1
|
Manzoor S, Khalid M, Idrees M. P2X4 receptors mediate induction of antioxidants, fibrogenic cytokines and ECM transcripts; in presence of replicating HCV in in vitro setting: An insight into role of P2X4 in fibrosis. PLoS One 2022; 17:e0259727. [PMID: 35594248 PMCID: PMC9122194 DOI: 10.1371/journal.pone.0259727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
Background & aims
Major HCV infections lead to chronic hepatitis, which results in progressive liver disease including fibrosis, cirrhosis and eventually hepatocellular carcinoma (HCC). P2X4 and P2X7 are most widely distributed receptors on hepatocytes.
Methods
Full length P2X4 (1.7kb) (Rattus norvegicus) was sub cloned in mammalian expression vector pcDNA3.1+. Two stable cell lines 293T/P2X4 (experimental) and 293T/ NV or null vector (control) were established. Both cell lines were inoculated with high viral titers human HCV sera and control human sera. Successfully infected cells harvested on day 5 and day 9 of post infection were used for further studies.
Results
The results revealed a significant increase in gene expression of P2X4 on day 5 and day 9 Post -infection in cells infected with HCV sera compared with cells inoculated with control sera. Quantitative real time PCR analysis revealed that HO-1 was significantly upregulated in presence of P2X4 in HCV infected cells (P2X4/HCV) when compared with control NV/HCV cells. A significant decrease was observed in expression of Cu/ZnSOD in presence of P2X4 in HCV infected cells compared to control NV/HCV cells. However, expression of both antioxidants was observed unaltered in cells harvested on day 9 post infection. Gene expression of angiotensin II significantly increased in HCV infected cells in presence of P2X4 on day 5 and day 9 of post infection when compared with control NV/HCV cells. A significant increase in gene expression of TNF-α and TGF-β was observed in HCV infected cells in presence of P2X4 on day 9 post infection in comparison with control (NV/HCV cells). However, gene expression of adipokine leptin was not affected in both experimental (P2X4/HCV) and control (NV/HCV) groups on day 5 and day 9 of post infection. Extracellular matrix proteins, laminin and elastin genes expression also significantly increased in presence of P2X4 (HCV/P2X4) on day 9 of post-infection compared to control group NV/HCV cells.
Conclusion
In conclusion, these findings constitute the evidence that P2X4 receptors in the presence of HCV play a significant role in the regulation of key antioxidant enzymes (HO-1, Cu/ZnSOD), in the induction of proinflammatory. cytokine (TNF-α), profibrotic cytokine (TGF-β) vasoactive cytokine (angiotensin II). P2X4 also increases the expression of extracellular matrix proteins (laminin and elastin) in the presence of HCV.
Collapse
Affiliation(s)
- Sobia Manzoor
- Center of Excellence in Molecular Biology (CEMB), University of Punjab, Lahore, Pakistan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
- * E-mail: ,
| | - Madiha Khalid
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Idrees
- Center of Excellence in Molecular Biology (CEMB), University of Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Ogle MM, Trevino R, Schell J, Varmazyad M, Horikoshi N, Gius D. Manganese Superoxide Dismutase Acetylation and Regulation of Protein Structure in Breast Cancer Biology and Therapy. Antioxidants (Basel) 2022; 11:635. [PMID: 35453320 PMCID: PMC9024550 DOI: 10.3390/antiox11040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
The loss and/or dysregulation of several cellular and mitochondrial antioxidants' expression or enzymatic activity, which leads to the aberrant physiological function of these proteins, has been shown to result in oxidative damage to cellular macromolecules. In this regard, it has been surmised that the disruption of mitochondrial networks responsible for maintaining normal metabolism is an established hallmark of cancer and a novel mechanism of therapy resistance. This altered metabolism leads to aberrant accumulation of reactive oxygen species (ROS), which, under specific physiological conditions, leads to a potential tumor-permissive cellular environment. In this regard, it is becoming increasingly clear that the loss or disruption of mitochondrial oxidant scavenging enzymes may be, in specific tumors, either an early event in transformation or exhibit tumor-promoting properties. One example of such an antioxidant enzyme is manganese superoxide dismutase (MnSOD, also referred to as SOD2), which detoxifies superoxide, a ROS that has been shown, when its normal physiological levels are disrupted, to lead to oncogenicity and therapy resistance. Here, we will also discuss how the acetylation of MnSOD leads to a change in detoxification function that leads to a cellular environment permissive for the development of lineage plasticity-like properties that may be one mechanism leading to tumorigenic and therapy-resistant phenotypes.
Collapse
Affiliation(s)
- Meredith M. Ogle
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Rolando Trevino
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Joseph Schell
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Mahboubeh Varmazyad
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - David Gius
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Park JY, Saeidi S, Kim EH, Kim DH, Na HK, Keum JS, Surh YJ. Heregulin-β1 Activates NF-E2-related Factor 2 and Induces Manganese Superoxide Dismutase Expression in Human Breast Cancer Cells via Protein Kinase B and Extracellular Signal-regulated Protein Kinase Signaling Pathways. J Cancer Prev 2021; 26:54-63. [PMID: 33842406 PMCID: PMC8020172 DOI: 10.15430/jcp.2021.26.1.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 01/30/2023] Open
Abstract
Heregulin-β1, a ligand of ErbB-2 and ErbB-3/4 receptors, has been reported to potentiate oncogenicity and metastatic potential of breast cancer cells. In the present work, treatment of human mammary cancer (MCF-7) cells with heregulin-β1 resulted in enhanced cell migration and expression of manganese superoxide dismutase (MnSOD) and its mRNA transcript. Silencing of MnSOD abrogated clonogenicity and migrative ability of MCF-7 cells. Heregulin-β1 treatment also increased nuclear translocation, antioxidant response element binding and transcriptional activity of NF-E2-related factor 2 (Nrf2). A dominant-negative mutant of Nrf2 abrogated heregulin-β1-induced MnSOD expression. Treatment with heregulin-β1 caused activation of protein kinase B (Akt) and extracellular signal-regulated protein kinase (ERK). The pharmacological inhibitors of phosphatidylinositol 3-kinase and mitogen-activated protein kinase kinase 1/2, which are upstream of Akt and ERK, respectively, attenuated heregulin-β1-induced MnSOD expression and nuclear localization of Nrf2. In conclusion, heregulin-1 induces upregulation of MnSOD and activation of Nrf2 via the Akt and ERK signaling in MCF-7 cells, which may confer metastatic potential and invasiveness of these cells.
Collapse
Affiliation(s)
- Ji-Young Park
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Soma Saeidi
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Korea
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, Korea
| | - Joo-Seob Keum
- Medical University of South Carolina, Charleston, SC, USA.,Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
4
|
Gao Y, Zhu Y, Tran EL, Tokars V, Dean AE, Quan S, Gius D. MnSOD Lysine 68 acetylation leads to cisplatin and doxorubicin resistance due to aberrant mitochondrial metabolism. Int J Biol Sci 2021; 17:1203-1216. [PMID: 33867840 PMCID: PMC8040469 DOI: 10.7150/ijbs.51184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/19/2021] [Indexed: 01/06/2023] Open
Abstract
Manganese superoxide dismutase (MnSOD) acetylation (Ac) has been shown to be a key post-translational modification important in the regulation of detoxification activity in various disease models. We have previously demonstrated that MnSOD lysine-68 (K68) acetylation (K68-Ac) leads to a change in function from a superoxide-scavenging homotetramer to a peroxidase-directed monomer. Here, we found that estrogen receptor positive (ER+) breast cancer cell lines (MCF7 and T47D), selected for continuous growth in cisplatin (CDDP) and doxorubicin (DXR), exhibited an increase in MnSOD-K68-Ac. In addition, MnSOD-K68-Ac, as modeled by the expression of a validated acetylation mimic mutant gene (MnSODK68Q ), also led to therapy resistance to CDDP and DXR, altered mitochondrial structure and morphology, and aberrant cellular metabolism. MnSODK68Q expression in mouse embryo fibroblasts (MEFs) induced an in vitro transformation permissive phenotype. Computerized molecular protein dynamics analysis of both MnSOD-K68-Ac and MnSOD-K68Q exhibited a significant change in charge distribution along the α1 and α2 helices, directly adjacent to the Mn2+ binding site, implying that this decrease in surface charge destabilizes tetrameric MnSOD, leading to an enrichment of the monomer. Finally, monomeric MnSOD, as modeled by amber codon substitution to generate MnSOD-K68-Ac or MnSOD-K68Q expression in mammalian cells, appeared to incorporate Fe to maximally induce its peroxidase activity. In summary, these findings may explain the mechanism behind the observed structural and functional change of MnSOD-K68-Ac.
Collapse
Affiliation(s)
- Yucheng Gao
- Department of Radiation Oncology and Northwestern University, Chicago, IL, USA
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, IL, USA
| | - Yueming Zhu
- Department of Radiation Oncology and Northwestern University, Chicago, IL, USA
| | - Elizabeth L. Tran
- Department of Radiation Oncology and Northwestern University, Chicago, IL, USA
| | | | - Angela E. Dean
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign
| | - Songhua Quan
- Department of Radiation Oncology and Northwestern University, Chicago, IL, USA
| | - David Gius
- Department of Radiation Oncology and Northwestern University, Chicago, IL, USA
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, IL, USA
- Department of Pharmacology, Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Radiation Oncology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, TX, USA
| |
Collapse
|
5
|
Álvarez-Izquierdo M, Guillermo Esteban J, Muñoz-Antoli C, Toledo R. Ileal proteomic changes associated with IL-25-mediated resistance against intestinal trematode infections. Parasit Vectors 2020; 13:336. [PMID: 32616023 PMCID: PMC7331265 DOI: 10.1186/s13071-020-04206-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/24/2020] [Indexed: 01/07/2023] Open
Abstract
Background Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode, which has been extensively used to investigate the factors that determine the rejection of intestinal helminths. In this sense, several studies have shown that IL-25 is critical for the development of resistance against E. caproni in mice. In fact, treatment of mice with recombinant IL-25 generates resistance against primary E. caproni infection. However, the mechanisms by which IL-25 induces resistance remain unknown. Methods To study the mechanisms responsible for resistance elicited by IL-25, we analyzed the ileal proteomic changes induced by IL-25 in mice and their potential role in resistance. To this purpose, we compared the protein expression profiles in the ileum of four experimental groups of mice: naïve controls; E. caproni-infected mice; rIL-25-treated mice; and rIL-25-treated mice exposed to E. caproni metacercariae. Results Quantitative comparison by 2D-DIGE showed significant changes in a total of 41 spots. Of these, 40 validated protein spots were identified by mass spectrometry corresponding to 24 proteins. Conclusions Our results indicate that resistance to infection is associated with the maintenance of the intestinal epithelial homeostasis and the regulation of proliferation and cell death. These results provide new insights into the proteins involved in the regulation of tissue homeostasis after intestinal infection and its transcendence in resistance.![]()
Collapse
Affiliation(s)
- María Álvarez-Izquierdo
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - J Guillermo Esteban
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Carla Muñoz-Antoli
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Rafael Toledo
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
6
|
Yabaji SM, Dhamija E, Mishra AK, Srivastava KK. ESAT-6 regulates autophagous response through SOD-2 and as a result induces intracellular survival of Mycobacterium bovis BCG. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140470. [PMID: 32535275 DOI: 10.1016/j.bbapap.2020.140470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
Mycobacterium is known for subverting the host defense machinery, and one such mechanism is the inhibition of autophagy. Here, we have demonstrated that Mycobacterium tuberculosis (MTB) secretes a virulence factor; an early secretory antigenic target protein (ESAT-6) into the phagosome, which induces the expression and activity of mitochondrial superoxide dismutase (SOD-2) of macrophages. Using a series of experiments, and Mycobacterium bovis BCG as a model strain (where ESAT-6 protein is not expressed), we have delineated that the protein regulates SOD-2 of macrophages. The expression and augmentation of SOD-2 activity were confirmed by either incubating the macrophages with ESAT-6 protein, transfection of macrophage by esat6 gene using a eukaryotic promoter vector, or by infection with different mycobacterial strains. The induction of acidification of phagosomal compartment containing bacteria was observed in cells that express low levels of SOD-2. This was further confirmed by observing a significant decrease in the M. bovis BCG intracellular load in the sod-2 knocked-down macrophages.
