and human patients treated with trastuzumab. Furthermore, nuclear HER4 predicted poor clinical response to trastuzumab monotherapy in patients undergoing a window study and was shown to be an independent poor prognostic factor in HER2 positive breast cancer. Our data suggest that HER4 plays a key role in relation to trastuzumab resistance in HER2 positive breast cancer. Therefore, our study provides novel findings that HER4 activation, cleavage and nuclear translocation influence trastuzumab sensitivity and resistance in HER2 positive breast cancer. Nuclear HER4 could be a potential prognostic and predictive biomarker and understanding the role of HER4 may provide strategies to overcome trastuzumab resistance in HER2 positive breast cancer.
Collapse
Affiliation(s)
- Siti Norasikin Mohd Nafi
- Human Epidermal Growth Factor Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Daniele Generali
- U.O. Multidisciplinare di Patologia Mammaria, U.S Terapia Molecolare e Farmacogenomica, A.O. Instituti Ospitalieri di Cremona, Viale Concordia 1, Cremona, Italy
| | - Gabriela Kramer-Marek
- Institute of Cancer Research, Division of Radiotherapy and Imaging, 15 Cotswold Road, Belmont, Sutton, Surrey, UK
| | - Merel Gijsen
- Human Epidermal Growth Factor Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Carla Strina
- U.O. Multidisciplinare di Patologia Mammaria, U.S Terapia Molecolare e Farmacogenomica, A.O. Instituti Ospitalieri di Cremona, Viale Concordia 1, Cremona, Italy
| | - Mariarosa Cappelletti
- U.O. Multidisciplinare di Patologia Mammaria, U.S Terapia Molecolare e Farmacogenomica, A.O. Instituti Ospitalieri di Cremona, Viale Concordia 1, Cremona, Italy
| | - Daniele Andreis
- U.O. Multidisciplinare di Patologia Mammaria, U.S Terapia Molecolare e Farmacogenomica, A.O. Instituti Ospitalieri di Cremona, Viale Concordia 1, Cremona, Italy
| | - Syed Haider
- Growth Factor Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ji-Liang Li
- Growth Factor Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Esther Bridges
- Growth Factor Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jacek Capala
- National Institutes of Health, Radiation Oncology Branch, Bethesda MD, US
| | - Roxanis Ioannis
- Department of Cellular Pathology, Oxford University Hospitals and Oxford Biomedical Research Centre, Oxford, UK
| | - Adrian L Harris
- Growth Factor Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Anthony Kong
- Human Epidermal Growth Factor Group, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
30
|
Trabelsi S, Mama N, Chourabi M, Mastouri MH, Ladib M, Popov S, Burford A, Mokni M, Tlili K, Krifa H, Jones C, Yacoubi MT, Saad A, Brahim DHB. Meningeal Hemangiopericytomas and Meningomas: a Comparative Immunohistochemical and Genetic Study. Asian Pac J Cancer Prev 2015; 16:6871-6. [DOI: 10.7314/apjcp.2015.16.16.6871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
31
|
Abstract
In the developing telencephalon, the medial ganglionic eminence (MGE) generates many cortical and virtually all striatal interneurons. While the molecular mechanisms controlling the migration of interneurons to the cortex have been extensively studied, very little is known about the nature of the signals that guide interneurons to the striatum. Here we report that the allocation of MGE-derived interneurons in the developing striatum of the mouse relies on a combination of chemoattractive and chemorepulsive activities. Specifically, interneurons migrate toward the striatum in response to Nrg1/ErbB4 chemoattraction, and avoid migrating into the adjacent cortical territories by a repulsive activity mediated by EphB/ephrinB signaling. Our results also suggest that the responsiveness of MGE-derived striatal interneurons to these cues is at least in part controlled by the postmitotic activity of the transcription factor Nkx2-1. This study therefore reveals parallel mechanisms for the migration of MGE-derived interneurons to the striatum and the cerebral cortex.
