1
|
Liongue C, Almohaisen FLJ, Ward AC. B Cell Lymphoma 6 (BCL6): A Conserved Regulator of Immunity and Beyond. Int J Mol Sci 2024; 25:10968. [PMID: 39456751 PMCID: PMC11507070 DOI: 10.3390/ijms252010968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
B cell lymphoma 6 (BCL6) is a conserved multi-domain protein that functions principally as a transcriptional repressor. This protein regulates many pivotal aspects of immune cell development and function. BCL6 is critical for germinal center (GC) formation and the development of high-affinity antibodies, with key roles in the generation and function of GC B cells, follicular helper T (Tfh) cells, follicular regulatory T (Tfr) cells, and various immune memory cells. BCL6 also controls macrophage production and function as well as performing a myriad of additional roles outside of the immune system. Many of these regulatory functions are conserved throughout evolution. The BCL6 gene is also important in human oncology, particularly in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL), but also extending to many in other cancers, including a unique role in resistance to a variety of therapies, which collectively make BCL6 inhibitors highly sought-after.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Farooq L. J. Almohaisen
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Department of Medical Laboratory Techniques, Southern Technical University, Basra 61001, Iraq
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (C.L.); (F.L.J.A.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
2
|
Xue X, Eslamloo K, Caballero-Solares A, Katan T, Umasuthan N, Taylor RG, Fast MD, Andreassen R, Rise ML. Characterization of the impact of dietary immunostimulant CpG on the expression of mRNA biomarkers involved in the immune responses in Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109840. [PMID: 39153579 DOI: 10.1016/j.fsi.2024.109840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Infectious diseases have significantly impacted Atlantic salmon aquaculture worldwide. Modulating fish immunity with immunostimulant-containing functional feeds could be an effective strategy in mitigating disease problems. Previously, we characterized the impact of polyriboinosinic polyribocytidylic acid (pIC) and formalin-killed typical Aeromonas salmonicida bacterin on miRNA expression in Atlantic salmon fed a commercial diet with and without immunostimulant CpG. A set of miRNA biomarkers of Atlantic salmon head kidney responding to pIC and/or bacterin immune stimulations was identified (Xue et al., 2019) [1]. Herein, we report a complementary qPCR study that investigated the impact of the pIC, bacterin and dietary CpG on the expression of immune-relevant mRNAs (n = 31) using the same samples as in the previous study (Xue et al., 2019) [1]. Twenty-six of these genes were predicted target transcripts of the pIC- and/or bacterin-responsive miRNAs identified in the earlier study. The current data showed that pIC and/or bacterin stimulations significantly modulated the majority of the qPCR-analyzed genes involved in various immune pathways. Some genes responded to both stimulations (e.g. tnfa, il10rb, ifng, irf9, cxcr3, campb) while others appeared to be stimulation specific [e.g. irf3, irf7a, il1r1, mxa, mapk3 (pIC only); clra (bacterin only)]. A. salmonicida bacterin stimulation produced a strong inflammatory response (e.g. higher expression of il1b, il8a and tnfa), while salmon stimulated with pIC showed robust interferon responses (both type I and II). Furthermore, the current data indicated significant down-regulation of immune-relevant transcripts (e.g. tlr9, irf5, il1r1, hsp90ab1, itgb2) by dietary immunostimulant CpG, especially among pre-injection and PBS-injected fish. Together with our prior miRNA study, the present research provided complementary information on Atlantic salmon anti-viral and anti-bacterial immune responses and on how dietary CpG may modulate these responses.
Collapse
Affiliation(s)
- Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| | - Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Tomer Katan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Navaneethaiyer Umasuthan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Richard G Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN, 55330, USA
| | - Mark D Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, N-0130, Oslo, Norway
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
3
|
Tsushima H, Tada H, Asai A, Hirose M, Hosoyama T, Watanabe A, Murakami T, Sugimoto M. Roles of pigment epithelium-derived factor in exercise-induced suppression of senescence and its impact on lung pathology in mice. Aging (Albany NY) 2024; 16:10670-10693. [PMID: 38954512 PMCID: PMC11272117 DOI: 10.18632/aging.205976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
Senescent cells contribute to tissue aging and underlie the pathology of chronic diseases. The benefits of eliminating senescent cells have been demonstrated in several disease models, and the efficacy of senolytic drugs is currently being tested in humans. Exercise training has been shown to reduce cellular senescence in several tissues; however, the mechanisms responsible remain unclear. We found that myocyte-derived factors significantly extended the replicative lifespan of fibroblasts, suggesting that myokines mediate the anti-senescence effects of exercise. A number of proteins within myocyte-derived factors were identified by mass spectrometry. Among these, pigment epithelium-derived factor (PEDF) exerted inhibitory effects on cellular senescence. Eight weeks of voluntary running increased Pedf levels in skeletal muscles and suppressed senescence markers in the lungs. The administration of PEDF reduced senescence markers in multiple tissues and attenuated the decline in respiratory function in the pulmonary emphysema mouse model. We also showed that blood levels of PEDF inversely correlated with the severity of COPD in patients. Collectively, these results strongly suggest that PEDF contributes to the beneficial effects of exercise, potentially suppressing cellular senescence and its associated pathologies.
Collapse
Affiliation(s)
- Hiromichi Tsushima
- Laboratory of Molecular and Cellular Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Hirobumi Tada
- Department of Nutrition, Shigakkan University, Aichi 474-8651, Japan
- Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Azusa Asai
- Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Mikako Hirose
- Laboratory of Molecular and Cellular Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Tohru Hosoyama
- Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Atsushi Watanabe
- Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Taro Murakami
- Department of Nutrition, Shigakkan University, Aichi 474-8651, Japan
| | - Masataka Sugimoto
- Laboratory of Molecular and Cellular Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
- Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| |
Collapse
|
4
|
Deng C, Whalen S, Steyert M, Ziffra R, Przytycki PF, Inoue F, Pereira DA, Capauto D, Norton S, Vaccarino FM, Pollen AA, Nowakowski TJ, Ahituv N, Pollard KS. Massively parallel characterization of regulatory elements in the developing human cortex. Science 2024; 384:eadh0559. [PMID: 38781390 DOI: 10.1126/science.adh0559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/13/2024] [Indexed: 05/25/2024]
Abstract
Nucleotide changes in gene regulatory elements are important determinants of neuronal development and diseases. Using massively parallel reporter assays in primary human cells from mid-gestation cortex and cerebral organoids, we interrogated the cis-regulatory activity of 102,767 open chromatin regions, including thousands of sequences with cell type-specific accessibility and variants associated with brain gene regulation. In primary cells, we identified 46,802 active enhancer sequences and 164 variants that alter enhancer activity. Activity was comparable in organoids and primary cells, suggesting that organoids provide an adequate model for the developing cortex. Using deep learning we decoded the sequence basis and upstream regulators of enhancer activity. This work establishes a comprehensive catalog of functional gene regulatory elements and variants in human neuronal development.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sean Whalen
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Marilyn Steyert
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Ryan Ziffra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Daniela A Pereira
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
- Graduate Program of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Davide Capauto
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Scott Norton
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | - Alex A Pollen
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine S Pollard
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Cheng YJ, Zhuang Z, Miao YL, Song SS, Bao XB, Yang CH, He JX. Identification of YCH2823 as a novel USP7 inhibitor for cancer therapy. Biochem Pharmacol 2024; 222:116071. [PMID: 38387527 DOI: 10.1016/j.bcp.2024.116071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Inhibition of the human ubiquitin-specific protease 7 (USP7), the key deubiquitylating enzyme in regulating p53 protein levels, has been considered an attractive anticancer strategy. In order to enhance the cellular activity of FT671, scaffold hopping strategy was employed. This endeavor resulted in the discovery of YCH2823, a novel and potent USP7 inhibitor.YCH2823 demonstrated remarkable efficacy in inhibiting the growth of a specific subset of TP53 wild-type, -mutant, and MYCN-amplified cell lines, surpassing the potency of FT671 by approximately 5-fold. The mechanism of action of YCH2823 involves direct interaction with the catalytic domain of USP7, thereby impeding the cleavage of ubiquitinated substrates. An increase in the expression of p53 and p21, accompanied by G1 phase arrest and apoptosis, was observed upon treatment with YCH2823. Subsequently, the knockdown of p53 or p21 in CHP-212 cells exhibited a substantial reduction in sensitivity to YCH2823, as evidenced by a considerable increase in IC50 values up to 690-fold. Furthermore, YCH2823 treatment specifically enhanced the transcriptional and protein levels of BCL6 in sensitive cells. Moreover, a synergistic effect between USP7 inhibitors and mTOR inhibitors was observed, suggesting the possibility of novel therapeutic strategies for cancer treatment. In conclusion, YCH2823 exhibits potential as an anticancer agent for the treatment of both TP53 wild-type and -mutant tumors.
