1
|
Flower CT, Liu C, Chuang HY, Ye X, Cheng H, Heath JR, Wei W, White FM. Signaling and transcriptional dynamics underlying early adaptation to oncogenic BRAF inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581004. [PMID: 39071317 PMCID: PMC11275845 DOI: 10.1101/2024.02.19.581004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A major contributor to poor sensitivity to anti-cancer kinase inhibitor therapy is drug-induced cellular adaptation, whereby remodeling of signaling and gene regulatory networks permits a drug-tolerant phenotype. Here, we resolve the scale and kinetics of critical subcellular events following oncogenic kinase inhibition and preceding cell cycle re-entry, using mass spectrometry-based phosphoproteomics and RNA sequencing to capture molecular snapshots within the first minutes, hours, and days of BRAF kinase inhibitor exposure in a human BRAF -mutant melanoma model of adaptive therapy resistance. By enriching specific phospho-motifs associated with mitogenic kinase activity, we monitored the dynamics of thousands of growth- and survival-related protein phosphorylation events under oncogenic BRAF inhibition and drug removal. We observed early and sustained inhibition of the BRAF-ERK axis, gradual downregulation of canonical cell cycle-dependent signals, and three distinct and reversible phase transitions toward quiescence. Statistical inference of kinetically-defined signaling and transcriptional modules revealed a concerted response to oncogenic BRAF inhibition and a dominant compensatory induction of SRC family kinase (SFK) signaling, which we found to be at least partially driven by accumulation of reactive oxygen species via impaired redox homeostasis. This induction sensitized cells to co-treatment with an SFK inhibitor across a panel of patient-derived melanoma cell lines and in an orthotopic mouse xenograft model, underscoring the translational potential for measuring the early temporal dynamics of signaling and transcriptional networks under therapeutic challenge.
Collapse
|
2
|
Phillips IR, Veeravalli S, Khadayate S, Shephard EA. Metabolomic and transcriptomic analyses of Fmo5-/- mice reveal roles for flavin-containing monooxygenase 5 (FMO5) in NRF2-mediated oxidative stress response, unfolded protein response, lipid homeostasis, and carbohydrate and one-carbon metabolism. PLoS One 2023; 18:e0286692. [PMID: 37267233 PMCID: PMC10237457 DOI: 10.1371/journal.pone.0286692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
Flavin-containing monooxygenase 5 (FMO5) is a member of the FMO family of proteins, best known for their roles in the detoxification of foreign chemicals and, more recently, in endogenous metabolism. We have previously shown that Fmo5-/- mice display an age-related lean phenotype, with much reduced weight gain from 20 weeks of age. The phenotype is characterized by decreased fat deposition, lower plasma concentrations of glucose, insulin and cholesterol, higher glucose tolerance and insulin sensitivity, and resistance to diet-induced obesity. In the present study we report the use of metabolomic and transcriptomic analyses of livers of Fmo5-/- and wild-type mice to identify factors underlying the lean phenotype of Fmo5-/- mice and gain insights into the function of FMO5. Metabolomics was performed by the Metabolon platform, utilising ultrahigh performance liquid chromatography-tandem mass spectroscopy. Transcriptomics was performed by RNA-Seq and results analysed by DESeq2. Disruption of the Fmo5 gene has wide-ranging effects on the abundance of metabolites and expression of genes in the liver. Metabolites whose concentration differed between Fmo5-/- and wild-type mice include several saturated and monounsaturated fatty acids, complex lipids, amino acids, one-carbon intermediates and ADP-ribose. Among the genes most significantly and/or highly differentially expressed are Apoa4, Cd36, Fitm1, Hspa5, Hyou1, Ide, Me1 and Mme. The results reveal that FMO5 is involved in upregulating the NRF2-mediated oxidative stress response, the unfolded protein response and response to hypoxia and cellular stress, indicating a role for the enzyme in adaptation to oxidative and metabolic stress. FMO5 also plays a role in stimulating a wide range of metabolic pathways and processes, particularly ones involved in lipid homeostasis, the uptake and metabolism of glucose, the generation of cytosolic NADPH, and in one-carbon metabolism. The results predict that FMO5 acts by stimulating the NRF2, XBP1, PPARA and PPARG regulatory pathways, while inhibiting STAT1 and IRF7 pathways.
Collapse
Affiliation(s)
- Ian R. Phillips
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Sunil Veeravalli
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Sanjay Khadayate
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom
| | - Elizabeth A. Shephard
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
3
|
Deng Y, Lu L, Zhang H, Fu Y, Liu T, Chen Y. The role and regulation of Maf proteins in cancer. Biomark Res 2023; 11:17. [PMID: 36750911 PMCID: PMC9903618 DOI: 10.1186/s40364-023-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/22/2023] [Indexed: 02/09/2023] Open
Abstract
The Maf proteins (Mafs) belong to basic leucine zipper transcription factors and are members of the activator protein-1 (AP-1) superfamily. There are two subgroups of Mafs: large Mafs and small Mafs, which are involved in a wide range of biological processes, such as the cell cycle, proliferation, oxidative stress, and inflammation. Therefore, dysregulation of Mafs can affect cell fate and is closely associated with diverse diseases. Accumulating evidence has established both large and small Mafs as mediators of tumor development. In this review, we first briefly describe the structure and physiological functions of Mafs. Then we summarize the upstream regulatory mechanisms that control the expression and activity of Mafs. Furthermore, we discuss recent studies on the critical role of Mafs in cancer progression, including cancer proliferation, apoptosis, metastasis, tumor/stroma interaction and angiogenesis. We also review the clinical implications of Mafs, namely their potential possibilities and limitations as biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yalan Deng
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Liqing Lu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Huajun Zhang
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Ultrasonic Imaging, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ying Fu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
4
|
Sondermann NC, Faßbender S, Hartung F, Hätälä AM, Rolfes KM, Vogel CFA, Haarmann-Stemmann T. Functions of the aryl hydrocarbon receptor (AHR) beyond the canonical AHR/ARNT signaling pathway. Biochem Pharmacol 2023; 208:115371. [PMID: 36528068 PMCID: PMC9884176 DOI: 10.1016/j.bcp.2022.115371] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor regulating adaptive and maladaptive responses toward exogenous and endogenous signals. Research from various biomedical disciplines has provided compelling evidence that the AHR is critically involved in the pathogenesis of a variety of diseases and disorders, including autoimmunity, inflammatory diseases, endocrine disruption, premature aging and cancer. Accordingly, AHR is considered an attractive target for the development of novel preventive and therapeutic measures. However, the ligand-based targeting of AHR is considerably complicated by the fact that the receptor does not always follow the beaten track, i.e. the canonical AHR/ARNT signaling pathway. Instead, AHR might team up with other transcription factors and signaling molecules to shape gene expression patterns and associated physiological or pathophysiological functions in a ligand-, cell- and micromilieu-dependent manner. Herein, we provide an overview about some of the most important non-canonical functions of AHR, including crosstalk with major signaling pathways involved in controlling cell fate and function, immune responses, adaptation to low oxygen levels and oxidative stress, ubiquitination and proteasomal degradation. Further research on these diverse and exciting yet often ambivalent facets of AHR biology is urgently needed in order to exploit the full potential of AHR modulation for disease prevention and treatment.
Collapse
Affiliation(s)
- Natalie C Sondermann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Sonja Faßbender
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Frederick Hartung
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Anna M Hätälä
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
5
|
Mondal D, Narwani D, Notta S, Ghaffar D, Mardhekar N, Quadri SSA. Oxidative stress and redox signaling in CRPC progression: therapeutic potential of clinically-tested Nrf2-activators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:96-124. [PMID: 35582006 PMCID: PMC9019181 DOI: 10.20517/cdr.2020.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Androgen deprivation therapy (ADT) is the mainstay regimen in patients with androgen-dependent prostate cancer (PCa). However, the selection of androgen-independent cancer cells leads to castrate resistant prostate cancer (CRPC). The aggressive phenotype of CRPC cells underscores the need to elucidate mechanisms and therapeutic strategies to suppress CRPC outgrowth. Despite ADT, the activation of androgen receptor (AR) transcription factor continues via crosstalk with parallel signaling pathways. Understanding of how these signaling cascades are initiated and amplified post-ADT is lacking. Hormone deprivation can increase oxidative stress and the resultant reactive oxygen species (ROS) may activate both AR and non-AR signaling. Moreover, ROS-induced inflammatory cytokines may further amplify these redox signaling pathways to augment AR function. However, clinical trials using ROS quenching small molecule antioxidants have not suppressed CRPC progression, suggesting that more potent and persistent suppression of redox signaling in CRPC cells will be needed. The transcription factor Nrf2 increases the expression of numerous antioxidant enzymes and downregulates the function of inflammatory transcription factors, e.g., nuclear factor kappa B. We documented that Nrf2 overexpression can suppress AR-mediated transcription in CRPC cell lines. Furthermore, two Nrf2 activating agents, sulforaphane (a phytochemical) and bardoxolone-methyl (a drug in clinical trial) suppress AR levels and sensitize CRPC cells to anti-androgens. These observations implicate the benefits of potent Nrf2-activators to suppress the lethal signaling cascades that lead to CRPC outgrowth. This review article will address the redox signaling networks that augment AR signaling during PCa progression to CRPC, and the possible utility of Nrf2-activating agents as an adjunct to ADT.