Collapse
|
32
|
Göthlin Eremo A, Tina E, Wegman P, Stål O, Fransén K, Fornander T, Wingren S. HER4 tumor expression in breast cancer patients randomized to treatment with or without tamoxifen. Int J Oncol 2015; 47:1311-20. [PMID: 26238412 DOI: 10.3892/ijo.2015.3108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/25/2015] [Indexed: 11/06/2022] Open
Abstract
The human epidermal growth factor receptor (HER) 4 is a relative of HER2 and has been associated to endocrine breast cancer and prediction of tamoxifen response. In addition to PI3K/Akt and MAPK pathway activation, ligand binding to HER4 triggers proteolytic cleavage and release of an intracellular receptor domain (4ICD) with signaling properties. The aim of the present study was to analyze HER4 protein expression and intracellular localization in breast cancer tissue from patients randomized to treatment with or without adjuvant tamoxifen. To investigate HER4 expression and localization in response to estradiol (E2) and 4-hydroxytamoxifen (4-OHT) exposure, we also performed in vitro studies. Cytoplasmic, nuclear and membrane expression of HER4 protein was evaluated by immunohistochemical staining in tumor tissue from 912 breast cancer patients. Three different breast epithelia cancer cell lines were exposed to E2 and 4-OHT and mRNA expression was analyzed using qPCR. Further, nuclear and cytoplasmic proteins were separated and analyzed with western blotting. We found an association between nuclear HER4 protein expression and ER-positivity (P=0.004). Furthermore, significant association was found between cytoplasmic HER4 and ER-negativity (P<0.0005), PgR-negativity (P<0.0005), tumor size >20 mm (P=0.001) and HER2-negativity (P=0.008). However, no overall significance of HER4 on recurrence-free survival was found. After E2 exposure, HER4 mRNA and protein expression had decreased in two cell lines in vitro yet no changes in nuclear or cytoplasmic protein fractions were seen. In conclusion, nuclear HER4 seem to be co-located with ER, however, we did not find support for overall HER4 expression in independently predicting response of tamoxifen treatment. The possible influence of separate isoforms was not tested and future studies may further evaluate HER4 significance.
Collapse
Affiliation(s)
- Anna Göthlin Eremo
- Faculty of Medicine and Health, School of Health and Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Elisabet Tina
- Clinical Research Centre, Örebro University Hospital, SE-701 85 Örebro, Sweden
| | - Pia Wegman
- Department of Clinical Genetics, University Hospital, SE-581 85 Linköping, Sweden
| | - Olle Stål
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE-581 85 Linköping, Sweden
| | - Karin Fransén
- Faculty of Medicine and Health, School of Health and Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Tommy Fornander
- Department of Oncology, Karolinska University Hospital, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Sten Wingren
- Faculty of Medicine and Health, School of Health and Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
33
|
Wali VB, Gilmore-Hebert M, Mamillapalli R, Haskins JW, Kurppa KJ, Elenius K, Booth CJ, Stern DF. Overexpression of ERBB4 JM-a CYT-1 and CYT-2 isoforms in transgenic mice reveals isoform-specific roles in mammary gland development and carcinogenesis. Breast Cancer Res 2014; 16:501. [PMID: 25516216 PMCID: PMC4303208 DOI: 10.1186/s13058-014-0501-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/09/2014] [Indexed: 11/16/2022] Open
Abstract
Introduction Human Epidermal Growth Factor Receptor (ERBB4/HER4) belongs to the Epidermal Growth Factor receptor/ERBB family of receptor tyrosine kinases. While ERBB1, ERBB2 and ERBB3 are often overexpressed or activated in breast cancer, and are oncogenic, the role of ERBB4 in breast cancer is uncertain. Some studies suggest a tumor suppressor role of ERBB4, while other reports suggest an oncogenic potential. Alternative splicing of ERBB4 yields four major protein products, these spliced isoforms differ in the extracellular juxtamembrane domain (JM-a versus JM-b) and cytoplasmic domain (CYT-1 versus CYT-2). Two of these isoforms, JM-a CYT-1 and JM-a CYT-2, are expressed in the mammary gland. Failure to account for isoform-specific functions in previous studies may account for conflicting reports on the role of ERBB4 in breast cancer. Methods We have produced mouse mammary tumour virus (MMTV) -ERBB4 transgenic mice to evaluate potential developmental and carcinogenic changes associated with full length (FL) JM-a ERBB4 CYT-1 versus ERBB4 CYT-2. Mammary tissue was isolated from transgenic mice and sibling controls at various developmental stages for whole mount analysis, RNA extraction, and immunohistochemistry. To maintain maximal ERBB4 expression, transgenic mice were bred continuously for a year after which mammary glands were isolated and analyzed. Results Overexpressing FL CYT-1 isoform resulted in suppression of mammary ductal morphogenesis which was accompanied by decreased number of mammary terminal end buds (TEBs) and Ki-67 positive cells within TEBs, while FL CYT-2 isoform had no effect on ductal growth in pubescent mice. The suppressive ductal phenotype in CYT-1 mice disappeared after mid-pregnancy, and subsequent developmental stages showed no abnormality in mammary gland morphology or function in CYT-1 or CYT-2 transgenic mice. However, sustained expression of FL CYT-1 isoform resulted in formation of neoplastic mammary lesions, suggesting a potential oncogenic function for this isoform. Conclusions Together, we present isoform-specific roles of ERBB4 during puberty and early pregnancy, and reveal a novel oncogenic property of CYT-1 ERBB4. The results may be exploited to develop better therapeutic strategies in breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0501-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vikram B Wali
- Department of Pathology, Yale School of Medicine, P.O.Box 208023, New Haven, CT, 06520, USA. .,Department of Breast Medical Oncology, Yale Cancer Center, Room#786, 300 George Street, New Haven, CT-06511, USA.