Collapse
Affiliation(s)
- Yong-Jun Cheng
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Avenue, Nanjing 210046 China
| | - Zhen Zhuang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yu-Ling Miao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Shan-Shan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xu-Bin Bao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Chun-Hao Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Jin-Xue He
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Avenue, Nanjing 210046 China.
| |
Collapse
|
6
|
Chen D, Zhao HM, Deng XH, Li SP, Zhou MH, Wu YX, Tong Y, Yu RQ, Pang QF. BCL6 attenuates hyperoxia-induced lung injury by inhibiting NLRP3-mediated inflammation in fetal mouse. Exp Lung Res 2024; 50:25-41. [PMID: 38419581 DOI: 10.1080/01902148.2024.2320665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The transcriptional repressor B-cell lymphoma 6 (BCL6) has been reported to inhibit inflammation. So far, experimental evidence for the role of BCL6 in bronchopulmonary dysplasia (BPD) is lacking. Our study investigated the roles of BCL6 in the progression of BPD and its downstream mechanisms. METHODS Hyperoxia or lipopolysaccharide (LPS) was used to mimic the BPD mouse model. To investigate the effects of BCL6 on BPD, recombination adeno-associated virus serotype 9 expressing BCL6 (rAAV9-BCL6) and BCL6 inhibitor FX1 were administered in mice. The pulmonary pathological changes, inflammatory chemokines and NLRP3-related protein were observed. Meanwhile, BCL6 overexpression plasmid was used in human pulmonary microvascular endothelial cells (HPMECs). Cell proliferation, apoptosis, and NLRP3-related protein were detected. RESULTS Either hyperoxia or LPS suppressed pulmonary BCL6 mRNA expression. rAAV9-BCL6 administration significantly inhibited hyperoxia-induced NLRP3 upregulation and inflammation, attenuated alveolar simplification and dysregulated angiogenesis in BPD mice, which were characterized by decreased mean linear intercept, increased radical alveolar count and alveoli numbers, and the upregulated CD31 expression. Meanwhile, BCL6 overexpression promoted proliferation and angiogenesis, inhibited apoptosis and inflammation in hyperoxia-stimulated HPMECs. Moreover, administration of BCL6 inhibitor FX1 arrested growth and development. FX1-treated BPD mice exhibited exacerbation of alveolar pathological changes and pulmonary vessel permeability, with upregulated mRNA levels of pro-inflammatory cytokines and pro-fibrogenic factors. Furthermore, both rAAV9-BCL6 and FX1 administration exerted a long-lasting effect on hyperoxia-induced lung injury (≥4 wk). CONCLUSIONS BCL6 inhibits NLRP3-mediated inflammation, attenuates alveolar simplification and dysregulated pulmonary vessel development in hyperoxia-induced BPD mice. Hence, BCL6 may be a target in treating BPD and neonatal diseases.
Collapse
Affiliation(s)
- Dan Chen
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hui-Min Zhao
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xian-Hui Deng
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Sheng-Peng Li
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Mei-Hui Zhou
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ya-Xian Wu
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ying Tong
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ren-Qiang Yu
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Qing-Feng Pang
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Wolpe AG, Luse MA, Baryiames C, Schug WJ, Wolpe JB, Johnstone SR, Dunaway LS, Juśkiewicz ZJ, Loeb SA, Askew Page HR, Chen YL, Sabapathy V, Pavelec CM, Wakefield B, Cifuentes-Pagano E, Artamonov MV, Somlyo AV, Straub AC, Sharma R, Beier F, Barrett EJ, Leitinger N, Pagano PJ, Sonkusare SK, Redemann S, Columbus L, Penuela S, Isakson BE. Pannexin-3 stabilizes the transcription factor Bcl6 in a channel-independent manner to protect against vascular oxidative stress. Sci Signal 2024; 17:eadg2622. [PMID: 38289985 DOI: 10.1126/scisignal.adg2622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Targeted degradation regulates the activity of the transcriptional repressor Bcl6 and its ability to suppress oxidative stress and inflammation. Here, we report that abundance of endothelial Bcl6 is determined by its interaction with Golgi-localized pannexin 3 (Panx3) and that Bcl6 transcriptional activity protects against vascular oxidative stress. Consistent with data from obese, hypertensive humans, mice with an endothelial cell-specific deficiency in Panx3 had spontaneous systemic hypertension without obvious changes in channel function, as assessed by Ca2+ handling, ATP amounts, or Golgi luminal pH. Panx3 bound to Bcl6, and its absence reduced Bcl6 protein abundance, suggesting that the interaction with Panx3 stabilized Bcl6 by preventing its degradation. Panx3 deficiency was associated with increased expression of the gene encoding the H2O2-producing enzyme Nox4, which is normally repressed by Bcl6, resulting in H2O2-induced oxidative damage in the vasculature. Catalase rescued impaired vasodilation in mice lacking endothelial Panx3. Administration of a newly developed peptide to inhibit the Panx3-Bcl6 interaction recapitulated the increase in Nox4 expression and in blood pressure seen in mice with endothelial Panx3 deficiency. Panx3-Bcl6-Nox4 dysregulation occurred in obesity-related hypertension, but not when hypertension was induced in the absence of obesity. Our findings provide insight into a channel-independent role of Panx3 wherein its interaction with Bcl6 determines vascular oxidative state, particularly under the adverse conditions of obesity.
Collapse
Affiliation(s)
- Abigail G Wolpe
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Melissa A Luse
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | | | - Wyatt J Schug
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Jacob B Wolpe
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Center for Vascular and Heart Research, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Zuzanna J Juśkiewicz
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Skylar A Loeb
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Henry R Askew Page
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Vikram Sabapathy
- Center for Immunity, Inflammation, and Regenerative Medicine (CIIR), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Caitlin M Pavelec
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brent Wakefield
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Eugenia Cifuentes-Pagano
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mykhaylo V Artamonov
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Avril V Somlyo
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rahul Sharma
- Center for Immunity, Inflammation, and Regenerative Medicine (CIIR), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Frank Beier
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Eugene J Barrett
- Department of Medicine, Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Norbert Leitinger
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Patrick J Pagano
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Oncology (Division of Experimental Oncology), Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5W9, Canada
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
8
|
Deng C, Whalen S, Steyert M, Ziffra R, Przytycki PF, Inoue F, Pereira DA, Capauto D, Norton S, Vaccarino FM, Pollen A, Nowakowski TJ, Ahituv N, Pollard KS. Massively parallel characterization of psychiatric disorder-associated and cell-type-specific regulatory elements in the developing human cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528663. [PMID: 36824845 PMCID: PMC9949039 DOI: 10.1101/2023.02.15.528663] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Nucleotide changes in gene regulatory elements are important determinants of neuronal development and disease. Using massively parallel reporter assays in primary human cells from mid-gestation cortex and cerebral organoids, we interrogated the cis-regulatory activity of 102,767 sequences, including differentially accessible cell-type specific regions in the developing cortex and single-nucleotide variants associated with psychiatric disorders. In primary cells, we identified 46,802 active enhancer sequences and 164 disorder-associated variants that significantly alter enhancer activity. Activity was comparable in organoids and primary cells, suggesting that organoids provide an adequate model for the developing cortex. Using deep learning, we decoded the sequence basis and upstream regulators of enhancer activity. This work establishes a comprehensive catalog of functional gene regulatory elements and variants in human neuronal development.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
| | - Sean Whalen
- Gladstone Institutes; San Francisco, CA, USA
| | - Marilyn Steyert
- Department of Anatomy, University of California, San Francisco; San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco; San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco; San Francisco, CA, USA
| | - Ryan Ziffra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
| | | | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University; Kyoto, Japan
| | - Daniela A. Pereira
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
- Graduate Program of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | | | - Scott Norton
- Child Study Center, Yale University; New Haven, CT, USA
| | - Flora M. Vaccarino
- Child Study Center, Yale University; New Haven, CT, USA
- Department of Neuroscience, Yale University; New Haven, CT, USA
| | - Alex Pollen
- Department of Neurology, University of California, San Francisco; San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco; San Francisco, CA, USA
| | - Tomasz J. Nowakowski
- Department of Anatomy, University of California, San Francisco; San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco; San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco; San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco; San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco; San Francisco, CA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
| | - Katherine S. Pollard
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
- Gladstone Institutes; San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco; San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco; San Francisco, CA, USA
| |
Collapse
|
9
|
Vlachogiannis NI, Ntouros PA, Pappa M, Verrou KM, Arida A, Souliotis VL, Sfikakis PP. Deregulated DNA damage response network in Behcet's disease. Clin Immunol 2023; 246:109189. [PMID: 36400336 DOI: 10.1016/j.clim.2022.109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Behcet's disease (BD) is a chronic, relapsing systemic vasculitis of unknown etiology. Since the DNA repair enzyme NEIL1 has been identified as one of the two genetic risk factors for BD by whole exome study, we examined the potential involvement of the DNA damage response (DDR) network in BD. Peripheral blood mononuclear cells from 26 patients and 26 age-/sex-matched healthy controls were studied. Endogenous DNA damage levels were increased in active BD patients compared to controls or patients in remission. In parallel, BD patients had defective nucleotide excision repair capacity. RNA-sequencing revealed reduced expression of NEIL1 that negatively correlated with DNA damage accumulation. On the other hand, expression of genes involved in senescence and senescence-associated secretory phenotype positively correlated with individual endogenous DNA damage levels. We conclude that deregulated DDR contributes to the proinflammatory environment in BD.
Collapse
Affiliation(s)
- Nikolaos I Vlachogiannis
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - Panagiotis A Ntouros
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria Pappa
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Kleio-Maria Verrou
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece; Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Aikaterini Arida
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Vassilis L Souliotis
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece; Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Petros P Sfikakis
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece; Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
10
|
Voss LF, Howarth AJ, Wittenborn TR, Hummelgaard S, Juul-Madsen K, Kastberg KS, Pedersen MK, Jensen L, Papanastasiou AD, Vorup-Jensen T, Weyer K, Degn SE. The extrafollicular response is sufficient to drive initiation of autoimmunity and early disease hallmarks of lupus. Front Immunol 2022; 13:1021370. [PMID: 36591222 PMCID: PMC9795406 DOI: 10.3389/fimmu.2022.1021370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Many autoimmune diseases are characterized by germinal center (GC)-derived, affinity-matured, class-switched autoantibodies, and strategies to block GC formation and progression are currently being explored clinically. However, extrafollicular responses can also play a role. The aim of this study was to investigate the contribution of the extrafollicular pathway to autoimmune disease development. Methods We blocked the GC pathway by knocking out the transcription factor Bcl-6 in GC B cells, leaving the extrafollicular pathway intact. We tested the impact of this intervention in two murine models of systemic lupus erythematosus (SLE): a pharmacological model based on chronic epicutaneous application of the Toll-like receptor (TLR)-7 agonist Resiquimod (R848), and 564Igi autoreactive B cell receptor knock-in mice. The B cell intrinsic effects were further investigated in vitro and in autoreactive mixed bone marrow chimeras. Results GC block failed to curb autoimmune progression in the R848 model based on anti-dsDNA and plasma cell output, superoligomeric DNA complexes, and immune complex deposition in glomeruli. The 564Igi model confirmed this based on anti-dsDNA and plasma cell output. In vitro, loss of Bcl-6 prevented GC B cell expansion and accelerated plasma cell differentiation. In a competitive scenario in vivo, B cells harboring the genetic GC block contributed disproportionately to the plasma cell output. Discussion We identified the extrafollicular pathway as a key contributor to autoimmune progression. We propose that therapeutic targeting of low quality and poorly controlled extrafollicular responses could be a desirable strategy to curb autoreactivity, as it would leave intact the more stringently controlled and high-quality GC responses providing durable protection against infection.
