1
|
Benton A, Liu B, Gartenhaus LE, Hanna JA. Genomic landscape and preclinical models of angiosarcoma. Mol Oncol 2024. [PMID: 39367667 DOI: 10.1002/1878-0261.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Angiosarcoma is a cancer that develops in blood or lymphatic vessels that presents a significant clinical challenge due to its rarity and aggressive features. Clinical outcomes have not improved in decades, highlighting a need for innovative therapeutic strategies to treat the disease. Genetically, angiosarcomas exhibit high heterogeneity and complexity with many recurrent mutations. However, recent studies have identified some common features within anatomic and molecular subgroups. To identify potential therapeutic vulnerabilities, it is essential to understand and integrate the mutational landscape of angiosarcoma with the models that exist to study the disease. In this review, we will summarize the insights gained from reported genomic alterations in molecular and anatomic subtypes of angiosarcoma, discuss several potential actionable targets, and highlight the preclinical disease models available in the field.
Collapse
Affiliation(s)
- Annaleigh Benton
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Bozhi Liu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Lauren E Gartenhaus
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Jason A Hanna
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Wen ZH, Chang L, Yang SN, Yu CL, Tung FY, Kuo HM, Lu IC, Wu CY, Shih PC, Chen WF, Chen NF. The anti-angiogenic and anti-vasculogenic mimicry effects of GN25 in endothelial and glioma cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119799. [PMID: 39043304 DOI: 10.1016/j.bbamcr.2024.119799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND AND PURPOSE Scientists have been exploring anti-angiogenic strategies to inhibit angiogenesis and prevent tumor growth. Vasculogenic mimicry (VM) in glioblastoma multiforme (GBM) poses a challenge, complicating anti-angiogenesis therapy. A novel drug, GN25 (3-[{1,4-dihydro-5,8-dimethoxy-1,4-dioxo-2-naphthalenyl}thio]-propanoic acid), can inhibit tumor formation. This study aims to investigate the microenvironmental effects and molecular mechanisms of GN25 in anti-angiogenesis and anti-VM. EXPERIMENTAL APPROACH MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the cell viability of different concentrations of GN25 in human umbilical vein endothelial cells (HUVEC) and Uppsala 87 malignant glioma (U87MG) cells. Functional assays were used to investigate the effects of GN25 on angiogenesis-related processes, whereas gelatin zymography, enzyme-linked immunosorbent assays, and Western blotting were utilized to assess the influence on matrix metalloproteinase (MMP)-2 and vascular endothelial growth factor (VEGF) secretion and related signaling pathways. KEY RESULTS GN25 suppressed migration, wound healing, and tube formation in HUVECs and disrupted angiogenesis in a rat aorta ring and zebrafish embryo model. GN25 dose-dependently reduced phosphatidylinositol 3-kinase/AKT and inhibited MMP-2/VEGF secretion in HUVECs. In U87MG cells, GN25 inhibited migration, wound healing, and VM, accompanied by a decrease in MMP-2 and VEGF secretion. The results indicate that GN25 effectively inhibits angiogenesis and VM formation in HUVECs and U87MG cells without affecting preexisting vascular structures. CONCLUSION AND IMPLICATIONS This study elaborated GN25's potential as an anti-angiogenic agent by elucidating its inhibitory effects on classical angiogenesis. VM provides valuable insights for developing novel therapeutic strategies against tumor progression and angiogenesis-related diseases. These results indicate the potential of GN25 as a promising candidate for angiogenesis-related diseases.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Long Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - San-Nan Yang
- Department of Pediatrics, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chen-Ling Yu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Fang-Yu Tung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsiao-Mei Kuo
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833301, Taiwan
| | - I-Chen Lu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Chang Shih
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833301, Taiwan.
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan.
| |
Collapse
|
3
|
Mitchell AK, Bliss RR, Church FC. Exercise, Neuroprotective Exerkines, and Parkinson's Disease: A Narrative Review. Biomolecules 2024; 14:1241. [PMID: 39456173 PMCID: PMC11506540 DOI: 10.3390/biom14101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease in which treatment often includes an exercise regimen. Exercise is neuroprotective in animal models of PD, and, more recently, human clinical studies have verified exercise's disease-modifying effect. Aerobic exercise and resistance training improve many of PD's motor and non-motor symptoms, while neuromotor therapy and stretching/flexibility exercises positively contribute to the quality of life in people with PD. Therefore, understanding the role of exercise in managing this complex disorder is crucial. Exerkines are bioactive substances that are synthesized and released during exercise and have been implicated in several positive health outcomes, including neuroprotection. Exerkines protect neuronal cells in vitro and rodent PD models in vivo. Aerobic exercise and resistance training both increase exerkine levels in the blood, suggesting a role for exerkines in the neuroprotective theory. Many exerkines demonstrate the potential for protecting the brain against pathological missteps caused by PD. Every person (people) with Parkinson's (PwP) needs a comprehensive exercise plan tailored to their unique needs and abilities. Here, we provide an exercise template to help PwP understand the importance of exercise for treating PD, describe barriers confronting many PwP in their attempt to exercise, provide suggestions for overcoming these barriers, and explore the role of exerkines in managing PD. In conclusion, exercise and exerkines together create a powerful neuroprotective system that should contribute to slowing the chronic progression of PD.
Collapse
Affiliation(s)
- Alexandra K. Mitchell
- Department of Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | | | - Frank C. Church
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Morris BJ, Donlon TA. Genes That Extend Lifespan May Do So by Mitigating the Increased Risk of Death Posed by Having Hypertension. Am J Hypertens 2023; 36:631-640. [PMID: 37561089 PMCID: PMC10647014 DOI: 10.1093/ajh/hpad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Genetic factors influence lifespan. In humans, there appears to be a particularly strong genetic effect in those aged ≥ 90 years. An important contribution is nutrient sensing genes which confer cell resilience. METHODS Our research has been investigating the genetic factors by longitudinal studies of American men of Japanese descent living on the island of Oahu in Hawaii. This cohort began as the Honolulu Heart Program in the mid-1960s and most subjects are now deceased. RESULTS We previously discovered various genes containing polymorphisms associated with longevity. In recent investigations of the mechanism involved we found that the longevity genotypes ameliorated the risk of mortality posed by having a cardiometabolic disease (CMD)-most prominently hypertension. For the gene FOXO3 the protective alleles mitigated the risk of hypertension, coronary heart disease (CHD) and diabetes. For the kinase MAP3K5 it was hypertension, CHD and diabetes, for the kinase receptor PIK3R1 hypertension, CHD and stroke, and for the growth hormone receptor gene (GHR) and vascular endothelial growth factor receptor 1 gene (FLT1), it was nullifying the higher mortality risk posed by hypertension. Subjects with a CMD who had a longevity genotype had similar survival as men without CMD. No variant protected against risk of death from cancer. We have postulated that the longevity-associated genotypes reduced mortality risk by effects on intracellular resilience mechanisms. In a proteomics study, 43 "stress" proteins and associated biological pathways were found to influence the association of FOXO3 genotype with reduced mortality. CONCLUSIONS Our landmark findings indicate how heritable genetic components affect longevity.
Collapse
Affiliation(s)
- Brian J Morris
- Department of Research, NIH Center of Biomedical Research Excellence on Aging, Kuakini Medical Center, Honolulu, Hawaii 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813, USA
- School of Medical Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Timothy A Donlon
- Department of Research, NIH Center of Biomedical Research Excellence on Aging, Kuakini Medical Center, Honolulu, Hawaii 96817, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813, USA
| |
Collapse
|
5
|
Kim M, Hong T, An G, Lim W, Song G. Toxic effects of benfluralin on zebrafish embryogenesis via the accumulation of reactive oxygen species and apoptosis. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109722. [PMID: 37597713 DOI: 10.1016/j.cbpc.2023.109722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The dinitroaniline herbicide benfluralin is used weed control in conventional systems and poses a high risk of accumulation in aquatic systems. Previous studies have shown the toxic effects of benfluralin on non-target organisms; however, its developmental toxicity in vertebrates has not yet been reported. This study demonstrated the developmental toxicity of benfluralin and its mechanism of action, using zebrafish as an aquatic vertebrate model. Benfluralin induces morphological and physiological alterations in body length, yolk sac, and heart edema. We also demonstrated a reactive oxygen species (ROS) increase of approximately 325.53 % compared with the control group after 20 μM benfluralin-treatment. In addition, the malformation of the heart and vascular structures was identified using transgenic flk1:eGFP zebrafish models at 20 μM concentration benfluralin exposure. Moreover, benfluralin induced small livers, approximately 59.81 % of normal liver size, via abnormal development of the liver as observed in the transgenic L-fabp:dsRed zebrafish. Benfluralin also inhibits normal growth via abnormal expression of cell cycle regulatory genes and increases oxidative stress, inflammation, and apoptosis. Collectively, we elucidated the mechanisms associated with benfluralin toxicity, which lead to various abnormalities and developmental toxicities in zebrafish. Therefore, this study provides information on the parameters used to assess developmental toxicity in other aquatic organisms, such as herbicides, pesticides, and environmental contaminants.
Collapse
Affiliation(s)
- Miji Kim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
6
|
Park J, An G, You J, Park H, Hong T, Song G, Lim W. Dimethenamid promotes oxidative stress and apoptosis leading to cardiovascular, hepatic, and pancreatic toxicities in zebrafish embryo. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109741. [PMID: 37689173 DOI: 10.1016/j.cbpc.2023.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Dimethenamid, one of the acetamide herbicides, is widely used on soybeans and corns to inhibit weed growth. Although other acetamide herbicides have been reported to have several toxicities in non-target organisms including developmental toxicity, the toxicity of dimethenamid has not yet been studied. In this research, we utilized the zebrafish animal model to verify the developmental toxicity of dimethenamid. It not only led to morphological abnormalities in zebrafish larvae but also reduced their viability. ROS production and inflammation responses were promoted in zebrafish larvae. Also, uncontrolled apoptosis occurred when the gene expression level related to the cell cycle and apoptosis was altered by dimethenamid. These changes resulted in toxicities in the cardiovascular system, liver, and pancreas are observed in transgenic zebrafish models including fli1a:EGFP and L-fabp:dsRed;elastase:GFP. Dimethenamid triggered morphological defects in the heart and vasculature by altering the mRNA levels related to cardiovascular development. The liver and pancreas were also damaged through not only the changes of their morphology but also through the dysregulation in their function related to metabolic activity. This study shows the developmental defects induced by dimethenamid in zebrafish larvae and the possibility of toxicity in other non-target organisms.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeankyoung You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
7
|
Perry RN, Albarracin D, Aherrahrou R, Civelek M. Network Preservation Analysis Reveals Dysregulated Metabolic Pathways in Human Vascular Smooth Muscle Cell Phenotypic Switching. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:372-381. [PMID: 37387208 PMCID: PMC10434832 DOI: 10.1161/circgen.122.003781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Vascular smooth muscle cells are key players involved in atherosclerosis, the underlying cause of coronary artery disease. They can play either beneficial or detrimental roles in lesion pathogenesis, depending on the nature of their phenotypic changes. An in-depth characterization of their gene regulatory networks can help better understand how their dysfunction may impact disease progression. METHODS We conducted a gene expression network preservation analysis in aortic smooth muscle cells isolated from 151 multiethnic heart transplant donors cultured under quiescent or proliferative conditions. RESULTS We identified 86 groups of coexpressed genes (modules) across the 2 conditions and focused on the 18 modules that are least preserved between the phenotypic conditions. Three of these modules were significantly enriched for genes belonging to proliferation, migration, cell adhesion, and cell differentiation pathways, characteristic of phenotypically modulated proliferative vascular smooth muscle cells. The majority of the modules, however, were enriched for metabolic pathways consisting of both nitrogen-related and glycolysis-related processes. Therefore, we explored correlations between nitrogen metabolism-related genes and coronary artery disease-associated genes and found significant correlations, suggesting the involvement of the nitrogen metabolism pathway in coronary artery disease pathogenesis. We also created gene regulatory networks enriched for genes in glycolysis and predicted key regulatory genes driving glycolysis dysregulation. CONCLUSIONS Our work suggests that dysregulation of vascular smooth muscle cell metabolism participates in phenotypic transitioning, which may contribute to disease progression, and suggests that AMT (aminomethyltransferase) and MPI (mannose phosphate isomerase) may play an important role in regulating nitrogen and glycolysis-related metabolism in smooth muscle cells.