Collapse
Affiliation(s)
- Shivraj M Yabaji
- Division of Microbiology and Academy of Scientific and Innovative Research, CSIR-Central, Drug Research Institute, Lucknow 226031, India
| | - Ekta Dhamija
- Division of Microbiology and Academy of Scientific and Innovative Research, CSIR-Central, Drug Research Institute, Lucknow 226031, India
| | - Alok K Mishra
- Division of Microbiology and Academy of Scientific and Innovative Research, CSIR-Central, Drug Research Institute, Lucknow 226031, India
| | - Kishore K Srivastava
- Division of Microbiology and Academy of Scientific and Innovative Research, CSIR-Central, Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
7
|
Palma FR, He C, Danes JM, Paviani V, Coelho DR, Gantner BN, Bonini MG. Mitochondrial Superoxide Dismutase: What the Established, the Intriguing, and the Novel Reveal About a Key Cellular Redox Switch. Antioxid Redox Signal 2020; 32:701-714. [PMID: 31968997 PMCID: PMC7047081 DOI: 10.1089/ars.2019.7962] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Reactive oxygen species (ROS) are now widely recognized as central mediators of cell signaling. Mitochondria are major sources of ROS. Recent Advances: It is now clear that mitochondrial ROS are essential to activate responses to cellular microenvironmental stressors. Mediators of these responses reside in large part in the cytosol. Critical Issues: The primary form of ROS produced by mitochondria is the superoxide radical anion. As a charged radical anion, superoxide is restricted in its capacity to diffuse and convey redox messages outside of mitochondria. In addition, superoxide is a reductant and not particularly efficient at oxidizing targets. Because there are many opportunities for superoxide to be neutralized in mitochondria, it is not completely clear how redox cues generated in mitochondria are converted into diffusible signals that produce transient oxidative modifications in the cytosol or nucleus. Future Directions: To efficiently intervene at the level of cellular redox signaling, it seems that understanding how the generation of superoxide radicals in mitochondria is coupled with the propagation of redox messages is essential. We propose that mitochondrial superoxide dismutase (SOD2) is a major system converting diffusion-restricted superoxide radicals derived from the electron transport chain into highly diffusible hydrogen peroxide (H2O2). This enables the coupling of metabolic changes resulting in increased superoxide to the production of H2O2, a diffusible secondary messenger. As such, to determine whether there are other systems coupling metabolic changes to redox messaging in mitochondria as well as how these systems are regulated is essential.
Collapse
Affiliation(s)
- Flavio R Palma
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Chenxia He
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeanne M Danes
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Veronica Paviani
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Diego R Coelho
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Benjamin N Gantner
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marcelo G Bonini
- Division of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
8
|
The Thioredoxin System is Regulated by the ASK-1/JNK/p38/Survivin Pathway During Germ Cell Apoptosis. Molecules 2019; 24:molecules24183333. [PMID: 31547465 PMCID: PMC6767173 DOI: 10.3390/molecules24183333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/31/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022] Open
Abstract
The aim is to explore the mechanism of the apoptosis signal-regulating kinase-1 (ASK-1) signaling pathway and the involvement of the thioredoxin (Trx) system during testicular ischemia reperfusion injury (tIRI) by using ASK-1 specific inhibitor, NQDI-1. Male Sprague-Dawley rats (n = 36, 250–300 g) were equally divided into 3 groups: sham, tIRI, and tIRI + NQDI-1 (10 mg/kg, i.p, pre-reperfusion). For tIRI induction, the testicular cord and artery were occluded for 1 h followed by 4 h of reperfusion. Histological analyses, protein immunoexpression, biochemical assays, and real-time PCR were used to evaluate spermatogenesis, ASK-1/Trx axis expression, enzyme activities, and relative mRNA expression, respectively. During tIRI, ipsilateral testes underwent oxidative stress indicated by low levels of superoxide dismutase (SOD) and Glutathione (GSH), increased oxidative damage to lipids and DNA, and spermatogenic damage. This was associated with induced mRNA expression of pro-apoptosis genes, downregulation of antiapoptosis genes, increased caspase 3 activity and activation of the ASK-1/JNK/p38/survivin apoptosis pathway. In parallel, the expression of Trx, Trx reductase were significantly reduced, while the expression of Trx interacting protein (TXNIP) and the NADP+/ nicotinamide Adenine Dinucleotide phosphate (NADPH) ratio were increased. These modulations were attenuated by NQDI-1 treatment. In conclusion, the Trx system is regulated by the ASK-1/Trx/TXNIP axis to maintain cellular redox homeostasis and is linked to tIRI-induced germ cell apoptosis via the ASK-1/JNK/p38/survivin apoptosis pathway.
Collapse
|
9
|
Dhar SK, Batinic-Haberle I, St Clair DK. UVB-induced inactivation of manganese-containing superoxide dismutase promotes mitophagy via ROS-mediated mTORC2 pathway activation. J Biol Chem 2019; 294:6831-6842. [PMID: 30858178 DOI: 10.1074/jbc.ra118.006595] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/05/2019] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are major sites of energy metabolism that influence numerous cellular events, including immunity and cancer development. Previously, we reported that the mitochondrion-specific antioxidant enzyme, manganese-containing superoxide dismutase (MnSOD), has dual roles in early- and late-carcinogenesis stages. However, how defective MnSOD impacts the chain of events that lead to cell transformation in pathologically normal epidermal cells that have been exposed to carcinogens is unknown. Here, we show that UVB radiation causes nitration and inactivation of MnSOD leading to mitochondrial injury and mitophagy. In keratinocytes, exposure to UVB radiation decreased mitochondrial oxidative phosphorylation, increased glycolysis and the expression of autophagy-related genes, and enhanced AKT Ser/Thr kinase (AKT) phosphorylation and cell growth. Interestingly, UVB initiated a prosurvival mitophagy response by mitochondria-mediated reactive oxygen species (ROS) signaling via the mammalian target of the mTOR complex 2 (mTORC2) pathway. Knockdown of rictor but not raptor abrogated UVB-induced mitophagy responses. Furthermore, fractionation and proximity-ligation assays reveal that ROS-mediated mTOC2 activation in mitochondria is necessary for UVB-induced mitophagy. Importantly, pretreatment with the MnSOD mimic MnTnBuOE-2-PyP5+ (MnP) attenuates mTORC2 activation and suppresses UVB-induced mitophagy. UVB radiation exposure also increased cell growth as assessed by soft-agar colony survival and cell growth assays, and pretreatment with MnP or the known autophagy inhibitor 3-methyladenine abrogated UVB-induced cell growth. These results indicate that MnSOD is a major redox regulator that maintains mitochondrial health and show that UVB-mediated MnSOD inactivation promotes mitophagy and thereby prevents accumulation of damaged mitochondria.
Collapse
Affiliation(s)
- Sanjit K Dhar
- From the Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536 and
| | - Ines Batinic-Haberle
- the Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| | - Daret K St Clair
- From the Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536 and
| |
Collapse
|
10
|
Insights into the Dichotomous Regulation of SOD2 in Cancer. Antioxidants (Basel) 2017; 6:antiox6040086. [PMID: 29099803 PMCID: PMC5745496 DOI: 10.3390/antiox6040086] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
While loss of antioxidant expression and the resultant oxidant-dependent damage to cellular macromolecules is key to tumorigenesis, it has become evident that effective oxidant scavenging is conversely necessary for successful metastatic spread. This dichotomous role of antioxidant enzymes in cancer highlights their context-dependent regulation during different stages of tumor development. A prominent example of an antioxidant enzyme with such a dichotomous role and regulation is the mitochondria-localized manganese superoxide dismutase SOD2 (MnSOD). SOD2 has both tumor suppressive and promoting functions, which are primarily related to its role as a mitochondrial superoxide scavenger and H₂O₂ regulator. However, unlike true tumor suppressor- or onco-genes, the SOD2 gene is not frequently lost, or rarely mutated or amplified in cancer. This allows SOD2 to be either repressed or activated contingent on context-dependent stimuli, leading to its dichotomous function in cancer. Here, we describe some of the mechanisms that underlie SOD2 regulation in tumor cells. While much is known about the transcriptional regulation of the SOD2 gene, including downregulation by epigenetics and activation by stress response transcription factors, further research is required to understand the post-translational modifications that regulate SOD2 activity in cancer cells. Moreover, future work examining the spatio-temporal nature of SOD2 regulation in the context of changing tumor microenvironments is necessary to allows us to better design oxidant- or antioxidant-based therapeutic strategies that target the adaptable antioxidant repertoire of tumor cells.
Collapse
|
11
|
Bigi A, Beltrami E, Trinei M, Stendardo M, Pelicci PG, Giorgio M. Cyclophilin D counteracts P53-mediated growth arrest and promotes Ras tumorigenesis. Oncogene 2016; 35:5132-43. [PMID: 26973251 DOI: 10.1038/onc.2016.42] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 01/04/2016] [Accepted: 02/08/2016] [Indexed: 02/07/2023]
Abstract
Mitochondrial alterations induced by oncogenes are known to be crucial for tumorigenesis. Ras oncogene leads to proliferative signals through a Raf-1/MEK/ERK kinase cascade, whose components have been found to be also associated with mitochondria. The mitochondrial pepdidyl-prolyl isomerase cyclophilin D (CypD) is an important regulator of the mitochondrial permeability transition and a key player in mitochondria physiology; however, its role in cancer is still unclear. Using cellular and in vivo mouse models, we demonstrated that CypD protein upregulation induced by oncogenic Ras through the Raf-1/MEK/ERK pathway has a deterministic role in tumor progression. In fact, targeting CypD gene expression clearly affected RasV12-induced transformation, as showed by in vitro data on murine NIH3T3 and human MCF10A mammary epithelial cells. In addition, studies in xenograft and K-Ras lung cancer mouse models demonstrated that genetic deletion or pharmacological suppression of CypD efficiently prevented Ras-dependent tumor formation. Furthermore, Erbb2-mediated breast tumorigenesis was similarly prevented by targeting CypD. From a mechanistic point of view, CypD expression was associated with a reduced induction of p21(WAF1/CIP1) and p53 functions, unraveling an antagonistic function of CypD on p21-p53-mediated growth suppression. CypD activity is p53 dependent. Interestingly, a physical association between p53 and CypD was detected in mitochondria of MCF10A cells; furthermore, both in vitro and in vivo studies proved that CypD inhibitor-based treatment was able to efficiently impair this interaction, leading to a tumor formation reduction. All together, these findings indicate that the countering effect of CypD on the p53-p21 pathway participates in oncogene-dependent transformation.