Collapse
Affiliation(s)
- Lasse F. Voss
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | | | | | | | | | - Lisbeth Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Søren E. Degn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,*Correspondence: Søren E. Degn,
| |
Collapse
|
11
|
Karimi S, Shahabi F, Mubarak SMH, Arjmandi H, Hashemi ZS, Pourzardosht N, Zakeri A, Mahboobi M, Jahangiri A, Rahbar MR, Khalili S. Impact of SNPs, off-targets, and passive permeability on efficacy of BCL6 degrading drugs assigned by virtual screening and 3D-QSAR approach. Sci Rep 2022; 12:21091. [PMID: 36473934 PMCID: PMC9726907 DOI: 10.1038/s41598-022-25587-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
B-cell lymphoma 6 (BCL6) regulates various genes and is reported to be overexpressed in lymphomas and other malignancies. Thus, BCL6 inhibition or its tagging for degradation would be an amenable therapeutic approach. A library of 2500 approved drugs was employed to find BCL6 inhibitory molecules via virtual screening. Moreover, the 3D core structure of 170 BCL6 inhibitors was used to build a 3D QSAR model and predict the biological activity. The SNP database was analyzed to study the impact on the destabilization of BCL6/drug interactions. Structural similarity search and molecular docking analyses were used to assess the interaction between possible off-targets and BCL6 inhibitors. The tendency of drugs for passive membrane permeability was also analyzed. Lifitegrast (DB11611) had favorable binding properties and biological activity compared to the BI-3802. Missense SNPs were located at the essential interaction sites of the BCL6. Structural similarity search resulted in five BTB-domain containing off-target proteins. BI-3802 and Lifitegrast had similar chemical behavior and binding properties against off-target candidates. More interestingly, the binding affinity of BI-3802 (against off-targets) was higher than Lifitegrast. Energetically, Lifitegrast was less favorable for passive membrane permeability. The interaction between BCL6 and BI-3802 is more prone to SNP-derived variations. On the other hand, higher nonspecific binding of BI-3802 to off-target proteins could bring about higher undesirable properties. It should also be noted that energetically less desirable passive membrane translocation of Lifitegrast would demand drug delivery vehicles. However, further empirical evaluation of Lifitegrast would unveil its true potential.
Collapse
Affiliation(s)
- Solmaz Karimi
- grid.419305.a0000 0001 1943 2944Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Farzaneh Shahabi
- grid.411747.00000 0004 0418 0096Faculty of Advanced Technologies in Medical Sciences, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shaden M. H. Mubarak
- grid.442852.d0000 0000 9836 5198Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Najaf, Iraq
| | - Hanie Arjmandi
- grid.467532.10000 0004 4912 2930Faculty of Pharmacy, Islamic Azad University of Amol Branch, Amol, Iran
| | - Zahra Sadat Hashemi
- grid.417689.5ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Navid Pourzardosht
- grid.411874.f0000 0004 0571 1549Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Zakeri
- grid.440791.f0000 0004 0385 049XDepartment of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mahdieh Mahboobi
- grid.411521.20000 0000 9975 294XApplied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Jahangiri
- grid.411521.20000 0000 9975 294XApplied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rahbar
- grid.412571.40000 0000 8819 4698Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Khalili
- grid.440791.f0000 0004 0385 049XDepartment of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
12
|
Abstract
As a transcriptional factor and the negative regulator of alpha fetal protein (AFP), Zinc fingers and homeoboxes 2 (ZHX2) has a well-established role in protection against hepatocellular carcinoma (HCC). However, recent studies have suggested ZHX2 as an oncogene in clear cell renal cell carcinoma (ccRCC) and triple-negative breast cancer (TNBC). Moreover, mounting evidence has illustrated a much broader role of ZHX2 in multiple cellular processes, including cell proliferation, cell differentiation, lipid metabolism, and immunoregulation. This comprehensive review emphasizes the role of ZHX2 in health and diseases which have been more recently uncovered.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Dept. Immunology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong, China
| |
Collapse
|
13
|
Wächter K, Gohde B, Szabó G, Simm A. Rye Bread Crust as an Inducer of Antioxidant Genes and Suppressor of NF-κB Pathway In Vivo. Nutrients 2022; 14:nu14224790. [PMID: 36432475 PMCID: PMC9697834 DOI: 10.3390/nu14224790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Heat-processed food, like bread, containing high amounts of advanced glycation end products (AGEs), is controversially discussed regarding the effects on health and disease. In in vitro and in vivo experiments, AGEs can induce proinflammatory NF-κB and/or the anti-inflammatory NRF2 pathways. The aim of this study was to investigate how gene expression is influenced in vivo upon short as well as long-term feeding of mice with control and bread crust-food (BC). For that, the liver, kidney and heart from two days- and eight days-fed mice were isolated and gene arrays were performed. Fewer genes were affected in terms of expression after two days of BC feeding than after eight days. We observed, especially in the heart and to lesser extent in the liver, an induction of antioxidant response by BC. Among the significantly up-regulated genes identified in the heart were transcripts encoding for cardioprotective and antioxidative proteins like metallothionein 2, uncoupling protein 3 and pyruvate dehydrogenase kinase 4. In contrast, in the liver, genes encoding for inflammatory drivers like thioredoxin-interacting protein, lncRNA Mtss1 and ubiquitin-specific protease 2 were down-modulated. However, an increased expression of immunoglobulins was observed in the kidney. Furthermore, in vivo imaging analyses with NF-κB-luciferase-reporter mice uncovered a rather anti-inflammatory response, especially after three and seven days of the feeding study. Our results suggest that bread crust exerts antioxidant and anti-inflammatory effects in the model organism mouse in an organ-specific manner.
Collapse
Affiliation(s)
- Kristin Wächter
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University, Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-345-557-7068
| | - Birte Gohde
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University, Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Gábor Szabó
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University, Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Andreas Simm
- Department for Cardiac Surgery, University Hospital Halle (Saale), Martin-Luther University, Halle-Wittenberg, 06120 Halle (Saale), Germany
- Center for Medical Basic Research, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
14
|
(–)-Xanthatin as a Killer of Human Breast Cancer MCF-7 Mammosphere Cells: A Comparative Study with Salinomycin. Curr Issues Mol Biol 2022; 44:3849-3858. [PMID: 36135176 PMCID: PMC9497939 DOI: 10.3390/cimb44090264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Experimental evidence accumulated by our research group and others strongly suggests that (–)-xanthatin, a xanthanolide sesquiterpene lactone, exhibits anti-proliferative effects on human breast cancer cells (in vitro) as well as anti-tumor effects in experimental animals (in vivo). In cancer biology, it is now critically important for anti-cancer agents to selectively target cancer stem cells (CSCs) in order to overcome cancer therapeutic resistance and recurrence. However, it has not yet been established whether (–)-xanthatin abrogates the formation of breast CSCs. In the present study, we utilized chemically synthesized pure (–)-xanthatin and a culture system to obtain mammospheres from human breast cancer MCF-7 cells, which are a CSC-enriched population. We herein demonstrated for the first time that (–)-xanthatin exhibited the ability to kill mammospheres, similar to salinomycin, an established selective killer of CSCs. A possible anti-proliferative mechanism toward mammospheres by (–)-xanthatin is discussed.
Collapse
|
15
|
Yan Z, Ao X, Liang X, Chen Z, Liu Y, Wang P, Wang D, Liu Z, Liu X, Zhu J, Zhou S, Zhou P, Gu Y. Transcriptional inhibition of miR-486-3p by BCL6 upregulates Snail and induces epithelial-mesenchymal transition during radiation-induced pulmonary fibrosis. Respir Res 2022; 23:104. [PMID: 35484551 PMCID: PMC9052631 DOI: 10.1186/s12931-022-02024-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022] Open
Abstract
Background Ionizing radiation (IR) can induce pulmonary fibrosis by causing epithelial mesenchymal transition (EMT), but the exact mechanism has not been elucidated. To investigate the molecular mechanism of how radiation induces pulmonary fibrosis by altering miR-486-3p content and thus inducing EMT. Methods The changes of miR-486-3p in cells after irradiation were detected by RT-qPCR. Western blot was used to detect the changes of cellular epithelial marker protein E-cadherin, mesenchymal marker N-cadherin, Vimentin and other proteins. The target gene of miR-486-3p was predicted by bioinformatics method and the binding site was verified by dual luciferase reporter system. In vivo experiments, adeno-associated virus (AAV) was used to carry miR-486-3p mimic to lung. Radiation-induced pulmonary fibrosis (RIPF) model was constructed by 25Gy60Co γ-rays. The structural changes of mouse lung were observed by HE and Masson staining. The expression of relevant proteins in mice was detected by immunohistochemistry. Results IR could decrease the miR-486-3p levels in vitro and in vivo, and that effect was closely correlated to the occurrence of RIPF. The expression of Snail, which induces EMT, was shown to be restrained by miR-486-3p. Therefore, knockdown of Snail blocked the EMT process induced by radiation or knockdown of miR-486-3p. In addition, the molecular mechanism underlying the IR-induced miRNA level reduction was explored. The increased in BCL6 could inhibit the formation of pri-miR-486-3p, thereby reducing the levels of miR-486-3p in the alveolar epithelial cells, which would otherwise promote EMT and contribute to RIPF by targeting Snail. Conclusion IR can exacerbate RIPF in mice by activating the transcription factor BCL6, which inhibits the transcription of miR-486-3p and decreases its content, which in turn increases the content of the target gene slug and triggers EMT.