Collapse
Affiliation(s)
- R. Noah Perry
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| | - Diana Albarracin
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| | - Redouane Aherrahrou
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
| | - Mete Civelek
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| |
Collapse
|
8
|
Morris BJ, Chen R, Donlon TA, Kallianpur KJ, Masaki KH, Willcox BJ. Vascular endothelial growth factor receptor 1 gene ( FLT1) longevity variant increases lifespan by reducing mortality risk posed by hypertension. Aging (Albany NY) 2023; 15:3967-3983. [PMID: 37178326 PMCID: PMC10257998 DOI: 10.18632/aging.204722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Longevity is written into the genes. While many so-called "longevity genes" have been identified, the reason why particular genetic variants are associated with longer lifespan has proven to be elusive. The aim of the present study was to test the hypothesis that the strongest of 3 adjacent longevity-associated single nucleotide polymorphisms - rs3794396 - of the vascular endothelial growth factor receptor 1 gene, FLT1, may confer greater lifespan by protecting against mortality risk from one or more adverse medical conditions of aging - namely, hypertension, coronary heart disease (CHD), stroke, and diabetes. In a prospective population-based longitudinal study we followed 3,471 American men of Japanese ancestry living on Oahu, Hawaii, from 1965 until death or to the end of December 2019 by which time 99% had died. Cox proportional hazards models were used to assess the association of FLT1 genotype with longevity for 4 genetic models and the medical conditions. We found that, in major allele recessive and heterozygote disadvantage models, genotype GG ameliorated the risk of mortality posed by hypertension, but not that posed by having CHD, stroke or diabetes. Normotensive subjects lived longest and there was no significant effect of FLT1 genotype on their lifespan. In conclusion, the longevity-associated genotype of FLT1 may confer increased lifespan by protecting against mortality risk posed by hypertension. We suggest that FLT1 expression in individuals with longevity genotype boosts vascular endothelial resilience mechanisms to counteract hypertension-related stress in vital organs and tissues.
Collapse
Affiliation(s)
- Brian J. Morris
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
- School of Medical Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Randi Chen
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
| | - Timothy A. Donlon
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Cell and Molecular Biology and Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Kalpana J. Kallianpur
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Kamal H. Masaki
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Bradley J. Willcox
- NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|
9
|
Uncovering the Gene Regulatory Network of Endothelial Cells in Mouse Duchenne Muscular Dystrophy: Insights from Single-Nuclei RNA Sequencing Analysis. BIOLOGY 2023; 12:biology12030422. [PMID: 36979114 PMCID: PMC10045518 DOI: 10.3390/biology12030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Introduction: Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disorder caused by mutations in the dystrophin gene, which leads to heart and respiratory failure. Despite the critical impact of DMD on endothelial cells (ECs), there is limited understanding of its effect on the endothelial gene network. The aim of this study was to investigate the impact of DMD on the gene regulatory network of ECs. Methods and Results: To gain insights into the role of the dystrophin muscular dystrophy gene (DMD) in ECs from Duchenne muscular dystrophy; the study utilized single-nuclei RNA sequencing (snRNA-seq) to evaluate the transcriptomic profile of ECs from skeletal muscles in DMD mutant mice (DMDmut) and wild-type control mice. The analysis showed that the DMD mutation resulted in the suppression of several genes, including SPTBN1 and the upregulation of multiple long noncoding RNAs (lncRNAs). GM48099, GM19951, and GM15564 were consistently upregulated in ECs and skeletal muscle cells from DMDmut, indicating that these dysregulated lncRNAs are conserved across different cell types. Gene ontology (GO) enrichment analysis revealed that the DMD mutation activated the following four pathways in ECs: fibrillary collagen trimer, banded collagen fibril, complex of collagen trimers, and purine nucleotide metabolism. The study also found that the metabolic pathway activity of ECs was altered. Oxidative phosphorylation (OXPHOS), fatty acid degradation, glycolysis, and pyruvate metabolism were decreased while purine metabolism, pyrimidine metabolism, and one carbon pool by folate were increased. Moreover, the study investigated the impact of the DMD mutation on ECs from skeletal muscles and found a significant decrease in their overall number, but no change in their proliferation. Conclusions: Overall, this study provides new insights into the gene regulatory program in ECs in DMD and highlights the importance of further research in this area.
Collapse
|
10
|
Graham MK, Chikarmane R, Wang R, Vaghasia A, Gupta A, Zheng Q, Wodu B, Pan X, Castagna N, Liu J, Meyers J, Skaist A, Wheelan S, Simons BW, Bieberich C, Nelson WG, DeWeese TL, De Marzo AM, Yegnasubramanian S. Single-cell atlas of epithelial and stromal cell heterogeneity by lobe and strain in the mouse prostate. Prostate 2023; 83:286-303. [PMID: 36373171 DOI: 10.1002/pros.24460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Evaluating the complex interplay of cell types in the tissue microenvironment is critical to understanding the origin and progression of diseases in the prostate and potential opportunities for intervention. Mouse models are an essential tool to investigate the molecular and cell-type-specific contributions of prostate disease at an organismal level. While there are well-documented differences in the extent, timing, and nature of disease development in various genetically engineered and exposure-based mouse models in different mouse strains and prostate lobes within each mouse strain, the underlying molecular phenotypic differences in cell types across mouse strains and prostate lobes are incompletely understood. METHODS In this study, we used single-cell RNA-sequencing (scRNA-seq) methods to assess the single-cell transcriptomes of 6-month-old mouse prostates from two commonly used mouse strains, friend virus B/NIH jackson (FVB/NJ) (N = 2) and C57BL/6J (N = 3). For each mouse, the lobes of the prostate were dissected (anterior, dorsal, lateral, and ventral), and individual scRNA-seq libraries were generated. In situ and pathological analyses were used to explore the spatial and anatomical distributions of novel cell types and molecular markers defining these cell types. RESULTS Data dimensionality reduction and clustering analysis of scRNA-seq data revealed that basal and luminal cells possessed strain-specific transcriptomic differences, with luminal cells also displaying marked lobe-specific differences. Gene set enrichment analysis comparing luminal cells by strain showed enrichment of proto-Oncogene targets in FVB/NJ mice. Additionally, three rare populations of epithelial cells clustered independently of strain and lobe: one population of luminal cells expressing Foxi1 and components of the vacuolar ATPase proton pump (Atp6v0d2 and Atp6v1g3), another population expressing Psca and other stem cell-associated genes (Ly6a/Sca-1, Tacstd2/Trop-2), and a neuroendocrine population expressing Chga, Chgb, and Syp. In contrast, stromal cell clusters, including fibroblasts, smooth muscle cells, endothelial cells, pericytes, and immune cell types, were conserved across strain and lobe, clustering largely by cell type and not by strain or lobe. One notable exception to this was the identification of two distinct fibroblast populations that we term subglandular fibroblasts and interstitial fibroblasts based on their strikingly distinct spatial distribution in the mouse prostate. CONCLUSIONS Altogether, these data provide a practical reference of the transcriptional profiles of mouse prostate from two commonly used mouse strains and across all four prostate lobes.
Collapse
Affiliation(s)
- Mindy K Graham
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roshan Chikarmane
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rulin Wang
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ajay Vaghasia
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Anuj Gupta
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qizhi Zheng
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bulouere Wodu
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xin Pan
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicole Castagna
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jianyong Liu
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer Meyers
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alyza Skaist
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah Wheelan
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brian W Simons
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Charles Bieberich
- Department of Biological Sciences, University of Maryland at Baltimore County, Baltimore, Maryland, USA
| | - William G Nelson
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Theodore L DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Angelo M De Marzo
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Srinivasan Yegnasubramanian
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Kremer V, Oppelaar JJ, Gimbel T, Koziarek S, Ganzevoort W, van Pampus MG, van den Born BJ, Vogt L, de Groot C, Boon RA. Neuro-oncological Ventral Antigen 2 Regulates Splicing of Vascular Endothelial Growth Factor Receptor 1 and Is Required for Endothelial Function. Reprod Sci 2023; 30:678-689. [PMID: 35927413 PMCID: PMC9988812 DOI: 10.1007/s43032-022-01044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022]
Abstract
Pre-eclampsia (PE) affects 2-8% of pregnancies and is responsible for significant morbidity and mortality. The maternal clinical syndrome (defined by hypertension, proteinuria, and organ dysfunction) is the result of endothelial dysfunction. The endothelial response to increased levels of soluble FMS-like Tyrosine Kinase 1 (sFLT1) is thought to play a central role. sFLT1 is released from multiple tissues and binds VEGF with high affinity and antagonizes VEGF. Expression of soluble variants of sFLT1 is a result of alternative splicing; however, the mechanism is incompletely understood. We hypothesize that neuro-oncological ventral antigen 2 (NOVA2) contributes to this. NOVA2 was inhibited in human umbilical vein endothelial cells (HUVECs) and multiple cellular functions were assessed. NOVA2 and FLT1 expression in the placenta of PE, pregnancy-induced hypertension, and normotensive controls was measured by RT-qPCR. Loss of NOVA2 in HUVECs resulted in significantly increased levels of sFLT1, but did not affect expression of membrane-bound FLT1. NOVA2 protein was shown to directly interact with FLT1 mRNA. Loss of NOVA2 was also accompanied by impaired endothelial functions such as sprouting. We were able to restore sprouting capacity by exogenous VEGF. We did not observe statistically significant regulation of NOVA2 or sFLT1 in the placenta. However, we observed a negative correlation between sFLT1 and NOVA2 expression levels. In conclusion, NOVA2 was found to regulate FLT1 splicing in the endothelium. Loss of NOVA2 resulted in impaired endothelial function, at least partially dependent on VEGF. In PE patients, we observed a negative correlation between NOVA2 and sFLT1.
Collapse
Affiliation(s)
- Veerle Kremer
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Medical Chemistry, Academic Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Jetta J Oppelaar
- Department of Internal Medicine, Section of Nephrology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Theresa Gimbel
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research DZHK, Partner Site Frankfurt Rhein/Main, Frankfurt am Main, Germany
| | - Susanne Koziarek
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research DZHK, Partner Site Frankfurt Rhein/Main, Frankfurt am Main, Germany
| | - Wessel Ganzevoort
- Department of Obstetrics and Gynecology, Amsterdam Reproduction & Development, Amsterdam UMC University of Amsterdam, Amsterdam, The Netherlands
| | | | - Bert-Jan van den Born
- Department of Internal Medicine, Section of Vascular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, The Netherlands
| | - Liffert Vogt
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Department of Internal Medicine, Section of Nephrology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Christianne de Groot
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU Medical Center, Amsterdam UMC, Amsterdam, The Netherlands. .,Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany. .,German Centre for Cardiovascular Research DZHK, Partner Site Frankfurt Rhein/Main, Frankfurt am Main, Germany. .,Amsterdam UMC, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Molecular dynamics-based insight of VEGFR-2 kinase domain: a combined study of pharmacophore modeling and molecular docking and dynamics. J Mol Model 2022; 29:17. [PMID: 36550239 DOI: 10.1007/s00894-022-05427-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Inhibition of vascular endothelial growth factor receptor 2 (VEGFR-2) tyrosine kinase by small molecules has become a promising target in the treatment of cancer. OBJECTIVE In this study, we approached pharmacophore modeling coupled with a structure-based virtual screening workflow to identify the potent inhibitors. METHODS The top selected hit compounds have been rescored using the MM/GBSA approach. To understand the molecular reactivity, electronic properties, and stability of those inhibitors, we have employed density functional theory and molecular dynamics. Following that, the best 21 hit compounds have been further post-processed with a Quantum ligand partial charge-based rescoring process and further validated by implementing molecular dynamics simulation. RESULTS The ten hit compounds have been hypothesized and considered as potent inhibitors of VEGFR-2 tyrosine kinase. This study also signifies the contribution of QM-based ligand partial charge, which is more accurate in predicting reliable free binding energy and filtering large ligand libraries to hit optimization, rather than assigning those of the force field-based method. From the binding pattern analysis of all the complexes, amino acids, such as Glu885, Cys919, Cys1045, Thr916, Thr919, and Asp1046, were found to have comprehensive interaction with the hit compounds. CONCLUSION Hence, this could prove to be useful as a potential inhibition site of the VEGFR-2 tyrosine kinase domain for future researchers. Moreover, this study also emphasizes the conformational changes upon ATP binding, based on either the receptor's rigidity or flexibility.