Collapse
Affiliation(s)
- Debasis Mondal
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Devin Narwani
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Shahnawaz Notta
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Dawood Ghaffar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Nikhil Mardhekar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Syed S A Quadri
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| |
Collapse
|
6
|
Kobayashi M, Yasukawa H, Arikawa T, Deguchi Y, Mizushima N, Sakurai M, Onishi S, Tagawa R, Sudo Y, Okita N, Higashi K, Higami Y. Trehalose induces SQSTM1/p62 expression and enhances lysosomal activity and antioxidative capacity in adipocytes. FEBS Open Bio 2020; 11:185-194. [PMID: 33277792 PMCID: PMC7780112 DOI: 10.1002/2211-5463.13055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/01/2020] [Indexed: 01/21/2023] Open
Abstract
Adipocytes, which comprise the majority of white adipose tissue (WAT), are involved in obesity‐related pathology via various mechanisms, including disturbed lysosomal enzymatic activity and accumulation of oxidative stress. Sequestosome 1 (SQSTM1/p62) is an autophagy marker that participates in antioxidative responses via the activation of nuclear factor erythroid‐derived 2‐like 2 (NRF2). Trehalose is a non‐reducing disaccharide reported to suppress adipocyte hypertrophy in obese mice and improve glucose tolerance in humans. We recently revealed that trehalose increases SQSTM1 levels and enhances antioxidative capacity in hepatocytes. Here, to further evaluate the mechanism behind the beneficial effects of trehalose on metabolism, we examined SQSTM1 levels, autophagy, and oxidative stress in trehalose‐treated adipocytes. We initially confirmed that trehalose increases SQSTM1 transcription and protein levels without affecting autophagy in adipocytes. Trehalose also elevated transcription of several lysosomal genes and the activity of cathepsin L, a lysosomal enzyme, independently of the transcription factor EB. In agreement with our data from hepatocytes, trehalose induced the nuclear translocation of NRF2 and the transcription of its downstream antioxidative genes, resulting in reduced cellular reactive oxygen species levels. Moreover, some cellular trehalose was detected in trehalose‐treated adipocytes, implying that extracellular trehalose is taken into cells. These observations reveal the mechanism behind the beneficial effects of trehalose on metabolism and suggest its potential for preventing or treating obesity‐related pathology.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Hiromine Yasukawa
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Tomoya Arikawa
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Yusuke Deguchi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Natsumi Mizushima
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Misako Sakurai
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Shoichi Onishi
- Laboratory of Clinical and Analytical Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Ryoma Tagawa
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Yuka Sudo
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Naoyuki Okita
- Division of Pathological Biochemistry, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Japan
| | - Kyohei Higashi
- Laboratory of Clinical and Analytical Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, Noda, Japan
| |
Collapse
|
7
|
Transcriptional Changes Involved in Atrophying Muscles during Prolonged Fasting in Rats. Int J Mol Sci 2020; 21:ijms21175984. [PMID: 32825252 PMCID: PMC7503389 DOI: 10.3390/ijms21175984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Food deprivation resulting in muscle atrophy may be detrimental to health. To better understand how muscle mass is regulated during such a nutritional challenge, the current study deciphered muscle responses during phase 2 (P2, protein sparing) and phase 3 (P3, protein mobilization) of prolonged fasting in rats. This was done using transcriptomics analysis and a series of biochemistry measurements. The main findings highlight changes for plasma catabolic and anabolic stimuli, as well as for muscle transcriptome, energy metabolism, and oxidative stress. Changes were generally consistent with the intense use of lipids as fuels during P2. They also reflected increased muscle protein degradation and repressed synthesis, in a more marked manner during P3 than P2 compared to the fed state. Nevertheless, several unexpected changes appeared to be in favor of muscle protein synthesis during fasting, notably at the level of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway, transcription and translation processes, and the response to oxidative stress. Such mechanisms might promote protein sparing during P2 and prepare the restoration of the protein compartment during P3 in anticipation of food intake for optimizing the effects of an upcoming refeeding, thereby promoting body maintenance and survival. Future studies should examine relevance of such targets for improving nitrogen balance during catabolic diseases.
Collapse
|
8
|
|
9
|
Tang GH, Xiong Y, Liu Y, Song ZH, Yang Y, Shen GM, Wang JJ, Jiang HB. The Transcription Factor MafB Regulates the Susceptibility of Bactrocera dorsalis to Abamectin via GSTz2. Front Physiol 2019; 10:1068. [PMID: 31481900 PMCID: PMC6710445 DOI: 10.3389/fphys.2019.01068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/05/2019] [Indexed: 11/13/2022] Open
Abstract
Pesticide resistance is a serious problem that poses a major challenge to pest control. One of the most potent resistance mechanisms is the overexpression of genes coding for detoxification enzymes. The expression of detoxification genes is regulated by a series of transcription factors. Previous studies have revealed that the increased expression of detoxification genes contributes to the insecticide tolerance of Bactrocera dorsalis. Our objective was thus to identify the transcription factors involved in this process. Temporal expression profiles showed that the transcription factor MafB and detoxification genes were expressed highly in the fat body. Further analysis showed that the expression of MafB, GSTz2, and CYP473A3 was induced by abamectin. Disruption of the MafB transcription factor through RNA interference decreased the transcript levels of GSTz2 and CYP473A3 and increased the susceptibility to abamectin significantly. Direct silencing of the expression of GSTz2 also increased susceptibility to abamectin, while CYP473A3 did not. In conclusion, these results suggest that the expression of GSTz2 and CYP473A3 was regulated by the transcription factor MafB, and the up-regulation of GSTz2 via MafB decreased the susceptibility of B. dorsalis to abamectin.
Collapse
Affiliation(s)
- Guang-Hui Tang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, China.,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ying Xiong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, China.,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yi Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, China.,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhong-Hao Song
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, China.,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yang Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, China.,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guang-Mao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, China.,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, China.,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing, China.,International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Leask M, Dowdle A, Salvesen H, Topless R, Fadason T, Wei W, Schierding W, Marsman J, Antony J, O'Sullivan JM, Merriman TR, Horsfield JA. Functional Urate-Associated Genetic Variants Influence Expression of lincRNAs LINC01229 and MAFTRR. Front Genet 2019; 9:733. [PMID: 30719032 PMCID: PMC6348267 DOI: 10.3389/fgene.2018.00733] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/22/2018] [Indexed: 12/02/2022] Open
Abstract
Genetic variation in the genomic regulatory landscape likely plays a crucial role in the pathology of disease. Non-coding variants associated with disease can influence the expression of long intergenic non-coding RNAs (lincRNAs), which in turn function in the control of protein-coding gene expression. Here, we investigate the function of two independent serum urate-associated signals (SUA1 and SUA2) in close proximity to lincRNAs and an enhancer that reside ∼60 kb and ∼300 kb upstream of MAF, respectively. Variants within SUA1 are expression quantitative trait loci (eQTL) for LINC01229 and MAFTRR, both co-expressed with MAF. We have also identified that variants within SUA1 are trans-eQTL for genes that are active in kidney- and serum urate-relevant pathways. Serum urate-associated variants rs4077450 and rs4077451 within SUA2 lie within an enhancer that recruits the transcription factor HNF4α and forms long range interactions with LINC01229 and MAFTRR. The urate-raising alleles of rs4077450 and rs4077451 increase enhancer activity and associate with increased expression of LINC01229. We show that the SUA2 enhancer region drives expression in the zebrafish pronephros, recapitulating endogenous MAF expression. Depletion of MAFTRR and LINC01229 in HEK293 cells in turn lead to increased MAF expression. Collectively, our results are consistent with serum urate variants mediating long-range transcriptional regulation of the lincRNAs LINC01229 and MAFTRR and urate relevant genes (e.g., SLC5A8 and EHHADH) in trans.
Collapse
Affiliation(s)
- Megan Leask
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Amy Dowdle
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Hamish Salvesen
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ruth Topless
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tayaza Fadason
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Wenhua Wei
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - William Schierding
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.,Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Judith Marsman
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Justin M O'Sullivan
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.,Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Tony R Merriman
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.,Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Kikuchi K, Iida M, Ikeda N, Moriyama S, Hamada M, Takahashi S, Kitamura H, Watanabe T, Hasegawa Y, Hase K, Fukuhara T, Sato H, Kobayashi EH, Suzuki T, Yamamoto M, Tanaka M, Asano K. Macrophages Switch Their Phenotype by Regulating Maf Expression during Different Phases of Inflammation. THE JOURNAL OF IMMUNOLOGY 2018; 201:635-651. [PMID: 29907708 DOI: 10.4049/jimmunol.1800040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Macrophages manifest distinct phenotype according to the organs in which they reside. In addition, they flexibly switch their character in adaptation to the changing environment. However, the molecular basis that explains the conversion of the macrophage phenotype has so far been unexplored. We find that CD169+ macrophages change their phenotype by regulating the level of a transcription factor Maf both in vitro and in vivo in C57BL/6J mice. When CD169+ macrophages were exposed to bacterial components, they expressed an array of acute inflammatory response genes in Maf-dependent manner and simultaneously start to downregulate Maf. This Maf suppression is dependent on accelerated degradation through proteasome pathway and microRNA-mediated silencing. The downregulation of Maf unlocks the NF-E2-related factor 2-dominant, cytoprotective/antioxidative program in the same macrophages. The present study provides new insights into the previously unanswered question of how macrophages initiate proinflammatory responses while retaining their capacity to repair injured tissues during inflammation.
Collapse
Affiliation(s)
- Kenta Kikuchi
- Laboratory of Immune Regulation, The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Mayumi Iida
- Laboratory of Immune Regulation, The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Naoki Ikeda
- Laboratory of Immune Regulation, The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Shigetaka Moriyama
- Laboratory of Immune Regulation, The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroshi Kitamura
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yoshinori Hasegawa
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu 292-0818, Japan
| | - Koji Hase
- Division of Biochemistry, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Takeshi Fukuhara
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Laboratory of Oncology, The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hideyo Sato
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata 951-8518, Japan; and
| | - Eri H Kobayashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masato Tanaka
- Laboratory of Immune Regulation, The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan;
| | - Kenichi Asano
- Laboratory of Immune Regulation, The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan;
| |
Collapse
|
12
|
Periyasamy P, Shinohara T. Age-related cataracts: Role of unfolded protein response, Ca 2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 2017; 60:1-19. [PMID: 28864287 PMCID: PMC5600869 DOI: 10.1016/j.preteyeres.2017.08.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
Age-related cataracts are closely associated with lens chronological aging, oxidation, calcium imbalance, hydration and crystallin modifications. Accumulating evidence indicates that misfolded proteins are generated in the endoplasmic reticulum (ER) by most cataractogenic stresses. To eliminate misfolded proteins from cells before they can induce senescence, the cells activate a clean-up machinery called the ER stress/unfolded protein response (UPR). The UPR also activates the nuclear factor-erythroid-2-related factor 2 (Nrf2), a central transcriptional factor for cytoprotection against stress. Nrf2 activates nearly 600 cytoprotective target genes. However, if ER stress reaches critically high levels, the UPR activates destructive outputs to trigger programmed cell death. The UPR activates mobilization of ER-Ca2+ to the cytoplasm and results in activation of Ca2+-dependent proteases to cleave various enzymes and proteins which cause the loss of normal lens function. The UPR also enhances the overproduction of reactive oxygen species (ROS), which damage lens constituents and induce failure of the Nrf2 dependent cytoprotection. Kelch-like ECH-associated protein 1 (Keap1) is an oxygen sensor protein and regulates the levels of Nrf2 by the proteasomal degradation. A significant loss of DNA methylation in diabetic cataracts was found in the Keap1 promoter, which overexpresses the Keap1 protein. Overexpressed Keap1 significantly decreases the levels of Nrf2. Lower levels of Nrf2 induces loss of the redox balance toward to oxidative stress thereby leading to failure of lens cytoprotection. Here, this review summarizes the overall view of ER stress, increases in Ca2+ levels, protein cleavage, and loss of the well-established stress protection in somatic lens cells.