Collapse
Affiliation(s)
- Ziyan Yan
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xingkun Ao
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xinxin Liang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.,Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhongmin Chen
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yuhao Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ping Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Duo Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zheng Liu
- School of Public Health, University of South China, Hengyang, Hunan, China
| | - Xiaochang Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jiaojiao Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shenghui Zhou
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Yongqing Gu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China. .,Hengyang Medical College, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
16
|
Butera G, Manfredi M, Fiore A, Brandi J, Pacchiana R, De Giorgis V, Barberis E, Vanella V, Galasso M, Scupoli MT, Marengo E, Cecconi D, Donadelli M. Tumor Suppressor Role of Wild-Type P53-Dependent Secretome and Its Proteomic Identification in PDAC. Biomolecules 2022; 12:305. [PMID: 35204804 PMCID: PMC8869417 DOI: 10.3390/biom12020305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
The study of the cancer secretome is gaining even more importance in cancers such as pancreatic ductal adenocarcinoma (PDAC), whose lack of recognizable symptoms and early detection assays make this type of cancer highly lethal. The wild-type p53 protein, frequently mutated in PDAC, prevents tumorigenesis by regulating a plethora of signaling pathways. The importance of the p53 tumor suppressive activity is not only primarily involved within cells to limit tumor cell proliferation but also in the extracellular space. Thus, loss of p53 has a profound impact on the secretome composition of cancer cells and marks the transition to invasiveness. Here, we demonstrate the tumor suppressive role of wild-type p53 on cancer cell secretome, showing the anti-proliferative, apoptotic and chemosensitivity effects of wild-type p53 driven conditioned medium. By using high-resolution SWATH-MS technology, we characterized the secretomes of p53-deficient and p53-expressing PDAC cells. We found a great number of secreted proteins that have known roles in cancer-related processes, 30 of which showed enhanced and 17 reduced secretion in response to p53 silencing. These results are important to advance our understanding on the link between wt-p53 and cancer microenvironment. In conclusion, this approach may detect a secreted signature specifically driven by wild-type p53 in PDAC.
Collapse
Affiliation(s)
- Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
- ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| | - Jessica Brandi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| | - Veronica De Giorgis
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Elettra Barberis
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
- ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
| | - Virginia Vanella
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Marilisa Galasso
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
- Department of Medicine, Section of Hematology, University of Verona, 37134 Verona, Italy
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
- Research Center LURM, Interdepartmental Laboratory of Medical Research, University of Verona, 37134 Verona, Italy
| | - Emilio Marengo
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
- ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| |
Collapse
|
17
|
Pouryahya M, Oh JH, Mathews JC, Belkhatir Z, Moosmüller C, Deasy JO, Tannenbaum AR. Pan-Cancer Prediction of Cell-Line Drug Sensitivity Using Network-Based Methods. Int J Mol Sci 2022; 23:ijms23031074. [PMID: 35163005 PMCID: PMC8835038 DOI: 10.3390/ijms23031074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/02/2023] Open
Abstract
The development of reliable predictive models for individual cancer cell lines to identify an optimal cancer drug is a crucial step to accelerate personalized medicine, but vast differences in cancer cell lines and drug characteristics make it quite challenging to develop predictive models that result in high predictive power and explain the similarity of cell lines or drugs. Our study proposes a novel network-based methodology that breaks the problem into smaller, more interpretable problems to improve the predictive power of anti-cancer drug responses in cell lines. For the drug-sensitivity study, we used the GDSC database for 915 cell lines and 200 drugs. The theory of optimal mass transport was first used to separately cluster cell lines and drugs, using gene-expression profiles and extensive cheminformatic drug features, represented in a form of data networks. To predict cell-line specific drug responses, random forest regression modeling was separately performed for each cell-line drug cluster pair. Post-modeling biological analysis was further performed to identify potential biological correlates associated with drug responses. The network-based clustering method resulted in 30 distinct cell-line drug cluster pairs. Predictive modeling on each cell-line-drug cluster outperformed alternative computational methods in predicting drug responses. We found that among the four drugs top-ranked with respect to prediction performance, three targeted the PI3K/mTOR signaling pathway. Predictive modeling on clustered subsets of cell lines and drugs improved the prediction accuracy of cell-line specific drug responses. Post-modeling analysis identified plausible biological processes associated with drug responses.
Collapse
Affiliation(s)
- Maryam Pouryahya
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (J.C.M.); (J.O.D.)
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (J.C.M.); (J.O.D.)
- Correspondence:
| | - James C. Mathews
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (J.C.M.); (J.O.D.)
| | - Zehor Belkhatir
- School of Engineering and Sustainable Development, De Montfort University, Leicester LE1 9BH, UK;
| | - Caroline Moosmüller
- Department of Mathematics, University of California at San Diego, La Jolla, CA 92093, USA;
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (J.C.M.); (J.O.D.)
| | - Allen R. Tannenbaum
- Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
18
|
Guo J, Liu Y, Lv J, Zou B, Chen Z, Li K, Feng J, Cai Z, Wei L, Liu M, Pang X. BCL6 confers KRAS-mutant non-small-cell lung cancer resistance to BET inhibitors. J Clin Invest 2021; 131:133090. [PMID: 33393503 DOI: 10.1172/jci133090] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/29/2020] [Indexed: 02/05/2023] Open
Abstract
The bromodomain and extra-terminal domain (BET) proteins are promising therapeutic targets to treat refractory solid tumors; however, inherent resistance remains a major challenge in the clinic. Recently, the emerging role of the oncoprotein B cell lymphoma 6 (BCL6) in tumorigenesis and stress response has been unveiled. Here, we demonstrate that BCL6 was upregulated upon BET inhibition in KRAS-mutant cancers, including non-small-cell lung cancer (NSCLC). We further found that BRD3, not BRD2 or BRD4, directly interacted with BCL6 and maintained the negative autoregulatory circuit of BCL6. Disrupting this negative autoregulation by BET inhibitors (BETi) resulted in a striking increase in BCL6 transcription, which further activated the mTOR signaling pathway through repression of the tumor suppressor death-associated protein kinase 2. Importantly, pharmacological inhibition of either BCL6 or mTOR improved the tumor response and enhanced the sensitivity of KRAS-mutant NSCLC to BETi in both in vitro and in vivo settings. Overall, our findings identify a mechanism of BRD3-mediated BCL6 autoregulation and further develop an effective combinatorial strategy to circumvent BETi resistance in KRAS-driven NSCLC.
Collapse
Affiliation(s)
- Jiawei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yanan Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jing Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Medical Research Institute, Wuhan University, Wuhan, China
| | - Kun Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Juanjuan Feng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
19
|
Mølmen KS, Hammarström D, Pedersen K, Lian Lie AC, Steile RB, Nygaard H, Khan Y, Hamarsland H, Koll L, Hanestadhaugen M, Eriksen AL, Grindaker E, Whist JE, Buck D, Ahmad R, Strand TA, Rønnestad BR, Ellefsen S. Vitamin D 3 supplementation does not enhance the effects of resistance training in older adults. J Cachexia Sarcopenia Muscle 2021; 12:599-628. [PMID: 33788419 PMCID: PMC8200443 DOI: 10.1002/jcsm.12688] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/30/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lifestyle therapy with resistance training is a potent measure to counteract age-related loss in muscle strength and mass. Unfortunately, many individuals fail to respond in the expected manner. This phenomenon is particularly common among older adults and those with chronic diseases (e.g. chronic obstructive pulmonary disease, COPD) and may involve endocrine variables such as vitamin D. At present, the effects of vitamin D supplementation on responses to resistance training remain largely unexplored. METHODS Ninety-five male and female participants (healthy, n = 71; COPD, n = 24; age 68 ± 5 years) were randomly assigned to receive either vitamin D3 or placebo supplementation for 28 weeks in a double-blinded manner (latitude 61°N, September-May). Seventy-eight participants completed the RCT, which was initiated by 12 weeks of supplementation-only (two weeks with 10 000 IU/day, followed by 2000 IU/day), followed by 13 weeks of combined supplementation (2000 IU/day) and supervised whole-body resistance training (twice weekly), interspersed with testing and measurements. Outcome measures included multiple assessments of muscle strength (nvariables = 7), endurance performance (n = 6), and muscle mass (n = 3, legs, primary), as well as muscle quality (legs), muscle biology (m. vastus lateralis; muscle fibre characteristics, transcriptome), and health-related variables (e.g. visceral fat mass and blood lipid profile). For main outcome domains such as muscle strength and muscle mass, weighted combined factors were calculated from the range of singular assessments. RESULTS Overall, 13 weeks of resistance training increased muscle strength (13% ± 8%), muscle mass (9% ± 8%), and endurance performance (one-legged, 23% ± 15%; whole-body, 8% ± 7%), assessed as weighted combined factors, and were associated with changes in health variables (e.g. visceral fat, -6% ± 21%; [LDL]serum , -4% ± 14%) and muscle tissue characteristics such as fibre type proportions (e.g. IIX, -3% points), myonuclei per fibre (30% ± 65%), total RNA/rRNA abundances (15%/6-19%), and transcriptome profiles (e.g. 312 differentially expressed genes). Vitamin D3 supplementation did not affect training-associated changes for any of the main outcome domains, despite robust increases in [25(OH)D]serum (∆49% vs. placebo). No conditional effects were observed for COPD vs. healthy or pre-RCT [25(OH)D]serum . In secondary analyses, vitamin D3 affected expression of gene sets involved in vascular functions in muscle tissue and strength gains in participants with high fat mass, which advocates further study. CONCLUSIONS Vitamin D3 supplementation did not affect muscular responses to resistance training in older adults with or without COPD.