Collapse
Affiliation(s)
- A Bigi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - E Beltrami
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - M Trinei
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - M Stendardo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - P G Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - M Giorgio
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| |
Collapse
|
12
|
Cortés A, Sotillo J, Muñoz-Antolí C, Martín-Grau C, Esteban JG, Toledo R. Resistance against Echinostoma caproni (Trematoda) secondary infections in mice is not dependent on the ileal protein production. J Proteomics 2016; 140:37-47. [PMID: 27040117 DOI: 10.1016/j.jprot.2016.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode, which has been widely employed to investigate the factors determining the rejection of intestinal helminths. Protein production patterns of intestinal epithelial cells are related to the infection-induced changes that determine the course of E. caproni infections. Herein, we compare the protein production profiles in the ileum of four experimental groups of mice: control; infected; dewormed and reinfected. Worm burdens were significantly lower in secondary infections, confirming the generation of partial resistance to homologous secondary infections in mice. However, quantitative comparison by 2D-DIGE showed that the protein production profile is similar in control and dewormed mice, and after primary and secondary E. caproni infections. These results showed that, unexpectedly, protein production changes in E. caproni infections are not responsible of resistance development. Fifty-one protein spots were differentially produced between control/treated and infected/reinfected mice and 37 of them were identified by mass spectrometry. The analysis of differentially abundant proteins indicate that cell metabolism and the regulation of proliferation and cell death are the most affected processes after primary and secondary E. caproni infections. These results provide new insights into the proteins involved in the regulation of tissue homeostasis after intestinal infection. SIGNIFICANCE Intestinal helminthiases are highly prevalent parasitic infections with about 1 billion people infected worldwide. In this scenario, better understanding of host-parasite relationships is needed to elucidate the factors that determine intestinal helminth rejection. The intestinal trematode Echinostoma caproni has been broadly employed in this field, with resistance against secondary homologous infections reported in mice. In this paper, new insights are provided in the regulation of tissue homeostasis after intestinal infection. The unexpected lack of an altered pattern of ileal protein production associated to resistance development suggests that this resistance depends on rapid changes, affecting the early establishment of worms, rather than the activation of later effector mechanisms. These results may contribute to the development of new control tools for the management of these parasitic infections.
Collapse
Affiliation(s)
- Alba Cortés
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Javier Sotillo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain; Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Carla Muñoz-Antolí
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Carla Martín-Grau
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - J Guillermo Esteban
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Rafael Toledo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
13
|
Sheshadri P, Kumar A. Managing odds in stem cells: insights into the role of mitochondrial antioxidant enzyme MnSOD. Free Radic Res 2016; 50:570-84. [DOI: 10.3109/10715762.2016.1155708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Li W, Zhang C, Du H, Huang V, Sun B, Harris JP, Richardson Q, Shen X, Jin R, Li G, Kevil CG, Gu X, Shi R, Zhao Y. Withaferin A suppresses the up-regulation of acetyl-coA carboxylase 1 and skin tumor formation in a skin carcinogenesis mouse model. Mol Carcinog 2015; 55:1739-1746. [PMID: 26472150 DOI: 10.1002/mc.22423] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 01/10/2023]
Abstract
Withaferin A (WA), a natural product derived from Withania somnifera, has been used in traditional oriental medicines to treat neurological disorders. Recent studies have demonstrated that this compound may have a potential for cancer treatment and a clinical trial has been launched to test WA in treating melanoma. Herein, WA's chemopreventive potential was tested in a chemically-induced skin carcinogenesis mouse model. Pathological examinations revealed that WA significantly suppressed skin tumor formation. Morphological observations of the skin tissues suggest that WA suppressed cell proliferation rather than inducing apoptosis during skin carcinogenesis. Antibody Micro array analysis demonstrated that WA blocked carcinogen-induced up-regulation of acetyl-CoA carboxylase 1 (ACC1), which was further confirmed in a skin cell transformation model. Overexpression of ACC1 promoted whereas knockdown of ACC1 suppressed anchorage-independent growth and oncogene activation of transformable skin cells. Further studies demonstrated that WA inhibited tumor promotor-induced ACC1 gene transcription by suppressing the activation of activator protein 1. In melanoma cells, WA was also able to suppress the expression levels of ACC1. Finally, results using human skin cancer tissues confirmed the up-regulation of ACC1 in tumors than adjacent normal tissues. In summary, our results suggest that withaferin A may have a potential in chemoprevention and ACC1 may serve as a critical target of WA. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wenjuan Li
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, USA.,Department of Basic Medicine, Heibei University, Baoding, China
| | - Chunjing Zhang
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, USA.,Department of Basic Medicine, Qiqihar Medical University, Qiqihar, China
| | - Hongyan Du
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, USA.,College of Biotechnology, Southern Medical University, Guangzhou, China
| | - Vincent Huang
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Brandi Sun
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - John P Harris
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Quitin Richardson
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Xinggui Shen
- Department of Pathology, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Rong Jin
- Department of Neurosurgery, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Guohong Li
- Department of Neurosurgery, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Christopher G Kevil
- Department of Pathology, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Xin Gu
- Department of Pathology, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Runhua Shi
- Feist-Weiller Cancer Center, LSU Health Sciences Center in Shreveport, Shreveport, USA
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, USA.
| |
Collapse
|
15
|
Cortés A, Sotillo J, Muñoz-Antoli C, Fried B, Esteban JG, Toledo R. Altered Protein Expression in the Ileum of Mice Associated with the Development of Chronic Infections with Echinostoma caproni (Trematoda). PLoS Negl Trop Dis 2015; 9:e0004082. [PMID: 26390031 PMCID: PMC4577103 DOI: 10.1371/journal.pntd.0004082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/22/2015] [Indexed: 12/12/2022] Open
Abstract
Background Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode that has been extensively used as experimental model to investigate the factors determining the expulsion of intestinal helminths or, in contrast, the development of chronic infections. Herein, we analyze the changes in protein expression induced by E. caproni infection in ICR mice, a host of high compatibility in which the parasites develop chronic infections. Methodology/Principal Findings To determine the changes in protein expression, a two-dimensional DIGE approach using protein extracts from the intestine of naïve and infected mice was employed; and spots showing significant differential expression were analyzed by mass spectrometry. A total of 37 spots were identified differentially expressed in infected mice (10 were found to be over-expressed and 27 down-regulated). These proteins were related to the restoration of the intestinal epithelium and the control of homeostatic dysregulation, concomitantly with mitochondrial and cytoskeletal proteins among others. Conclusion/Significance Our results suggests that changes in these processes in the ileal epithelium of ICR mice may facilitate the establishment of the parasite and the development of chronic infections. These results may serve to explain the factors determining the development of chronicity in intestinal helminth infection. Intestinal helminth infections are among the most prevalent parasitic diseases and about 1 billion people are currently infected with intestinal helminths. Incidence of intestinal helminth infections is high due to both socio-economic factors that facilitates continuous re-infections and the lack of effective vaccines. In this context, further knowledge on the host-parasite relationships is required to elucidate the factors that determine the expulsion of the intestinal helminths or, in contrast, the chronic establishment of the infections. Echinostoma caproni (Trematoda) is an intestinal trematode that has been extensively used as experimental model to investigate these factors. Depending on the host species. E. caproni is rapidly rejected or develops chronic infections. Herein, we analyze the changes in protein expression induced by E. caproni infection in a host in which the parasites develop chronic infections. These data may serve to get a better understanding of the factors determining the development of chronic intestinal infections. A total of 37 spots were identified differentially expressed. These proteins were related to the restoration of the intestinal epithelium and the control of homeostatic dysregulation, mitochondrial and cytoskeletal proteins among others. This suggests that the changes in these processes in the intestinal mucosa may facilitate the development of chronic infections.
Collapse
Affiliation(s)
- Alba Cortés
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Javier Sotillo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Carla Muñoz-Antoli
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Bernard Fried
- Department of Biology, Lafayette College, Easton, Pennsylvania, United States of America
| | - J. Guillermo Esteban
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Rafael Toledo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- * E-mail:
| |
Collapse
|
16
|
Cortés A, Muñoz-Antoli C, Martín-Grau C, Esteban JG, Grencis RK, Toledo R. Differential alterations in the small intestine epithelial cell turnover during acute and chronic infection with Echinostoma caproni (Trematoda). Parasit Vectors 2015; 8:334. [PMID: 26082180 PMCID: PMC4482164 DOI: 10.1186/s13071-015-0948-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/11/2015] [Indexed: 01/20/2023] Open
Abstract
Background The intestinal epithelium plays a multifactorial role in mucosal defense. In this sense, augmented epithelial cell turnover appears as a potential effector mechanism for the rejection of intestinal-dwelling helminths. Methods A BrdU pulse-chase experiment was conducted to investigate the infection-induced alterations on epithelial cell kinetics in hosts of high (mouse) and low (rat) compatibility with the intestinal trematode Echinostoma caproni. Results High levels of crypt-cell proliferation and tissue hyperplasia were observed in the ileum of infected mice, coinciding with the establishment of chronic infections. In contrast, the cell migration rate was about two times higher in the ileum of infected rats compared with controls, with no changes in tissue structure, indicating that an accelerated cell turnover is associated with worm expulsion. Conclusion Our results indicate that E. caproni infection induces a rapid renewal of the intestinal epithelium in the low compatible host that may impair the establishment of proper, stable host-parasite interactions, facilitating worm clearance.
Collapse
Affiliation(s)
- Alba Cortés
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Carla Muñoz-Antoli
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Carla Martín-Grau
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - J Guillermo Esteban
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Richard K Grencis
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK.
| | - Rafael Toledo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
17
|
Li W, Zhang C, Ren A, Li T, Jin R, Li G, Gu X, Shi R, Zhao Y. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation. PLoS One 2015; 10:e0126459. [PMID: 25961580 PMCID: PMC4427333 DOI: 10.1371/journal.pone.0126459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/02/2015] [Indexed: 01/01/2023] Open
Abstract
The M2 isoform of pyruvate kinase M2 (PKM2) has been shown to be up-regulated in human skin cancers. To test whether PKM2 may be a target for chemoprevention, shikonin, a natural product from the root of Lithospermum erythrorhizon and a specific inhibitor of PKM2, was used in a chemically-induced mouse skin carcinogenesis study. The results revealed that shikonin treatment suppressed skin tumor formation. Morphological examinations and immunohistochemical staining of the skin epidermal tissues suggested that shikonin inhibited cell proliferation without inducing apoptosis. Although shikonin alone suppressed PKM2 activity, it did not suppress tumor promoter-induced PKM2 activation in the skin epidermal tissues at the end of the skin carcinogenesis study. To reveal the potential chemopreventive mechanism of shikonin, an antibody microarray analysis was performed, and the results showed that the transcription factor ATF2 and its downstream target Cdk4 were up-regulated by chemical carcinogen treatment; whereas these up-regulations were suppressed by shikonin. In a promotable skin cell model, the nuclear levels of ATF2 were increased during tumor promotion, whereas this increase was inhibited by shikonin. Furthermore, knockdown of ATF2 decreased the expression levels of Cdk4 and Fra-1 (a key subunit of the activator protein 1. In summary, these results suggest that shikonin, rather than inhibiting PKM2 in vivo, suppresses the ATF2 pathway in skin carcinogenesis.