Collapse
Affiliation(s)
- Palsamy Periyasamy
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Toshimichi Shinohara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
13
|
Zhao H, Eguchi S, Alam A, Ma D. The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 312:L155-L162. [PMID: 27864288 DOI: 10.1152/ajplung.00449.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a ubiquitous master transcription factor that upregulates antioxidant response elements (AREs)-mediated expression of antioxidant enzyme and cytoprotective proteins. Activation of Nrf2 has been shown to be protective against lung injury. In the lung, diverse stimuli including environmental oxidants, medicinal agents, and pathogens can activate Nrf2. Nrf2 translocates to the nucleus and binds to an ARE. Through transcriptional induction of ARE-bearing genes encoding antioxidant-detoxifying proteins, Nrf2 induces cellular rescue pathways against oxidative pulmonary injury, abnormal inflammatory and immune responses, and apoptosis. The Nrf2-antioxidant pathway has been shown to be important in the protection against various lung injuries including acute lung injury/acute respiratory distress syndrome and bronchopulmonary dysplasia, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, asthma, and allergy and was widely examined for new therapeutic targets. The present review explores the protective role of Nrf-2 against lung injury and the therapeutic potential in targeting Nrf-2.
Collapse
Affiliation(s)
- Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, United Kingdom
| | - Shiori Eguchi
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, United Kingdom
| | - Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, United Kingdom
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, United Kingdom
| |
Collapse
|
14
|
Lu SC, Mato JM, Espinosa-Diez C, Lamas S. MicroRNA-mediated regulation of glutathione and methionine metabolism and its relevance for liver disease. Free Radic Biol Med 2016; 100:66-72. [PMID: 27033954 PMCID: PMC5749629 DOI: 10.1016/j.freeradbiomed.2016.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/31/2022]
Abstract
The discovery of the microRNA (miRNA) family of small RNAs as fundamental regulators of post-transcriptional gene expression has fostered research on their importance in every area of biology and clinical medicine. In the particular area of liver metabolism and disease, miRNAs are gaining increasing importance. By focusing on two fundamental hepatic biosynthetic pathways, glutathione and methionine, we review recent advances on the comprehension of the role of miRNAs in liver pathophysiology and more specifically of models of hepatic cholestasis/fibrosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shelly C Lu
- Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - José M Mato
- CIC bioGUNE, (CIBERehd), Parque Tecnológico de Bizcaia, Derio, Spain
| | - Cristina Espinosa-Diez
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
15
|
Liu X, Li H, Liu L, Lu Y, Gao Y, Geng P, Li X, Huang B, Zhang Y, Lu J. Methylation of arginine by PRMT1 regulates Nrf2 transcriptional activity during the antioxidative response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2093-103. [PMID: 27183873 DOI: 10.1016/j.bbamcr.2016.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/21/2016] [Accepted: 05/08/2016] [Indexed: 01/02/2023]
Abstract
The cap 'n' collar (CNC) family of transcription factors play important roles in resistance of oxidative and electrophilic stresses. Among the CNC family members, NF-E2-related factor 2 (Nrf2) is critical for regulating the antioxidant and phase II enzymes through antioxidant response element (ARE)-mediated transactivation. The activity of Nrf2 is controlled by a variety of post-translational modifications, including phosphorylation, ubiquitination, acetylation and sumoylation. Here we demonstrate that the arginine methyltransferase-1 (PRMT1) methylates Nrf2 protein at a single residue of arginine 437, both in vitro and in vivo. Using the heme oxygenase-1 (HO-1) as a model of phase II enzyme gene, we found that methylation of Nrf2 by PRMT1 led to a moderate increase of its DNA-binding activity and transactivation, which subsequently protected cells against the tBHP-induced glutathione depletion and cell death. Collectively, our results define a novel modification of Nrf2, which operates as a fine-tuning mechanism for the transcriptional activity of Nrf2 under the oxidative stress.
Collapse
Affiliation(s)
- Xin Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Hongyuan Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China
| | - Lingxia Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Yang Lu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China
| | - Yanyan Gao
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Pengyu Geng
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China
| | - Xiaoxue Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China
| | - Baiqu Huang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Yu Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Jun Lu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China.
| |
Collapse
|
16
|
Small Maf proteins (MafF, MafG, MafK): History, structure and function. Gene 2016; 586:197-205. [PMID: 27058431 DOI: 10.1016/j.gene.2016.03.058] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/11/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022]
Abstract
The small Maf proteins (sMafs) are basic region leucine zipper (bZIP)-type transcription factors. The basic region of the Maf family is unique among the bZIP factors, and it contributes to the distinct DNA-binding mode of this class of proteins. MafF, MafG and MafK are the three vertebrate sMafs, and no functional differences have been observed among them in terms of their bZIP structures. sMafs form homodimers by themselves, and they form heterodimers with cap 'n' collar (CNC) proteins (p45 NF-E2, Nrf1, Nrf2, and Nrf3) and also with Bach proteins (Bach1 and Bach2). Because CNC and Bach proteins cannot bind to DNA as monomers, sMafs are indispensable partners that are required by CNC and Bach proteins to exert their functions. sMafs lack the transcriptional activation domain; hence, their homodimers act as transcriptional repressors. In contrast, sMafs participate in transcriptional activation or repression depending on their heterodimeric partner molecules and context. Mouse genetic analyses have revealed that various biological pathways are under the regulation of CNC-sMaf heterodimers. In this review, we summarize the history and current progress of sMaf studies in relation to their partners.
Collapse
|
17
|
Yang Y, Cvekl A. Large Maf Transcription Factors: Cousins of AP-1 Proteins and Important Regulators of Cellular Differentiation. ACTA ACUST UNITED AC 2016; 23:2-11. [PMID: 18159220 DOI: 10.23861/ejbm20072347] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A large number of mammalian transcription factors possess the evolutionary conserved basic and leucine zipper domain (bZIP). The basic domain interacts with DNA while the leucine zipper facilitates homo- and hetero-dimerization. These factors can be grouped into at least seven families: AP-1, ATF/CREB, CNC, C/EBP, Maf, PAR, and virus-encoded bZIPs. Here, we focus on a group of four large Maf proteins: MafA, MafB, c-Maf, and NRL. They act as key regulators of terminal differentiation in many tissues such as bone, brain, kidney, lens, pancreas, and retina, as well as in blood. The DNA-binding mechanism of large Mafs involves cooperation between the basic domain and an adjacent ancillary DNA-binding domain. Many genes regulated by Mafs during cellular differentiation use functional interactions between the Pax/Maf, Sox/Maf, and Ets/Maf promoter and enhancer modules. The prime examples are crystallin genes in lens and glucagon and insulin in pancreas. Novel roles for large Mafs emerged from studying generations of MafA and MafB knockouts and analysis of combined phenotypes in double or triple null mice. In addition, studies of this group of factors in invertebrates revealed the evolutionarily conserved function of these genes in the development of multicellular organisms.
Collapse
Affiliation(s)
- Ying Yang
- Departments of Ophthalmology and Visual Sciences and Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
18
|
Yang H, Li TWH, Zhou Y, Peng H, Liu T, Zandi E, Martínez-Chantar ML, Mato JM, Lu SC. Activation of a novel c-Myc-miR27-prohibitin 1 circuitry in cholestatic liver injury inhibits glutathione synthesis in mice. Antioxid Redox Signal 2015; 22:259-74. [PMID: 25226451 PMCID: PMC4283066 DOI: 10.1089/ars.2014.6027] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS We showed that chronic cholestatic liver injury induced the expression of c-Myc but suppressed that of glutamate-cysteine ligase (GCL, composed of catalytic and modifier subunits GCLC and GCLM, respectively). This was associated with reduced nuclear antioxidant response element (ARE) binding by nuclear factor-erythroid 2 related factor 2 (Nrf2). Here, we examined whether c-Myc is involved in this process. RESULTS Similar to bile duct ligation (BDL), lithocholic acid (LCA) treatment in vivo induced c-Myc but suppressed GCL subunits expression at day 14. Nrf2 expression and Nrf2 ARE binding fell markedly. However, Nrf2 heterodimerization with MafG was enhanced by LCA, which prompted us to examine whether LCA treatment in vivo altered proteins that bind to ARE using biotinylated ARE in pull-down assay followed by proteomics. LCA treatment enhanced c-Myc but lowered prohibitin 1 (PHB1) binding to ARE. This was a result of c-Myc-mediated induction of microRNA 27a/b (miR27a/b), which target both PHB1 and Nrf2 to reduce their expression. Knockdown of c-Myc or miR27a/b attenuated LCA-mediated suppression of Nrf2, PHB1, and GCL subunit expression, whereas overexpression of PHB1 protected against the fall in Nrf2 and GCL subunits. Both c-Myc and PHB1 directly interact with Nrf2 but c-Myc lowers Nrf2 binding to ARE while PHB1 enhances it. INNOVATION This is the first work that shows how activation of this circuit in cholestatic liver injury inhibits GCL expression. CONCLUSIONS LCA feeding and BDL activate c-Myc-miR27a/b-PHB1 circuit, with the consequence of inhibiting Nrf2 expression and ARE binding, resulting in decreased reduced glutathione synthesis and antioxidant capacity.