Collapse
Affiliation(s)
- Knut Sindre Mølmen
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Daniel Hammarström
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Karianne Pedersen
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Anne Cecilie Lian Lie
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Ragnvald B. Steile
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Håvard Nygaard
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Yusuf Khan
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
- Department of BiotechnologyInland Norway University of Applied SciencesHamarNorway
| | - Håvard Hamarsland
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Lise Koll
- Innlandet Hospital TrustLillehammerNorway
| | | | | | - Eirik Grindaker
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | | | - Daniel Buck
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Rafi Ahmad
- Department of BiotechnologyInland Norway University of Applied SciencesHamarNorway
- Institute of Clinical Medicine, Faculty of Health SciencesUiT – The Arctic University of NorwayTromsøNorway
| | - Tor A. Strand
- Innlandet Hospital TrustLillehammerNorway
- Centre for International HealthUniversity of BergenBergenNorway
| | - Bent R. Rønnestad
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
| | - Stian Ellefsen
- Section for Health and Exercise PhysiologyInland Norway University of Applied SciencesLillehammerNorway
- Innlandet Hospital TrustLillehammerNorway
| |
Collapse
|
20
|
Li H, Hu B, Hu S, Luo W, Sun D, Yang M, Liao Z, Wei H, Zhao C, Li D, Shi M, Luo Q, Zhang D, Nie Q, Zhang X. High expression of BCL6 inhibits the differentiation and development of hematopoietic stem cells and affects the growth and development of chickens. J Anim Sci Biotechnol 2021; 12:18. [PMID: 33541426 PMCID: PMC7863511 DOI: 10.1186/s40104-020-00541-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/20/2020] [Indexed: 12/22/2022] Open
Abstract
Background B-cell CLL/lymphoma 6 (BCL6) is a transcriptional master regulator that represses more than 1200 potential target genes. Our previous study showed that a decline in blood production in runting and stunting syndrome (RSS) affected sex-linked dwarf (SLD) chickens compared to SLD chickens. However, the association between BCL6 gene and hematopoietic function remains unknown in chickens. Methods In this study, we used RSS affected SLD (RSS-SLD) chickens, SLD chickens and normal chickens as research object and overexpression of BCL6 in hematopoietic stem cells (HSCs), to investigate the effect of the BCL6 on differentiation and development of HSCs. Results The results showed that comparison of RSS-SLD chickens with SLD chickens, the BCL6 was highly expressed in RSS-SLD chickens bone marrow. The bone marrow of RSS-SLD chickens was exhausted and red bone marrow was largely replaced by yellow bone marrow, bone density was reduced, and the levels of immature erythrocytes in peripheral blood were increased. At the same time, the hematopoietic function of HSCs decreased in RSS-SLD chickens, which was manifested by a decrease in the hematopoietic growth factors (HGFs) EPO, SCF, TPO, and IL-3, as well as hemoglobin α1 and hemoglobin β expression. Moreover, mitochondrial function in the HSCs of RSS-SLD chickens was damaged, including an increase in ROS production, decrease in ATP concentration, and decrease in mitochondrial membrane potential (ΔΨm). The same results were also observed in SLD chickens compared with normal chickens; however, the symptoms were more serious in RSS-SLD chickens. Additionally, after overexpression of the BCL6 in primary HSCs, the secretion of HGFs (EPO, SCF, TPO and IL-3) was inhibited and the expression of hemoglobin α1 and hemoglobin β was decreased. However, cell proliferation was accelerated, apoptosis was inhibited, and the HSCs entered a cancerous state. The function of mitochondria was also abnormal, ROS production was decreased, and ATP concentration and ΔΨm were increased, which was related to the inhibition of apoptosis of stem cells. Conclusions Taken together, we conclude that the high expression of BCL6 inhibits the differentiation and development of HSCs by affecting mitochondrial function, resulting in impaired growth and development of chickens. Moreover, the abnormal expression of BCL6 might be a cause of the clinical manifestations of chicken comb, pale skin, stunted growth and development, and the tendency to appear RSS in SLD chickens.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Bowen Hu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Shang Hu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Donglei Sun
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Minmin Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zhiying Liao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Haohui Wei
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Changbin Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Dajian Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China. .,Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
21
|
Wang S, Weng W, Chen T, Xu M, Wei P, Li J, Lu L, Wang Y. LINC00152 Promotes Tumor Progression and Predicts Poor Prognosis by Stabilizing BCL6 From Degradation in the Epithelial Ovarian Cancer. Front Oncol 2020; 10:555132. [PMID: 33282727 PMCID: PMC7690314 DOI: 10.3389/fonc.2020.555132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA 00152 (LINC00152) is tumorigenic in multiple somatic malignancies. However, its prognostic significance and molecular mechanisms in the epithelial ovarian cancer (EOC) remain elusive. Here our study reveals that dysregulation of LINC00152 is a predictor of poor prognosis in patients with EOC and facilitates ovarian tumor growth and metastasis both in vitro and in vivo; the expression of LINC00152 positively correlates with the protein levels of BCL6 in EOC tissues and ovarian tumor cells; LINC00152 binds to Ser333 and Ser343 of BCL6 protein and stabilizes BCL6 from poly-ubiquitination thus facilitating the oncogenic functions in EOC. Moreover, overexpression of the mutant BCL6S333A/S343A fails to rescue the reduced proliferation and invasion caused by the knockdown of endogenous BCL6 in LINC00152-overexpressing cells. Our study might not only offer clues to the network of lncRNA-protein interactions but also provide potential therapeutic targets for the tumor pharmacology.
Collapse
Affiliation(s)
- Shunni Wang
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Weiwei Weng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Tingting Chen
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jing Li
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Linghui Lu
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yiqin Wang
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
22
|
Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21124370. [PMID: 32575472 PMCID: PMC7352701 DOI: 10.3390/ijms21124370] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) affect many cellular functions and the proper redox balance between ROS and antioxidants contributes substantially to the physiological welfare of the cell. During pathological conditions, an altered redox equilibrium leads to increased production of ROS that in turn may cause oxidative damage. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level contributing to all major cellular processes, including oxidative stress and cell death. Several miRNAs are expressed in response to ROS to mediate oxidative stress. Conversely, oxidative stress may lead to the upregulation of miRNAs that control mechanisms to buffer the damage induced by ROS. This review focuses on the complex crosstalk between miRNAs and ROS in diseases of the cardiac (i.e., cardiac hypertrophy, heart failure, myocardial infarction, ischemia/reperfusion injury, diabetic cardiomyopathy) and pulmonary (i.e., idiopathic pulmonary fibrosis, acute lung injury/acute respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, lung cancer) compartments. Of note, miR-34a, miR-144, miR-421, miR-129, miR-181c, miR-16, miR-31, miR-155, miR-21, and miR-1/206 were found to play a role during oxidative stress in both heart and lung pathologies. This review comprehensively summarizes current knowledge in the field.
Collapse
Affiliation(s)
- Montserrat Climent
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano, MI, Italy;
| | - Giacomo Viggiani
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, MI, Italy;
| | - Ya-Wen Chen
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gerald Coulis
- Department of Physiology and Biophysics, and Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA;
| | - Alessandra Castaldi
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Correspondence:
| |
Collapse
|
23
|
The oncogene BCL6 is up-regulated in glioblastoma in response to DNA damage, and drives survival after therapy. PLoS One 2020; 15:e0231470. [PMID: 32320427 PMCID: PMC7176076 DOI: 10.1371/journal.pone.0231470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/24/2020] [Indexed: 12/26/2022] Open
Abstract
The prognosis for people with the high-grade brain tumor glioblastoma is very poor, due largely to low cell death in response to genotoxic therapy. The transcription factor BCL6, a protein that normally suppresses the DNA damage response during immune cell maturation, and a known driver of B-cell lymphoma, was shown to mediate the survival of glioblastoma cells. Expression was observed in glioblastoma tumor specimens and cell lines. When BCL6 expression or activity was reduced in these lines, increased apoptosis and a profound loss of proliferation was observed, consistent with gene expression signatures suggestive of anti-apoptotic and pro-survival signaling role for BCL6 in glioblastoma. Further, treatment with the standard therapies for glioblastoma—ionizing radiation and temozolomide—both induced BCL6 expression in vitro, and an in vivo orthotopic animal model of glioblastoma. Importantly, inhibition of BCL6 in combination with genotoxic therapies enhanced the therapeutic effect. Together these data demonstrate that BCL6 is an active transcription factor in glioblastoma, that it drives survival of cells, and that it increased with DNA damage, which increased the survival rate of therapy-treated cells. This makes BCL6 an excellent therapeutic target in glioblastoma—by increasing sensitivity to standard DNA damaging therapy, BCL6 inhibitors have real potential to improve the outcome for people with this disease.
Collapse
|
24
|
Lee S, Micalizzi D, Truesdell SS, Bukhari SIA, Boukhali M, Lombardi-Story J, Kato Y, Choo MK, Dey-Guha I, Ji F, Nicholson BT, Myers DT, Lee D, Mazzola MA, Raheja R, Langenbucher A, Haradhvala NJ, Lawrence MS, Gandhi R, Tiedje C, Diaz-Muñoz MD, Sweetser DA, Sadreyev R, Sykes D, Haas W, Haber DA, Maheswaran S, Vasudevan S. A post-transcriptional program of chemoresistance by AU-rich elements and TTP in quiescent leukemic cells. Genome Biol 2020; 21:33. [PMID: 32039742 PMCID: PMC7011231 DOI: 10.1186/s13059-020-1936-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown. RESULTS We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo. CONCLUSIONS These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival.
Collapse
Affiliation(s)
- Sooncheol Lee
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Douglas Micalizzi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
| | - Samuel S Truesdell
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Syed I A Bukhari
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
| | - Jennifer Lombardi-Story
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
| | - Yasutaka Kato
- Laboratory of Oncology, Hokuto Hospital, Obihiro, Japan
| | - Min-Kyung Choo
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ipsita Dey-Guha
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Benjamin T Nicholson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
| | - David T Myers
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
| | - Dongjun Lee
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, 1257-1258, South Korea
| | - Maria A Mazzola
- Center for Neurological Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Radhika Raheja
- Center for Neurological Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Adam Langenbucher
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Nicholas J Haradhvala
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
| | - Roopali Gandhi
- Center for Neurological Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher Tiedje
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Manuel D Diaz-Muñoz
- Centre de Physiopathologie Toulouse-Purpan, INSERM UMR1043/CNRS U5282, Toulouse, France
| | - David A Sweetser
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Pediatrics, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - David Sykes
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
25
|
Li Y, Huang T, Fu Y, Wang T, Zhao T, Guo S, Sun Y, Yang Y, Li C. Antitumor activity of a novel dual functional podophyllotoxin derivative involved PI3K/AKT/mTOR pathway. PLoS One 2019; 14:e0215886. [PMID: 31557166 PMCID: PMC6763125 DOI: 10.1371/journal.pone.0215886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
The progression of cancer through local expansion and metastasis is well recognized, but preventing these characteristic cancer processes is challenging. To this end, a new strategy is required. In this study, we presented a novel dual functional podophyllotoxin derivative, 2-pyridinealdehyde hydrazone dithiocarbamate S-propionate podophyllotoxin ester (PtoxPdp), which inhibited both matrix metalloproteinases and Topoisomerase II. This new podophyllotoxin derivative exhibited significant anti-proliferative, anti-metastatic that correlated with the downregulation of matrix metalloproteinase. In a xenograft animal local expansion model, PtoxPdp was superior to etoposide in tumor repression. A preliminary mechanistic study revealed that PtoxPdp induced apoptosis and autophagy via the PI3K/AKT/mTOR pathway. Furthermore, PtoxPdp could also inhibit epithelial-mesenchymal transition, which was achieved by downregulating both PI3K/AKT/mTOR and NF-κB/Snail pathways. Taken together, our results reveal that PtoxPdp is a promising antitumor drug candidate.