Collapse
Affiliation(s)
- Wenjuan Li
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Chunjing Zhang
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Amy Ren
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Teena Li
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Rong Jin
- Department of Neurosurgery, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Guohong Li
- Department of Neurosurgery, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Xin Gu
- Department of Pathology, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Runhua Shi
- Feist-Weiller Cancer Center, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| |
Collapse
|
18
|
Abstract
Superoxide and its derived ROS (reactive oxygen species) have been considered for a long time to be generated as toxic by-products of metabolic events. Although ROS generated in low amounts are able to act as signalling molecules, ROS appear to also play a major role in aging and in the pathogenesis of diseases such as inflammation, diabetes and cancer. Since superoxide formation, in particular in mitochondria, is often considered to be an initial step in the pathogenesis of these diseases, improper function of the MnSOD (mitochondrial superoxide dismutase; SOD2) may be critical for tissue homoeostasis. However, the underlying regulatory mechanisms appear to be multiple and this article summarizes current aspects by which MnSOD can regulate carcinogenesis under various conditions.
Collapse
|
19
|
Abstract
SIGNIFICANCE Cancer is the second leading cause of death in the United States. Considering the quality of life and treatment cost, the best way to fight against cancer is to prevent or suppress cancer development. Cancer is preventable as indicated by human papilloma virus (HPV) vaccination and tamoxifen/raloxifen treatment in breast cancer prevention. The activities of superoxide dismutases (SODs) are often lowered during early cancer development, making it a rational candidate for cancer prevention. RECENT ADVANCES SOD liposome and mimetics have been shown to be effective in cancer prevention animal models. They've also passed safety tests during early phase clinical trials. Dietary supplement-based SOD cancer prevention provides another opportunity for antioxidant-based cancer prevention. New mechanistic studies have revealed that SOD inhibits not only oncogenic activity, but also subsequent metabolic shifts during early tumorigenesis. CRITICAL ISSUES Lack of sufficient animal model studies targeting specific cancers; and lack of clinical trials and support from pharmaceutical industries also hamper efforts in further advancing SOD-based cancer prevention. FUTURE DIRECTIONS To educate and obtain support from our society that cancer is preventable. To combine SOD-based therapeutics with other cancer preventive agents to obtain synergistic effects. To formulate a dietary supplementation-based antioxidant approach for cancer prevention. Lastly, targeting specific populations who are prone to carcinogens, which can trigger oxidative stress as the mechanism of carcinogenesis.
Collapse
Affiliation(s)
- Delira Robbins
- 1 Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , Memphis, Tennessee
| | | |
Collapse
|
20
|
The functional role of MnSOD as a biomarker of human diseases and therapeutic potential of a new isoform of a human recombinant MnSOD. BIOMED RESEARCH INTERNATIONAL 2014; 2014:476789. [PMID: 24511533 PMCID: PMC3913005 DOI: 10.1155/2014/476789] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/19/2013] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) are generated as a consequence of metabolic reactions in the mitochondria of eukaryotic cells. This work describes the role of the manganese superoxide dismutase (MnSOD) as a biomarker of different human diseases and proposes a new therapeutic application for the prevention of cancer and its treatment. The paper also describes how a new form of human MnSOD was discovered, its initial application, and its clinical potentials. The MnSOD isolated from a human liposarcoma cell line (LSA) was able to kill cancer cells expressing estrogen receptors, but it did not have cytotoxic effects on normal cells. Together with its oncotoxic activity, the recombinant MnSOD (rMnSOD) exerts a radioprotective effect on normal cells irradiated with X-rays. The rMnSOD is characterized by the presence of a leader peptide, which allows the protein to enter cells: this unique property can be used in the radiodiagnosis of cancer or chemotherapy, conjugating radioactive substances or chemotherapic drugs to the leader peptide of the MnSOD. Compared to traditional chemotherapic agents, the drugs conjugated with the leader peptide of MnSOD can selectively reach and enter cancer cells, thus reducing the side effects of traditional treatments.
Collapse
|
21
|
Kim A. Modulation of MnSOD in Cancer:Epidemiological and Experimental Evidence. Toxicol Res 2013; 26:83-93. [PMID: 24278510 PMCID: PMC3834467 DOI: 10.5487/tr.2010.26.2.083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 01/08/2023] Open
Abstract
Since it was first observed in late 1970s that human cancers often had decreased manganese superoxide dismutase (MnSOD) protein expression and activity, extensive studies have been conducted to verify the association between MnSOD and cancer. Significance of MnSOD as a primary mitochondrial antioxidant enzyme is unquestionable; results from in vitro, in vivo and epidemiological studies are in harmony. On the contrary, studies regarding roles of MnSOD in cancer often report conflicting results. Although putative mechanisms have been proposed to explain how MnSOD regulates cellular proliferation, these mechanisms are not capitulated in epidemiological studies. This review discusses most recent epidemiological and experimental studies that examined the association between MnSOD and cancer, and describes emerging hypotheses of MnSOD as a mitochondrial redox regulatory enzyme and of how altered mitochondrial redox may affect physiology of normal as well as cancer cells.
Collapse
Affiliation(s)
- Aekyong Kim
- School of Pharmacy, Catholic University of Daegu, Gyeongbuk 712-702, Korea
| |
Collapse
|
22
|
Sookruksawong S, Pongsomboon S, Tassanakajon A. Genomic organization of the cytosolic manganese superoxide dismutase gene from the Pacific white shrimp, Litopenaeus vannamei, and its response to thermal stress. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1395-1405. [PMID: 23994278 DOI: 10.1016/j.fsi.2013.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/28/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
Cytosolic manganese superoxide dismutase (cMnSOD) is an important antioxidant enzyme which catalyzes the conversion of superoxides to oxygen and hydrogen peroxide in several organisms. In the Pacific white shrimp, Litopenaeus vannamei, three cMnSOD genes (LvcMnSOD1-3) have previously been characterized. Here, the genomic structure of LvcMnSOD2 and its mRNA expression in response to thermal stress was examined. Analysis of the nucleotide sequence demonstrated that LvcMnSOD2 is comprised of 2392 bp spanning from the ATG translation start site to the stop codon and contains six exons interrupted by five introns. The 5' region upstream of the LvcMnSOD2 gene contains several putative regulatory elements but lacks the accepted TATA sequence. The putative transcription factor binding elements that may be involved in LvcMnSOD2 mRNA expression level include activator protein-1 (AP-1), cAMP response element binding protein (CREB), upstream stimulatory factor (USF), CAAT-enhancer binding protein (C/EBP), nuclear factor-κB (NF-κB) and heat shock regulatory element (HSE). In addition, we compared the 5' upstream sequences of the LvcMnSOD2 gene between two shrimp strains that are resistant or susceptible to Taura syndrome virus (TSV), respectively, which revealed the absence of the USF and C/EBP elements at positions -2125 and -1986, respectively, in the TSV-susceptible shrimp line. Moreover, genomic variations between the two shrimp strains were detected in some of the putative C/EBP, USF, HSE and NF-κB transcription factor binding elements. That these genomic variations might be involved in the TSV resistance as well as in stress responses remains to be evaluated. The presence of 15 putative HSEs suggests that the expression of LvcMnSOD2 is regulated under thermal stress. Here, we found that in response to a 1 or 3 h thermal stress (35 °C), the mRNA expression levels of LvcMnSOD2 were significantly increased and then gradually decreased in the recovering phase at room temperature (25 °C) to control levels by 3 h after the heat shock. Thus, the antioxidant system may be induced to protect cells from the oxidative damage caused by thermal stress. The genomic organization of LvcMnSOD2 likely provides a clue to the mechanisms that might regulate the antioxidant defense pathway in shrimps and so potentially in marine invertebrates.
Collapse
Affiliation(s)
- Suchonma Sookruksawong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand; Biotechnology Program, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | | | | |
Collapse
|
23
|
Cyr AR, Hitchler MJ, Domann FE. Regulation of SOD2 in cancer by histone modifications and CpG methylation: closing the loop between redox biology and epigenetics. Antioxid Redox Signal 2013; 18:1946-55. [PMID: 22946823 PMCID: PMC3624766 DOI: 10.1089/ars.2012.4850] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE Manganese superoxide dismutase (SOD2), encoded by the nuclear gene SOD2, is a critical mitochondrial antioxidant enzyme whose activity has broad implications in health and disease. Thirty years ago, Oberley and Buettner elegantly folded SOD2 into cancer biology with the free radical theory of cancer, which was built on the observation that many human cancers had reduced SOD2 activity. In the original formulation, the loss of SOD2 in tumor cells produced a state of perpetual oxidative stress, which, in turn, drove genetic instability, leading to cancer development. RECENT ADVANCES In the past two decades, research has established that SOD2 transcriptional activity is controlled, at least in part, via epigenetic mechanisms at different stages in the development of human cancer. These mechanisms, which include histone methylation, histone acetylation, and DNA methylation, are increasingly recognized as being aberrantly regulated in human cancer. Indeed, the epigenetic progenitor model proposed by Henikoff posits that epigenetic events are central governing agents of carcinogenesis. Important recent advances in epigenetics research have indicated that the loss of SOD activity itself may contribute to changes in epigenetic regulation, establishing a vicious cycle that drives further epigenetic instability. CRITICAL ISSUES With these observations in mind, we propose an epigenetic revision to the free radical theory of cancer: that loss of SOD activity promotes epigenetic aberrancies, driving the epigenetic instability in tumor cells which produces broad phenotypic effects. FUTURE DIRECTIONS The development of next-generation sequencing technologies and novel approaches in systems biology and bioinformatics promise to make testing this exciting model a reality in the near future.