Collapse
|
13
|
Paracrine and Autocrine Effects of VEGF Are Enhanced in Human eMSC Spheroids. Int J Mol Sci 2022; 23:ijms232214324. [PMID: 36430800 PMCID: PMC9695450 DOI: 10.3390/ijms232214324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The mechanisms underlying the therapeutic potential of MSCs are the focus of intense research. We studied human MSCs isolated from desquamated endometrium (eMSCs), which, as previously shown, have high regenerative potential in various disease models. The aim was to evaluate the role of secreted VEGF in stimulating angiogenesis and maintaining eMSC viability and migration, which is important for improving the therapeutic properties of MSCs. We compared three eMSC cultures differing in the level of VEGF secretion: 3D spheroids, monolayer eMSCs, and monolayer eMSCs with VEGF knockdown. Spheroid eMSCs produced higher amounts of VEGF and had the strongest paracrine effect on HUVEC. eMSCs with VEGF knockdown did not stimulate angiogenesis. Monolayered eMSCs expressed VEGFR1, while spheroid eMSCs expressed both VEGFR1 and VEGFR2 receptors. The knockdown of VEGF caused a significant decrease in the viability and migration of eMSCs. eMSCs from 3D spheroids enhanced proliferation and migration in response to exogenous VEGF, in contrast to monolayered eMSCs. Our results suggest that the VEGF-VEGFR1 loop appears to be autocrine-involved in maintaining the viability of eMSCs, and VEGFR2 expression enhances their response to exogenous VEGF, so the angiogenic potential of eMSC can be up- or downregulated by intrinsic VEGF signals.
Collapse
|
14
|
Wang Y, Dong X, Pan C, Zhu C, Qi H, Wang Y, Wei H, Xie Q, Wu L, Shen H, Li S, Xie Y. Single-cell transcriptomic characterization reveals the landscape of airway remodeling and inflammation in a cynomolgus monkey model of asthma. Front Immunol 2022; 13:1040442. [PMID: 36439114 PMCID: PMC9685410 DOI: 10.3389/fimmu.2022.1040442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/20/2022] [Indexed: 06/22/2024] Open
Abstract
Monkey disease models, which are comparable to humans in terms of genetic, anatomical, and physiological characteristics, are important for understanding disease mechanisms and evaluating the efficiency of biological treatments. Here, we established an A.suum-induced model of asthma in cynomolgus monkeys to profile airway inflammation and remodeling in the lungs by single-cell RNA sequencing (scRNA-seq). The asthma model results in airway hyperresponsiveness and remodeling, demonstrated by pulmonary function test and histological characterization. scRNA-seq reveals that the model elevates the numbers of stromal, epithelial and mesenchymal cells (MCs). Particularly, the model increases the numbers of endothelial cells (ECs), fibroblasts (Fibs) and smooth muscle cells (SMCs) in the lungs, with upregulated gene expression associated with cell functions enriched in cell migration and angiogenesis in ECs and Fibs, and VEGF-driven cell proliferation, apoptotic process and complement activation in SMCs. Interestingly, we discover a novel Fib subtype that mediates type I inflammation in the asthmatic lungs. Moreover, MCs in the asthmatic lungs are found to regulate airway remodeling and immunological responses, with elevated gene expression enriched in cell migration, proliferation, angiogenesis and innate immunological responses. Not only the numbers of epithelial cells in the asthmatic lungs change at the time of lung tissue collection, but also their gene expressions are significantly altered, with an enrichment in the biological processes of IL-17 signaling pathway and apoptosis in the majority of subtypes of epithelial cells. Moreover, the ubiquitin process and DNA repair are more prevalent in ciliated epithelial cells. Last, cell-to-cell interaction analysis reveals a complex network among stromal cells, MCs and macrophages that contribute to the development of asthma and airway remodeling. Our findings provide a critical resource for understanding the principle underlying airway remodeling and inflammation in a monkey model of asthma, as well as valuable hints for the future treatment of asthma, especially the airway remodeling-characterized refractory asthma.
Collapse
Affiliation(s)
- Yingshuo Wang
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyan Dong
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Caizhe Pan
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Cihang Zhu
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hantao Qi
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Wang
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wei
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiangmin Xie
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Respiratory Drugs Research, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Wu
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Huijuan Shen
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuxian Li
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yicheng Xie
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Okada Y, Kawashima N, Noda S, Murano H, Han P, Hashimoto K, Kaneko T, Okiji T. VEGFA promotes odonto/osteoblastic differentiation in dental pulp stem cells via ERK/p38 signaling. J Dent Sci 2022. [DOI: 10.1016/j.jds.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Son JA, Lee SK, Park J, Jung MJ, An SE, Yang HJ, Son SH, Kim KR, Park KK, Chung WY. Platycodin D Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis by Blocking the Activation of Mitogen-Activated Protein Kinases and the Production of Interleukin-8. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1645-1661. [PMID: 35848124 DOI: 10.1142/s0192415x22500690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Platycodin D is a major constituent in the root of Platycodon grandiflorum and has diverse pharmacologic activities, including anti-inflammatory, anti-allergic, and antitumor activities. Vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) are potent angiogenic factors and contribute to tumor angiogenesis by directly and indirectly promoting angiogenic processes, including the proliferation, adhesion, migration, and tube formation of endothelial cells. Here, we found that platycodin D at noncytotoxic concentrations inhibited VEGF-induced proliferation, adhesion to the extracellular matrix proteins fibronectin and vitronectin, chemotactic motility, and tube formation of human umbilical vein endothelial cells (HUVECs). Platycodin D reduced the phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) and the secretion of IL-8 in VEGF-stimulated HUVECs. Moreover, platycodin D inhibited tube formation and the phosphorylation of ERK and p38 in IL-8-stimulated HUVECs. The in vitro anti-angiogenic activity of platycodin D was confirmed by in vivo experimental models. Platycodin D inhibited the formation of new blood vessels into mouse Matrigel plugs with VEGF or IL-8. In mice injected with MDA-MB-231 human breast cancer cells, orally administered platycodin D inhibited tumor growth, the number of CD34 [Formula: see text]vessels, and the expression of VEGF and IL-8. Taken together, platycodin D directly and indirectly prevents VEGF-induced and IL-8-induced angiogenesis by blocking the activation of mitogen-activated protein kinases (MAPKs). Platycodin D may be beneficial for the prevention or treatment of tumor angiogenesis and angiogenesis-related human diseases.
Collapse
Affiliation(s)
- Ju-Ah Son
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Sun Kyoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Junhee Park
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Min Ju Jung
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - So-Eun An
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Hye Ji Yang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung Hwa Son
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Ki Rim Kim
- Department of Dental Hygiene, College of Science and Engineering, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Kwang-Kyun Park
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Won-Yoon Chung
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
17
|
Valanti EK, Dalakoura-Karagkouni K, Fotakis P, Vafiadaki E, Mantzoros CS, Chroni A, Zannis V, Kardassis D, Sanoudou D. Reconstituted HDL-apoE3 promotes endothelial cell migration through ID1 and its downstream kinases ERK1/2, AKT and p38 MAPK. Metabolism 2022; 127:154954. [PMID: 34875308 DOI: 10.1016/j.metabol.2021.154954] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Atherosclerotic Coronary Artery Disease (ASCAD) is the leading cause of mortality worldwide. Novel therapeutic approaches aiming to improve the atheroprotective functions of High Density Lipoprotein (HDL) include the use of reconstituted HDL forms containing human apolipoprotein A-I (rHDL-apoA-I). Given the strong atheroprotective properties of apolipoprotein E3 (apoE3), rHDL-apoE3 may represent an attractive yet largely unexplored therapeutic agent. OBJECTIVE To evaluate the atheroprotective potential of rHDL-apoE3 starting with the unbiased assessment of global transcriptome effects and focusing on endothelial cell (EC) migration as a critical process in re-endothelialization and atherosclerosis prevention. The cellular, molecular and functional effects of rHDL-apoE3 on EC migration-associated pathways were assessed, as well as the potential translatability of these findings in vivo. METHODS Human Aortic ECs (HAEC) were treated with rHDL-apoE3 and total RNA was analyzed by whole genome microarrays. Expression and phosphorylation changes of key EC migration-associated molecules were validated by qRT-PCR and Western blot analysis in primary HAEC, Human Coronary Artery ECs (HCAEC) and the human EA.hy926 EC line. The capacity of rHDL-apoE3 to stimulate EC migration was assessed by wound healing and transwell migration assays. The contribution of MEK1/2, PI3K and the transcription factor ID1 in rHDL-apoE3-induced EC migration and activation of EC migration-related effectors was assessed using specific inhibitors (PD98059: MEK1/2, LY294002: PI3K) and siRNA-mediated gene silencing, respectively. The capacity of rHDL-apoE3 to improve vascular permeability and hypercholesterolemia in vivo was tested in a mouse model of hypercholesterolemia (apoE KO mice) using Evans Blue assays and lipid/lipoprotein analysis in the serum, respectively. RESULTS rHDL-apoE3 induced significant expression changes in 198 genes of HAEC mainly involved in re-endothelialization and atherosclerosis-associated functions. The most pronounced effect was observed for EC migration, with 42/198 genes being involved in the following EC migration-related pathways: 1) MEK/ERK, 2) PI3K/AKT/eNOS-MMP2/9, 3) RHO-GTPases, 4) integrin. rHDL-apoE3 induced changes in 24 representative transcripts of these pathways in HAEC, increasing the expression of their key proteins PIK3CG, EFNB2, ID1 and FLT1 in HCAEC and EA.hy926 cells. In addition, rHDL-apoE3 stimulated migration of HCAEC and EA.hy926 cells, and the migration was markedly attenuated in the presence of PD98059 or LY294002. rHDL-apoE3 also increased the phosphorylation of ERK1/2, AKT, eNOS and p38 MAPK in these cells, while PD98059 and LY294002 inhibited rHDL-apoE3-induced phosphorylation of ERK1/2, AKT and p38 MAPK, respectively. LY had no effect on rHDL-apoE3-mediated eNOS phosphorylation. ID1 siRNA markedly decreased EA.hy926 cell migration by inhibiting rHDL-apoE3-triggered ERK1/2 and AKT phosphorylation. Finally, administration of a single dose of rHDL-apoE3 in apoE KO mice markedly improved vascular permeability as demonstrated by the reduced concentration of Evans Blue dye in tissues such as the stomach, the tongue and the urinary bladder and ameliorated hypercholesterolemia. CONCLUSIONS rHDL-apoE3 significantly enhanced EC migration in vitro, predominantly via overexpression of ID1 and subsequent activation of MEK1/2 and PI3K, and their downstream targets ERK1/2, AKT and p38 MAPK, respectively, and improved vascular permeability in vivo. These novel insights into the rHDL-apoE3 functions suggest a potential clinical use to promote re-endothelialization and retard development of atherosclerosis.