Collapse
Affiliation(s)
- Heping Yang
- 1 Division of Gastroenterology and Liver Diseases, Keck School of Medicine, University of Southern California , Los Angeles, California
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dai L, Cao Y, Chen Y, Parsons C, Qin Z. Targeting xCT, a cystine-glutamate transporter induces apoptosis and tumor regression for KSHV/HIV-associated lymphoma. J Hematol Oncol 2014; 7:30. [PMID: 24708874 PMCID: PMC4234972 DOI: 10.1186/1756-8722-7-30] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/30/2014] [Indexed: 12/16/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of primary effusion lymphoma (PEL), which represents a rapidly progressing malignancy arising in HIV-infected patients. Conventional chemotherapy for PEL treatment induces unwanted toxicity and is ineffective — PEL continues to portend nearly 100% mortality within a period of months, which requires novel therapeutic strategies. The amino acid transporter, xCT, is essential for the uptake of cystine required for intracellular glutathione (GSH) synthesis and for maintaining the intracellular redox balance. Inhibition of xCT induces growth arrest in a variety of cancer cells, although its role in virus-associated malignancies including PEL remains unclear. In the current study, we identify that xCT is expressed on the surface of patient-derived KSHV+ PEL cells, and targeting xCT induces caspase-dependent cell apoptosis. Further experiments demonstrate the underlying mechanisms including host and viral factors: reducing intracellular GSH while increasing reactive oxygen species (ROS), repressing cell-proliferation-related signaling, and inducing viral lytic genes. Using an immune-deficient xenograft model, we demonstrate that an xCT selective inhibitor, Sulfasalazine (SASP), prevents PEL tumor progression in vivo. Together, our data provide innovative and mechanistic insights into the role of xCT in PEL pathogenesis, and the framework for xCT-focused therapies for AIDS-related lymphoma in future.
Collapse
Affiliation(s)
| | | | | | | | - Zhiqiang Qin
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China.
| |
Collapse
|
20
|
Abstract
Interleukin-22 (IL-22) has important functions in host defense at mucosal surfaces as well as in tissue repair. It is unique as a cytokine that is produced by immune cells, including T-helper (Th) cell subsets and innate lymphocytes, but acts only on non-hematopoietic stromal cells, in particular epithelial cells, keratinocytes, and hepatocytes. Although IL-22 is beneficial to the host in many infectious and inflammatory disorders, depending on the target tissue it can be pathogenic due to its inherent pro-inflammatory properties, which are further enhanced when IL-22 is released together with other pro-inflammatory cytokines, in particular IL-17. To avoid pathology, IL-22 and IL-17 production have to be controlled tightly and independently. While common factors such as signal transducer and activator of transcription 3 (STAT3) and retinoid orphan receptor γt (RORγt) drive the expression of both cytokines, other factors, such as c-Maf act specifically on IL-22 and enable the separate expression of either cytokine. Here, we discuss the production of IL-22 from various T-cell populations as well as protective versus pathogenic roles of IL-22. Finally, we focus on recent advances in our understanding of the molecular regulation of IL-22 in T cells.
Collapse
Affiliation(s)
- Sascha Rutz
- Department of Immunology, Genentech, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
21
|
Kaposi's sarcoma-associated herpesvirus suppression of DUSP1 facilitates cellular pathogenesis following de novo infection. J Virol 2012; 87:621-35. [PMID: 23097457 DOI: 10.1128/jvi.01441-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS), and KSHV activation of mitogen-activated protein kinases (MAPKs) initiates a number of key pathogenic determinants of KS. Direct inhibition of signal transduction as a therapeutic approach presents several challenges, and a better understanding of KSHV-induced mechanisms regulating MAPK activation may facilitate the development of new treatment or prevention strategies for KS. MAPK phosphatases, including dual-specificity phosphatase-1 (DUSP1), negatively regulate signal transduction and cytokine activation through MAPK dephosphorylation or interference with effector molecule binding to MAPKs, including the extracellular signal-regulated kinase (ERK). We found that ERK-dependent latent viral gene expression, the induction of promigratory factors, and cell invasiveness following de novo infection of primary human endothelial cells are in part dependent on KSHV suppression of DUSP1 expression during de novo infection. KSHV-encoded miR-K12-11 upregulates the expression of xCT (an amino acid transporter and KSHV fusion/entry receptor), and existing data indicate a role for xCT in the regulation of 14-3-3β, a transcriptional repressor of DUSP1. We found that miR-K12-11 induces endothelial cell secretion of promigratory factors and cell invasiveness through upregulation of xCT-dependent, 14-3-3β-mediated suppression of DUSP1. Finally, proof-of-principle experiments revealed that pharmacologic upregulation of DUSP1 inhibits the induction of promigratory factors and cell invasiveness during de novo KSHV infection. These data reveal an indirect role for miR-K12-11 in the regulation of DUSP1 and downstream pathogenesis.
Collapse
|
22
|
Lu SC. Glutathione synthesis. Biochim Biophys Acta Gen Subj 2012; 1830:3143-53. [PMID: 22995213 DOI: 10.1016/j.bbagen.2012.09.008] [Citation(s) in RCA: 1546] [Impact Index Per Article: 128.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Glutathione (GSH) is present in all mammalian tissues as the most abundant non-protein thiol that defends against oxidative stress. GSH is also a key determinant of redox signaling, vital in detoxification of xenobiotics, and regulates cell proliferation, apoptosis, immune function, and fibrogenesis. Biosynthesis of GSH occurs in the cytosol in a tightly regulated manner. Key determinants of GSH synthesis are the availability of the sulfur amino acid precursor, cysteine, and the activity of the rate-limiting enzyme, glutamate cysteine ligase (GCL), which is composed of a catalytic (GCLC) and a modifier (GCLM) subunit. The second enzyme of GSH synthesis is GSH synthetase (GS). SCOPE OF REVIEW This review summarizes key functions of GSH and focuses on factors that regulate the biosynthesis of GSH, including pathological conditions where GSH synthesis is dysregulated. MAJOR CONCLUSIONS GCL subunits and GS are regulated at multiple levels and often in a coordinated manner. Key transcription factors that regulate the expression of these genes include NF-E2 related factor 2 (Nrf2) via the antioxidant response element (ARE), AP-1, and nuclear factor kappa B (NFκB). There is increasing evidence that dysregulation of GSH synthesis contributes to the pathogenesis of many pathological conditions. These include diabetes mellitus, pulmonary and liver fibrosis, alcoholic liver disease, cholestatic liver injury, endotoxemia and drug-resistant tumor cells. GENERAL SIGNIFICANCE GSH is a key antioxidant that also modulates diverse cellular processes. A better understanding of how its synthesis is regulated and dysregulated in disease states may lead to improvement in the treatment of these disorders. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Shelly C Lu
- Keck School of Medicine USC, Los Angeles, CA 90033, USA.
| |
Collapse
|
23
|
Ramani K, Tomasi ML, Yang H, Ko K, Lu SC. Mechanism and significance of changes in glutamate-cysteine ligase expression during hepatic fibrogenesis. J Biol Chem 2012; 287:36341-55. [PMID: 22942279 DOI: 10.1074/jbc.m112.370775] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
GSH is synthesized sequentially by glutamate-cysteine ligase (GCL) and GSH synthase and defends against oxidative stress, which promotes hepatic stellate cell (HSC) activation. Changes in GSH synthesis during HSC activation are poorly characterized. Here, we examined the expression of GSH synthetic enzymes in rat HSC activation and reversion to quiescence. Expression of the GCL catalytic subunit (GCLC) fell during HSC activation and increased when activated HSCs revert back to quiescence. Blocking the increase in GCLC expression kept HSCs in an activated state. Activated HSCs have higher nuclear levels and binding activity of MafG to the antioxidant response element (ARE) of GCLC but lower Nrf2/MafG heterodimer binding to the ARE. Quiescent HSCs have a lower nuclear MafG level but higher Nrf2/MafG heterodimer binding to ARE. This occurred because of enhanced sumoylation of Nrf2 and MafG by SUMO-1, which promoted Nrf2 binding to ARE and heterodimerization with MafG. In vivo, knockdown of GCLC exacerbated bile duct ligation-induced liver injury and fibrosis. Ursodeoxycholic acid and S-adenosylmethionine are anti-fibrotic in bile duct ligation, but this effect was nearly lost if GCLC induction was blocked. In conclusion, sumoylation of Nrf2 and MafG enhances heterodimerization and increases GCLC expression, which keeps HSCs in a quiescent state. Antifibrotic agents require activation of GCLC to fully exert their protective effect.
Collapse
Affiliation(s)
- Komal Ramani
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
24
|
Nakajima H, Nakajima-Takagi Y, Tsujita T, Akiyama SI, Wakasa T, Mukaigasa K, Kaneko H, Tamaru Y, Yamamoto M, Kobayashi M. Tissue-restricted expression of Nrf2 and its target genes in zebrafish with gene-specific variations in the induction profiles. PLoS One 2011; 6:e26884. [PMID: 22046393 PMCID: PMC3201981 DOI: 10.1371/journal.pone.0026884] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/05/2011] [Indexed: 12/14/2022] Open
Abstract
The Keap1-Nrf2 system serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than one hundred cytoprotective proteins, including antioxidants and phase 2 detoxifying enzymes. Since induction profiles of Nrf2 target genes have been studied exclusively in cultured cells, and not in animal models, their tissue-specificity has not been well characterized. In this paper, we examined and compared the tissue-specific expression of several Nrf2 target genes in zebrafish larvae by whole-mount in situ hybridization (WISH). Seven zebrafish genes (gstp1, mgst3b, prdx1, frrs1c, fthl, gclc and hmox1a) suitable for WISH analysis were selected from candidates for Nrf2 targets identified by microarray analysis. Tissue-restricted induction was observed in the nose, gill, and/or liver for all seven genes in response to Nrf2-activating compounds, diethylmaleate (DEM) and sulforaphane. The Nrf2 gene itself was dominantly expressed in these three tissues, implying that tissue-restricted induction of Nrf2 target genes is defined by tissue-specific expression of Nrf2. Interestingly, the induction of frrs1c and gclc in liver and nose, respectively, was quite low and that of hmox1a was restricted in the liver. These results indicate the existence of gene-specific variations in the tissue specificity, which can be controlled by factors other than Nrf2.