Collapse
Affiliation(s)
- Anthony R Cyr
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, and Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa 52242-1181, USA
| | | | | |
Collapse
|
24
|
Holley AK, Dhar SK, St Clair DK. Curbing cancer's sweet tooth: is there a role for MnSOD in regulation of the Warburg effect? Mitochondrion 2013; 13:170-88. [PMID: 22820117 PMCID: PMC4604438 DOI: 10.1016/j.mito.2012.07.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/04/2012] [Accepted: 07/10/2012] [Indexed: 01/27/2023]
Abstract
Reactive oxygen species (ROS), while vital for normal cellular function, can have harmful effects on cells, leading to the development of diseases such as cancer. The Warburg effect, the shift from oxidative phosphorylation to glycolysis, even in the presence of adequate oxygen, is an important metabolic change that confers many growth and survival advantages to cancer cells. Reactive oxygen species are important regulators of the Warburg effect. The mitochondria-localized antioxidant enzyme manganese superoxide dismutase (MnSOD) is vital to survival in our oxygen-rich atmosphere because it scavenges mitochondrial ROS. MnSOD is important in cancer development and progression. However, the significance of MnSOD in the regulation of the Warburg effect is just now being revealed, and it may significantly impact the treatment of cancer in the future.
Collapse
Affiliation(s)
- Aaron K. Holley
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| | - Sanjit Kumar Dhar
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| | - Daret K. St Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
25
|
Chiou YS, Sang S, Cheng KH, Ho CT, Wang YJ, Pan MH. Peracetylated (−)-epigallocatechin-3-gallate (AcEGCG) potently prevents skin carcinogenesis by suppressing the PKD1-dependent signaling pathway in CD34 + skin stem cells and skin tumors. Carcinogenesis 2013; 34:1315-22. [DOI: 10.1093/carcin/bgt042] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
26
|
Ansenberger-Fricano K, Ganini DDS, Mao M, Chatterjee S, Dallas S, Mason RP, Stadler K, Santos JH, Bonini MG. The peroxidase activity of mitochondrial superoxide dismutase. Free Radic Biol Med 2013; 54:116-24. [PMID: 22982047 PMCID: PMC4155036 DOI: 10.1016/j.freeradbiomed.2012.08.573] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/03/2012] [Accepted: 08/20/2012] [Indexed: 12/28/2022]
Abstract
Manganese superoxide dismutase (MnSOD) is an integral mitochondrial protein known as a first-line antioxidant defense against superoxide radical anions produced as by-products of the electron transport chain. Recent studies have shaped the idea that by regulating the mitochondrial redox status and H(2)O(2) outflow, MnSOD acts as a fundamental regulator of cellular proliferation, metabolism, and apoptosis, thereby assuming roles that extend far beyond its proposed antioxidant functions. Accordingly, allelic variations of MnSOD that have been shown to augment levels of MnSOD in mitochondria result in a 10-fold increase in prostate cancer risk. In addition, epidemiologic studies indicate that reduced glutathione peroxidase activity along with increases in H(2)O(2) further increase cancer risk in the face of MnSOD overexpression. These facts led us to hypothesize that, like its Cu,ZnSOD counterpart, MnSOD may work as a peroxidase, utilizing H(2)O(2) to promote mitochondrial damage, a known cancer risk factor. Here we report that MnSOD indeed possesses peroxidase activity that manifests in mitochondria when the enzyme is overexpressed.
Collapse
Affiliation(s)
- Kristine Ansenberger-Fricano
- Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 909 S. Wolcott Ave., COMRB 3020, Chicago, IL, 60612
| | - Douglas da Silva Ganini
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Mao Mao
- Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 909 S. Wolcott Ave., COMRB 3020, Chicago, IL, 60612
| | - Saurabh Chatterjee
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Shannon Dallas
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Ronald P. Mason
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Janine H. Santos
- Department of Pharmacology and Physiology, New Jersey Medical School of the UMDNJ, Newark, NJ, 07103, USA
| | - Marcelo G. Bonini
- Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 909 S. Wolcott Ave., COMRB 3020, Chicago, IL, 60612
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| |
Collapse
|
27
|
Candas D, Fan M, Nantajit D, Vaughan AT, Murley JS, Woloschak GE, Grdina DJ, Li JJ. CyclinB1/Cdk1 phosphorylates mitochondrial antioxidant MnSOD in cell adaptive response to radiation stress. J Mol Cell Biol 2012; 5:166-75. [PMID: 23243068 DOI: 10.1093/jmcb/mjs062] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Manganese superoxide dismutase (MnSOD), a major antioxidant enzyme within the mitochondria, is responsible for the detoxification of free radicals generated by cellular metabolism and environmental/therapeutic irradiation. Cell cycle-dependent kinase Cdk1, along with its regulatory partner CyclinB1, plays important roles in the regulation of cell cycle progression as well as in genotoxic stress response. Herein, we identified the presence of the minimal Cdk1 phosphorylation consensus sequence ([S/T]-P; Ser106) in human MnSOD, suggesting Cdk1 as a potential upstream kinase of MnSOD. A substantial amount of CyclinB1/Cdk1 was found to localize in the mitochondrion upon irradiation. The enhanced Cdk1/MnSOD interaction and MnSOD phosphorylation were detected in both the irradiated human cells and mouse tissues. We report that CyclinB1/Cdk1 can regulate MnSOD through reversible Ser106 phosphorylation, both in vivo and in vitro. The CyclinB1/Cdk1-mediated MnSOD Ser106 resulted in increased MnSOD activity and stability, along with improved mitochondrial function and cellular resistance to radiation-induced apoptosis. These results demonstrate a unique pro-survival mechanism by which cells enhance the survival via CyclinB1/Cdk1-mediated MnSOD activation under genotoxic stress conditions.
Collapse
Affiliation(s)
- Demet Candas
- Department of Radiation Oncology, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Robbins D, Ponville J, Morris K, Zhao Y. Involvement of PTEN in TPA-mediated p53-activation in mouse skin epidermal JB6 cells. FEBS Lett 2012; 586:4108-13. [PMID: 23123091 DOI: 10.1016/j.febslet.2012.10.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/11/2012] [Accepted: 10/14/2012] [Indexed: 10/27/2022]
Abstract
Our recent studies suggest a unique role of p53 during the early stage of cancer development. However, how p53 activation is regulated during TPA treatment remains elusive. We used murine skin epidermal JB6 promotion-sensitive (P+) and promotion resistant (P-) cells to observe differential expression of PTEN during TPA-induced p53 activation. Total PTEN expression was decreased in only P+ cells. Nuclear expression of PTEN increased and complex formation between PTEN and p53 occurred in P+ cells treated with TPA. Knocking down PTEN expression via siRNA inhibited TPA-induced Bax expression. Similar effects were seen with the p53 inhibitor, pifithrin-alpha. Cells that were transfected with siRNA to PTEN exhibited enhanced tumorigenicity. Our findings suggest PTEN mediates TPA-induced p53 activation.
Collapse
Affiliation(s)
- Delira Robbins
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | | | | | | |
Collapse
|
29
|
Kumar R, Ansari KM, Chaudhari BP, Dhawan A, Dwivedi PD, Jain SK, Das M. Topical application of ochratoxin A causes DNA damage and tumor initiation in mouse skin. PLoS One 2012; 7:e47280. [PMID: 23071775 PMCID: PMC3468467 DOI: 10.1371/journal.pone.0047280] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 09/13/2012] [Indexed: 11/19/2022] Open
Abstract
Skin cancer is one of the most common forms of cancer and 2-3 million new cases are being diagnosed globally each year. Along with UV rays, environmental pollutants/chemicals including mycotoxins, contaminants of various foods and feed stuffs, could be one of the aetiological factors of skin cancer. In the present study, we evaluated the DNA damaging potential and dermal carcinogenicity of a mycotoxin, ochratoxin A (OTA), with the rationale that dermal exposure to OTA in workers may occur during their involvement in pre and post harvest stages of agriculture. A single topical application of OTA (20-80 µg/mouse) resulted in significant DNA damage along with elevated γ-H2AX level in skin. Alteration in oxidative stress markers such as lipid peroxidation, protein carbonyl, glutathione content and antioxidant enzymes was observed in a dose (20-80 µg/mouse) and time-dependent (12-72 h) manner. The oxidative stress was further emphasized by the suppression of Nrf2 translocation to nucleus following a single topical application of OTA (80 µg/mouse) after 24 h. OTA (80 µg/mouse) application for 12-72 h caused significant enhancement in- (a) reactive oxygen species generation, (b) activation of ERK1/2, p38 and JNK MAPKs, (c) cell cycle arrest at G0/G1 phase (37-67%), (d) induction of apoptosis (2.0-11.0 fold), (e) expression of p53, p21/waf1, (f) Bax/Bcl-2 ratio, (g) cytochrome c level, (h) activities of caspase 9 (1.2-1.8 fold) and 3 (1.7-2.2 fold) as well as poly ADP ribose polymerase cleavage. In a two-stage mouse skin tumorigenesis protocol, it was observed that a single topical application of OTA (80 µg/mouse) followed by twice weekly application of 12-O-tetradecanoylphorbol-13-acetate for 24 week leads to tumor formation. These results suggest that OTA has skin tumor initiating property which may be related to oxidative stress, MAPKs signaling and DNA damage.
Collapse
Affiliation(s)
- Rahul Kumar
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Kausar M. Ansari
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- * E-mail: (MD); (KMA)
| | - Bhushan P. Chaudhari
- Pathology Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Alok Dhawan
- Nanotoxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Premendra D. Dwivedi
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Swatantra K. Jain
- Department of Biotechnology, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Mukul Das
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- * E-mail: (MD); (KMA)
| |
Collapse
|
30
|
KLF10, transforming growth factor-β-inducible early gene 1, acts as a tumor suppressor. Biochem Biophys Res Commun 2012; 419:388-94. [PMID: 22349513 DOI: 10.1016/j.bbrc.2012.02.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/05/2012] [Indexed: 11/20/2022]
Abstract
Krüppel-like factor 10 (KLF10) has been suggested to be a putative tumor suppressor. In the present study, we generated KLF10 deficient mice to explore this hypothesis in vivo. KLF10 deficient mice exhibited increased predisposition to skin tumorigenesis and markedly accelerated papilloma development after DMBA/TPA treatment. On the other hand, KLF10 deficient keratinocytes showed increased proliferation and apoptosis. In colony formation assays after oncogenic H-Ras transfection, KLF10 deficient mouse embryonic fibroblasts (MEFs) yielded more colonies than wild-type MEFs. Furthermore, KLF10 dose-dependently activated p21(WAF1/CIP1) transcription, which was independent of p53 and Sp1 binding sites in p21(WAF1/CIP1) promoter. This study demonstrates that KLF10 is a tumor suppressor and that it targets p21(WAF1/CIP1) transcription.