Collapse
Affiliation(s)
- Eftaxia-Konstantina Valanti
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, 'Attikon' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Katerina Dalakoura-Karagkouni
- Laboratory of Biochemistry, University of Crete Medical School, Heraklion, Greece; Division of Gene Regulation and Genomics, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | | | - Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Vassilis Zannis
- Molecular Genetics, Boston University Medical School, Boston, USA
| | - Dimitris Kardassis
- Laboratory of Biochemistry, University of Crete Medical School, Heraklion, Greece; Division of Gene Regulation and Genomics, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Despina Sanoudou
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, 'Attikon' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
18
|
Torrence D, Antonescu CR. The genetics of vascular tumours: an update. Histopathology 2022; 80:19-32. [PMID: 34958509 PMCID: PMC8950088 DOI: 10.1111/his.14458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023]
Abstract
Recent molecular advances have shed significant light on the classification of vascular tumours. Except for haemangiomas, vascular lesions remain difficult to diagnose, owing to their rarity and overlapping clinical, radiographic and histological features across malignancies. In particular, challenges still remain in the differential diagnosis of epithelioid vascular tumours, including epithelioid haemangioma and epithelioid haemangioendothelioma at the benign/low-grade end of the spectrum, and epithelioid angiosarcoma at the high-grade end. Historically, the classification of vascular tumours has been heavily dependent on the clinical setting and histological features, as traditional immunohistochemical markers across the group have often been non-discriminatory. The increased application of next-generation sequencing in clinical practice, in particular targeted RNA sequencing (such as Archer, Illumina), has led to numerous novel discoveries, mainly recurrent gene fusions (e.g. those involving FOS, FOSB, YAP1, and WWTR1), which have resulted in refined tumour classification and improved diagnostic reproducibility for vascular tumours. However, other molecular alterations besides fusions have been discovered in vascular tumours, including somatic mutations (e.g. involving GNA family and IDH genes) in a variety of haemangiomas, as well as copy number alterations in high-grade angiosarcomas (e.g. MYC amplifications). Moreover, the translation of these novel molecular abnormalities into diagnostic ancillary markers, either fluorescence in-situ hybridisation probes or surrogate immunohistochemical markers (FOSB, CAMTA1, YAP1, and MYC), has been remarkable. This review will focus on the latest molecular discoveries covering both benign and malignant vascular tumours, and will provide practical diagnostic algorithms, highlighting frequently encountered pitfalls and challenges in the diagnosis of vascular lesions.
Collapse
Affiliation(s)
- Dianne Torrence
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY,Corresponding author: Cristina R Antonescu, MD, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065,
| |
Collapse
|
19
|
Mathur T, Tronolone JJ, Jain A. Comparative Analysis of Blood-Derived Endothelial Cells for Designing Next-Generation Personalized Organ-on-Chips. J Am Heart Assoc 2021; 10:e022795. [PMID: 34743553 PMCID: PMC8751908 DOI: 10.1161/jaha.121.022795] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Organ‐on‐chip technology has accelerated in vitro preclinical research of the vascular system, and a key strength of this platform is its promise to impact personalized medicine by providing a primary human cell–culture environment where endothelial cells are directly biopsied from individual tissue or differentiated through stem cell biotechniques. However, these methods are difficult to adopt in laboratories, and often result in impurity and heterogeneity of cells. This limits the power of organ‐chips in making accurate physiological predictions. In this study, we report the use of blood‐derived endothelial cells as alternatives to primary and induced pluripotent stem cell–derived endothelial cells. Methods and Results Here, the genotype, phenotype, and organ‐chip functional characteristics of blood‐derived outgrowth endothelial cells were compared against commercially available and most used primary endothelial cells and induced pluripotent stem cell–derived endothelial cells. The methods include RNA‐sequencing, as well as criterion standard assays of cell marker expression, growth kinetics, migration potential, and vasculogenesis. Finally, thromboinflammatory responses under shear using vessel‐chips engineered with blood‐derived endothelial cells were assessed. Blood‐derived endothelial cells exhibit the criterion standard hallmarks of typical endothelial cells. There are differences in gene expression profiles between different sources of endothelial cells, but blood‐derived cells are relatively closer to primary cells than induced pluripotent stem cell–derived. Furthermore, blood‐derived endothelial cells are much easier to obtain from individuals and yet, they serve as an equally effective cell source for functional studies and organ‐chips compared with primary cells or induced pluripotent stem cell–derived cells. Conclusions Blood‐derived endothelial cells may be used in preclinical research for developing more robust and personalized next‐generation disease models using organ‐on‐chips.
Collapse
Affiliation(s)
- Tanmay Mathur
- Department of Biomedical Engineering, College of Engineering Texas A&M University College Station TX
| | - James J Tronolone
- Department of Biomedical Engineering, College of Engineering Texas A&M University College Station TX
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering Texas A&M University College Station TX.,Department of Medical Physiology College of MedicineTexas A&M Health Science Center Bryan TX.,Department of Cardiovascular Sciences Houston Methodist Research Institute Houston TX
| |
Collapse
|
20
|
Shibuya M, Matsui H, Sasagawa T, Nagamatsu T. A simple detection method for the serum sFLT1 protein in preeclampsia. Sci Rep 2021; 11:20613. [PMID: 34663835 PMCID: PMC8523687 DOI: 10.1038/s41598-021-00152-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
In normal pregnancy, the soluble form of FMS-like tyrosine kinase-1 (sFLT1)/ vascular endothelial growth factor receptor-1 (sVEGFR-1), a VEGF-trapping protein, is expressed in trophoblasts of the placenta, suggesting that it plays an important role in the physiological barrier between fetal and maternal angiogenesis, when stimulated with VEGF-A. In pathological conditions such as preeclampsia (PE), sFLT1 protein is abnormally overexpressed in trophoblasts and secreted into the serum, which could cause hypertension and proteinuria on the maternal side and growth retardation on the fetal side. Detection of an abnormal increase in serum sFLT1 during the early to middle stages of PE is essential for proper initiation of medical care. To carry out this screening for sFLT1, we developed an easier and relatively low-cost sandwich-type ELISA method using a single mixture of human serum sample with an anti-FLT1 antibody and heparin-beads, namely heparin-beads-coupled ELISA (HB-ELISA). This method takes only about 2 h, and the sFLT1 values were similar levels with commercially available recent ELISA kits: the serum sFLT1 protein was approximately 4.3-fold increased in severe PE compared with those in normal pregnancy.
Collapse
Affiliation(s)
- Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Takasaki, Gunma, Japan.
| | - Haruka Matsui
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tadashi Sasagawa
- Institute of Physiology and Medicine, Jobu University, Takasaki, Gunma, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Advani D, Kumar P. Therapeutic Targeting of Repurposed Anticancer Drugs in Alzheimer's Disease: Using the Multiomics Approach. ACS OMEGA 2021; 6:13870-13887. [PMID: 34095679 PMCID: PMC8173619 DOI: 10.1021/acsomega.1c01526] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/10/2021] [Indexed: 05/08/2023]
Abstract
AIM/HYPOTHESIS The complexity and heterogeneity of multiple pathological features make Alzheimer's disease (AD) a major culprit to global health. Drug repurposing is an inexpensive and reliable approach to redirect the existing drugs for new indications. The current study aims to study the possibility of repurposing approved anticancer drugs for AD treatment. We proposed an in silico pipeline based on "omics" data mining that combines genomics, transcriptomics, and metabolomics studies. We aimed to validate the neuroprotective properties of repurposed drugs and to identify the possible mechanism of action of the proposed drugs in AD. RESULTS We generated a list of AD-related genes and then searched DrugBank database and Therapeutic Target Database to find anticancer drugs related to potential AD targets. Specifically, we researched the available approved anticancer drugs and excluded the information of investigational and experimental drugs. We developed a computational pipeline to prioritize the anticancer drugs having a close association with AD targets. From data mining, we generated a list of 2914 AD-related genes and obtained 49 potential druggable targets by functional enrichment analysis. The protein-protein interaction (PPI) studies for these genes revealed 641 interactions. We found that 15 AD risk/direct PPI genes were associated with 30 approved oncology drugs. The computational validation of candidate drug-target interactions, structural and functional analysis, investigation of related molecular mechanisms, and literature-based analysis resulted in four repurposing candidates, of which three drugs were epidermal growth factor receptor (EGFR) inhibitors. CONCLUSION Our computational drug repurposing approach proposed EGFR inhibitors as potential repurposing drugs for AD. Consequently, our proposed framework could be used for drug repurposing for different indications in an economical and efficient way.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional
Genomics Laboratory, Delhi Technological
University, Shahabad Daulatpur, Bawana Road, Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional
Genomics Laboratory, Delhi Technological
University, Shahabad Daulatpur, Bawana Road, Delhi 110042, India
| |
Collapse
|
22
|
Zhao G, Lu H, Liu Y, Zhao Y, Zhu T, Garcia-Barrio MT, Chen YE, Zhang J. Single-Cell Transcriptomics Reveals Endothelial Plasticity During Diabetic Atherogenesis. Front Cell Dev Biol 2021; 9:689469. [PMID: 34095155 PMCID: PMC8170046 DOI: 10.3389/fcell.2021.689469] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 01/22/2023] Open
Abstract
Atherosclerosis is the leading cause of cardiovascular diseases, which is also the primary cause of mortality among diabetic patients. Endothelial cell (EC) dysfunction is a critical early step in the development of atherosclerosis and aggravated in the presence of concurrent diabetes. Although the heterogeneity of the organ-specific ECs has been systematically analyzed at the single-cell level in healthy conditions, their transcriptomic changes in diabetic atherosclerosis remain largely unexplored. Here, we carried out a single-cell RNA sequencing (scRNA-seq) study using EC-enriched single cells from mouse heart and aorta after 12 weeks feeding of a standard chow or a diabetogenic high-fat diet with cholesterol. We identified eight EC clusters, three of which expressed mesenchymal markers, indicative of an endothelial-to-mesenchymal transition (EndMT). Analyses of the marker genes, pathways, and biological functions revealed that ECs are highly heterogeneous and plastic both in normal and atherosclerotic conditions. The metabolic transcriptomic analysis further confirmed that EndMT-derived fibroblast-like cells are prominent in atherosclerosis, with diminished fatty acid oxidation and enhanced biological functions, including regulation of extracellular-matrix organization and apoptosis. In summary, our data characterized the phenotypic and metabolic heterogeneity of ECs in diabetes-associated atherogenesis at the single-cell level and paves the way for a deeper understanding of endothelial cell biology and EC-related cardiovascular diseases.
Collapse
Affiliation(s)
- Guizhen Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Haocheng Lu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Yuhao Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States.,Department of Internal Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Tianqing Zhu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Minerva T Garcia-Barrio
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Y Eugene Chen
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jifeng Zhang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
23
|
Histone Deacetylase Inhibitors in the Treatment of Hepatocellular Carcinoma: Current Evidence and Future Opportunities. J Pers Med 2021; 11:jpm11030223. [PMID: 33809844 PMCID: PMC8004277 DOI: 10.3390/jpm11030223] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a major health problem worldwide with a continuous increasing prevalence. Despite the introduction of targeted therapies like the multi-kinase inhibitor sorafenib, treatment outcomes are not encouraging. The prognosis of advanced HCC is still dismal, underlying the need for novel effective treatments. Apart from the various risk factors that predispose to the development of HCC, epigenetic factors also play a functional role in tumor genesis. Histone deacetylases (HDACs) are enzymes that remove acetyl groups from histone lysine residues of proteins, such as the core nucleosome histones, in this way not permitting DNA to loosen from the histone octamer and consequently preventing its transcription. Considering that HDAC activity is reported to be up-regulated in HCC, treatment strategies with HDAC inhibitors (HDACIs) showed some promising results. This review focuses on the use of HDACIs as novel anticancer agents and explains the mechanisms of their therapeutic effects in HCC.
Collapse
|
24
|
Veenvliet JV, Bolondi A, Kretzmer H, Haut L, Scholze-Wittler M, Schifferl D, Koch F, Guignard L, Kumar AS, Pustet M, Heimann S, Buschow R, Wittler L, Timmermann B, Meissner A, Herrmann BG. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science 2021; 370:370/6522/eaba4937. [PMID: 33303587 DOI: 10.1126/science.aba4937] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/13/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Post-implantation embryogenesis is a highly dynamic process comprising multiple lineage decisions and morphogenetic changes that are inaccessible to deep analysis in vivo. We found that pluripotent mouse embryonic stem cells (mESCs) form aggregates that upon embedding in an extracellular matrix compound induce the formation of highly organized "trunk-like structures" (TLSs) comprising the neural tube and somites. Comparative single-cell RNA sequencing analysis confirmed that this process is highly analogous to mouse development and follows the same stepwise gene-regulatory program. Tbx6 knockout TLSs developed additional neural tubes mirroring the embryonic mutant phenotype, and chemical modulation could induce excess somite formation. TLSs thus reveal an advanced level of self-organization and provide a powerful platform for investigating post-implantation embryogenesis in a dish.