Collapse
Affiliation(s)
- Hitomi Nakajima
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yaeko Nakajima-Takagi
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tadayuki Tsujita
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, Tsukuba, Japan
| | | | - Takeshi Wakasa
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Katsuki Mukaigasa
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Kaneko
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yutaka Tamaru
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Masayuki Yamamoto
- Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, Tsukuba, Japan
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Kobayashi
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
25
|
Rutz S, Noubade R, Eidenschenk C, Ota N, Zeng W, Zheng Y, Hackney J, Ding J, Singh H, Ouyang W. Transcription factor c-Maf mediates the TGF-β-dependent suppression of IL-22 production in T(H)17 cells. Nat Immunol 2011; 12:1238-45. [PMID: 22001828 DOI: 10.1038/ni.2134] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/06/2011] [Indexed: 12/12/2022]
Abstract
Interleukin 22 (IL-22), which is produced by cells of the T(H)17 subset of helper T cells and other leukocytes, not only enhances proinflammatory innate defense mechanisms in epithelial cells but also provides crucial protection to tissues from damage caused by inflammation and infection. In T(H)17 cells, transforming growth factor-β (TGF-β) regulates IL-22 and IL-17 differently. IL-6 alone induces T cells to produce only IL-22, whereas the combination of IL-6 and high concentrations of TGF-β results in the production of IL-17 but not IL-22 by T cells. Here we identify the transcription factor c-Maf, which is induced by TGF-β, as a downstream repressor of Il22. We found that c-Maf bound to the Il22 promoter and was both necessary and sufficient for the TGF-β-dependent suppression of IL-22 production in T(H)17 cells.
Collapse
MESH Headings
- Animals
- Base Sequence
- Basic-Leucine Zipper Transcription Factors/genetics
- Basic-Leucine Zipper Transcription Factors/metabolism
- Binding Sites/genetics
- Cells, Cultured
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- HEK293 Cells
- Humans
- Interleukins/biosynthesis
- Interleukins/genetics
- Mice
- Mice, Inbred BALB C
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Nucleotide Motifs
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-maf/genetics
- Proto-Oncogene Proteins c-maf/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Transcription, Genetic
- Transforming Growth Factor beta/pharmacology
- Interleukin-22
Collapse
Affiliation(s)
- Sascha Rutz
- Department of Immunology, Genentech, South San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tkachev VO, Menshchikova EB, Zenkov NK. Mechanism of the Nrf2/Keap1/ARE signaling system. BIOCHEMISTRY (MOSCOW) 2011; 76:407-22. [PMID: 21585316 DOI: 10.1134/s0006297911040031] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nrf2 regulates expression of genes containing antioxidant-respons(iv)e element (ARE) in their promoters and plays a pivotal role among all redox-sensitive transcription factors. Nrf2 is constitutively controlled by repressor protein Keap1, which acts as a molecular sensor of disturbances in cellular homeostasis. These molecular patterns are in close interconnection and function as parts of the integrated redox-sensitive signaling system Nrf2/Keap1/ARE. Depending on cellular redox balance, activity of this signaling system changes at the levels of transcription, translation, posttranslational modification, nuclear translocation of transcription factor, and its binding to ARE-driven gene promoters. This review summarizes current conceptions of Nrf2/Keap1/ARE induction and inactivation.
Collapse
Affiliation(s)
- V O Tkachev
- Scientific Center of Clinical and Experimental Medicine, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Russia.
| | | | | |
Collapse
|
27
|
Singh S, Vrishni S, Singh BK, Rahman I, Kakkar P. Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases. Free Radic Res 2011; 44:1267-88. [PMID: 20815789 DOI: 10.3109/10715762.2010.507670] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nrf2, a redox sensitive transcription factor, plays a pivotal role in redox homeostasis during oxidative stress. Nrf2 is sequestered in cytosol by an inhibitory protein Keap1 which causes its proteasomal degradation. In response to electrophilic and oxidative stress, Nrf2 is activated, translocates to nucleus, binds to antioxidant response element (ARE), thus upregulates a battery of antioxidant and detoxifying genes. This function of Nrf2 can be significant in the treatment of diseases, such as cancer, neurodegenerative, cardiovascular and pulmonary complications, where oxidative stress causes Nrf2 derangement. Nrf2 upregulating potential of phytochemicals has been explored, in facilitating cure for various ailments while, in cancer cells, Nrf2 upregulation causes chemoresistance. Therefore, Nrf2 emerges as a key regulator in oxidative stress-mediated diseases and Nrf2 silencing can open avenues in cancer treatment. This review summarizes Nrf2-ARE stress response mechanism and its role as a control point in oxidative stress-induced cellular dysfunctions including chronic inflammatory diseases.
Collapse
Affiliation(s)
- Shruti Singh
- Herbal Research Section, Indian Institute of Toxicology Research, CSIR, PO Box-80, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
28
|
Wruck CJ, Streetz K, Pavic G, Götz ME, Tohidnezhad M, Brandenburg LO, Varoga D, Eickelberg O, Herdegen T, Trautwein C, Cha K, Kan YW, Pufe T. Nrf2 induces interleukin-6 (IL-6) expression via an antioxidant response element within the IL-6 promoter. J Biol Chem 2010; 286:4493-9. [PMID: 21127061 DOI: 10.1074/jbc.m110.162008] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IL-6 gene expression is controlled by a promoter region containing multiple regulatory elements such as NF-κB, NF-IL6, CRE, GRE, and TRE. In this study, we demonstrated that TRE, found within the IL-6 promoter, is embedded in a functional antioxidant response element (ARE) matching an entire ARE consensus sequence. Further, point mutations of the ARE consensus sequence in the IL-6 promoter construct selectively eliminate ARE but not TRE activity. Nrf2 is a redox-sensitive transcription factor which provides cytoprotection against electrophilic and oxidative stress and is the most potent activator of ARE-dependent transcription. Using Nrf2 knock-out mice we demonstrate that Nrf2 is a potent activator of IL-6 gene transcription in vivo. Moreover, we show evidence that Nrf2 is the transcription factor that activates IL6 expression in a cholestatic hepatitis mouse model. Our findings suggest a possible role of IL-6 in oxidative stress defense and also give indication about an important function for Nrf2 in the regulation of hematopoietic and inflammatory processes.
Collapse
Affiliation(s)
- Christoph Jan Wruck
- Department of Anatomy and Cell Biology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
René C, Lopez E, Claustres M, Taulan M, Romey-Chatelain MC. NF-E2-related factor 2, a key inducer of antioxidant defenses, negatively regulates the CFTR transcription. Cell Mol Life Sci 2010; 67:2297-309. [PMID: 20309604 PMCID: PMC11115627 DOI: 10.1007/s00018-010-0336-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/03/2010] [Accepted: 02/26/2010] [Indexed: 01/24/2023]
Abstract
A few studies have clearly indicated that oxidative stress suppresses the cystic fibrosis transmembrane conductance receptor (CFTR) function and expression. However, the mechanisms by which this occurs are still poorly understood. To clarify this effect, we investigated the role of NF-E2-related factor 2 (Nrf2) transcription factor, a key cellular sensor of oxidative stress. A conserved antioxidant response element (ARE) in the CFTR minimal promoter, which binds Nrf2, has been identified. Surprisingly, Nrf2 exerts an unexpected repressive role on the CFTR gene promoter activity. To decipher the molecular mechanisms involved, we evaluated the role of YY1 in the Nrf2-mediated transcriptional activity and showed cooperation between these two factors. We demonstrated that Nrf2 promotes YY1 nuclear localization and increases its binding to the CFTR promoter. To our knowledge, this study is the first to report a repressor role of Nrf2 through the cooperation with YY1 and contributes to clarify the cascade events leading to the oxidative stress-suppressed CFTR expression.
Collapse
|
30
|
Kang HJ, Hong YB, Kim HJ, Bae I. CR6-interacting factor 1 (CRIF1) regulates NF-E2-related factor 2 (NRF2) protein stability by proteasome-mediated degradation. J Biol Chem 2010; 285:21258-68. [PMID: 20427290 PMCID: PMC2898415 DOI: 10.1074/jbc.m109.084590] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Free radicals generated by oxidative stress cause damage that can contribute to numerous chronic diseases. Mammalian cells respond to this damage by increased transcription of cytoprotective phase II genes, which are regulated by NRF2. Previously, it has been shown that NRF2 protein levels increase after oxidative stress because its negative regulator, KEAP1, loses its ability to bind NRF2 and cause its proteasome-mediated degradation during oxidative stress. Here, we show that CRIF1, a protein previously known as cell cycle regulator and transcription cofactor, is also able to negatively regulate NRF2 protein stability. However, in contrast to KEAP1, which regulates NRF2 stability only under normal reducing conditions, CRIF1 regulates NRF2 stability and its target gene expression under both reducing and oxidative stress conditions. Thus, CRIF1-NRF2 interactions and their consequences are redox-independent. In addition, we found that CRIF1, unlike KEAP1 (which only interacts with N-terminal region of NRF2), physically interacts with both N- and C-terminal regions of NRF2 and promotes NRF2 ubiquitination and subsequent proteasome-mediated NRF2 protein degradation.
Collapse
Affiliation(s)
- Hyo Jin Kang
- Departments of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
31
|
Yang H, Ko K, Xia M, Li TWH, Oh P, Li J, Lu SC. Induction of avian musculoaponeurotic fibrosarcoma proteins by toxic bile acid inhibits expression of glutathione synthetic enzymes and contributes to cholestatic liver injury in mice. Hepatology 2010; 51:1291-301. [PMID: 20146260 PMCID: PMC2908963 DOI: 10.1002/hep.23471] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED We previously showed that hepatic expression of glutathione (GSH) synthetic enzymes and GSH levels fell 2 weeks after bile duct ligation (BDL) in mice. This correlated with a switch in nuclear anti-oxidant response element (ARE) binding activity from nuclear factor erythroid 2-related factor 2 (Nrf2) to c-avian musculoaponeurotic fibrosarcoma (c-Maf)/V-maf musculoaponeurotic fibrosarcoma oncogene homolog G (MafG). Our current aims were to examine whether the switch in ARE binding activity from Nrf2 to Mafs is responsible for decreased expression of GSH synthetic enzymes and the outcome of blocking this switch. Huh7 cells treated with lithocholic acid (LCA) exhibited a similar pattern of change in GSH synthetic enzyme expression as BDL mice. Nuclear protein levels of Nrf2 fell at 20 hours after LCA treatment, whereas c-Maf and MafG remained persistently induced. These changes translated to ARE nuclear binding activity. Knockdown of c-Maf or MafG individually blunted the LCA-induced decrease in Nrf2 ARE binding and increased ARE-dependent promoter activity, whereas combined knockdown was more effective. Knockdown of c-Maf or MafG individually increased the expression of GSH synthetic enzymes and raised GSH levels, and combined knockdown exerted an additive effect. Ursodeoxycholic acid (UDCA) or S-adenosylmethionine (SAMe) prevented the LCA-induced decrease in expression of GSH synthetic enzymes and promoter activity and prevented the increase in MafG and c-Maf levels. In vivo knockdown of the Maf genes protected against the decrease in GSH enzyme expression, GSH level, and liver injury after BDL. CONCLUSION Toxic bile acid induces a switch from Nrf2 to c-Maf/MafG ARE nuclear binding, which leads to decreased expression of GSH synthetic enzymes and GSH levels and contributes to liver injury during BDL. UDCA and SAMe treatment targets this switch.