Collapse
Affiliation(s)
- Yongli Li
- College of Basic Medical Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, P. R. China
- * E-mail: (CL); (YL)
| | - Tengfei Huang
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Yun Fu
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Tingting Wang
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Tiesuo Zhao
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Sheng Guo
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Yanjie Sun
- Experimental Teaching Center of Biology and Basic Medicine, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Yun Yang
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Changzheng Li
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
- Experimental Teaching Center of Biology and Basic Medicine, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, P. R. China
- * E-mail: (CL); (YL)
| |
Collapse
|
26
|
Devin J, Kassambara A, Bruyer A, Moreaux J, Bret C. Phenotypic Characterization of Diffuse Large B-Cell Lymphoma Cells and Prognostic Impact. J Clin Med 2019; 8:E1074. [PMID: 31336593 PMCID: PMC6678649 DOI: 10.3390/jcm8071074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022] Open
Abstract
Multiparameter flow cytometry (MFC) is a fast and cost-effective technique to evaluate the expression of many lymphoid markers in mature B-cell neoplasms, including diffuse large B cell lymphoma (DLBCL), which is the most frequent non-Hodgkin lymphoma. In this study, we first characterized by MFC the expression of 27 lymphoid markers in 16 DLBCL-derived cell lines to establish a robust algorithm for their authentication. Then, using the expression profile in DLBCL samples of the genes encoding B lymphoid markers that are routinely investigated by MFC, we built a gene expression-based risk score, based on the expression level of BCL2, BCL6, CD11c, and LAIR1, to predict the outcome of patients with DLBCL. This risk score allowed splitting patients in four risk groups, and was an independent predictor factor of overall survival when compared with the previously published prognostic factors. Lastly, to investigate the potential correlation between BCL2, BCL6, CD11c, and LAIR1 protein level and resistance to treatment, we investigated the response of the 16 DLBCL cell lines to cyclophosphamide, etoposide, doxorubicin, and gemcitabine. We found a correlation between BCL6 overexpression and resistance to etoposide. These results show the interest of MFC for the routine characterization of DLBCL cells and tumors samples for research and diagnostic/prognostic purposes.
Collapse
Affiliation(s)
- Julie Devin
- CNRS UMR9002, Institute of Human Genetics, 34090 Montpellier, France
| | - Alboukadel Kassambara
- CNRS UMR9002, Institute of Human Genetics, 34090 Montpellier, France
- Department of Biological Hematology, St Eloi Hospital, 34295 Montpellier, France
| | - Angélique Bruyer
- CNRS UMR9002, Institute of Human Genetics, 34090 Montpellier, France
| | - Jérôme Moreaux
- CNRS UMR9002, Institute of Human Genetics, 34090 Montpellier, France
- Department of Biological Hematology, St Eloi Hospital, 34295 Montpellier, France
- University of Montpellier, Faculty of Medicine, 34090 Montpellier, France
| | - Caroline Bret
- CNRS UMR9002, Institute of Human Genetics, 34090 Montpellier, France.
- Department of Biological Hematology, St Eloi Hospital, 34295 Montpellier, France.
- University of Montpellier, Faculty of Medicine, 34090 Montpellier, France.
| |
Collapse
|
27
|
Nie L, Cai SY, Sun J, Chen J. MicroRNA-155 promotes pro-inflammatory functions and augments apoptosis of monocytes/macrophages during Vibrio anguillarum infection in ayu, Plecoglossus altivelis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:70-81. [PMID: 30447432 DOI: 10.1016/j.fsi.2018.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Upon recognition of pathogen-associated molecular patterns by pattern-recognition receptors, immune cells are recruited, and multiple antibacterial/viral signaling pathways are activated, leading to the production of immune-related cytokines, chemokines, and interferons along with further activation of the adaptive immune response. MicroRNAs (miRs) play essential roles in regulating such immune signaling pathways, as well as the biological activities of immune cells; however, knowledge regarding the roles of miRs in the immune-related function of monocytes/macrophages (MO/MΦ) remains limited in teleosts. In the present study, we addressed the effects of miR-155 on Vibrio anguillarum-infected MO/MΦ. Our results showed that miR-155 augmented MO/MΦ expression of proinflammatory cytokines and attenuated the expression of anti-inflammatory cytokines. Additionally, the phagocytosis and bacteria-killing abilities of these cells were boosted by miR-155 administration, which also promoted M1-type polarization but inhibited M2-type polarization. Furthermore, the V. anguillarum-infection-induced apoptosis was also enhanced by miR-155 mimic transfection, which might have been due to excessive inflammation or the accumulation of reactive oxygen species. These results represent the first report providing a detailed account of the regulatory roles of miR-155 on MO/MΦ functions in teleosts and offer insight into the evolutionary history of miR-155-mediated regulation of host immune responses.
Collapse
Affiliation(s)
- Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Shi-Yu Cai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Jiao Sun
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315800, China.
| |
Collapse
|
28
|
Hori R, Yamaguchi K, Sato H, Watanabe M, Tsutsumi K, Iwamoto S, Abe M, Onodera H, Nakamura S, Nakai R. The discovery and characterization of K-563, a novel inhibitor of the Keap1/Nrf2 pathway produced by Streptomyces sp. Cancer Med 2019; 8:1157-1168. [PMID: 30735010 PMCID: PMC6434342 DOI: 10.1002/cam4.1949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Keap1/Nrf2 pathway regulates the antioxidant stress response, detoxification response, and energy metabolism. Previous reports found that aberrant Keap1/Nrf2 pathway activation due to Kelch‐like ECH‐associated protein 1 (Keap1) mutations or Nuclear factor E2‐related factor 2 (Nrf2) mutations induced resistance of cancer cells to chemotherapy and accelerated cell growth via the supply of nutrients. Therefore, Keap1/Nrf2 pathway activation is associated with a poor prognosis in many cancers. These previous findings suggested that inhibition of Keap1/Nrf2 pathway could be a target for anti‐cancer therapies. To discover a small‐molecule Keap1/Nrf2 pathway inhibitor, we conducted high‐throughput screening in Keap1 mutant human lung cancer A549 cells using a transcriptional reporter assay. Through this screening, we identified the novel Keap1/Nrf2 pathway inhibitor K‐563, which was isolated from actinomycete Streptomyces sp. K‐563 suppressed the expression of Keap1/Nrf2 pathway downstream target genes or the downstream target protein, which induced suppression of GSH production, and activated reactive oxygen species production in A549 cells. K‐563 also inhibited the expression of downstream target genes in other Keap1‐ or Nrf2‐mutated cancer cells. Furthermore, K‐563 exerted anti‐proliferative activities in these mutated cancer cells. These in vitro analyses showed that K‐563 was able to inhibit cell growth in Keap1‐ or Nrf2‐mutated cancer cells by Keap1/Nrf2 pathway inhibition. K‐563 also exerted synergistic combinational effects with lung cancer chemotherapeutic agents. An in vivo study in mice xenotransplanted with A549 cells to further explore the therapeutic potential of K‐563 revealed that it also inhibited Keap1/Nrf2 pathway in lung cancer tumors. K‐563, a novel Keap1/Nrf2 pathway inhibitor, may be a lead compound for development as an anti‐cancer agent.
Collapse
Affiliation(s)
- Ran Hori
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Kozo Yamaguchi
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Hidetaka Sato
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Miwa Watanabe
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Kyoko Tsutsumi
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Susumu Iwamoto
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Masayuki Abe
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Hideyuki Onodera
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Satoshi Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Ryuichiro Nakai
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| |
Collapse
|
29
|
BCL6 Attenuates Proliferation and Oxidative Stress of Vascular Smooth Muscle Cells in Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5018410. [PMID: 30805081 PMCID: PMC6362478 DOI: 10.1155/2019/5018410] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
Proliferation and oxidative stress of vascular smooth muscle cells (VSMCs) contribute to vascular remodeling in hypertension and several major vascular diseases. B-cell lymphoma 6 (BCL6) functions as a transcriptional repressor. The present study is designed to determine the roles of BCL6 in VSMC proliferation and oxidative stress and underlying mechanism. Angiotensin (Ang) II was used to induce VSMC proliferation and oxidative stress in human VSMCs. Effects of BCL6 overexpression and knockdown were, respectively, investigated in Ang II-treated human VSMCs. Therapeutical effects of BCL6 overexpression on vascular remodeling, oxidative stress, and proliferation were determined in the aorta of spontaneously hypertensive rats (SHR). Ang II reduced BCL6 expression in human VSMCs. BCL6 overexpression attenuated while BCL6 knockdown enhanced the Ang II-induced upregulation of NADPH oxidase 4 (NOX4), production of reactive oxygen species (ROS), and proliferation of VSMCs. BCL6 expression was downregulated in SHR. BCL6 overexpression in SHR reduced NOX4 expression, ROS production, and proliferation of the aortic media of SHR. Moreover, BCL6 overexpression attenuated vascular remodeling and hypertension in SHR. However, BCL6 overexpression had no significant effects on NOX2 expression in human VSMCs or in SHR. We conclude that BCL6 attenuates proliferation and oxidative stress of VSMCs in hypertension.