Collapse
Affiliation(s)
- Jesse V Veenvliet
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Leah Haut
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.,Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Manuela Scholze-Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Dennis Schifferl
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Frederic Koch
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Léo Guignard
- Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, 10115 Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Milena Pustet
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Simon Heimann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - René Buschow
- Microscopy and Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. .,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. .,Institute for Medical Genetics, Charité-University Medicine Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| |
Collapse
|
25
|
Hypoxia as a Driving Force of Pluripotent Stem Cell Reprogramming and Differentiation to Endothelial Cells. Biomolecules 2020; 10:biom10121614. [PMID: 33260307 PMCID: PMC7759989 DOI: 10.3390/biom10121614] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Inadequate supply of oxygen (O2) is a hallmark of many diseases, in particular those related to the cardiovascular system. On the other hand, tissue hypoxia is an important factor regulating (normal) embryogenesis and differentiation of stem cells at the early stages of embryonic development. In culture, hypoxic conditions may facilitate the derivation of embryonic stem cells (ESCs) and the generation of induced pluripotent stem cells (iPSCs), which may serve as a valuable tool for disease modeling. Endothelial cells (ECs), multifunctional components of vascular structures, may be obtained from iPSCs and subsequently used in various (hypoxia-related) disease models to investigate vascular dysfunctions. Although iPSC-ECs demonstrated functionality in vitro and in vivo, ongoing studies are conducted to increase the efficiency of differentiation and to establish the most productive protocols for the application of patient-derived cells in clinics. In this review, we highlight recent discoveries on the role of hypoxia in the derivation of ESCs and the generation of iPSCs. We also summarize the existing protocols of hypoxia-driven differentiation of iPSCs toward ECs and discuss their possible applications in disease modeling and treatment of hypoxia-related disorders.
Collapse
|
26
|
Morita A, Goko T, Matsumura M, Asaso D, Arima S, Mori A, Sakamoto K, Nagamitsu T, Nakahara T. The process of revascularization in the neonatal mouse retina following short-term blockade of vascular endothelial growth factor receptors. Cell Tissue Res 2020; 382:529-549. [PMID: 32897421 DOI: 10.1007/s00441-020-03276-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/07/2020] [Indexed: 01/24/2023]
Abstract
Misdirected vascular growth frequently occurs in the neovascular diseases in the retina. However, the mechanisms are still not fully understood. In the present study, we created capillary-free zones in the central and peripheral retinas in neonatal mice by pharmacological blockade of vascular endothelial growth factor (VEGF) signaling. Using this model, we investigated the process and mechanisms of revascularization in the central and peripheral avascular areas. After the completion of a 2-day treatment with the VEGF receptor tyrosine kinase inhibitor KRN633 on postnatal day (P) 4 and P5, revascularization started on P8 in the central avascular area where capillaries had been dropped out. The expression levels of VEGF were higher in the peripheral than in the central avascular area. However, the expansion of the vasculature in the peripheral avascular retina remained suppressed until revascularization had been completed in the central avascular area. Additionally, we found disorganized endothelial cell division, misdirected blood vessels with irregular diameters, and abnormal fibronectin networks at the border of the vascular front and the avascular retina. In the central avascular area, a slight amount of fibronectin as non-vascular component re-formed to provide a scaffold for revascularization. Mechanistic analysis revealed that higher levels of VEGF attenuated the migratory response of endothelial cells without decreasing the proliferative activity. These results suggest that the presence of concentration range of VEGF, which enhances both migration and proliferation of the endothelial cells, and the structurally normal fibronectin network contribute to determine the proper direction of angiogenesis.
Collapse
Affiliation(s)
- Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tomomi Goko
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Mami Matsumura
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Daiki Asaso
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shiho Arima
- Department of Organic Synthesis, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Laboratory of Medical Pharmacology, Department of Clinical & Pharmaceutical Sciences, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Laboratory of Medical Pharmacology, Department of Clinical & Pharmaceutical Sciences, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Tohru Nagamitsu
- Department of Organic Synthesis, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
27
|
Panou V, Røe OD. Inherited Genetic Mutations and Polymorphisms in Malignant Mesothelioma: A Comprehensive Review. Int J Mol Sci 2020; 21:ijms21124327. [PMID: 32560575 PMCID: PMC7352726 DOI: 10.3390/ijms21124327] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Malignant mesothelioma (MM) is mainly caused by air-born asbestos but genetic susceptibility is also suspected to be a risk factor. Recent studies suggest an increasing number of candidate genes that may predispose to MM besides the well-characterized BRCA1-associated protein-1 gene. The aim of this review is to summarize the most important studies on germline mutations for MM. A total of 860 publications were retrieved from Scopus, PubMed and Web of Science, of which 81 met the inclusion criteria and were consider for this review. More than 50% of the genes that are reported to predispose to MM are involved in DNA repair mechanisms, and the majority of them have a role in the homologous recombination pathway. Genetic alterations in tumor suppressor genes involved in chromatin, transcription and hypoxia regulation have also been described. Furthermore, we identified several single nucleotide polymorphisms (SNPs) that may promote MM tumorigenesis as a result of an asbestos-gene interaction, including SNPs in DNA repair, carcinogen detoxification and other genes previously associated with other malignancies. The identification of inherited mutations for MM and an understanding of the underlying pathways may allow early detection and prevention of malignancies in high-risk individuals and pave the way for targeted therapies.
Collapse
Affiliation(s)
- Vasiliki Panou
- Department of Respiratory Medicine, Odense University Hospital, 5000 Odense, Denmark
- Department of Respiratory Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark
- Clinical Institute, Aalborg University Hospital, 9000 Aalborg, Denmark;
- Correspondence:
| | - Oluf Dimitri Røe
- Clinical Institute, Aalborg University Hospital, 9000 Aalborg, Denmark;
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
28
|
Subramanian A, Sidhom EH, Emani M, Vernon K, Sahakian N, Zhou Y, Kost-Alimova M, Slyper M, Waldman J, Dionne D, Nguyen LT, Weins A, Marshall JL, Rosenblatt-Rosen O, Regev A, Greka A. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat Commun 2019; 10:5462. [PMID: 31784515 DOI: 10.0.4.14/s41467-019-13382-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/05/2019] [Indexed: 05/24/2023] Open
Abstract
Human iPSC-derived kidney organoids have the potential to revolutionize discovery, but assessing their consistency and reproducibility across iPSC lines, and reducing the generation of off-target cells remain an open challenge. Here, we profile four human iPSC lines for a total of 450,118 single cells to show how organoid composition and development are comparable to human fetal and adult kidneys. Although cell classes are largely reproducible across time points, protocols, and replicates, we detect variability in cell proportions between different iPSC lines, largely due to off-target cells. To address this, we analyze organoids transplanted under the mouse kidney capsule and find diminished off-target cells. Our work shows how single cell RNA-seq (scRNA-seq) can score organoids for reproducibility, faithfulness and quality, that kidney organoids derived from different iPSC lines are comparable surrogates for human kidney, and that transplantation enhances their formation by diminishing off-target cells.
Collapse
Affiliation(s)
| | - Eriene-Heidi Sidhom
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Katherine Vernon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Yiming Zhou
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Kost-Alimova
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michal Slyper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Waldman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lan T Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Subramanian A, Sidhom EH, Emani M, Vernon K, Sahakian N, Zhou Y, Kost-Alimova M, Slyper M, Waldman J, Dionne D, Nguyen LT, Weins A, Marshall JL, Rosenblatt-Rosen O, Regev A, Greka A. Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation. Nat Commun 2019; 10:5462. [PMID: 31784515 PMCID: PMC6884507 DOI: 10.1038/s41467-019-13382-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023] Open
Abstract
Human iPSC-derived kidney organoids have the potential to revolutionize discovery, but assessing their consistency and reproducibility across iPSC lines, and reducing the generation of off-target cells remain an open challenge. Here, we profile four human iPSC lines for a total of 450,118 single cells to show how organoid composition and development are comparable to human fetal and adult kidneys. Although cell classes are largely reproducible across time points, protocols, and replicates, we detect variability in cell proportions between different iPSC lines, largely due to off-target cells. To address this, we analyze organoids transplanted under the mouse kidney capsule and find diminished off-target cells. Our work shows how single cell RNA-seq (scRNA-seq) can score organoids for reproducibility, faithfulness and quality, that kidney organoids derived from different iPSC lines are comparable surrogates for human kidney, and that transplantation enhances their formation by diminishing off-target cells.
Collapse
Affiliation(s)
| | - Eriene-Heidi Sidhom
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Katherine Vernon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Yiming Zhou
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Kost-Alimova
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michal Slyper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Waldman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lan T Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Sabbah N, Tamari T, Elimelech R, Doppelt O, Rudich U, Zigdon-Giladi H. Predicting Angiogenesis by Endothelial Progenitor Cells Relying on In-Vitro Function Assays and VEGFR-2 Expression Levels. Biomolecules 2019; 9:biom9110717. [PMID: 31717420 PMCID: PMC6921061 DOI: 10.3390/biom9110717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Clinical trials have demonstrated the safety and efficacy of autologous endothelial progenitor cell (EPC) therapy in various diseases. Since EPCs' functions are influenced by genetic, systemic and environmental factors, the therapeutic potential of each individual EPCs is unknown and may affect treatment outcome. Therefore, our aim was to compare EPCs function among healthy donors in order to predict blood vessel formation (angiogenesis) before autologous EPC transplantation. Human EPCs were isolated from the blood of ten volunteers. EPCs proliferation rate, chemoattractant ability, and CXCR4 mRNA levels were different among donors (p < 0.0001, p < 0.01, p < 0.001, respectively). A positive correlation was found between SDF-1, CXCR4, and EPCs proliferation (R = 0.736, p < 0.05 and R = 0.8, p < 0.01, respectively). In-vivo, blood vessels were counted ten days after EPCs transplantation in a subcutaneous mouse model. Mean vessel density was different among donors (p = 0.0001); nevertheless, donors with the lowest vessel densities were higher compared to control (p < 0.05). Finally, using a linear regression model, a mathematical equation was generated to predict blood vessel density relying on: (i) EPCs chemoattractivity, and (ii) VEGFR-2 mRNA levels. Results reveal differences in EPCs functions among healthy individuals, emphasizing the need for a potency assay to pave the way for standardized research and clinical use of human EPCs.
Collapse
Affiliation(s)
- Nadin Sabbah
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
| | - Tal Tamari
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
| | - Rina Elimelech
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
- Department of Periodontology, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Ofri Doppelt
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
| | - Utai Rudich
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
| | - Hadar Zigdon-Giladi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa 3109600, Israel; (N.S.); (T.T.); (R.E.); (O.D.)
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel;
- Department of Periodontology, Rambam Health Care Campus, Haifa 3109601, Israel
- Correspondence: ; Tel.: +972-4-854-3606
| |
Collapse
|
31
|
Chang T, Ho HL, Hsu SJ, Chang CC, Tsai MH, Huo TI, Huang HC, Lee FY, Hou MC, Lee SD. Glucobrassicin Metabolites Ameliorate the Development of Portal Hypertension and Cirrhosis in Bile Duct-Ligated Rats. Int J Mol Sci 2019; 20:ijms20174161. [PMID: 31454890 PMCID: PMC6747388 DOI: 10.3390/ijms20174161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/11/2019] [Accepted: 08/24/2019] [Indexed: 01/24/2023] Open
Abstract
Patients suffering from liver cirrhosis are often complicated with the formation of portosystemic collateral vessels, which is associated with the progression of a splanchnic hyperdynamic circulatory state. Alleviating pathological angiogenesis has thus been proposed to be a feasible treatment strategy. Indole-3-carbinol (C9H9NO, I3C) and 3,3'-diindolymethane (DIM), formed by the breakdown of glucosinolate glucobrassicin, are prevalent in cruciferous vegetables and have anti-angiogenesis properties. We aimed to evaluate their influences on portal hypertension, the severity of mesenteric angiogenesis, and portosystemic collaterals in cirrhosis. Sprague-Dawley rats with common bile duct ligation (CBDL)-induced liver cirrhosis or sham operation (surgical control) were randomly allocated to receive I3C (20 mg/kg/3 day), DIM (5 mg/kg/day) or vehicle for 28 days. The systemic and portal hemodynamics, severity of portosystemic shunting, mesenteric angiogenesis, and mesenteric proangiogenic factors protein expressions were evaluated. Compared to vehicle, both DIM and I3C significantly reduced portal pressure, ameliorated liver fibrosis, and down-regulated mesenteric protein expressions of vascular endothelial growth factor and phosphorylated Akt. DIM significantly down-regulated pErk, and I3C down-regulated NFκB, pIκBα protein expressions, and reduced portosystemic shunting degree. The cruciferous vegetable byproducts I3C and DIM not only exerted a portal hypotensive effect but also ameliorated abnormal angiogenesis and portosystemic collaterals in cirrhotic rats.