| | - Maureen Gilmore-Hebert
- Department of Pathology, Yale School of Medicine, P.O.Box 208023, New Haven, CT, 06520, USA.
| | - Ramanaiah Mamillapalli
- Department of Pathology, Yale School of Medicine, P.O.Box 208023, New Haven, CT, 06520, USA.
| | - Jonathan W Haskins
- Department of Pathology, Yale School of Medicine, P.O.Box 208023, New Haven, CT, 06520, USA.
| | - Kari J Kurppa
- Department of Medicinal Biochemistry and genetics and Medicity Research Laboratories, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Klaus Elenius
- Department of Medicinal Biochemistry and genetics and Medicity Research Laboratories, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Carmen J Booth
- Section of Comparative Medicine, Yale School of Medicine, P.O. Box 208016, New Haven, CT 06520, USA.
| | - David F Stern
- Department of Pathology, Yale School of Medicine, P.O.Box 208023, New Haven, CT, 06520, USA.
| |
Collapse
|
34
|
HER4 and its cytoplasmic isoforms are associated with progression-free survival of malignant melanoma. Melanoma Res 2014; 24:88-91. [PMID: 24366194 DOI: 10.1097/cmr.0000000000000040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
HER4 belongs to the epidermal growth factor (EGF) family. Mutations in HER4 are associated with malignant melanoma. This points to HER4 as an important receptor in malignant melanoma and also raises the question of whether the other receptors in the EGF system could be involved. RT-qPCR mRNA quantification was carried out of all four EGF receptors (EGFR, HER2, HER3, and HER4) and the HER4 cytoplasmic isoforms in lymph node metastases from patients with malignant melanoma. We related their expression to progression of the disease. HER4 expression was found to be an indicator of short progression-free survival (P=0.0340). Interestingly, of the two cytoplasmic splice variants of HER4, the association of CYT1 (P=0.0176) with progression-free survival was more pronounced than that for CYT2 (P=0.0458). Also, HER3 was associated with progression-free survival (P=0.0169), whereas no association was found for EGFR or HER2 with time to progression. Our results further emphasize the role of HER4 as an important oncogene in malignant melanoma and point to HER4 as a possible drug target in this disease.
Collapse
|
35
|
Kiuchi T, Ortiz-Zapater E, Monypenny J, Matthews DR, Nguyen LK, Barbeau J, Coban O, Lawler K, Burford B, Rolfe DJ, de Rinaldis E, Dafou D, Simpson MA, Woodman N, Pinder S, Gillett CE, Devauges V, Poland SP, Fruhwirth G, Marra P, Boersma YL, Plückthun A, Gullick WJ, Yarden Y, Santis G, Winn M, Kholodenko BN, Martin-Fernandez ML, Parker P, Tutt A, Ameer-Beg SM, Ng T. The ErbB4 CYT2 variant protects EGFR from ligand-induced degradation to enhance cancer cell motility. Sci Signal 2014; 7:ra78. [PMID: 25140053 DOI: 10.1126/scisignal.2005157] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a member of the ErbB family that can promote the migration and proliferation of breast cancer cells. Therapies that target EGFR can promote the dimerization of EGFR with other ErbB receptors, which is associated with the development of drug resistance. Understanding how interactions among ErbB receptors alter EGFR biology could provide avenues for improving cancer therapy. We found that EGFR interacted directly with the CYT1 and CYT2 variants of ErbB4 and the membrane-anchored intracellular domain (mICD). The CYT2 variant, but not the CYT1 variant, protected EGFR from ligand-induced degradation by competing with EGFR for binding to a complex containing the E3 ubiquitin ligase c-Cbl and the adaptor Grb2. Cultured breast cancer cells overexpressing both EGFR and ErbB4 CYT2 mICD exhibited increased migration. With molecular modeling, we identified residues involved in stabilizing the EGFR dimer. Mutation of these residues in the dimer interface destabilized the complex in cells and abrogated growth factor-stimulated cell migration. An exon array analysis of 155 breast tumors revealed that the relative mRNA abundance of the ErbB4 CYT2 variant was increased in ER+ HER2- breast cancer patients, suggesting that our findings could be clinically relevant. We propose a mechanism whereby competition for binding to c-Cbl in an ErbB signaling heterodimer promotes migration in response to a growth factor gradient.