Collapse
|
30
|
Erbilgin A, Seldin MM, Wu X, Mehrabian M, Zhou Z, Qi H, Dabirian KS, Sevag Packard RR, Hsieh W, Bensinger SJ, Sinha S, Lusis AJ. Transcription Factor Zhx2 Deficiency Reduces Atherosclerosis and Promotes Macrophage Apoptosis in Mice. Arterioscler Thromb Vasc Biol 2018; 38:2016-2027. [PMID: 30026271 PMCID: PMC6202168 DOI: 10.1161/atvbaha.118.311266] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 06/25/2018] [Indexed: 11/16/2022]
Abstract
Objective- The objective of this study was to determine the basis of resistance to atherosclerosis of inbred mouse strain BALB/cJ. Approach and Results- BALB/cJ mice carry a naturally occurring null mutation of the gene encoding the transcription factor Zhx2, and genetic analyses suggested that this may confer resistance to atherosclerosis. On a hyperlipidemic low-density lipoprotein receptor null background, BALB/cJ mice carrying the mutant allele for Zhx2 exhibited up to a 10-fold reduction in lesion size as compared with an isogenic strain carrying the wild-type allele. Several lines of evidence, including bone marrow transplantation studies, indicate that this effect of Zhx2 is mediated, in part, by monocytes/macrophages although nonbone marrow-derived pathways are clearly involved as well. Both in culture and in atherosclerotic lesions, macrophages from Zhx2 null mice exhibited substantially increased apoptosis. Zhx2 null macrophages were also enriched for M2 markers. Effects of Zhx2 on proliferation and other bone marrow-derived cells, such as lymphocytes, were at most modest. Expression microarray analyses identified >1000 differentially expressed transcripts between Zhx2 wild-type and null macrophages. To identify the global targets of Zhx2, we performed ChIP-seq (chromatin immunoprecipitation sequencing) studies with the macrophage cell line RAW264.7. The ChIP-seq peaks overlapped significantly with gene expression and together suggested roles for transcriptional repression and apoptosis. Conclusions- A mutation of Zhx2 carried in BALB/cJ mice is responsible in large part for its relative resistance to atherosclerosis. Our results indicate that Zhx2 promotes macrophage survival and proinflammatory functions in atherosclerotic lesions, thereby contributing to lesion growth.
Collapse
Affiliation(s)
- Ayca Erbilgin
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Marcus M. Seldin
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Xiuju Wu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Margarete Mehrabian
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Zhiqiang Zhou
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Hongxiu Qi
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Keeyon S. Dabirian
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - René R. Sevag Packard
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Wei Hsieh
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Steven J. Bensinger
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Satyesh Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Aldons J. Lusis
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Luo F, Shi J, Shi Q, He X, Xia Y. ERK and p38 Upregulation versus Bcl-6 Downregulation in Rat Kidney Epithelial Cells Exposed to Prolonged Hypoxia. Cell Transplant 2018; 26:1441-1451. [PMID: 28901193 PMCID: PMC5680977 DOI: 10.1177/0963689717720296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is a common cause of kidney injury and a major issue in kidney transplantation. Mitogen-activated protein kinases (MAPKs) are involved in the cellular response to hypoxia, but the precise roles of MAPKs in renal cell reactions to hypoxic stress are not well known yet. This work was conducted to investigate the regulation of extracellular signal-regulated kinase-1 and -2 (ERK1/2) and p38 and their signaling-relevant molecules in kidney epithelial cells exposed to prolonged hypoxia. Rat kidney epithelial cells Normal Rat Kidney (NRK)-52E were exposed to hypoxic conditions (1% O2) for 24 to 72 h. Cell morphology was examined by light microscopy, and cell viability was checked by 3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxypheny]-2-[4-sulfophenyl]-2H-tetrazolium (MTS). The expression of ERK1/2 and p38 MAPK, as well as their signaling-related molecules, was measured by Western blot and real-time polymerase chain (RT-PCR) reaction. At the 1% oxygen level, cell morphology had no appreciable changes compared to the control up to 72 h of exposure under light microscopy, whereas the results of MTS showed a slight but significant reduction in cell viability after 72 h of hypoxia. On the other hand, ERK1/2 and p38 phosphorylation remarkably increased in these cells after 24 to 72 h of hypoxia. In sharp contrast, the expression of transcription factor B-cell lymphoma 6 (Bcl-6) was significantly downregulated in response to hypoxic stress. Other intracellular molecules relevant to the ERK1/2 and p38 signaling pathway, such as protein kinase A, protein kinase C, Bcl-2, nuclear factor erythroid 2-related factor 2, tristetraprolin, and interleukin-10(IL-10), had no significant alterations after 24 to 72 h of hypoxic exposure. We conclude that hypoxic stress increases the phosphorylation of both ERK1/2 and p38 but decreases the level of Bcl-6 in rat kidney epithelial cells.
Collapse
Affiliation(s)
- Fengbao Luo
- 1 Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jian Shi
- 1 Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Qianqian Shi
- 1 Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiaozhou He
- 1 Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ying Xia
- 2 Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Ujvari D, Nagy N, Madapura HS, Kallas T, Kröhnke MCL, Stenke L, Klein E, Salamon D. Interferon γ is a strong, STAT1-dependent direct inducer of BCL6 expression in multiple myeloma cells. Biochem Biophys Res Commun 2018; 498:502-508. [PMID: 29510136 DOI: 10.1016/j.bbrc.2018.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/02/2018] [Indexed: 01/10/2023]
Abstract
B-cell CLL/lymphoma 6 (BCL6) is a transcriptional master regulator that can repress more than 1200 potential target genes. It exerts oncogenic effects through the inhibition of differentiation, DNA damage sensing and apoptosis in several human hematopoietic malignancies, including multiple myeloma (MM). The multifunctional cytokine interferon γ (IFNγ) exerts pro-apoptotic and anti-proliferative effects on MM cells in vitro, at least partially through the inhibition of the effects of interleukin 6 (IL6), one of the most important growth factor of MM and a strong inducer of BCL6 expression. However, IFNγ was also reported to directly upregulate BCL6 in several cell types. These observations prompted us to analyze the effect of IFNγ on BCL6 expression in MM cells. We discovered that among several myeloma growth/survival factors tested (including IL6, oncostatin M, insulin-like growth factor 1, tumor necrosis factor α and IFNα) IFNγ was the strongest inducer of BCL6 mRNA and protein expression in MM cell lines. IFNγ induced upregulation of BCL6 was dependent on the classical STAT1 signaling pathway, and affected both major BCL6 variants. Interestingly, although IFNα induced stronger STAT1 phosphorylation than IFNγ, it only slightly upregulated BCL6 in MM lines. We proved that IFNα induced BCL6 upregulation was limited by the concomitant activation of STAT5 signaling. We assume that BCL6 upregulation may represent a potentially pro-tumorigenic effect of IFNγ signaling in MM cells.
Collapse
Affiliation(s)
- Dorina Ujvari
- Department of Women`s and Children`s Health, Karolinska Institutet, Stockholm, Sweden
| | - Noemi Nagy
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Harsha S Madapura
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tomasz Kallas
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marijke C L Kröhnke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Leif Stenke
- Department of Medicine, Division of Hematology, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Eva Klein
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Salamon
- Department of Women`s and Children`s Health, Karolinska Institutet, Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
33
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
34
|
Ndombera FT. Anti-cancer agents and reactive oxygen species modulators that target cancer cell metabolism. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractTraditionally the perspective on reactive oxygen species (ROS) has centered on the role they play as carcinogenic or cancer-causing radicals. Over the years, characterization and functional studies have revealed the complexity of ROS as signaling molecules that regulate various physiological cellular responses or whose levels are altered in various diseases. Cancer cells often maintain high basal level of ROS and are vulnerable to any further increase in ROS levels beyond a certain protective threshold. Consequently, ROS-modulation has emerged as an anticancer strategy with synthesis of various ROS-inducing or responsive agents that target cancer cells. Of note, an increased carbohydrate uptake and/or induction of death receptors of cancer cells was exploited to develop glycoconjugates that potentially induce cellular stress, ROS and apoptosis. This mini review highlights the development of compounds that target cancer cells by taking advantage of redox or metabolic alteration in cancer cells.
Collapse
|
35
|
Effect of mitochondrially targeted carboxy proxyl nitroxide on Akt-mediated survival in Daudi cells: Significance of a dual mode of action. PLoS One 2017; 12:e0174546. [PMID: 28426671 PMCID: PMC5398517 DOI: 10.1371/journal.pone.0174546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/10/2017] [Indexed: 12/15/2022] Open
Abstract
Vicious cycles of mutations and reactive oxygen species (ROS) generation contribute to cancer progression. The use of antioxidants to inhibit ROS generation promotes cytostasis by affecting the mutation cycle and ROS-dependent survival signaling. However, cancer cells select mutations to elevate ROS albeit maintaining mitochondrial hyperpolarization (Δψm), even under hypoxia. From this perspective, the use of drugs that disrupt both ROS generation and Δψm is a viable anticancer strategy. Hence, we studied the effects of mitochondrially targeted carboxy proxyl nitroxide (Mito-CP) and a control ten carbon TPP moiety (Dec-TPP+) in the human Burkitt lymphoma cell line (Daudi) and normal peripheral blood mononuclear cells under hypoxia and normoxia. We found preferential localization, Δψm and adenosine triphosphate loss, and significant cytotoxicity by Mito-CP in Daudi cells alone. Interestingly, ROS levels were decreased and maintained in hypoxic and normoxic cancer cells, respectively, by Mito-CP but not Dec-TPP+, therefore preventing any adaptive signaling. Moreover, dual effects on mitochondrial bioenergetics and ROS by Mito-CP curtailed the cancer survival via Akt inhibition, AMPK-HIF-1α activation and promoted apoptosis via increased BCL2-associated X protein and poly (ADP-ribose) polymerase expression. This dual mode of action by Mito-CP provides a better explanation of the application of antioxidants with specific relevance to cancerous transformation and adaptations in the Daudi cell line.