Collapse
Affiliation(s)
- Heping Yang
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine USC, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Sykiotis GP, Bohmann D. Stress-activated cap'n'collar transcription factors in aging and human disease. Sci Signal 2010; 3:re3. [PMID: 20215646 DOI: 10.1126/scisignal.3112re3] [Citation(s) in RCA: 615] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cap'n'collar (Cnc) transcription factors are conserved in metazoans and have important developmental and homeostatic functions. The vertebrate Nrf1, Nrf2, and Nrf3; the Caenorhabditis elegans SKN-1; and the Drosophila CncC comprise a subgroup of Cnc factors that mediate adaptive responses to cellular stress. The most studied stress-activated Cnc factor is Nrf2, which orchestrates the transcriptional response of cells to oxidative stressors and electrophilic xenobiotics. In rodent models, signaling by Nrf2 defends against oxidative stress and aging-associated disorders, such as neurodegeneration, respiratory diseases, and cancer. In humans, polymorphisms that decrease Nrf2 abundance have been associated with various pathologies of the skin, respiratory system, and digestive tract. In addition to preventing disease in rodents and humans, Cnc factors have life-span-extending and anti-aging functions in invertebrates. However, despite the pro-longevity and antioxidant roles of stress-activated Cnc factors, their activity paradoxically declines in aging model organisms and in humans suffering from progressive respiratory disease or neurodegeneration. We review the roles and regulation of stress-activated Cnc factors across species, present all reported instances in which their activity is paradoxically decreased in aging and disease, and discuss the possibility that the pharmacological restoration of Nrf2 signaling may be useful in the prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Gerasimos P Sykiotis
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | |
Collapse
|
33
|
Hansen A, Henderson S, Lagos D, Nikitenko L, Coulter E, Roberts S, Gratrix F, Plaisance K, Renne R, Bower M, Kellam P, Boshoff C. KSHV-encoded miRNAs target MAF to induce endothelial cell reprogramming. Genes Dev 2010; 24:195-205. [PMID: 20080955 DOI: 10.1101/gad.553410] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kaposi sarcoma herpesvirus (KSHV) induces transcriptional reprogramming of endothelial cells. In particular, KSHV-infected lymphatic endothelial cells (LECs) show an up-regulation of genes associated with blood vessel endothelial cells (BECs). Consequently, KSHV-infected tumor cells in Kaposi sarcoma are poorly differentiated endothelial cells, expressing markers of both LECs and BECs. MicroRNAs (miRNAs) are short noncoding RNA molecules that act post-transcriptionally to negatively regulate gene expression. Here we validate expression of the KSHV-encoded miRNAs in Kaposi sarcoma lesions and demonstrate that these miRNAs contribute to viral-induced reprogramming by silencing the cellular transcription factor MAF (musculoaponeurotic fibrosarcoma oncogene homolog). MAF is expressed in LECs but not in BECs. We identify a novel role for MAF as a transcriptional repressor, preventing expression of BEC-specific genes, thereby maintaining the differentiation status of LECs. These findings demonstrate that viral miRNAs could influence the differentiation status of infected cells, and thereby contribute to KSHV-induced oncogenesis.
Collapse
Affiliation(s)
- Amy Hansen
- Cancer Research UK Viral Oncology Group, University College London Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Qin Z, Freitas E, Sullivan R, Mohan S, Bacelieri R, Branch D, Romano M, Kearney P, Oates J, Plaisance K, Renne R, Kaleeba J, Parsons C. Upregulation of xCT by KSHV-encoded microRNAs facilitates KSHV dissemination and persistence in an environment of oxidative stress. PLoS Pathog 2010; 6:e1000742. [PMID: 20126446 PMCID: PMC2813276 DOI: 10.1371/journal.ppat.1000742] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 12/29/2009] [Indexed: 01/13/2023] Open
Abstract
Upregulation of xCT, the inducible subunit of a membrane-bound amino acid transporter, replenishes intracellular glutathione stores to maintain cell viability in an environment of oxidative stress. xCT also serves as a fusion-entry receptor for the Kaposi's sarcoma-associated herpesvirus (KSHV), the causative agent of Kaposi's sarcoma (KS). Ongoing KSHV replication and infection of new cell targets is important for KS progression, but whether xCT regulation within the tumor microenvironment plays a role in KS pathogenesis has not been determined. Using gene transfer and whole virus infection experiments, we found that KSHV-encoded microRNAs (KSHV miRNAs) upregulate xCT expression by macrophages and endothelial cells, largely through miR-K12-11 suppression of BACH-1-a negative regulator of transcription recognizing antioxidant response elements within gene promoters. Correlative functional studies reveal that upregulation of xCT by KSHV miRNAs increases cell permissiveness for KSHV infection and protects infected cells from death induced by reactive nitrogen species (RNS). Interestingly, KSHV miRNAs simultaneously upregulate macrophage secretion of RNS, and biochemical inhibition of RNS secretion by macrophages significantly reduces their permissiveness for KSHV infection. The clinical relevance of these findings is supported by our demonstration of increased xCT expression within more advanced human KS tumors containing a larger number of KSHV-infected cells. Collectively, these data support a role for KSHV itself in promoting de novo KSHV infection and the survival of KSHV-infected, RNS-secreting cells in the tumor microenvironment through the induction of xCT.
Collapse
Affiliation(s)
- Zhiqiang Qin
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Craniofacial Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Eduardo Freitas
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Roger Sullivan
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Sarumathi Mohan
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Rocky Bacelieri
- Department of Dermatology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Drake Branch
- Department of Dermatology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Margaret Romano
- Department of Pathology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Patricia Kearney
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jim Oates
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Medical Service, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States of America
| | - Karlie Plaisance
- Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Johnan Kaleeba
- Departments of Microbiology and Immunology and Molecular/Cell Biology, Uniformed Services University of the Health Sciences, F. Edward Herbert School of Medicine, Bethesda, Maryland, United States of America
| | - Chris Parsons
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Craniofacial Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
35
|
Harvey SAK, Guerriero E, Charukamnoetkanok N, Piluek J, Schuman JS, Sundarraj N. Responses of cultured human keratocytes and myofibroblasts to ethyl pyruvate: a microarray analysis of gene expression. Invest Ophthalmol Vis Sci 2010; 51:2917-27. [PMID: 20053976 DOI: 10.1167/iovs.09-4498] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Ethyl pyruvate (EP) has pharmacologic effects that remediate cellular stress. In the organ-cultured murine lens, EP ameliorates oxidative stress, and in a rat cataract model, it attenuates cataract formation. However, corneal responses to EP have not been elucidated. In this study, the potential of EP as a therapeutic agent in corneal wound healing was determined by examining its effects on the transition of quiescent corneal stromal keratocytes into contractile myofibroblasts. METHODS Three independent preparations of cultured human keratocytes were treated with TGF-beta1, to elicit a phenotypic transition to myofibroblasts in the presence or absence of 10 or 15 mM EP. Gene expression profiles of the 12 samples (keratocytes +/- EP +/- TGF-beta1 for three preparations) were produced by using gene microarrays. RESULTS TGF-beta1-driven twofold changes in at least two of three experiments defined a group of 1961 genes. Genes showing twofold modulation by EP in at least two experiments appeared exclusively in myofibroblasts (857 genes), exclusively in keratocytes (409 genes), or in both phenotypes (252 genes). Analysis of these three EP-modulated groups showed that EP (1) inhibited myofibroblast proliferation with concomitant modulation of some cell cycle genes, (2) augmented the NRF2-mediated antioxidant response in both keratocytes and myofibroblasts, and (3) modified the TGF-beta1-driven transition of keratocytes to myofibroblasts by inhibiting the upregulation of a subset of profibrotic genes. CONCLUSIONS These EP-induced phenotypic changes in myofibroblasts indicate the potential of EP as a therapeutic agent in corneal wound healing.
Collapse
Affiliation(s)
- Stephen A K Harvey
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-2588, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Copple IM, Goldring CE, Kitteringham NR, Park BK. The keap1-nrf2 cellular defense pathway: mechanisms of regulation and role in protection against drug-induced toxicity. Handb Exp Pharmacol 2010:233-66. [PMID: 20020265 DOI: 10.1007/978-3-642-00663-0_9] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adverse drug reactions pose a significant public health problem. In some cases, the process of drug metabolism can contribute to the onset of toxicity through the bioactivation of a parent molecule to a chemically reactive intermediate. In order to maintain a favorable balance between bioactivation and detoxification, mammalian cells have evolved an inducible cell defense system known as the antioxidant response pathway. The activity of this cytoprotective pathway is largely regulated by the transcription factor Nrf2, which governs the expression of many phase II detoxification and antioxidant enzymes. In turn, the activity of Nrf2 is regulated by the cysteine-rich cytosolic inhibitor Keap1, which acts as a "sensor" for chemical/oxidative stress. This article summarizes our current understanding of the molecular mechanisms that regulate the function of the Keap1-Nrf2 pathway and highlights the importance of Nrf2 in the protection against drug-induced toxicity.
Collapse
Affiliation(s)
- Ian M Copple
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, The University of Liverpool, Sherrington Building, Ashton Street, Liverpool, Merseyside L69 3GE, UK
| | | | | | | |
Collapse
|
37
|
Abstract
The polyphenolic phytoalexin resveratrol (RSV) and its analogues have received tremendous attention over the past couple of decades because of a number of reports highlighting their benefits in vitro and in vivo in a variety of human disease models, including cardio- and neuroprotection, immune regulation, and cancer chemoprevention. These studies have underscored the high degree of diversity in terms of the signaling networks and cellular effector mechanisms that are affected by RSV. The activity of RSV has been linked to cell-surface receptors, membrane signaling pathways, intracellular signal-transduction machinery, nuclear receptors, gene transcription, and metabolic pathways. The promise shown by RSV has prompted heightened interest in studies aimed at translating these observations to clinical settings. In this review, we present a comprehensive account of the basic chemistry of RSV, its bioavailability, and its multiple intracellular target proteins and signaling pathways.