Collapse
|
31
|
Holley AK, Dhar SK, Xu Y, St. Clair DK. Manganese superoxide dismutase: beyond life and death. Amino Acids 2012; 42:139-58. [PMID: 20454814 PMCID: PMC2975048 DOI: 10.1007/s00726-010-0600-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 04/16/2010] [Indexed: 02/07/2023]
Abstract
Manganese superoxide dismutase (MnSOD) is a nuclear-encoded antioxidant enzyme that localizes to the mitochondria. Expression of MnSOD is essential for the survival of aerobic life. Transgenic mice expressing a luciferase reporter gene under the control of the human MnSOD promoter demonstrate that the level of MnSOD is reduced prior to the formation of cancer. Overexpression of MnSOD in transgenic mice reduces the incidences and multiplicity of papillomas in a DMBA/TPA skin carcinogenesis model. However, MnSOD deficiency does not lead to enhanced tumorigenicity of skin tissue similarly treated because MnSOD can modulate both the p53-mediated apoptosis and AP-1-mediated cell proliferation pathways. Apoptosis is associated with an increase in mitochondrial levels of p53 suggesting a link between MnSOD deficiency and mitochondrial-mediated apoptosis. Activation of p53 is preventable by application of a SOD mimetic (MnTE-2-PyP(5+)). Thus, p53 translocation to mitochondria and subsequent inactivation of MnSOD explain the observed mitochondrial dysfunction that leads to transcription-dependent mechanisms of p53-induced apoptosis. Administration of MnTE-2-PyP(5+) following apoptosis but prior to proliferation leads to suppression of protein carbonyls and reduces the activity of AP-1 and the level of the proliferating cellular nuclear antigen, without reducing the activity of p53 or DNA fragmentation following TPA treatment. Remarkably, the incidence and multiplicity of skin tumors are drastically reduced in mice that receive MnTE-2-PyP(5+) prior to cell proliferation. The results demonstrate the role of MnSOD beyond its essential role for survival and suggest a novel strategy for an antioxidant approach to cancer intervention.
Collapse
Affiliation(s)
| | | | - Yong Xu
- University of Kentucky, Lexington, USA
| | | |
Collapse
|
32
|
Holley AK, Bakthavatchalu V, Velez-Roman JM, St. Clair DK. Manganese superoxide dismutase: guardian of the powerhouse. Int J Mol Sci 2011; 12:7114-62. [PMID: 22072939 PMCID: PMC3211030 DOI: 10.3390/ijms12107114] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/28/2011] [Accepted: 10/08/2011] [Indexed: 12/18/2022] Open
Abstract
The mitochondrion is vital for many metabolic pathways in the cell, contributing all or important constituent enzymes for diverse functions such as β-oxidation of fatty acids, the urea cycle, the citric acid cycle, and ATP synthesis. The mitochondrion is also a major site of reactive oxygen species (ROS) production in the cell. Aberrant production of mitochondrial ROS can have dramatic effects on cellular function, in part, due to oxidative modification of key metabolic proteins localized in the mitochondrion. The cell is equipped with myriad antioxidant enzyme systems to combat deleterious ROS production in mitochondria, with the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) acting as the chief ROS scavenging enzyme in the cell. Factors that affect the expression and/or the activity of MnSOD, resulting in diminished antioxidant capacity of the cell, can have extraordinary consequences on the overall health of the cell by altering mitochondrial metabolic function, leading to the development and progression of numerous diseases. A better understanding of the mechanisms by which MnSOD protects cells from the harmful effects of overproduction of ROS, in particular, the effects of ROS on mitochondrial metabolic enzymes, may contribute to the development of novel treatments for various diseases in which ROS are an important component.
Collapse
Affiliation(s)
- Aaron K. Holley
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| | - Vasudevan Bakthavatchalu
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| | - Joyce M. Velez-Roman
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| | - Daret K. St. Clair
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| |
Collapse
|
33
|
Dhar SK, Tangpong J, Chaiswing L, Oberley TD, St Clair DK. Manganese superoxide dismutase is a p53-regulated gene that switches cancers between early and advanced stages. Cancer Res 2011; 71:6684-95. [PMID: 22009531 DOI: 10.1158/0008-5472.can-11-1233] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Manganese superoxide dismutase (MnSOD) plays a critical role in the survival of aerobic life, and its aberrant expression has been implicated in carcinogenesis and tumor resistance to therapy. However, despite extensive studies in MnSOD regulation and its role in cancer, when and how the alteration of MnSOD expression occurs during the process of tumor development in vivo are unknown. Here, we generated transgenic mice expressing a luciferase reporter gene under the control of human MnSOD promoter-enhancer elements and investigated the changes of MnSOD transcription using the 7,12-dimethylbenz(α)anthracene (DMBA)/12-O-tetradecanoylphorbol-l3-acetate (TPA) multistage skin carcinogenesis model. The results show that MnSOD expression was suppressed at a very early stage but increased at late stages of skin carcinogenesis. The suppression and subsequent restoration of MnSOD expression were mediated by two transcription-factors, Sp1 and p53. Exposure to DMBA and TPA activated p53 and decreased MnSOD expression via p53-mediated suppression of Sp1 binding to the MnSOD promoter in normal-appearing skin and benign papillomas. In squamous cell carcinomas, Sp1 binding increased because of the loss of functional p53. We used chromatin immunoprecipitation, electrophoretic mobility shift assay, and both knockdown and overexpression of Sp1 and p53 to verify their roles in the expression of MnSOD at each stage of cancer development. The results identify MnSOD as a p53-regulated gene that switches between early and advanced stages of cancer. These findings also provide strong support for the development of means to reactivate p53 for the prevention of tumor progression.
Collapse
Affiliation(s)
- Sanjit K Dhar
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | |
Collapse
|
34
|
Oxidative Stress Induced by MnSOD-p53 Interaction: Pro- or Anti-Tumorigenic? JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:101465. [PMID: 22007296 PMCID: PMC3189584 DOI: 10.1155/2012/101465] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/20/2011] [Accepted: 08/03/2011] [Indexed: 02/07/2023]
Abstract
The formation of reactive oxygen species (ROS) is a result of incomplete reduction of molecular oxygen during cellular metabolism. Although ROS has been shown to act as signaling molecules, it is known that these reactive molecules can act as prooxidants causing damage to DNA, proteins, and lipids, which over time can lead to disease propagation and ultimately cell death. Thus, restoring the protective antioxidant capacity of the cell has become an important target in therapeutic intervention. In addition, a clearer understanding of the disease stage and molecular events that contribute to ROS generation during tumor promotion can lead to novel approaches to enhance target specificity in cancer progression. This paper will focus on not only the traditional routes of ROS generation, but also on new mechanisms via the tumor suppressor p53 and the interaction between p53 and MnSOD, the primary antioxidant enzyme in mitochondria. In addition, the potential consequences of the p53-MnSOD interaction have also been discussed. Lastly, we have highlighted clinical implications of targeting the p53-MnSOD interaction and discussed recent therapeutic mechanisms utilized to modulate both p53 and MnSOD as a method of tumor suppression.
Collapse
|
35
|
Bakthavatchalu V, Dey S, Xu Y, Noel T, Jungsuwadee P, Holley AK, Dhar SK, Batinic-Haberle I, St Clair DK. Manganese superoxide dismutase is a mitochondrial fidelity protein that protects Polγ against UV-induced inactivation. Oncogene 2011; 31:2129-39. [PMID: 21909133 PMCID: PMC3237716 DOI: 10.1038/onc.2011.407] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Manganese superoxide dismutase is a nuclear encoded primary antioxidant enzyme localized exclusively in the mitochondrial matrix. Genotoxic agents, such as ultraviolet (UV) radiation, generates oxidative stress and cause mitochondrial DNA (mtDNA) damage. The mtDNA polymerase (Polγ), a major constituent of nucleoids, is responsible for the replication and repair of the mitochondrial genome. Recent studies suggest that the mitochondria contain fidelity proteins and MnSOD constitutes an integral part of the nucleoid complex. However, it is not known whether or how MnSOD participates in the mitochondrial repair processes. Using skin tissue from C57BL/6 mice exposed to UVB radiation, we demonstrate that MnSOD has a critical role in preventing mtDNA damage by protecting the function of Polγ. Quantitative-PCR analysis shows an increase in mtDNA damage after UVB exposure. Immunofluorescence and immunoblotting studies demonstrate p53 translocation to the mitochondria and interaction with Polγ after UVB exposure. The mtDNA immunoprecipitation assay with Polγ and p53 antibodies in p53(+/+) and p53(-/-) mice demonstrates an interaction between MnSOD, p53 and Polγ. The results suggest that these proteins form a complex for the repair of UVB-associated mtDNA damage. The data also demonstrate that UVB exposure injures the mtDNA D-loop in a p53-dependent manner. Using MnSOD-deficient mice we demonstrate that UVB-induced mtDNA damage is MnSOD dependent. Exposure to UVB results in nitration and inactivation of Polγ, which is prevented by addition of the MnSOD mimetic Mn(III)TE-2-PyP(5+). These results demonstrate for the first time that MnSOD is a fidelity protein that maintains the activity of Polγ by preventing UVB-induced nitration and inactivation of Polγ. The data also demonstrate that MnSOD has a role along with p53 to prevent mtDNA damage.
Collapse
Affiliation(s)
- V Bakthavatchalu
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hempel N, Carrico PM, Melendez JA. Manganese superoxide dismutase (Sod2) and redox-control of signaling events that drive metastasis. Anticancer Agents Med Chem 2011; 11:191-201. [PMID: 21434856 DOI: 10.2174/187152011795255911] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/08/2011] [Indexed: 01/06/2023]
Abstract
Manganese superoxide dismutase (Sod2) has emerged as a key enzyme with a dual role in tumorigenic progression. Early studies were primarily directed at defining the tumor suppressive function of Sod2 based on its low level expression in many tumor types. It is now commonly held that loss of Sod2 expression is likely an early event in tumor progression allowing for further propagation of the tumorigenic phenotype resulting from steady state increases in free radical production. Increases in free radical load have also been linked to defects in mitochondrial function and metastatic disease progression. It was initially believed that Sod2 loss may propagate metastatic disease progression, in reality both epidemiologic and experimental evidence indicate that Sod2 levels increase in many tumor types as they progress from early stage non-invasive disease to late stage metastatic disease. Sod2 overexpression in many instances enhances the metastatic phenotype that is reversed by efficient H(2)O(2) scavenging. This review evaluates the many sequelae associated with increases in Sod2 that impinge on the metastatic phenotype. The ability to use Sod2 to modulate the cellular redox-environment has allowed for the identification of redox-responsive signaling events that drive malignancy, such as invasion, migration and prolonged tumor cell survival. Further studies of these redox-driven events will help in the development of targeted therapeutic strategies to efficiently restrict redox-signaling essential for malignant progression.
Collapse
Affiliation(s)
- Nadine Hempel
- Center for Immunology and Microbial Diseases, Albany Medical College, 47 New Scotland Avenue, Albany NY 12208, USA
| | | | | |
Collapse
|
37
|
In vitro and in vivo evaluation of the anticarcinogenic and cancer chemopreventive potential of a flavonoid-rich fraction from a traditional Indian herb Selaginella bryopteris. Br J Nutr 2011; 106:1154-68. [PMID: 21736819 DOI: 10.1017/s0007114511001498] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prevention of cancer through nutritional intervention has gained significant recognition in recent years. Evidence revealed from mechanistic investigations coupled with molecular epidemiology show an inverse association of dietary flavonoids intake with cancer risk. The chemopreventive and anticarcinogenic potential of Selaginella bryopteris, a traditional Indian herb referred to as ‘Sanjeevani’ in the Ayurvedic system of medicine, was examined in the present study. Comprehensive in vitro and in vivo studies were conducted on the flavonoid-rich benzene fraction of the aqueous extract that demonstrated a significant cytoprotective activity. Biomarkers of chemoprevention such as proliferative index and status of cell-cycle regulatory proteins, antioxidant property, anti-inflammatory effect, reversal of stress-induced senescence and genoprotective effect were investigated in human and murine cell cultures. Chemopreventive potential was assessed in benzopyrene-induced lung carcinogenesis and 7,12-dimethyl benz(a)anthracene-mediated skin papillomagenesis test models. Inhibition of DNA fragmentation, unperturbed cell-cycle regulation, maintenance of intracellular antioxidant defence, anti-inflammatory activity, prevention of stress-induced senescence and genoprotective effects against methyl isocyanate carcinogenicity was observed. Medium-term anticarcinogenicity and two-stage skin papillomagenesis tests strongly substantiated our in vitro observations. Results from the present study provide evidence of anticarcinogenic and chemopreventive activities of S. bryopteris hitherto unreported and reaffirm the nutritional significance of flavonoids in cancer prevention.