Collapse
Affiliation(s)
- Tai Kiuchi
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK. Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Elena Ortiz-Zapater
- Department of Asthma, Allergy and Respiratory Science, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - James Monypenny
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK. Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Daniel R Matthews
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Lan K Nguyen
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jody Barbeau
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Oana Coban
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Katherine Lawler
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Brian Burford
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Daniel J Rolfe
- Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0QX, UK
| | - Emanuele de Rinaldis
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Dimitra Dafou
- Genetics and Molecular Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Michael A Simpson
- Genetics and Molecular Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Natalie Woodman
- Guy's and St Thomas' Breast Tissue and Data Bank, King's College London, Guy's Hospital, London SE1 9RT, UK. Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Sarah Pinder
- Guy's and St Thomas' Breast Tissue and Data Bank, King's College London, Guy's Hospital, London SE1 9RT, UK. Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Cheryl E Gillett
- Guy's and St Thomas' Breast Tissue and Data Bank, King's College London, Guy's Hospital, London SE1 9RT, UK. Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Viviane Devauges
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Simon P Poland
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Gilbert Fruhwirth
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK
| | - Pierfrancesco Marra
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Ykelien L Boersma
- Department of Biochemistry, University of Zurich, 190, 8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 190, 8057 Zurich, Switzerland
| | - William J Gullick
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Yosef Yarden
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - George Santis
- Department of Asthma, Allergy and Respiratory Science, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Martyn Winn
- Computational Science and Engineering Department, Daresbury Laboratory, Science and Technology Facilities Council, Research Complex at Warrington, Warrington WA4 4AD, UK
| | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0QX, UK
| | - Peter Parker
- Division of Cancer Studies, King's College London, London SE1 1UL, UK. Protein Phosphorylation Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Andrew Tutt
- Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Simon M Ameer-Beg
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK.
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Medical School Campus, London SE1 1UL, UK. Division of Cancer Studies, King's College London, London SE1 1UL, UK. Breakthrough Breast Cancer Research Unit, Research Oncology, King's College London, Guy's Hospital, London SE1 9RT, UK. UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK.
| |
Collapse
|
36
|
Kogata N, Oliemuller E, Wansbury O, Howard BA. Neuregulin-3 regulates epithelial progenitor cell positioning and specifies mammary phenotype. Stem Cells Dev 2014; 23:2758-70. [PMID: 24936779 DOI: 10.1089/scd.2014.0082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutation of Neuregulin-3 (Nrg3) results in defective embryonic mammary gland development. Here, we investigate functions of Nrg3 signaling in embryonic mammary morphogenesis. Nrg3 regulates the distribution of epithelial progenitor cells within the presumptive mammary-forming region during early mammary morphogenesis. Basal and suprabasal epithelial cells are significantly smaller within the hypoplastic mammary primordium (MP) that forms in Nrg3 mutants, indicative of failure to acquire mammary epithelial cell (MEC) morphological phenotype. Activation of Erbb4 JM-a CYT-1, an Erbb4 isoform expressed in the developing MP, leads to MEC spreading and migration. Nrg3 promotes the accumulation of epithelial progenitor cells at the MP site in embryo explant cultures. Our results implicate Nrg3 signaling in mediating key events of mammary mesenchyme specification, including mesenchymal condensation, mitosis, and induction of mammary marker expression. Taken together, our results show Nrg3 has a major role in conferring specification of the mammary phenotype to both epithelial and mesenchymal progenitor cells.