Collapse
Affiliation(s)
- Ting Chang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsin-Ling Ho
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Lotong Poh-Ai Hospital, Yilan 26546, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan
| | - Shao-Jung Hsu
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ching-Chih Chang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Division of Gastroenterology and Hepatology, Department of Medicine, Lotong Poh-Ai Hospital, Yilan 26546, Taiwan.
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan.
| | - Ming-Hung Tsai
- Chang Gung University College of Medicine and Division of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Teh-Ia Huo
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hui-Chun Huang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Fa-Yauh Lee
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ming-Chih Hou
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Shou-Dong Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan
- Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei 11217, Taiwan
| |
Collapse
|
32
|
Egorova AA, Shtykalova SV, Maretina MA, Sokolov DI, Selkov SA, Baranov VS, Kiselev AV. Synergistic Anti-Angiogenic Effects Using Peptide-Based Combinatorial Delivery of siRNAs Targeting VEGFA, VEGFR1, and Endoglin Genes. Pharmaceutics 2019; 11:E261. [PMID: 31174285 PMCID: PMC6631635 DOI: 10.3390/pharmaceutics11060261] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is a process of new blood vessel formation, which plays a significant role in carcinogenesis and the development of diseases associated with pathological neovascularization. An important role in the regulation of angiogenesis belongs to several key pathways such as VEGF-pathways, TGF-β-pathways, and some others. Introduction of small interfering RNA (siRNA) against genes of pro-angogenic factors is a promising strategy for the therapeutic suppression of angiogenesis. These siRNA molecules need to be specifically delivered into endothelial cells, and non-viral carriers modified with cellular receptor ligands can be proposed as perspective delivery systems for anti-angiogenic therapy purposes. Here we used modular peptide carrier L1, containing a ligand for the CXCR4 receptor, for the delivery of siRNAs targeting expression of VEGFA, VEGFR1 and endoglin genes. Transfection properties of siRNA/L1 polyplexes were studied in CXCR4-positive breast cancer cells MDA-MB-231 and endothelial cells EA.Hy926. We have demonstrated the efficient down-regulation of endothelial cells migration and proliferation by anti-VEGFA, anti-VEGFR1, and anti-endoglin siRNA-induced silencing. It was found that the efficiency of anti-angiogenic treatment can be synergistically improved via the combinatorial delivery of anti-VEGFA and anti-VEGFR1 siRNAs. Thus, this approach can be useful for the development of therapeutic angiogenesis inhibition.
Collapse
Affiliation(s)
- Anna A Egorova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| | - Sofia V Shtykalova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia.
| | - Marianna A Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| | - Dmitry I Sokolov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| | - Sergei A Selkov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| | - Vladislav S Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia.
| | - Anton V Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| |
Collapse
|
33
|
Ma Y, Xiu Z, Zhou Z, Huang B, Liu J, Wu X, Li S, Tang X. Cytochalasin H Inhibits Angiogenesis via the Suppression of HIF-1α Protein Accumulation and VEGF Expression through PI3K/AKT/P70S6K and ERK1/2 Signaling Pathways in Non-Small Cell Lung Cancer Cells. J Cancer 2019; 10:1997-2005. [PMID: 31205560 PMCID: PMC6548170 DOI: 10.7150/jca.29933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/10/2019] [Indexed: 02/07/2023] Open
Abstract
Our previous study has demonstrated that cytochalasin H (CyH) isolated from mangrove-derived endophytic fungus induces apoptosis and inhibits migration in A549 non-small cell lung cancer (NSCLC) cells. In this study, we further explored the effect of CyH on angiogenesis in NSCLC cells and the underlying molecular mechanisms. A549 and H460 NSCLC cells were treated with different concentrations of CyH for 24 h. The effects of CyH on NSCLC angiogenesis in vitro and in vivo were investigated. Hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression in xenografted NSCLC of nude mice was analyzed by immunohistochemistry. ELISA was used to analyze the concentration of VEGF in the conditioned media derived from treated and untreated NSCLC cells. Western blot was performed to detect the levels of HIF-1α, p-AKT, p-P70S6K, and p-ERK1/2 proteins, and RT-qPCR was used to determine the levels of HIF-1α and VEGF mRNA in A549 and H460 cells. Our results showed that CyH significantly inhibited angiogenesis in vitro and in vivo, and suppressed the hemoglobin content and HIF-1α and VEGF protein expression in xenografted NSCLC tissues of nude mice. Meanwhile, CyH inhibited the secretion of VEGF protein and the expression of HIF-1α protein in A549 and H460 cells. Moreover, CyH had a significant inhibitory effect on VEGF mRNA expression but had no effect on HIF-1α mRNA expression, and CyH inhibited HIF-1α protein expression by promoting the degradation of HIF-1α protein in A549 and H460 cells. Additionally, CyH dramatically inhibited AKT, P70S6K, and ERK1/2 activation in A549 and H460 cells. Taken together, our results suggest that CyH can inhibit NSCLC angiogenesis by the suppression of HIF-1α protein accumulation and VEGF expression through PI3K/AKT/P70S6K and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Yuefan Ma
- Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Zihan Xiu
- Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Zhiyuan Zhou
- Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Bingyu Huang
- Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Jiao Liu
- Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Xiaofeng Wu
- Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Sanzhong Li
- Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China
| | - Xudong Tang
- Collaborative innovation center for antitumor active substance research and development, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, P.R. China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, P.R. China
| |
Collapse
|
34
|
Dual functions of STAT3 in LPS-induced angiogenesis of hepatocellular carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:566-574. [DOI: 10.1016/j.bbamcr.2018.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022]
|
35
|
Hayes-Ryan D, Hemming K, Breathnach F, Cotter A, Devane D, Hunter A, McAuliffe FM, Morrison JJ, Murphy DJ, Khashan A, McElroy B, Murphy A, Dempsey E, O’Donoghue K, Kenny LC. PARROT Ireland: Placental growth factor in Assessment of women with suspected pre-eclampsia to reduce maternal morbidity: a Stepped Wedge Cluster Randomised Control Trial Research Study Protocol. BMJ Open 2019; 9:e023562. [PMID: 30826791 PMCID: PMC6398700 DOI: 10.1136/bmjopen-2018-023562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/02/2018] [Accepted: 12/17/2018] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION Women presenting with suspected pre-eclampsia are currently triaged on the basis of hypertension and dipstick proteinuria. This may result in significant false positive and negative diagnoses resulting in increased morbidity or unnecessary intervention. Recent data suggest that placental growth factor testing may be a useful adjunct in the management of women presenting with preterm pre-eclampsia. The primary objective of this trial is to determine if the addition of placental growth factor testing to the current clinical assessment of women with suspected preterm pre-eclampsia, is beneficial for both mothers and babies. METHODS AND ANALYSIS This is a multicentre, stepped wedge cluster, randomised trial aiming to recruit 4000 women presenting with symptoms suggestive of preterm pre-eclampsia between 20 and 36+6 weeks' gestation. The intervention of an unblinded point of care test, performed at enrolment, will quantify maternal levels of circulating plasma placental growth factor. The intervention will be rolled out sequentially, based on randomisation, in the seven largest maternity units on the island of Ireland. Primary outcome is a composite outcome of maternal morbidity (derived from the modified fullPIERS model). To ensure we are not reducing maternal morbidity at the expense of earlier delivery and worse neonatal outcomes, we have established a co-primary outcome which will examine the effect of the intervention on neonatal morbidity, assessed using a composite neonatal score. Secondary analyses will examine further clinical outcomes (such as mode of delivery, antenatal detection of growth restriction and use of antihypertensive agents) as well as a health economic analysis, of incorporation of placental growth factor testing into routine care. ETHICS AND DISSEMINATION Ethical approval has been granted from each of the seven maternity hospitals involved in the trial. The results of the trial will be presented both nationally and internationally at conference and published in an international peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT02881073.
Collapse
Affiliation(s)
- Deirdre Hayes-Ryan
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), UCC, Cork, Ireland
- University College Cork, Department of Obstetrics and Gynaecology, Cork, Ireland
| | - Karla Hemming
- Public Health, University of Birmingham, Birmingham, UK
| | | | - Amanda Cotter
- Department of Obstetrics and Gynaecology, Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Declan Devane
- HRB Trials Methodology Research Network, Dublin, Ireland
- National University of Ireland, Galway, Galway, Ireland
| | | | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - John J Morrison
- Obstetrics and Gynaecology, National University of Ireland Galway, Galway, Ireland
| | - Deirdre J Murphy
- Trinity College Dublin & Coombe Women & Infants University Hospital Dublin 8, Republic of Ireland, Dublin, Ireland
| | - Ali Khashan
- Department of Epidemiology and Public Health, University College Cork, Cork, Ireland
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
| | - Brendan McElroy
- Economics Department, University College Cork, Cork, Ireland
| | - Aileen Murphy
- Economics Department, University College Cork, Cork, Ireland
| | - Eugene Dempsey
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Keelin O’Donoghue
- University College Cork, Department of Obstetrics and Gynaecology, Cork, Ireland
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
| | - Louise C Kenny
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
- Department of Women’s and Children’s Health, University of Liverpool School of Life Sciences, Liverpool, UK
| |
Collapse
|
36
|
Cuny T, de Herder W, Barlier A, Hofland LJ. Role of the tumor microenvironment in digestive neuroendocrine tumors. Endocr Relat Cancer 2018; 25:R519-R544. [PMID: 30306777 DOI: 10.1530/erc-18-0025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) represent a group of heterogeneous tumors whose incidence increased over the past few years. Around half of patients already present with metastatic disease at the initial diagnosis. Despite extensive efforts, cytotoxic and targeted therapies have provided only limited efficacy for patients with metastatic GEP-NETs, mainly due to the development of a certain state of resistance. One factor contributing to both the failure of systemic therapies and the emergence of an aggressive tumor phenotype may be the tumor microenvironment (TME), comprising dynamic and adaptative assortment of extracellular matrix components and non-neoplastic cells, which surround the tumor niche. Accumulating evidence shows that the TME can simultaneously support both tumor growth and metastasis and contribute to a certain state of resistance to treatment. In this review, we summarize the current knowledge of the TME of GEP-NETs and discuss the current therapeutic agents that target GEP-NETs and those that could be of interest in the (near) future.
Collapse
Affiliation(s)
- Thomas Cuny
- Division Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France
- Department of Endocrinology, Assistance Publique - Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Centre de Référence des Maladies Rares Hypophysaires HYPO, Marseille, France
| | - Wouter de Herder
- Division Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anne Barlier
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France
- Department of Endocrinology, Assistance Publique - Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Centre de Référence des Maladies Rares Hypophysaires HYPO, Marseille, France
| | - Leo J Hofland
- Division Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
37
|
VEGF (Vascular Endothelial Growth Factor) and Fibrotic Lung Disease. Int J Mol Sci 2018; 19:ijms19051269. [PMID: 29695053 PMCID: PMC5983653 DOI: 10.3390/ijms19051269] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 01/01/2023] Open
Abstract
Interstitial lung disease (ILD) encompasses a group of heterogeneous diseases characterised by varying degrees of aberrant inflammation and fibrosis of the lung parenchyma. This may occur in isolation, such as in idiopathic pulmonary fibrosis (IPF) or as part of a wider disease process affecting multiple organs, such as in systemic sclerosis. Anti-Vascular Endothelial Growth Factor (anti-VEGF) therapy is one component of an existing broad-spectrum therapeutic option in IPF (nintedanib) and may become part of the emerging therapeutic strategy for other ILDs in the future. This article describes our current understanding of VEGF biology in normal lung homeostasis and how changes in its bioavailability may contribute the pathogenesis of ILD. The complexity of VEGF biology is particularly highlighted with an emphasis on the potential non-vascular, non-angiogenic roles for VEGF in the lung, in both health and disease.