Collapse
|
38
|
Robbins D, Zhao Y. The role of manganese superoxide dismutase in skin cancer. Enzyme Res 2011; 2011:409295. [PMID: 21603266 PMCID: PMC3092576 DOI: 10.4061/2011/409295] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/26/2011] [Indexed: 01/11/2023] Open
Abstract
Recent studies have shown that antioxidant enzyme expression and activity are drastically reduced in most human skin diseases, leading to propagation of oxidative stress and continuous disease progression. However, antioxidants, an endogenous defense system against reactive oxygen species (ROS), can be induced by exogenous sources, resulting in protective effects against associated oxidative injury. Many studies have shown that the induction of antioxidants is an effective strategy to combat various disease states. In one approach, a SOD mimetic was applied topically to mouse skin in the two-stage skin carcinogenesis model. This method effectively reduced oxidative injury and proliferation without interfering with apoptosis. In another approach, Protandim, a combination of 5 well-studied medicinal plants, was given via dietary administration and significantly decreased tumor incidence and multiplicity by 33% and 57%, respectively. These studies suggest that alterations in antioxidant response may be a novel approach to chemoprevention. This paper focuses on how regulation of antioxidant expression and activity can be modulated in skin disease and the potential clinical implications of antioxidant-based therapies.
Collapse
Affiliation(s)
- Delira Robbins
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | | |
Collapse
|
39
|
Wang F, Fu X, Chen X, Chen X, Zhao Y. Mitochondrial uncoupling inhibits p53 mitochondrial translocation in TPA-challenged skin epidermal JB6 cells. PLoS One 2010; 5:e13459. [PMID: 20976134 PMCID: PMC2956637 DOI: 10.1371/journal.pone.0013459] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 09/25/2010] [Indexed: 12/02/2022] Open
Abstract
The tumor suppressor p53 is known to be able to trigger apoptosis in response to DNA damage, oncogene activation, and certain chemotherapeutic drugs. In addition to its transcriptional activation, a fraction of p53 translocates to mitochondria at the very early stage of apoptosis, which eventually contributes to the loss of mitochondrial membrane potential, generation of reactive oxygen species (ROS), cytochrome c release, and caspase activation. However, the mitochondrial events that affect p53 translocation are still unclear. Since mitochondrial uncoupling has been suggested to contribute to cancer development, herein, we studied whether p53 mitochondrial translocation and subsequent apoptosis were affected by mitochondrial uncoupling using chemical protonophores, and further verified the results using a siRNA approach in murine skin epidermal JB6 cells. Our results showed that mitochondrial uncoupling blocked p53 mitochondrial translocation induced by 12-O-tetradecanoylphorbol 13-acetate (TPA), a known tumor promoter to induce p53-mediated apoptosis in skin carcinogenesis. This blocking effect, in turn, led to preservation of mitochondrial functions, and eventually suppression of caspase activity and apoptosis. Moreover, uncoupling protein 2 (UCP2), a potential suppressor of ROS in mitochondria, is important for TPA-induced cell transformation in JB6 cells. UCP2 knock down cells showed enhanced p53 mitochondrial translocation, and were less prone to form colonies in soft agar after TPA treatment. Altogether, our data suggest that mitochondrial uncoupling may serve as an important regulator of p53 mitochondrial translocation and p53-mediated apoptosis during early tumor promotion. Therefore, targeting mitochondrial uncoupling may be considered as a novel treatment strategy for cancer.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
- College of Life Science, Jilin University, Changchun, People's Republic of China
| | - Xueqi Fu
- College of Life Science, Jilin University, Changchun, People's Republic of China
| | - Xia Chen
- College of Life Science, Jilin University, Changchun, People's Republic of China
| | - Xinbin Chen
- Department of Surgical and Radiological Sciences, University of California Davis, Davis, California, United States of America
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| |
Collapse
|
40
|
Abstract
According to a "canonical" view, reactive oxygen species (ROS) positively contribute, in different ways, to carcinogenesis and to malignant progression of tumor cells: they drive genomic damage and genetic instability, transduce, as signaling intermediates, mitogenic and survival inputs by growth factor receptors and adhesion molecules, promote cell motility and shape the tumor microenvironment by inducing inflammation/repair and angiogenesis. Chemopreventive and tumor-inhibitory effects of endogenous, diet-derived or supplemented antioxidants largely support this notion. However, emerging lines of evidence indicates that tumor cells also need to defend themselves from oxidative damage in order to survive and successfully spread at distance. This "heresy" has recently received important impulse from studies on the role of antioxidant capacity in cancer stem cells self-renewal and resistance to therapy; additionally, the transforming activity of some oncogenes has been unexpectedly linked to their capacity to maintain elevated intracellular levels of reduced glutathione (GSH), the principal redox buffer. These studies underline the importance of cellular antioxidant capacity in metastasis, as the result of a complex cell program involving enhanced motility and a profound change in energy metabolism. The glycolytic switch (Warburg effect) observed in malignant tissues is triggered by mitochondrial oxidative damage and/or activation of redox-sensitive transcription factors, and results in an increase of cell resistance to oxidants. On the other hand, cytoskeleton rearrangement underlying cell motile and tumor-aggressive behavior use ROS as intermediates and are therefore facilitated by oxidative stress. Along this line of speculation, we suggest that metastasis represents an integrated strategy for cancer cells to avoid oxidative damage and escape excess ROS in the primary tumor site, explaning why redox signaling pathways are often up-regulated in malignancy and metastasis.
Collapse
Affiliation(s)
- Giovambattista Pani
- Institute of General Pathology, Catholic University Medical School, Rome, Italy.
| | | | | |
Collapse
|
41
|
Robbins D, Gu X, Shi R, Liu J, Wang F, Ponville J, McCord JM, Zhao Y. The chemopreventive effects of Protandim: modulation of p53 mitochondrial translocation and apoptosis during skin carcinogenesis. PLoS One 2010; 5:e11902. [PMID: 20689586 PMCID: PMC2912769 DOI: 10.1371/journal.pone.0011902] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 07/04/2010] [Indexed: 11/19/2022] Open
Abstract
Protandim, a well defined dietary combination of 5 well-established medicinal plants, is known to induce endogenous antioxidant enzymes, such as manganese superoxide dismutase (MnSOD). Our previous studies have shown through the induction of various antioxidant enzymes, products of oxidative damage can be decreased. In addition, we have shown that tumor multiplicity and incidence can be decreased through the dietary administration of Protandim in the two-stage skin carcinogenesis mouse model. It has been demonstrated that cell proliferation is accommodated by cell death during DMBA/TPA treatment in the two-stage skin carcinogenesis model. Therefore, we investigated the effects of the Protandim diet on apoptosis; and proposed a novel mechanism of chemoprevention utilized by the Protandim dietary combination. Interestingly, Protandim suppressed DMBA/TPA induced cutaneous apoptosis. Recently, more attention has been focused on transcription-independent mechanisms of the tumor suppressor, p53, that mediate apoptosis. It is known that cytoplasmic p53 rapidly translocates to the mitochondria in response to pro-apoptotic stress. Our results showed that Protandim suppressed the mitochondrial translocation of p53 and mitochondrial outer membrane proteins such as Bax. We examined the levels of p53 and MnSOD expression/activity in murine skin JB6 promotion sensitive (P+) and promotion-resistant (P-) epidermal cells. Interestingly, p53 was induced only in P+ cells, not P- cells; whereas MnSOD is highly expressed in P- cells when compared to P+ cells. In addition, wild-type p53 was transfected into JB6 P- cells. We found that the introduction of wild-type p53 promoted transformation in JB6 P- cells. Our results suggest that suppression of p53 and induction of MnSOD may play an important role in the tumor suppressive activity of Protandim.
Collapse
Affiliation(s)
- Delira Robbins
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Runhua Shi
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Jianfeng Liu
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Fei Wang
- College of Life Science, Jilin University, Changchun, Jilin Province, China
| | - Jacqulyne Ponville
- Department of Chemistry, Nicholls State University, Thibodaux, Louisiana, United States of America
| | - Joe M. McCord
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado, United States of America
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| |
Collapse
|
42
|
Kim A, Joseph S, Khan A, Epstein CJ, Sobel R, Huang TT. Enhanced expression of mitochondrial superoxide dismutase leads to prolonged in vivo cell cycle progression and up-regulation of mitochondrial thioredoxin. Free Radic Biol Med 2010; 48:1501-12. [PMID: 20188820 PMCID: PMC2945707 DOI: 10.1016/j.freeradbiomed.2010.02.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 02/06/2010] [Accepted: 02/19/2010] [Indexed: 02/09/2023]
Abstract
Mn superoxide dismutase (MnSOD) is an important mitochondrial antioxidant enzyme, and elevated MnSOD levels have been shown to reduce tumor growth in part by suppressing cell proliferation. Studies with fibroblasts have shown that increased MnSOD expression prolongs cell cycle transition time in G1/S and favors entrance into the quiescent state. To determine if the same effect occurs during tissue regeneration in vivo, we used a transgenic mouse system with liver-specific MnSOD expression and a partial hepatectomy paradigm to induce synchronized in vivo cell proliferation during liver regeneration. We show in this experimental system that a 2.6-fold increase in MnSOD activity leads to delayed entry into S phase, as measured by reduction in bromodeoxyuridine (BrdU) incorporation and decreased expression of proliferative cell nuclear antigen (PCNA). Thus, compared to control mice with baseline MnSOD levels, transgenic mice with increased MnSOD expression in the liver have 23% fewer BrdU-positive cells and a marked attenuation of PCNA expression. The increase in MnSOD activity also leads to an increase in the mitochondrial form of thioredoxin (thioredoxin 2), but not in several other peroxidases examined, suggesting the importance of thioredoxin 2 in maintaining redox balance in mitochondria with elevated levels of MnSOD.