Collapse
Affiliation(s)
- Naoko Kogata
- Division of Breast Cancer Research, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research , London, United Kingdom
| | | | | | | |
Collapse
|
37
|
Naillat F, Veikkolainen V, Miinalainen I, Sipilä P, Poutanen M, Elenius K, Vainio SJ. ErbB4, a receptor tyrosine kinase, coordinates organization of the seminiferous tubules in the developing testis. Mol Endocrinol 2014; 28:1534-46. [PMID: 25058600 DOI: 10.1210/me.2013-1244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although close to every fifth couple nowadays has difficulty conceiving, the molecular mechanisms behind the decline in human reproduction remain poorly understood. We report here that the receptor tyrosine kinase Erbb4 is a candidate causal gene, because it is expressed in a sexually dimorphic manner and is abundant in the developing and adult testes in the mouse. Sertoli cell-specific Erbb4-knockout mice have a compromised 3-dimensional organization of the testicular seminiferous tubules that affects their fertility. More specifically, adhesion defects are observed in the absence of Erbb4, which are characterized by changes in the expression of laminin-1, N-cadherin, claudin-3, and certain cell-cell junction components between the Sertoli and germ cells. Interestingly, Erbb4 knockout also had an effect on the Leydig cells, which suggests a paracrine influence of Sertoli cells expressing ErbB4. Many of the defects observed in Erbb4-knockout mice are rescued in targeted ERBB4 gain-of-function mice, pointing to a coordination role for ErbB4 in the developing testis. Thus, the ErbB4 receptor tyrosine kinase promotes seminiferous tubule development by controlling Sertoli cell and germ cell adhesion.
Collapse
Affiliation(s)
- Florence Naillat
- Oulu Centre for Cell-Matrix Research (F.N., S.J.V.), Biocenter Oulu, Infotech Oulu, Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90220 Oulu, Finland; Department of Medical Biochemistry and Genetics (V.V., K.E.), and Medicity Research Laboratory, University of Turku, FI-20520 Turku, Finland; Electron Microscopy Unit (I.M.), FI-90220 Oulu, Finland; Laboratory Animal Center (P.S.), University of Helsinki, FIN-00014 Helsinki, Finland; Department of Physiology (M.P.), Turku University Hospital, FI-2001 4 Turku, Finland; and Department of Oncology (K.E.), Turku University Hospital, FI-20520 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
38
|
Nielsen TO, Friis-Hansen L, Poulsen SS, Federspiel B, Sorensen BS. Expression of the EGF family in gastric cancer: downregulation of HER4 and its activating ligand NRG4. PLoS One 2014; 9:e94606. [PMID: 24728052 PMCID: PMC3984243 DOI: 10.1371/journal.pone.0094606] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 03/19/2014] [Indexed: 01/27/2023] Open
Abstract
Gastric cancer is a major cause of cancer-related deaths in both men and women. The epidermal growth factor receptors are EGFR, HER2, HER3 and HER4. Of the four epidermal growth factor receptors, EGFR and HER2 are well-known oncogenes involved in gastric cancer. Little, however, is known about the role played by HER3 and HER4 in this disease. We obtained paired samples from the tumor and the adjacent normal tissue from the same patient undergoing surgery for gastric cancer. Using RT-qPCR, we quantified the mRNA expression of the four receptors including the HER4 splicing isoforms and all the ligands activating these receptors. Using immunohistochemistry, the protein expression of HER4 was also quantified. We found that HER2 mRNA expression was upregulated in the tumor tissue compared to the matched normal tissue (p = 0.0520). All ligands with affinity for EGFR were upregulated, whereas the expression of EGFR was unchanged. Interestingly, we found the mRNA expression of HER4 (p = 0.0002) and its ligand NRG4 (p = 0.0009) to be downregulated in the tumor tissue compared to the matched normal tissue. HER4 downregulation was demonstrated for all the alternatively spliced isoforms of this receptor. These results support the involvement of EGFR and HER2 in gastric cancer and suggest an interesting association of reduced HER4 expression with development of gastric cancer.
Collapse
Affiliation(s)
| | - Lennart Friis-Hansen
- Department of Biomedical Sciences, and The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Seier Poulsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Birgitte Federspiel
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Boe Sandahl Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
39
|
Xu R, Pankratova S, Christiansen SH, Woldbye D, Højland A, Bock E, Berezin V. A peptide antagonist of ErbB receptors, Inherbin3, induces neurite outgrowth from rat cerebellar granule neurons through ErbB1 inhibition. Neurochem Res 2013; 38:2550-8. [PMID: 24132641 DOI: 10.1007/s11064-013-1166-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 02/06/2023]
Abstract
ErbB receptors not only function in cancer, but are also key developmental regulators in the nervous system. We previously identified an ErbB1 peptide antagonist, Inherbin3, that is capable of inhibiting tumor growth in vitro and in vivo. In this study, we found that inhibition of ErbB1 kinase activity and activation of ErbB4 by NRG-1β induced neurite extension, suggesting that ErbB1 and ErbB4 act as negative and positive regulators, respectively, of the neuritogenic response. Inherbin3, inhibited activation not only of ErbB1 but also of ErbB4 in primary neurons, strongly induced neurite outgrowth in rat cerebellar granule neurons, indicating that this effect mainly was due to inhibition of ErbB1 activation.