Collapse
Affiliation(s)
- Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore.
| | | |
Collapse
|
38
|
Dong GZ, Youn H, Park MT, Oh ET, Park KH, Song CW, Kyung Choi E, Park HJ. Heat shock increases expression of NAD(P)H:quinone oxidoreductase (NQO1), mediator of β-lapachone cytotoxicity, by increasing NQO1 gene activity and via Hsp70-mediated stabilisation of NQO1 protein. Int J Hyperthermia 2009; 25:477-87. [DOI: 10.1080/02656730903049836] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
39
|
Abstract
For nearly 100 y, pediatricians have regularly used oxygen to treat neonatal and childhood diseases. During this time, it has become clear that oxygen is toxic and that overzealous use can lead to significant morbidity. As we have learned more about the appropriate clinical indications for oxygen therapy, studies at the bench have begun to elucidate the molecular mechanisms by which cells respond to hyperoxia. In this review, we discuss transcription factors whose activity is regulated by oxygen, including nuclear factor, erythroid 2-related factor 2 (Nrf2), activator protein 1 (AP-1), p53, nuclear factor kappaB (NF-kappaB), signal transducers and activators of transcription protein (STAT), and ccat/enhancer binding protein (CEBP). Special attention is paid to the mechanisms by which hyperoxia affects these transcription factors in the lung. Finally, we identify downstream targets of these transcription factors, with a focus on heme oxygenase-1. A better understanding of how oxygen affects various signaling pathways could lead to interventions aimed at preventing hyperoxic injury.
Collapse
Affiliation(s)
- Clyde J Wright
- Division of Neonatology, Children's Hospital of Philadelphia, 34th and Civic Center Blvd., Philadelphia, PA 19104, USA
| | | |
Collapse
|
40
|
Yang H, Ramani K, Xia M, Ko KS, Li TWH, Oh P, Li J, Lu SC. Dysregulation of glutathione synthesis during cholestasis in mice: molecular mechanisms and therapeutic implications. Hepatology 2009; 49:1982-91. [PMID: 19399914 PMCID: PMC2692579 DOI: 10.1002/hep.22908] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Glutathione (GSH) provides important antioxidant defense and regulates multiple critical processes including fibrogenesis. There are conflicting literature studies regarding changes in GSH during cholestasis. Here we examined changes in the GSH synthetic enzymes during bile duct ligation (BDL) in mice and how treatment with ursodeoxycholic acid (UDCA) and/or S-adenosylmethionine (SAMe) affects the expression of these enzymes and liver injury. The hepatic expression of glutamate-cysteine ligase (GCL) subunits and GSH synthase (GS) increased transiently after BDL but fell to 50% of baseline by 2 weeks. Nuclear factor-erythroid 2-related factor 2 (Nrf2) trans-activates gene expression by way of the antioxidant response element (ARE), which controls the expression of all three genes. Despite increased Nrf2 nuclear levels, Nrf2 nuclear binding to ARE fell 2 weeks after BDL. Nuclear levels of c-Maf and MafG, which can negatively regulate ARE, were persistently induced during BDL and the dominant proteins bound to ARE on day 14. UDCA and SAMe induced the expression of GCL subunits and raised GSH levels. They increased nuclear Nrf2 levels, prevented c-Maf and MafG induction, and prevented the fall in Nrf2 nuclear binding to ARE. Combined treatment had additive effects, reduced liver cell death, and prevented fibrosis. CONCLUSION GSH synthesis falls during later stages of BDL due to lower expression of GSH synthetic enzymes. UDCA and SAMe treatment prevented this fall and combined therapy was more effective on preserving GSH levels and preventing liver injury.
Collapse
Affiliation(s)
- Heping Yang
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Keck School of Medicine USC, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Li T, Xiao J, Wu Z, Qiu G. Over-expression of c-maf by chondrocytes in osteoarthritis. J Int Med Res 2009; 37:129-35. [PMID: 19215682 DOI: 10.1177/147323000903700115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The c-maf gene expression profile was investigated in normal and osteoarthritic articular cartilage using in situ hybridization, qualitative reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. Osteoarthritic samples were obtained from 10 patients undergoing total knee replacement for severe osteoarthritis of the knee joints, and control samples from 10 trauma patients undergoing amputation. Expression of c-maf was significantly up-regulated in osteoarthritic cartilage compared with normal cartilage. Using in situ hybridization, distribution of a specific c-maf mRNA signal was found in the top zone and a decreased signal was found in the lower middle zone and the deep zone in osteoarthritic cartilage. A prominent c-maf mRNA signal was seen particularly in proliferating 'chondrocyte clusters'. In contrast, in normal cartilage almost no c-maf-positive cells were found. These findings suggest that c-maf may be important in chondrocyte hypertrophy and terminal differentiation, and may be involved in the pathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- T Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | |
Collapse
|
42
|
Chowdhury I, Mo Y, Gao L, Kazi A, Fisher AB, Feinstein SI. Oxidant stress stimulates expression of the human peroxiredoxin 6 gene by a transcriptional mechanism involving an antioxidant response element. Free Radic Biol Med 2009; 46:146-53. [PMID: 18973804 PMCID: PMC2646855 DOI: 10.1016/j.freeradbiomed.2008.09.027] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 08/22/2008] [Accepted: 09/19/2008] [Indexed: 02/07/2023]
Abstract
Peroxiredoxin 6 (Prdx6) is a unique antioxidant enzyme that can reduce phospholipid and other hydroperoxides. A549 cells, a human lung-derived cell line, express both Prdx6 and Nrf2, a transcription factor that binds to antioxidant-response elements (AREs) and promotes expression of antioxidant genes. Treatment of A549 cells with 500 microM H(2)O(2) increased Prdx6 mRNA levels 2.5-fold, whereas treatment with 400 microM H(2)O(2) or 200 microM tert-butylhydroquinone (t-BHQ) triggered a corresponding 2.5-fold increase in reporter gene activity in A549 cells transfected with the pSEAP2:Basic vector (BD Bioscience), containing 1524 nucleotides of the human Prdx6 promoter region. Deletion of a consensus ARE sequence present between positions 357 and 349 before the start of transcription led to a striking decrease in both basal and H(2)O(2)- or t-BHQ-induced activation in A549 cells and H(2)O(2)-induced activation in primary rat alveolar type II cells. Cotransfection with Nrf2 stimulated the Prdx6 promoter in an ARE-dependent manner, whereas it was negatively regulated by Nrf3. siRNA targeting Nrf2 down-regulated reporter gene expression, whereas siRNA targeting the Nrf2 repressor, Keap1, up-regulated it. Binding of Nrf2 to the ARE sequence in chromatin was confirmed by PCR after chromatin immunoprecipitation. These data demonstrate that the ARE within the Prdx6 promoter is a key regulator of basal transcription of the Prdx6 gene and of its inducibility under conditions of oxidative stress.
Collapse
Affiliation(s)
- Ibrul Chowdhury
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, 1 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Like JUN and FOS, the Maf transcription factors belong to the AP1 family. Besides their established role in human cancer--overexpression of the large Maf genes promotes the development of multiple myeloma--they can display tumour suppressor-like activity in specific cellular contexts, which is compatible with their physiological role in terminal differentiation. However, their oncogenic activity relies mostly on the acquisition of new biological functions relevant to cell transformation, the most striking characteristic of Maf oncoproteins being their ability to enhance pathological interactions between tumour cells and the stroma.
Collapse
Affiliation(s)
- Alain Eychène
- Institut Curie, Centre de Recherche, Orsay F-91405, France
| | | | | |
Collapse
|
44
|
Lo M, Wang YZ, Gout PW. The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 2008; 215:593-602. [PMID: 18181196 DOI: 10.1002/jcp.21366] [Citation(s) in RCA: 307] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The x(c) (-) cystine/glutamate antiporter is a major plasma membrane transporter for the cellular uptake of cystine in exchange for intracellular glutamate. Its main functions in the body are mediation of cellular cystine uptake for synthesis of glutathione essential for cellular protection from oxidative stress and maintenance of a cystine:cysteine redox balance in the extracellular compartment. In the past decade it has become evident that the x(c) (-) transporter plays an important role in various aspects of cancer, including: (i) growth and progression of cancers that have a critical growth requirement for extracellular cystine/cysteine, (ii) glutathione-based drug resistance, (iii) excitotoxicity due to excessive release of glutamate, and (iv) uptake of herpesvirus 8, a causative agent of Kaposi's sarcoma. The x(c) (-) transporter also plays a role in certain CNS and eye diseases. This review focuses on the expression and function of the x(c) (-) transporter in cells and tissues with particular emphasis on its role in disease pathogenesis. The potential use of x(c) (-) inhibitors (e.g., sulfasalazine) for arresting tumor growth and/or sensitizing cancers is discussed.
Collapse
Affiliation(s)
- Maisie Lo
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
45
|
Peng S, Lalani S, Leavenworth JW, Ho IC, Pauza ME. c-Maf interacts with c-Myb to down-regulate Bcl-2 expression and increase apoptosis in peripheral CD4 cells. Eur J Immunol 2007; 37:2868-80. [PMID: 17823980 DOI: 10.1002/eji.200636979] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transcription factor c-Maf is critical for IL-4 production and the development of Th2 cells, which promote humoral immunity and protect against extracellular parasites. Yet, little else is known of c-Maf function in CD4 cells. Here, we identify a novel role for c-Maf in regulating susceptibility to apoptosis. Overexpression of c-Maf results in increased susceptibility of CD4 cells to apoptosis induced by multiple stimuli, including growth factor withdrawal, dexamethasone, irradiation, and TCR engagement. This effect is independent of Fas or p53; however, Bcl-2 expression is reduced in c-Maf Tg CD4 cells. Immunoprecipitation and Western blot analyses demonstrate that c-Maf-c-Myb complex formation is enhanced among T cells from c-Maf Tg mice compared to non-Tg littermates following TCR engagement. Unlike non-Tg T cells, c-Myb binding to the Bcl-2 promoter is not detectable in c-Maf Tg T cells by chromatin immunoprecipitation. In reporter assays, Bcl-2 promoter activity is reduced by c-Maf in a dose-dependent manner. Furthermore, transgene-mediated Bcl-2 expression corrects the apoptosis defect observed among c-Maf Tg CD4 cells. These data suggest that c-Maf can interact with c-Myb to reduce Bcl-2 expression, thereby limiting CD4 cell survival following TCR engagement.