Collapse
Affiliation(s)
- Aekyong Kim
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Suman Joseph
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Aslam Khan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Charles J Epstein
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Raymond Sobel
- Department of Pathology, Stanford University, Stanford, CA, USA
- Laboratory Service, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Ting-Ting Huang
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- GRECC, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Corresponding author: Ting-Ting Huang, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, and GRECC, VA Palo Alto Health Care System, 3801 Miranda Ave. Building 100, D3-101, Palo Alto, CA 94304, USA, Phone 650-496-2581, Fax 650-849-0457
| |
Collapse
|
43
|
Lee YH, Lin Q, Boelsterli UA, Chung MCM. The Sod2 mutant mouse as a model for oxidative stress: a functional proteomics perspective. MASS SPECTROMETRY REVIEWS 2010; 29:179-196. [PMID: 19294730 DOI: 10.1002/mas.20226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Oxidative stress has been implicated in the pathogenesis of numerous human diseases and disorders, but the mechanistic basis often remains enigmatic. The Sod2 mutant mouse, which is sensitized to mitochondrial stress, is an ideal mutant model for studying the role of oxidative stress in a diverse range of complications arising from mitochondrial dysfunction and diminished antioxidant defense. To fully appreciate the widespread molecular consequences under increased oxidative stress, a systems approach utilizing proteomics is able to provide a global overview of the complex biological changes, which a targeted single biomolecular approach cannot address fully. This review focuses on the applications of mass spectrometry and functional proteomics in the Sod2 mouse. The combinatorial approach provides novel insights into the interplay of chemistry and biology, free radicals and proteins, thereby augmenting our understanding of how redox perturbations influence protein dynamics. Ultimately, this knowledge can lead to the development of free radical-targeted therapies.
Collapse
Affiliation(s)
- Yie Hou Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD7, 8 Medical Drive, Singapore 117597, Singapore
| | | | | | | |
Collapse
|
44
|
Holley AK, St Clair DK. Preventing Dr. Jekyll from becoming Mr. Hyde: is manganese superoxide dismutase the key to prevent radiation-induced neoplastic transformation? Cancer Biol Ther 2009; 8:1972-3. [PMID: 19823029 DOI: 10.4161/cbt.8.20.9941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Aaron K Holley
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
45
|
Miao L, St. Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 2009; 47:344-56. [PMID: 19477268 PMCID: PMC2731574 DOI: 10.1016/j.freeradbiomed.2009.05.018] [Citation(s) in RCA: 585] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/10/2009] [Accepted: 05/15/2009] [Indexed: 01/22/2023]
Abstract
Numerous short-lived and highly reactive oxygen species (ROS) such as superoxide (O2(.-)), hydroxyl radical, and hydrogen peroxide are continuously generated in vivo. Depending upon concentration, location, and intracellular conditions, ROS can cause toxicity or act as signaling molecules. The cellular levels of ROS are controlled by antioxidant enzymes and small-molecule antioxidants. As major antioxidant enzymes, superoxide dismutases (SODs), including copper-zinc superoxide dismutase (Cu/ZnSOD), manganese superoxide dismutase, and extracellular superoxide dismutase, play a crucial role in scavenging O2(.-). This review focuses on the regulation of the sod genes coding for these enzymes, with an emphasis on the human genes. Current knowledge about sod structure and regulation is summarized and depicted as diagrams. Studies to date on genes coding for Cu/ZnSOD (sod1) are mostly focused on alterations in the coding region and their associations with amyotrophic lateral sclerosis. Evaluation of nucleotide sequences reveals that regulatory elements of the sod2 gene reside in both the noncoding and the coding region. Changes associated with sod2 lead to alterations in expression levels as well as protein function. We also discuss the structural basis for the changes in SOD expression associated with pathological conditions and where more work is needed to establish the relationship between SODs and diseases.
Collapse
Affiliation(s)
| | - Daret K. St. Clair
- Author to whom correspondence should be addressed: Daret K. St.Clair, Ph.D., Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, HSRB 454, Lexington, KY 40536-0298, Phone: 1-(859) 257-3956, FAX: 1-(859) 323-1059,
| |
Collapse
|
46
|
Lin JE, Li P, Pitari GM, Schulz S, Waldman SA. Guanylyl cyclase C in colorectal cancer: susceptibility gene and potential therapeutic target. Future Oncol 2009; 5:509-22. [PMID: 19450179 DOI: 10.2217/fon.09.14] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is one of the leading causes of tumor-related morbidity and mortality worldwide. While mechanisms underlying this disease have been elucidated over the past two decades, these molecular insights have failed to translate into efficacious therapy. The oncogenomic view of cancer suggests that terminal transformation reflects the sequential corruption of signal transduction circuits regulating key homeostatic mechanisms, whose multiplicity underlies the therapeutic resistance of most tumors to interventions targeting individual pathways. Conversely, the paucity of mechanistic insights into proximal pathophysiological processes that initiate and amplify oncogenic circuits preceding accumulation of mutations and transformation impedes development of effective prevention and therapy. In that context, guanylyl cyclase C (GCC), the intestinal receptor for the paracrine hormones guanylin and uroguanylin, whose early loss characterizes colorectal transformation, has emerged as a component of lineage-specific homeostatic programs organizing spatiotemporal patterning along the crypt-surface axis. Dysregulation of GCC signaling, reflecting hormone loss, promotes tumorigenesis through reprogramming of replicative and bioenergetic circuits and genomic instability. Compensatory upregulation of GCC in response to hormone loss provides a unique translational opportunity for prevention and treatment of colorectal tumors by hormone-replacement therapy.
Collapse
Affiliation(s)
- Jieru E Lin
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
47
|
Dey S, Bakthavatchalu V, Tseng MT, Wu P, Florence RL, Grulke EA, Yokel RA, Dhar SK, Yang HS, Chen Y, St Clair DK. Interactions between SIRT1 and AP-1 reveal a mechanistic insight into the growth promoting properties of alumina (Al2O3) nanoparticles in mouse skin epithelial cells. Carcinogenesis 2008; 29:1920-9. [PMID: 18676681 DOI: 10.1093/carcin/bgn175] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The physicochemical properties of nanomaterials differ from those of the bulk material of the same composition. However, little is known about the underlying effects of these particles in carcinogenesis. The purpose of this study was to determine the mechanisms involved in the carcinogenic properties of nanoparticles using aluminum oxide (Al(2)O(3)/alumina) nanoparticles as the prototype. Well-established mouse epithelial JB6 cells, sensitive to neoplastic transformation, were used as the experimental model. We demonstrate that alumina was internalized and maintained its physicochemical composition inside the cells. Alumina increased cell proliferation (53%), proliferating cell nuclear antigen (PCNA) levels, cell viability and growth in soft agar. The level of manganese superoxide dismutase, a key mitochondrial antioxidant enzyme, was elevated, suggesting a redox signaling event. In addition, the levels of reactive oxygen species and the activities of the redox sensitive transcription factor activator protein-1 (AP-1) and a longevity-related protein, sirtuin 1 (SIRT1), were increased. SIRT1 knockdown reduces DNA synthesis, cell viability, PCNA levels, AP-1 transcriptional activity and protein levels of its targets, JunD, c-Jun and BcL-xl, more than controls do. Immunoprecipitation studies revealed that SIRT1 interacts with the AP-1 components c-Jun and JunD but not with c-Fos. The results identify SIRT1 as an AP-1 modulator and suggest a novel mechanism by which alumina nanoparticles may function as a potential carcinogen.
Collapse
Affiliation(s)
- Swatee Dey
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Health Sciences Research Building 454, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol 2008; 82:273-99. [PMID: 18443763 DOI: 10.1007/s00204-008-0304-z] [Citation(s) in RCA: 312] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 04/03/2008] [Indexed: 02/06/2023]
Abstract
Oxidative stress can be defined as the imbalance between cellular oxidant species production and antioxidant capability. Reactive oxygen species (ROS) are involved in a variety of different cellular processes ranging from apoptosis and necrosis to cell proliferation and carcinogenesis. In fact, molecular events, such as induction of cell proliferation, decreased apoptosis, and oxidative DNA damage have been proposed to be critically involved in carcinogenesis. Carcinogenicity and aging are characterized by a set of complex endpoints, which appear as a series of molecular reactions. ROS can modify many intracellular signaling pathways including protein phosphatases, protein kinases, and transcription factors, suggesting that the majority of the effects of ROS are through their actions on signaling pathways rather than via non-specific damage of macromolecules; however, exact mechanisms by which redox status induces cells to proliferate or to die, and how oxidative stress can lead to processes evoking tumor formation are still under investigation.
Collapse
|
49
|
Liu J, St Clair DK, Gu X, Zhao Y. Blocking mitochondrial permeability transition prevents p53 mitochondrial translocation during skin tumor promotion. FEBS Lett 2008; 582:1319-24. [PMID: 18358838 DOI: 10.1016/j.febslet.2008.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/09/2008] [Accepted: 03/11/2008] [Indexed: 12/20/2022]
Abstract
The tumor suppressor p53 can translocate into mitochondria and activate apoptosis. Here we studied whether p53 mitochondrial translocation and subsequent apoptosis were affected by blocking mitochondrial permeability transition pore using cyclosporine A (CsA) and bongkrekic acid (BA) in skin epidermal JB6 cells and skin tissues. Our results demonstrated that CsA and BA blocked TPA-induced p53 translocation, leading to protection against the loss of mitochondrial membrane potential and Complex I activity, and eventually suppression of apoptosis. Thus, our results suggest that mitochondrial permeability transition is required for p53 mitochondrial translocation.
Collapse
Affiliation(s)
- Jianfeng Liu
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|
50
|
Brown KA, Didion SP, Andresen JJ, Faraci FM. Effect of aging, MnSOD deficiency, and genetic background on endothelial function: evidence for MnSOD haploinsufficiency. Arterioscler Thromb Vasc Biol 2007; 27:1941-6. [PMID: 17556650 DOI: 10.1161/atvbaha.107.146852] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The goal of this study was to compare vascular function, superoxide levels, and MnSOD protein expression in young (4 to 7 months) and old (22 to 24 months) MnSOD+/+ and MnSOD-deficient (MnSOD+/-) mice. METHODS AND RESULTS Relaxation of aorta in vitro to the endothelium-dependent dilator acetylcholine (ACh) was similar in young MnSOD+/+ (n=9) and young MnSOD+/- (n=6) mice. This response was impaired in old MnSOD+/+ (n=8) mice and old MnSOD+/- mice (n=14), with dysfunction being greater in old MnSOD-deficient mice (eg, 100 micromol/L ACh produced 77+/-3% [mean+/-SE], 77+/-3%, 70+/-4%, and 57+/-4% relaxation in young MnSOD+/+, young MnSOD+/-, old MnSOD+/+, and old MnSOD+/- mice, respectively). The endothelial dysfunction was similar in mice on both C57BL/6 and CD-1 genetic backgrounds. In contrast to ACh, responses to the endothelium-independent dilator sodium nitroprusside were enhanced in old MnSOD+/+ and MnSOD+/- mice compared with both groups of young mice (P<0.05). Superoxide levels, as measured using lucigenin-enhanced chemiluminescence, were increased more than 2-fold in old MnSOD+/- mice compared with old MnSOD+/+ and young mice (P<0.05). CONCLUSIONS These data provide the first direct evidence that MnSOD haploinsufficiency results in increased vascular oxidative stress and endothelial dysfunction with aging.
Collapse
Affiliation(s)
- Kathryn A Brown
- Departments of Pharmacology, Cardiovascular Center, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|