Collapse
Affiliation(s)
- Ruodan Xu
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Symbion, Fruebjergvej 3, 2100, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
40
|
Munk M, Memon A, Poulsen SS, Borre M, Nexo E, Sorensen BS. The HER4 isoform JM-a/CYT2 relates to improved survival in bladder cancer patients but only if the estrogen receptor α is not expressed. Scandinavian Journal of Clinical and Laboratory Investigation 2013; 73:503-13. [DOI: 10.3109/00365513.2013.818706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Song S, Rosen KM, Corfas G. Biological function of nuclear receptor tyrosine kinase action. Cold Spring Harb Perspect Biol 2013; 5:5/7/a009001. [PMID: 23818495 DOI: 10.1101/cshperspect.a009001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Receptor tyrosine kinases (RTKs) were believed until recently to act at the cell membrane in a singular fashion (i.e., binding of ligands on the extracellular domain would activate the intrinsic tyrosine kinase activity in the intracellular domain), which would then start a cascade involving other intracellular signaling molecules that would act as effectors. However, new evidence indicates that some RTKs can signal through a different modality; they can move into the nucleus where they directly exert their actions. Although some studies have showed that the proteolytically released intracellular domain of several RTKs can move to the nucleus where they influence gene expression and cell function, others suggest that RTKs can also move to the nucleus as holoproteins. The identification of this novel signaling mechanism calls for a critical reevaluation of the mechanisms of action of RTKs and their biological roles.
Collapse
Affiliation(s)
- Sungmin Song
- FM Kirby Neurobiology Center, Children's Hospital Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
42
|
Kogata N, Zvelebil M, Howard BA. Neuregulin 3 and erbb signalling networks in embryonic mammary gland development. J Mammary Gland Biol Neoplasia 2013; 18:149-54. [PMID: 23649700 DOI: 10.1007/s10911-013-9286-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022] Open
Abstract
We review the role of Neuregulin 3 (Nrg3) and Erbb receptor signalling in embryonic mammary gland development. Neuregulins are growth factors that bind and activate its cognate Erbb receptor tyrosine kinases, which form a signalling network with established roles in breast development and breast cancer. Studies have shown that Nrg3 expression profoundly impacts early stages of embryonic mammary development. Network analysis shows how Nrg/Erbb signals could integrate with other major regulators of embryonic mammary development to elicit the morphogenetic processes and cell fate decisions that occur as the mammary lineage is established.
Collapse
Affiliation(s)
- Naoko Kogata
- Division of Breast Cancer Research, Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | | | | |
Collapse
|
43
|
Directing HER4 mRNA expression towards the CYT2 isoform by antisense oligonucleotide decreases growth of breast cancer cells in vitro and in vivo. Br J Cancer 2013; 108:2291-8. [PMID: 23695025 PMCID: PMC3681029 DOI: 10.1038/bjc.2013.247] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: The tyrosine kinase receptor HER4 is a member of the epidermal growth factor receptor (EGFR) family. It plays diverse roles in cancer development and cancer progression and can both exert oncogenic and tumour-suppressive activities. Alternatively spliced isoforms of HER4 are critical to the different signalling possibilities of HER4. Methods: We use a splice-switching oligonucleotide (SSO) to direct the alternative splicing of HER4 from the CYT1 to the CYT2 isoform in HER4-expressing breast cancer cells. Results: Treatment with a target-specific SSO was accompanied by a decreased growth of the cells (P<0.0001). In addition, the SSO treatment induced a decreased activity of Akt. We confirmed the SSO-dependent switching of the HER4 isoform CYT1 to CYT2 expression in a xenografted mouse tumour model driven by subcutaneously injected MCF7 cells. We hence demonstrated the feasibility of SSO-directed splice-switching activity in vivo. Furthermore, the SSO treatment efficiently decreased the growth of the xenografted tumour (P=0.0014). Conclusion: An SSO directing the splicing of HER4 towards the CYT2 isoform has an inhibitory effect of cancer cell growth in vitro and in vivo. These results may pave the way for the development of new anticancer drugs in HER4-deregulated cancers in humans.