Collapse
Affiliation(s)
- Siying Peng
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | | | | | | | | |
Collapse
|
46
|
Larade K, Jiang ZG, Dejam A, Zhu H, Bunn H. The reductase NCB5OR is responsive to the redox status in beta-cells and is not involved in the ER stress response. Biochem J 2007; 404:467-76. [PMID: 17343567 PMCID: PMC1896276 DOI: 10.1042/bj20061859] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The novel reductase NCB5OR (NADPH cytochrome b5 oxidoreductase) resides in the ER (endoplasmic reticulum) and may protect cells against ER stress. Levels of BiP (immunoglobulin heavy-chain-binding protein), CHOP (CCAAT/enhancer-binding protein homologous protein) and XBP-1 (X-box-binding protein-1) did not differ in WT (wild-type) and KO (Ncb5or-null) tissues or MEFs (mouse embryonic fibroblasts), and XBP-1 remained unspliced. MEFs treated with inducers of ER stress demonstrated no change in Ncb5or expression and expression of ER-stress-induced genes was not enhanced. Induction of ER stress in beta-cell lines did not change Ncb5or expression or promoter activity. Transfection with Ncb5or-specific siRNA (small interfering RNA) yielded similar results. Microarray analysis of mRNA from islets and liver of WT and KO animals revealed no significant changes in ER-stress-response genes. Induction of oxidative stress in betaTC3 cells did not alter Ncb5or mRNA levels or promoter activity. However, KO islets were more sensitive to streptozotocin when compared with WT islets. MEFs incubated with nitric oxide donors showed no difference in cell viability or levels of nitrite produced. No significant differences in mRNA expression of antioxidant enzymes were observed when comparing WT and KO tissues; however, microarray analysis of islets indicated slightly enhanced expression of some antioxidant enzymes in the KO islets. Short-term tBHQ (t-butylhydroquinone) treatment increased Ncb5or promoter activity, although longer incubation times yielded a dose-dependent decrease in activity. This response appears to be due to a consensus ARE (antioxidant-response element) present in the Ncb5or promoter. In summary, NCB5OR does not appear to be involved in ER stress, although it may be involved in maintaining or regulating the redox status in beta-cells.
Collapse
Affiliation(s)
- Kevin Larade
- *Department of Medicine, Hematology Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, U.S.A
| | - Zhi-gang Jiang
- *Department of Medicine, Hematology Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, U.S.A
| | - Andre Dejam
- *Department of Medicine, Hematology Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, U.S.A
| | - Hao Zhu
- *Department of Medicine, Hematology Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, U.S.A
- †Department of Clinical Laboratory Sciences, Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, U.S.A
| | - H. Franklin Bunn
- *Department of Medicine, Hematology Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
47
|
Pi J, Bai Y, Reece JM, Williams J, Liu D, Freeman ML, Fahl WE, Shugar D, Liu J, Qu W, Collins S, Waalkes MP. Molecular mechanism of human Nrf2 activation and degradation: role of sequential phosphorylation by protein kinase CK2. Free Radic Biol Med 2007; 42:1797-806. [PMID: 17512459 PMCID: PMC1950666 DOI: 10.1016/j.freeradbiomed.2007.03.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Revised: 01/25/2007] [Accepted: 03/02/2007] [Indexed: 12/15/2022]
Abstract
Nrf2 is a key transcription factor in the cellular response to oxidative stress. In this study we identify two phosphorylated forms of endogenous human Nrf2 after chemically induced oxidative stress and provide evidence that protein kinase CK2-mediated sequential phosphorylation plays potential roles in Nrf2 activation and degradation. Human Nrf2 has a predicted molecular mass of 66 kDa. However, immunoblots showed that two bands at 98 and 118 kDa, which are identified as phosphorylated forms, are increased in response to Nrf2 inducers. In addition, human Nrf2 was found to be a substrate for CK2 which mediated two steps of phosphorylation, resulting in two forms of Nrf2 migrating with differing M(r) at 98 kDa (Nrf2-98) and 118 kDa (Nrf2-118). Our results support a role in which calmodulin binding regulates CK2 activity, in that cold (25 degrees C) Ca(2+)-free media (cold/Ca(2+)-free) decreased both cellular calcium levels and CK2-calmodulin binding and induced Nrf2-118 formation, the latter of which was prevented by CK2-specific inhibitors. Gel shift assays showed that the Nrf2-118 generated under cold/Ca(2+)-free conditions does not bind to the antioxidant response element, indicating that Nrf2-98 has transcriptional activity. In contrast, Nrf2-118 is more susceptible to degradation. These results provide evidence for phosphorylation by CK2 as a critical controlling factor in Nrf2-mediated cellular antioxidant response.
Collapse
Affiliation(s)
- Jingbo Pi
- Laboratory of Comparative Carcinogenesis, NCI at NIEHS, NIH, RTP, North Carolina 27709
- Endocrine Biology Program, The Hamner Institutes for Health Sciences, RTP, North Carolina 27709
| | - Yushi Bai
- Endocrine Biology Program, The Hamner Institutes for Health Sciences, RTP, North Carolina 27709
| | - Jeffrey M. Reece
- Laboratory of Signal Transduction, NIEHS, NIH, RTP, North Carolina 27709
| | - Jason Williams
- Laboratory of Structure Biology, NIEHS, NIH, RTP, North Carolina 27709
| | - Dianxin Liu
- Laboratory of Signal Transduction, NIEHS, NIH, RTP, North Carolina 27709
| | - Michael L. Freeman
- Department of Radiation Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232
| | - William E. Fahl
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, 53706
| | - David Shugar
- Institute of Biochemistry & Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Jie Liu
- Laboratory of Comparative Carcinogenesis, NCI at NIEHS, NIH, RTP, North Carolina 27709
| | - Wei Qu
- Laboratory of Comparative Carcinogenesis, NCI at NIEHS, NIH, RTP, North Carolina 27709
| | - Sheila Collins
- Endocrine Biology Program, The Hamner Institutes for Health Sciences, RTP, North Carolina 27709
| | - Michael P. Waalkes
- Laboratory of Comparative Carcinogenesis, NCI at NIEHS, NIH, RTP, North Carolina 27709
| |
Collapse
|
48
|
Monteiro P, Gilot D, Le Ferrec E, Lecureur V, N'diaye M, Le Vee M, Podechard N, Pouponnot C, Fardel O. AhR- and c-maf-dependent induction of beta7-integrin expression in human macrophages in response to environmental polycyclic aromatic hydrocarbons. Biochem Biophys Res Commun 2007; 358:442-8. [PMID: 17490615 DOI: 10.1016/j.bbrc.2007.04.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 04/19/2007] [Indexed: 11/29/2022]
Abstract
In order to identify molecular targets of environmental polycyclic aromatic hydrocarbons (PAHs), we have analysed regulation of integrin (ITG) expression in PAH-exposed human macrophages. Among ITG subunits, beta7 ITG was found to be markedly up-regulated at both mRNA and protein levels in response to the prototypical PAH benzo(a)pyrene (BP). Knock-down of the transcription factor c-maf, known to control beta7 ITG expression, markedly impaired BP-mediated beta7 ITG induction. Moreover, chromatin immunoprecipitation and electrophoretic mobility shift assays showed BP-triggered binding of c-maf to a specific maf-responsive element found in beta7 ITG promoter. Such a binding, and also beta7 ITG induction, were however abolished in response to chemical inhibition of the aryl hydrocarbon receptor (AhR), to which PAHs bind. Taken together, these data establish beta7 ITG as a new molecular target of PAHs, whose up-regulation by these environmental contaminants most likely requires activation of co-operative pathways involving both AhR and c-maf.
Collapse
Affiliation(s)
- Patricia Monteiro
- UMR-INSERM U620, Equipe Toxicity of Polycyclic Aromatic Hydrocarbons, IFR140, Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, 2 Avenue du Professeur Léon Bernard, Rennes Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Clements CM, McNally RS, Conti BJ, Mak TW, Ting JPY. DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci U S A 2006; 103:15091-6. [PMID: 17015834 PMCID: PMC1586179 DOI: 10.1073/pnas.0607260103] [Citation(s) in RCA: 631] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DJ-1/PARK7, a cancer- and Parkinson's disease (PD)-associated protein, protects cells from toxic stresses. However, the functional basis of this protection has remained elusive. We found that loss of DJ-1 leads to deficits in NQO1 [NAD(P)H quinone oxidoreductase 1], a detoxification enzyme. This deficit is attributed to a loss of Nrf2 (nuclear factor erythroid 2-related factor), a master regulator of antioxidant transcriptional responses. DJ-1 stabilizes Nrf2 by preventing association with its inhibitor protein, Keap1, and Nrf2's subsequent ubiquitination. Without intact DJ-1, Nrf2 protein is unstable, and transcriptional responses are thereby decreased both basally and after induction. This effect of DJ-1 on Nrf2 is present in both transformed lines and primary cells across human and mouse species. DJ-1's effect on Nrf2 and subsequent effects on antioxidant responses may explain how DJ-1 affects the etiology of both cancer and PD, which are seemingly disparate disorders. Furthermore, this DJ-1/Nrf2 functional axis presents a therapeutic target in cancer treatment and justifies DJ-1 as a tumor biomarker.
Collapse
Affiliation(s)
- Casey M. Clements
- *Department of Microbiology–Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295; and
| | - Richard S. McNally
- *Department of Microbiology–Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295; and
| | - Brian J. Conti
- *Department of Microbiology–Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295; and
| | - Tak W. Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, 620 University Avenue, Suite 706, Toronto, ON, Canada M5G 2C1
- To whom correspondence may be addressed. E-mail:
or
| | - Jenny P.-Y. Ting
- *Department of Microbiology–Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
50
|
Kobayashi M, Yamamoto M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. ACTA ACUST UNITED AC 2006; 46:113-40. [PMID: 16887173 DOI: 10.1016/j.advenzreg.2006.01.007] [Citation(s) in RCA: 659] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Makoto Kobayashi
- JST-ERATO Environmental Response Project, Center for Tsukuba Advanced Research Alliance, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | | |
Collapse
|