Collapse
|
38
|
Placental growth factor: A review of literature and future applications. Pregnancy Hypertens 2018; 14:260-264. [PMID: 29555222 DOI: 10.1016/j.preghy.2018.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022]
|
39
|
Wagner J, Kline CL, Zhou L, Khazak V, El-Deiry WS. Anti-tumor effects of ONC201 in combination with VEGF-inhibitors significantly impacts colorectal cancer growth and survival in vivo through complementary non-overlapping mechanisms. J Exp Clin Cancer Res 2018; 37:11. [PMID: 29357916 PMCID: PMC5778752 DOI: 10.1186/s13046-018-0671-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/01/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Small molecule ONC201 is an investigational anti-tumor agent that upregulates intra-tumoral TRAIL expression and the integrated stress response pathway. A Phase I clinical trial using ONC201 therapy in advanced cancer patients has been completed and the drug has progressed into Phase II trials in several cancer types. Colorectal cancer (CRC) remains one of the leading causes of cancer worldwide and metastatic disease has a poor prognosis. Clinical trials in CRC and other tumor types have demonstrated that therapeutics targeting the vascular endothelial growth factor (VEGF) pathway, such as bevacizumab, are effective in combination with certain chemotherapeutic agents. METHODS We investigated the potential combination of VEGF inhibitors such as bevacizumab and its murine-counterpart; along with other anti-angiogenic agents and ONC201 in both CRC xenograft and patient-derived xenograft (PDX) models. We utilized non-invasive imaging and immunohistochemistry to determine potential mechanisms of action. RESULTS Our results demonstrate significant tumor regression or complete tumor ablation in human xenografts with the combination of ONC201 with bevacizumab, and in syngeneic MC38 colorectal cancer xenografts using a murine VEGF-A inhibitor. Imaging demonstrated the impact of this combination on decreasing tumor growth and tumor metastasis. Our results indicate that ONC201 and anti-angiogenic agents act through distinct mechanisms while increasing tumor cell death and inhibiting proliferation. CONCLUSION With the use of both a murine VEGF inhibitor in syngeneic models, and bevacizumab in human cell line-derived xenografts, we demonstrate that ONC201 in combination with anti-angiogenic therapies such as bevacizumab represents a promising approach for further testing in the clinic for the treatment of CRC.
Collapse
Affiliation(s)
- Jessica Wagner
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program and Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - C Leah Kline
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program and Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program and Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program and Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Kim GD. Kaempferol Inhibits Angiogenesis by Suppressing HIF-1α and VEGFR2 Activation via ERK/p38 MAPK and PI3K/Akt/mTOR Signaling Pathways in Endothelial Cells. Prev Nutr Food Sci 2017; 22:320-326. [PMID: 29333385 PMCID: PMC5758096 DOI: 10.3746/pnf.2017.22.4.320] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/27/2017] [Indexed: 11/06/2022] Open
Abstract
Kaempferol has been shown to inhibit vascular formation in endothelial cells. However, the underlying mechanisms are not fully understood. In the present study, we evaluated whether kaempferol exerts antiangiogenic effects by targeting extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathways in endothelial cells. Endothelial cells were treated with various concentrations of kaempferol for 24 h. Cell viability was determined by the 3- (4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay; vascular formation was analyzed by tube formation, wound healing, and mouse aortic ring assays. Activation of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor receptor 2 (VEGFR2), ERK/p38 MAPK, and PI3K/Akt/mTOR was analyzed by Western blotting. Kaempferol significantly inhibited cell migration and tube formation in endothelial cells, and suppressed microvessel sprouting in the mouse aortic ring assay. Moreover, kaempferol suppressed the activation of HIF-1α, VEGFR2, and other markers of ERK/p38 MAPK and PI3K/Akt/mTOR signaling pathways in endothelial cells. These results suggest that kaempferol inhibits angiogenesis by suppressing HIF-1α and VEGFR2 activation via ERK/p38 MAPK and PI3K/Akt/mTOR signaling in endothelial cells.
Collapse
Affiliation(s)
- Gi Dae Kim
- Department of Food, Nutrition and Biotechnology, Kyungnam University, Gyeongnam 51767, Korea
| |
Collapse
|
41
|
Kundu S, Bansal S, Muthukumarasamy KM, Sachidanandan C, Motiani RK, Bajaj A. Deciphering the role of hydrophobic and hydrophilic bile acids in angiogenesis using in vitro and in vivo model systems. MEDCHEMCOMM 2017; 8:2248-2257. [PMID: 30108740 PMCID: PMC6071941 DOI: 10.1039/c7md00475c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Bile acids have emerged as strong signaling molecules capable of influencing various biological processes like inflammation, apoptosis, cancer progression and atherosclerosis depending on their chemistry. In the present study, we investigated the effect of major hydrophobic bile acids lithocholic acid (LCA) and deoxycholic acid (DCA) and hydrophilic bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) on angiogenesis. We employed human umbilical vein endothelial cells (HUVECs) and zebrafish embryos as model systems for studying the role of bile acids in angiogenesis. Our studies revealed that the hydrophilic CDCA enhanced ectopic vessel formation as observed by the increase in the number of sub-intestinal vessels (SIVs) in the zebrafish embryos. The pro-angiogenic role of CDCA was further corroborated by in vitro vessel formation studies performed with human umbilical vein endothelial cells (HUVECs), whereas the hydrophobic LCA reduced tubulogenesis and was toxic to the zebrafish embryos. We validated that CDCA enhances angiogenesis by increasing the expression of vascular growth factor receptors (VEGFR1 and VEGFR2) and matrix metalloproteinases (MMP9) and by decreasing the expression of adhesion protein vascular endothelial cadherin (VE-cadherin). Our work implicates that the nature of bile acids plays a critical role in dictating their biological functions and in regulating angiogenesis.
Collapse
Affiliation(s)
- Somanath Kundu
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , 3rd Milestone Faridabad-Gurgaon Expressway , NCR Biotech Cluster , Faridabad , Haryana-121001 , India . ; Tel: +91 129 2848831
- Manipal University , Manipal-576104 , Karnataka , India
| | - Sandhya Bansal
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , 3rd Milestone Faridabad-Gurgaon Expressway , NCR Biotech Cluster , Faridabad , Haryana-121001 , India . ; Tel: +91 129 2848831
| | | | - Chetana Sachidanandan
- CSIR-Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India .
| | - Rajender K Motiani
- CSIR-Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India .
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , 3rd Milestone Faridabad-Gurgaon Expressway , NCR Biotech Cluster , Faridabad , Haryana-121001 , India . ; Tel: +91 129 2848831
| |
Collapse
|
42
|
LaValley DJ, Zanotelli MR, Bordeleau F, Wang W, Schwager SC, Reinhart-King CA. Matrix Stiffness Enhances VEGFR-2 Internalization, Signaling, and Proliferation in Endothelial Cells. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [PMID: 29531793 DOI: 10.1088/2057-1739/aa9263] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vascular endothelial growth factor (VEGF) can mediate endothelial cell migration, proliferation, and angiogenesis. During cancer progression, VEGF production is often increased to stimulate the growth of new blood vessels to supply growing tumors with the additional oxygen and nutrients they require. Extracellular matrix stiffening also occurs during tumor progression, however, the crosstalk between tumor mechanics and VEGF signaling remains poorly understood. Here, we show that matrix stiffness heightens downstream endothelial cell response to VEGF by altering VEGF receptor-2 (VEGFR-2) internalization, and this effect is influenced by cell confluency. In sub-confluent endothelial monolayers, VEGFR-2 levels, but not VEGFR-2 phosphorylation, are influenced by matrix rigidity. Interestingly, more compliant matrices correlated with increased expression and clustering of VEGFR-2; however, stiffer matrices induced increased VEGFR-2 internalization. These effects are most likely due to actin-mediated contractility, as inhibiting ROCK on stiff substrates increased VEGFR-2 clustering and decreased internalization. Additionally, increasing matrix stiffness elevates ERK 1/2 phosphorylation, resulting in increased cell proliferation. Moreover, cells on stiff matrices generate more actin stress fibers than on compliant substrates, and the addition of VEGF stimulates an increase in fiber formation regardless of stiffness. In contrast, once endothelial cells reached confluency, stiffness-enhanced VEGF signaling was no longer observed. Together, these data show a complex effect of VEGF and matrix mechanics on VEGF-induced signaling, receptor dynamics, and cell proliferation that is mediated by cell confluency.
Collapse
Affiliation(s)
- Danielle J LaValley
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Matthew R Zanotelli
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Francois Bordeleau
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| | - Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| | - Cynthia A Reinhart-King
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
43
|
Dual Inhibition of Mnk2 and FLT3 for potential treatment of acute myeloid leukaemia. Eur J Med Chem 2017; 139:762-772. [DOI: 10.1016/j.ejmech.2017.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
|
44
|
Zhao WJ, Zhang HF, Su JY. Downregulation of microRNA-195 promotes angiogenesis induced by cerebral infarction via targeting VEGFA. Mol Med Rep 2017; 16:5434-5440. [PMID: 28849133 PMCID: PMC5647088 DOI: 10.3892/mmr.2017.7230] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/20/2017] [Indexed: 12/27/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels from preexisting endothelium, is a process that involves a series of interassociated and mutually interactive pathophysiological processes. It is accepted that microRNAs (miRNAs) regulate endothelial cell behavior, including their involvement in angiogenesis. However, it remains unclear whether miRNAs are involved in the regulation of angiogenesis following cerebral ischemia. Therefore, the present study aimed to investigate the role of miRNAs in angiogenesis and the underlying mechanism following cerebral ischemia. Expression profiles of miRNAs in rat brain samples following middle cerebral artery occlusion (MCAO) were investigated using a miRNA microarray. The expression of candidate miRNA, miR‑195 was further validated using reverse transcription‑quantitative polymerase chain reaction. Then, the effects of miR‑195 on cell migration and tube formation of human umbilical vein vascular endothelial cells (HUVECs) were investigated following miR‑195 silencing, and overexpression. The specific target genes of miR‑195 were predicted using microRNA prediction bioinformatics software (http://www.microrna.org/microrna/home.do), and then confirmed using a dual‑luciferase reporter assay and rescue experiment. It was demonstrated that miR‑195 was significantly downregulated in the brains of rats following MCAO and in hypoxia‑induced HUVECs. Furthermore, it was revealed that miR‑195 overexpression inhibited the invasion ability and tube formation of HUVECs in vitro, while miR‑195 silencing enhanced these functions. In addition, vascular endothelial growth factor A (VEGFA) was identified as a direct target of miR‑195 and was negatively correlated with miR‑195 expression. In addition, the rescue experiment revealed that overexpression of VEGFA reversed the inhibitory effects of miR‑195 overexpression on the invasion ability and tube formation of HUVECs. The present study has provided a novel insight into the promoting roles of miR‑195 downregulation on angiogenesis following cerebral infarction and suggests that the miR‑195/VEGFA signaling pathway is a putative therapeutic target in cerebral ischemia.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- Department of Neurology, The Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| | - Hai-Fang Zhang
- Handan Emergency Rescue Command Center, Handan, Hebei 056002, P.R. China
| | - Jin-Ying Su
- Department of Neurology, The Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| |
Collapse
|
45
|
Mashreghi M, Azarpara H, Bazaz MR, Jafari A, Masoudifar A, Mirzaei H, Jaafari MR. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol 2017; 233:2949-2965. [DOI: 10.1002/jcp.26049] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammad Mashreghi
- NanotechnologyResearch Center; Mashhad University of Medical Sciences; Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hassan Azarpara
- School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Mahere R. Bazaz
- Division of Biotechnology, Faculty of Veterinary Medicine; Ferdowsi University of Mashhad; Mashhad Iran
| | - Arash Jafari
- School of Medicine; Birjand University of Medical Sciences; Birjand Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center; Royan Institute for Biotechnology; ACECR Isfahan Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mahmoud R. Jaafari
- NanotechnologyResearch Center; Mashhad University of Medical Sciences; Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
46
|
Wang L, Zhao X, Feng Y, Ma X, Wu H, Zhu Q. Intrahepatic angiogenesis increases portal hypertension in hepatitis B patients with cirrhosis. Hepatol Res 2017; 47:E94-E103. [PMID: 27115574 DOI: 10.1111/hepr.12732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 01/17/2023]
Abstract
AIM It remains unclear whether intrahepatic angiogenesis increases portal hypertension (PH) in hepatitis B with cirrhosis. We aim to investigate the relationship between intrahepatic angiogenesis and PH in hepatitis B patients with cirrhosis. METHODS Sixty hepatitis B patients with cirrhosis and 40 healthy subjects were included in this study. Angiogenesis markers vascular endothelial growth factor receptor-2 (VEGFR2), von Willebrand factor (vWF), and fibrosis marker α-smooth muscle actin (α-SMA) were observed by immunohistochemistry. Sirius Red staining was also used to determine liver fibrosis. Correlations between levels of intrahepatic angiogenesis and Child-Pugh classes, liver fibrosis degree, and portal vein pressure were examined. We also analyzed the relationship between levels of intrahepatic angiogenesis and complications of PH, including esophageal varices (EV), ascites, and hypersplenism. RESULTS Correlation was observed between the levels of VEGFR2 (r = 0.590, P < 0.01), vWF (r = 0.524, P < 0.01) in tissue, and Child-Pugh classes. Significant correlations were observed between levels of VEGFR2 and α-SMA (r = 0.710, P < 0.01), VEGFR2 and Sirius Red (r = 0.841, P < 0.01), vWF and α-SMA (r = 0.768, P < 0.01), and vWF and Sirius Red (r = 0.825, P < 0.01). Patients with hepatic venous pressure gradient (HVPG) ≥12 mmHg showed higher levels of VEGFR2 and vWF expression compared to those with (HVPG) <12 mmHg (2.60 ± 1.28% vs. 1.09 ± 0.73%; 5.85 ± 2.45% vs. 2.31 ± 1.34%, P < 0.01), respectively. Moreover, complications of PH, including size of esophageal varices (P < 0.01), presence of ascites (P < 0.01), and spleen volume (P < 0.01) were significantly affected by the levels of intrahepatic angiogenesis. CONCLUSION Intrahepatic angiogenesis increases PH in hepatitis B patients with cirrhosis. The study provides the potential ways to intervene in the progresses for therapeutic benefits in cirrhosis and PH.