Collapse
|
44
|
Mendoza-Naranjo A, El-Naggar A, Wai DH, Mistry P, Lazic N, Ayala FRR, da Cunha IW, Rodriguez-Viciana P, Cheng H, Tavares Guerreiro Fregnani JH, Reynolds P, Arceci RJ, Nicholson A, Triche TJ, Soares FA, Flanagan AM, Wang YZ, Strauss SJ, Sorensen PH. ERBB4 confers metastatic capacity in Ewing sarcoma. EMBO Mol Med 2013; 5:1087-102. [PMID: 23681745 PMCID: PMC3721475 DOI: 10.1002/emmm.201202343] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 12/17/2022] Open
Abstract
Metastatic spread is the single-most powerful predictor of poor outcome in Ewing sarcoma (ES). Therefore targeting pathways that drive metastasis has tremendous potential to reduce the burden of disease in ES. We previously showed that activation of the ERBB4 tyrosine kinase suppresses anoikis, or detachment-induced cell death, and induces chemoresistance in ES cell lines in vitro. We now show that ERBB4 is transcriptionally overexpressed in ES cell lines derived from chemoresistant or metastatic ES tumours. ERBB4 activates the PI3K-Akt cascade and focal adhesion kinase (FAK), and both pathways contribute to ERBB4-mediated activation of the Rac1 GTPase in vitro and in vivo. ERBB4 augments tumour invasion and metastasis in vivo, and these effects are blocked by ERBB4 knockdown. ERBB4 expression correlates significantly with reduced disease-free survival, and increased expression is observed in metastatic compared to primary patient-matched ES biopsies. Our findings identify a novel ERBB4-PI3K-Akt-FAK-Rac1 pathway associated with aggressive disease in ES. These results predict that therapeutic targeting of ERBB4, alone or in combination with cytotoxic agents, may suppress the metastatic phenotype in ES.
Collapse
|
45
|
Paatero I, Lassus H, Junttila TT, Kaskinen M, Bützow R, Elenius K. CYT-1 isoform of ErbB4 is an independent prognostic factor in serous ovarian cancer and selectively promotes ovarian cancer cell growth in vitro. Gynecol Oncol 2013; 129:179-87. [DOI: 10.1016/j.ygyno.2012.12.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/24/2012] [Accepted: 12/29/2012] [Indexed: 10/27/2022]
|
46
|
Cbl and Itch binding sites in ERBB4 CYT-1 and CYT-2 mediate K48- and K63-polyubiquitination, respectively. Cell Signal 2013; 25:470-8. [DOI: 10.1016/j.cellsig.2012.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/05/2012] [Indexed: 02/04/2023]
|
47
|
Finigan JH, Downey GP, Kern JA. Human epidermal growth factor receptor signaling in acute lung injury. Am J Respir Cell Mol Biol 2012. [PMID: 22652197 DOI: 10.1165/rcmb.2012‐0100tr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acute lung injury (ALI) is a syndrome marked by increased permeability across the pulmonary epithelium resulting in pulmonary edema. Recent evidence suggests that members of the human epidermal growth factor receptor (HER) family are activated in alveolar epithelial cells during ALI and regulate alveolar epithelial barrier function. These tyrosine kinase receptors, which also participate in the pathophysiology of pulmonary epithelial malignancies, regulate cell growth, differentiation, and migration as well as cell-cell adhesion, all processes that influence epithelial injury and repair. In this review we outline mechanisms of epithelial injury and repair in ALI, activation patterns of this receptor family in pulmonary epithelial cells as a consequence injury, how receptor activation alters alveolar permeability, and the possible intracellular signaling pathways involved. Finally, we propose a theoretical model for how HER-mediated modulation of alveolar permeability might affect lung injury and repair. Understanding how these receptors signal has direct therapeutic implications in lung injury and other diseases characterized by altered epithelial barrier function.