Collapse
Affiliation(s)
- Le Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xinya Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yuemin Feng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xiaowen Ma
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Hao Wu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Qiang Zhu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
47
|
Chakraborty S, Ain R. Nitric-oxide synthase trafficking inducer is a pleiotropic regulator of endothelial cell function and signaling. J Biol Chem 2017; 292:6600-6620. [PMID: 28235804 DOI: 10.1074/jbc.m116.742627] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 02/22/2017] [Indexed: 01/27/2023] Open
Abstract
Endothelial nitric-oxide synthase (eNOS) and its bioactive product, nitric oxide (NO), mediate many endothelial cell functions, including angiogenesis and vascular permeability. For example, vascular endothelial growth factor (VEGF)-mediated angiogenesis is inhibited upon reduction of NO bioactivity both in vitro and in vivo Moreover, genetic disruption or pharmacological inhibition of eNOS attenuates angiogenesis during tissue repair, resulting in delayed wound closure. These observations emphasize that eNOS-derived NO can promote angiogenesis. Intriguingly, eNOS activity is regulated by nitric-oxide synthase trafficking inducer (NOSTRIN), which sequesters eNOS, thereby attenuating NO production. This has prompted significant interest in NOSTRIN's function in endothelial cells. We show here that NOSTRIN affects the functional transcriptome of endothelial cells by down-regulating several genes important for invasion and angiogenesis. Interestingly, the effects of NOSTRIN on endothelial gene expression were independent of eNOS activity. NOSTRIN also affected the expression of secreted cytokines involved in inflammatory responses, and ectopic NOSTRIN overexpression functionally restricted endothelial cell proliferation, invasion, adhesion, and VEGF-induced capillary tube formation. Furthermore, NOSTRIN interacted directly with TNF receptor-associated factor 6 (TRAF6), leading to the suppression of NFκB activity and inhibition of AKT activation via phosphorylation. Interestingly, TNF-α-induced NFκB pathway activation was reversed by NOSTRIN. We found that the SH3 domain of NOSTRIN is involved in the NOSTRIN-TRAF6 interaction and is required for NOSTRIN-induced down-regulation of endothelial cell proteins. These results have broad biological implications, as aberrant NOSTRIN expression leading to deactivation of the NFκB pathway, in turn triggering an anti-angiogenic cascade, might inhibit tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Shreeta Chakraborty
- From the Division of Cell Biology and Physiology, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | - Rupasri Ain
- From the Division of Cell Biology and Physiology, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| |
Collapse
|
48
|
Jiang W, Liu P, Li X, Wang P. Identification of target genes of cediranib in alveolar soft part sarcoma using a gene microarray. Oncol Lett 2017; 13:2623-2630. [PMID: 28454442 PMCID: PMC5403492 DOI: 10.3892/ol.2017.5779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/04/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to identify the target genes of cediranib and the associated signaling pathways in alveolar soft part sarcoma (ASPS). A microarray dataset (GSE32569) was obtained from the Gene Expression Omnibus database. The R software package was used for data normalization and screening of differentially expressed genes (DEGs). The Database for Annotation, Visualization and Integrated Discovery was used to perform Gene Ontology analysis. Gene Set Enrichment Analysis was performed to obtain the up- and downregulated pathways in ASPS. The Distant Regulatory Elements of co-regulated genes database was used to identify the transcription factors (TFs) that were enriched in the signaling pathways. A protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins database and was visualized using Cytoscape software. A total of 71 DEGs, including 59 upregulated genes and 12 downregulated genes, were identified. Gene sets associated with ASPS were enriched primarily in four signaling pathways: The phenylalanine metabolism pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, the taste transduction pathway and the intestinal immune network for the production of immunoglobulin A. Furthermore, 107 TFs were identified to be enriched in the MAPK signaling pathway. Certain genes, including those coding for Fms-like tyrosine kinase 1, kinase insert domain receptor, E-selectin and platelet-derived growth factor receptor D, that were associated with other genes in the PPI network, were identified. The present study identified certain potential target genes and the associated signaling pathways of cediranib action in ASPS, which may be helpful in understanding the efficacy of cediranib and the development of new targets for cediranib.
Collapse
Affiliation(s)
- Wenhua Jiang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Sino-US Center of Lymphoma and Leukemia, Tianjin 300060, P.R. China.,Department of Radiotherapy, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Pengfei Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Sino-US Center of Lymphoma and Leukemia, Tianjin 300060, P.R. China
| | - Xiaodong Li
- Department of Radiotherapy, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Ping Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Sino-US Center of Lymphoma and Leukemia, Tianjin 300060, P.R. China
| |
Collapse
|
49
|
Lapeyre-Prost A, Terme M, Pernot S, Pointet AL, Voron T, Tartour E, Taieb J. Immunomodulatory Activity of VEGF in Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:295-342. [PMID: 28215534 DOI: 10.1016/bs.ircmb.2016.09.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability of tumor cells to escape tumor immunosurveillance contributes to cancer development. Factors produced in the tumor microenvironment create "tolerizing" conditions and thereby help the tumor to evade antitumoral immune responses. VEGF-A, already known for its major role in tumor vessel growth (neoangiogenesis), was recently identified as a key factor in tumor-induced immunosuppression. In particular, VEGF-A fosters the proliferation of immunosuppressive cells, limits T-cell recruitment into tumors, and promotes T-cell exhaustion. Antiangiogenic therapies have shown significant efficacy in patients with a variety of solid tumors, preventing tumor progression by limiting tumor-induced angiogenesis. VEGF-targeting therapies have also been shown to modulate the tumor-induced immunosuppressive microenvironment, enhancing Th1-type T-cell responses and increasing tumor infiltration by T cells. The immunomodulatory properties of VEGF-targeting therapies open up new perspectives for cancer treatment, especially through strategies combining antiangiogenic drugs with immunotherapy. Preclinical models and early clinical studies of these combined approaches have given promising results.
Collapse
Affiliation(s)
- A Lapeyre-Prost
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Paris, France
| | - M Terme
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Paris, France.
| | - S Pernot
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Paris, France; Service d'hépatogastroentérologie et d'oncologie digestive, Hôpital Européen Georges Pompidou, Paris, France
| | - A-L Pointet
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Paris, France; Service d'hépatogastroentérologie et d'oncologie digestive, Hôpital Européen Georges Pompidou, Paris, France
| | - T Voron
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Paris, France; Service de chirurgie digestive, Hôpital Européen Georges Pompidou, Paris, France
| | - E Tartour
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Paris, France; Service d'immunologie biologique. Hôpital Européen Georges Pompidou, Paris, France
| | - J Taieb
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Paris, France; Service d'hépatogastroentérologie et d'oncologie digestive, Hôpital Européen Georges Pompidou, Paris, France.
| |
Collapse
|
50
|
Arezumand R, Mahdian R, Zeinali S, Hassanzadeh-Ghassabeh G, Mansouri K, Khanahmad H, Namvar-Asl N, Rahimi H, Behdani M, Cohan RA, Eavazalipour M, Ramazani A, Muyldermans S. Identification and characterization of a novel nanobody against human placental growth factor to modulate angiogenesis. Mol Immunol 2016; 78:183-192. [PMID: 27648860 DOI: 10.1016/j.molimm.2016.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/06/2016] [Accepted: 09/10/2016] [Indexed: 01/02/2023]
Abstract
Placental growth factor (PlGF), a member of vascular endothelial growth factors (VEGF) family, is considered as an important antigen associated with pathological conditions such as cancer cell growth, and metastasis. PlGF-targeting via nanobody (Nb) therefore could be beneficial to modulate these pathologies. In this work, phage-display and computational approach was employed to develop a high affinity PlGF-specific Nb. An Nb library was constructed against human recombinant PlGF (rPlGF). After panning on immobilized rPlGF the periplasmic-extract (PE) of individual colonies were screened by ELISA (PE-ELISA). The 3D structures of selected Nbs were then homology modeled and energy minimized using the AMBER force field. Binding score calculations were also assessed to reveal possible Nb-PlGF interactions. Via ELISA-based affinity/specificity determinations, the best-qualified Nb was further evaluated by proliferation, migration, 3D capillary formation, invasion assays and on Chick chorioallantoic membrane (CAM) model. An immune library of 1.5×107 individual Nb clones was constructed. By PE-ELISA 12 clones with strong signals were selected. Three out of 12 sequenced Nbs (Nb-C13, Nb-C18 and Nb-C62) showed high binding scores ranging between -378.7 and -461kcal/mol. Compared to a control Nb, Nb-C18 significantly inhibited proliferation, migration and the 3D-capillary formation of HUVEC cells (p<0.05) with an EC50 of 35nM, 42nM and 24nM and invasion of MDA-MB231was significantly suppressed (p<0.05) with an EC50 of57nM. The result of the CAM assay shows that Nb-C18 could inhibit the vascular formation in the chicken chorioallantoic membrane. This Nb can be used as anti-angiogenesis agent in future.
Collapse
Affiliation(s)
- Roghaye Arezumand
- Department of Medical Biotechnology and Molecular Science, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Molecular Medicine, Pasture Institute of Iran, Tehran, Iran
| | - Reza Mahdian
- Department of Molecular Medicine, Pasture Institute of Iran, Tehran, Iran
| | - Sirous Zeinali
- Department of Molecular Medicine, Pasture Institute of Iran, Tehran, Iran.
| | - Gholamreza Hassanzadeh-Ghassabeh
- Vrije University Brussel, Research group Cellular & Molecular Immunology, Brussels, Belgium; VIB, Nanobody Service Facility, Vrije University Brussel, Brussels, Belgium
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Khanahmad
- Department of Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nabiollah Namvar-Asl
- Laboratory of Animal Sciences, Production and Research Complex for Pasteur Institute of Iran, Tehran, Iran
| | - Hamzeh Rahimi
- Department of Molecular Medicine, Pasture Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Department of Molecular Medicine, Pasture Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Pilot Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Eavazalipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Serge Muyldermans
- Vrije University Brussel, Research group Cellular & Molecular Immunology, Brussels, Belgium; VIB, Department of Structural Biology, Vrije University Brussel, Belgium
| |
Collapse
|