Collapse
Affiliation(s)
- James H Finigan
- Department of Medicine, National Jewish Health, 1400 Jackson Street, K736A, Denver, CO 80206, USA.
| | | | | |
Collapse
|
48
|
Finigan JH, Downey GP, Kern JA. Human epidermal growth factor receptor signaling in acute lung injury. Am J Respir Cell Mol Biol 2012; 47:395-404. [PMID: 22652197 DOI: 10.1165/rcmb.2012-0100tr] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) is a syndrome marked by increased permeability across the pulmonary epithelium resulting in pulmonary edema. Recent evidence suggests that members of the human epidermal growth factor receptor (HER) family are activated in alveolar epithelial cells during ALI and regulate alveolar epithelial barrier function. These tyrosine kinase receptors, which also participate in the pathophysiology of pulmonary epithelial malignancies, regulate cell growth, differentiation, and migration as well as cell-cell adhesion, all processes that influence epithelial injury and repair. In this review we outline mechanisms of epithelial injury and repair in ALI, activation patterns of this receptor family in pulmonary epithelial cells as a consequence injury, how receptor activation alters alveolar permeability, and the possible intracellular signaling pathways involved. Finally, we propose a theoretical model for how HER-mediated modulation of alveolar permeability might affect lung injury and repair. Understanding how these receptors signal has direct therapeutic implications in lung injury and other diseases characterized by altered epithelial barrier function.
Collapse
Affiliation(s)
- James H Finigan
- Department of Medicine, National Jewish Health, 1400 Jackson Street, K736A, Denver, CO 80206, USA.
| | | | | |
Collapse
|
49
|
Sundvall M, Korhonen A, Vaparanta K, Anckar J, Halkilahti K, Salah Z, Aqeilan RI, Palvimo JJ, Sistonen L, Elenius K. Protein inhibitor of activated STAT3 (PIAS3) protein promotes SUMOylation and nuclear sequestration of the intracellular domain of ErbB4 protein. J Biol Chem 2012; 287:23216-26. [PMID: 22584572 DOI: 10.1074/jbc.m111.335927] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ErbB4 is a receptor tyrosine kinase implicated in the development and homeostasis of the heart, central nervous system, and mammary gland. Cleavable isoforms of ErbB4 release a soluble intracellular domain (ICD) that can translocate to the nucleus and function as a transcriptional coregulator. In search of regulatory mechanisms of ErbB4 ICD function, we identified PIAS3 as a novel interaction partner of ErbB4 ICD. In keeping with the small ubiquitin-like modifier (SUMO) E3 ligase function of protein inhibitor of activated STAT (PIAS) proteins, we showed that the ErbB4 ICD is modified by SUMO, and that PIAS3 stimulates the SUMOylation. Upon overexpression of PIAS3, the ErbB4 ICD generated from the full-length receptor accumulated into the nucleus in a manner that was dependent on the functional nuclear localization signal of ErbB4. In the nucleus, ErbB4 colocalized with PIAS3 and SUMO-1 in promyelocytic leukemia nuclear bodies, nuclear domains involved in regulation of transcription. Accordingly, PIAS3 overexpression had an effect on the transcriptional coregulatory activity of ErbB4, repressing its ability to coactivate transcription with Yes-associated protein. Finally, knockdown of PIAS3 with siRNA partially rescued the inhibitory effect of the ErbB4 ICD on differentiation of MDA-MB-468 breast cancer and HC11 mammary epithelial cells. Our findings illustrate that PIAS3 is a novel regulator of ErbB4 receptor tyrosine kinase, controlling its nuclear sequestration and function.
Collapse
Affiliation(s)
- Maria Sundvall
- MediCity Research Laboratory and Department of Medical Biochemistry and Genetics, University of Turku, 20520 Turku, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wadugu B, Kühn B. The role of neuregulin/ErbB2/ErbB4 signaling in the heart with special focus on effects on cardiomyocyte proliferation. Am J Physiol Heart Circ Physiol 2012; 302:H2139-47. [PMID: 22427524 DOI: 10.1152/ajpheart.00063.2012] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The signaling complex consisting of the growth factor neuregulin-1 (NRG1) and its tyrosine kinase receptors ErbB2 and ErbB4 has a critical role in cardiac development and homeostasis of the structure and function of the adult heart. Recent research results suggest that targeting this signaling complex may provide a viable strategy for treating heart failure. Clinical trials are currently evaluating the effectiveness and safety of intravenous administration of recombinant NRG1 formulations in heart failure patients. Endogenous as well as administered NRG1 has multiple possible activities in the adult heart, but how these are related is unknown. It has recently been demonstrated that NRG1 administration can stimulate proliferation of cardiomyocytes, which may contribute to repair failing hearts. This review summarizes the current knowledge of how NRG1 and its receptors control cardiac physiology and biology, with special emphasis on its role in cardiomyocyte proliferation during myocardial growth and regeneration.
Collapse
Affiliation(s)
- Brian Wadugu
- Department of Cardiology, Children's Hospital Boston, Massachusetts, USA
| | | |
Collapse
|