Collapse
|
36
|
Madapura HS, Nagy N, Ujvari D, Kallas T, Kröhnke MCL, Amu S, Björkholm M, Stenke L, Mandal PK, McMurray JS, Keszei M, Westerberg LS, Cheng H, Xue F, Klein G, Klein E, Salamon D. Interferon γ is a STAT1-dependent direct inducer of BCL6 expression in imatinib-treated chronic myeloid leukemia cells. Oncogene 2017; 36:4619-4628. [PMID: 28368400 DOI: 10.1038/onc.2017.85] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 01/20/2017] [Accepted: 02/26/2017] [Indexed: 01/12/2023]
Abstract
B-cell CLL/lymphoma 6 (BCL6) exerts oncogenic effects in several human hematopoietic malignancies including chronic myeloid leukemia (CML), where BCL6 expression was shown to be essential for CML stem cell survival and self-renewal during imatinib mesylate (IM) treatment. As several lines of evidence suggest that interferon γ (IFNγ) production in CML patients might have a central role in the response to tyrosine kinase inhibitor (TKI) therapy, we analyzed if IFNγ modulates BCL6 expression in CML cells. Although separate IFNγ or IM treatment only slightly upregulated BCL6 expression, combined treatment induced remarkable BCL6 upregulation in CML lines and primary human CD34+ CML stem cells. We proved that during combined treatment, inhibition of constitutive signal transducer and activator of transcription (STAT) 5 activation by IM allowed the specific enhancement of the STAT1 dependent, direct upregulation of BCL6 by IFNγ in CML cells. By using colony-forming assay, we found that IFNγ enhanced the ex vivo colony or cluster-forming capacity of human CML stem cells in the absence or presence of IM, respectively. Furthermore, inhibition of the transcriptional repressor function of BCL6 in the presence of IM and IFNγ almost completely blocked the cluster formation of human CML stem cells. On the other hand, by using small interfering RNA knockdown of BCL6, we demonstrated that in an IM-treated CML line the antiapoptotic effect of IFNγ was independent of BCL6 upregulation. We found that IFNγ also upregulated several antiapoptotic members of the BCL2 and BIRC gene families in CML cells, including the long isoform of MCL1, which proved to be essential for the antiapoptotic effect of IFNγ in an IM-treated CML line. Our results suggest that combination of TKIs with BCL6 and MCL1 inhibitors may potentially lead to the complete eradication of CML stem cells.
Collapse
Affiliation(s)
- H S Madapura
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - N Nagy
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - D Ujvari
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - T Kallas
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - M C L Kröhnke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - S Amu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - M Björkholm
- Division of Hematology, Department of Medicine, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - L Stenke
- Division of Hematology, Department of Medicine, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - P K Mandal
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - J S McMurray
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - M Keszei
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - L S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - H Cheng
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - F Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - G Klein
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - E Klein
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - D Salamon
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Jia X, Ouyang H, Abdalla BA, Xu H, Nie Q, Zhang X. miR-16 controls myoblast proliferation and apoptosis through directly suppressing Bcl2 and FOXO1 activities. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:674-684. [PMID: 28258011 DOI: 10.1016/j.bbagrm.2017.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/18/2022]
Abstract
Myogenesis mainly involves several steps including myoblast proliferation, differentiation, apoptosis and fusion. Except for muscle specific regulators, few miRNAs were proved to coordinate this complex process. Here, we reported that miR-16 inhibited myoblast proliferation and promoted myoblast apoptosis by directly targeting Bcl2 and FOXO1. The expression level of miR-16 was significantly decreased in the hypertrophic pectoral muscle compared to the normal pectoral muscle in chicken. In vitro, elevating miR-16 significantly inhibited myoblast proliferation and promoted myoblast apoptosis, resulting in about 11.2% cells arrested in G1 phase and 12.3% apoptotic cells in the early stage. Bioinformatic and biochemical analyses revealed Bcl2 and FOXO1 as direct targets of miR-16. Consist to the effect of miR-16 on myogenesis, specific inhibition of Bcl2 or FOXO1 significantly suppressed myoblast proliferation and induced myoblast apoptosis, indicating that both Bcl2 and FOXO1 contributed to miR-16 regulatory function in myogenesis. Interestingly, FOXO1, as the core target, mediated multiple growth-related pathways induced by miR-16 such as PI3K-AKT-MAPK and PI3K-AKT-mTOR. Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) revealed that 234 annotated genes bound by FOXO1 in the early-differentiated myoblasts, which were significantly enriched in myogenic proliferation, death and hypotrophy. Altogether, we proposed that miR-16 acted as a coordinated mediator to suppress myogenesis in avian through the control of myoblast proliferation and apoptosis. These findings have provided a novel mechanism whereby miR-16 represses Bcl2 and FOXO1 expression to maintain myoblast growth and skeletal muscle mass.
Collapse
Affiliation(s)
- Xinzheng Jia
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Hongjia Ouyang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Bahareldin Ali Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China.
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| |
Collapse
|
38
|
Senoo T, Kawano S, Ikeda S. DNA base excision repair and nucleotide excision repair synergistically contribute to survival of stationary-phase cells of the fission yeast Schizosaccharomyces pombe. Cell Biol Int 2016; 41:276-286. [PMID: 28032397 DOI: 10.1002/cbin.10722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/21/2016] [Indexed: 11/05/2022]
Abstract
Defects of genome maintenance may causally contribute to aging. In general, base excision repair (BER) is involved in the repair of subtle base lesions and AP sites, and bulky helix-distorting lesions are restored by nucleotide excision repair (NER). Here, we measured the chronological lifespan (CLS) of BER- and NER-deficient mutants of the fission yeast Schizosaccharomyces pombe, and observed the aging process of cells. The CLS of the nth1 (gene for DNA glycosylase/AP lyase) mutant and the rad16 (a homolog of human XPF) mutant were slightly shorter than that of the wild-type (WT) strain. However, survival of the nth1Δ rad16Δ double mutant was significantly reduced after entry into the stationary phase. Deletion of rad16 in an AP endonuclease mutant apn2Δ also accelerated chronological aging. These results indicate that BER and NER synergistically contribute to genome maintenance in non-dividing cells. Reactive oxygen species (ROS) accumulated in cells during the stationary phase, and nth1Δ rad16Δ cells produced more ROS than WT cells. High mutation frequencies and nuclear DNA fragmentation were observed in nth1Δ rad16Δ stationary-phase cells concurrent with apoptotic-like cell death. Calorie restriction significantly reduced the level of ROS in the stationary phase and extended the CLS of nth1Δ rad16Δ cells. Therefore, ROS production critically affects the survival of the DNA repair mutant during chronological aging.
Collapse
Affiliation(s)
- Takanori Senoo
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Shinji Kawano
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Shogo Ikeda
- Department of Biochemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
39
|
Rashidi A, Oak E, Carson KR, Wagner-Johnston ND, Kreisel F, Bartlett NL. Outcomes with R-CEOP for R-CHOP-ineligible patients with diffuse large B-cell lymphoma are highly dependent on cell of origin defined by Hans criteria. Leuk Lymphoma 2015; 57:1191-3. [PMID: 26397936 DOI: 10.3109/10428194.2015.1096356] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Armin Rashidi
- a Division of Oncology , Washington University School of Medicine , St. Louis , MO , USA
| | - Eunhye Oak
- a Division of Oncology , Washington University School of Medicine , St. Louis , MO , USA
| | - Kenneth R Carson
- a Division of Oncology , Washington University School of Medicine , St. Louis , MO , USA
| | - Nina D Wagner-Johnston
- a Division of Oncology , Washington University School of Medicine , St. Louis , MO , USA
| | - Friederike Kreisel
- b Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Nancy L Bartlett
- a Division of Oncology , Washington University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
40
|
Wegner W, Burckhardt G, Henjakovic M. Transcriptional regulation of human organic anion transporter 1 by B-cell CLL/lymphoma 6. Am J Physiol Renal Physiol 2014; 307:F1283-91. [DOI: 10.1152/ajprenal.00426.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human organic anion transporter 1 (OAT1) is crucial for the excretion of organic anions in renal proximal tubular cells and has been classified as a clinically relevant transporter in the kidneys. Our previous study indicated that renal male-predominant expression of rat Oat1 and Oat3 appears to be regulated by transcription factor B-cell CLL/lymphoma 6 (BCL6). The aim of this study was to characterize the effect of BCL6 on human OAT1 promoter and on the transcription of OAT1 mediated by hepatocyte nuclear factor-1α (HNF-1α). Luciferase assays were carried out in opossum kidney (OK) cells transiently transfected with promoter constructs of OAT1, expression vectors for BCL6 and HNF-1α, and the empty control vectors. BCL6 and HNF-1α binding on OAT1 promoter was analyzed using electrophoretic mobility shift assay (EMSA). Protein expression of HNF-1α was investigated by Western blot analysis. Site-directed mutagenesis was used to introduce mutations into BCL6 and HNF-1α binding sites within the OAT1 promoter. BCL6 enhanced the promoter activity of OAT1 independently of predicted BCL6 binding sites but was dependent on HNF-1α response element and HNF-1α protein. Coexpression of BCL6 and HNF-1α induced an additive effect on OAT1 promoter activation compared with BCL6 or HNF-1α alone. BCL6 does not bind directly or indirectly to OAT1 promoter but increases the protein expression of HNF-1α and thereby indirectly enhances OAT1 gene transcription. BCL6 constitutes a promising candidate gene for the regulation of human OAT1 transcription and other renal and/or hepatic drug transporters that have been already shown to be activated by HNF-1α.
Collapse
Affiliation(s)
- Waja Wegner
- Department of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Gerhard Burckhardt
- Department of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Maja Henjakovic
- Department of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
41
|
Clark O, Park I, Di Florio A, Cichon AC, Rustin S, Jugov R, Maeshima R, Stoker AW. Oxovanadium-based inhibitors can drive redox-sensitive cytotoxicity in neuroblastoma cells and synergise strongly with buthionine sulfoximine. Cancer Lett 2014; 357:316-327. [PMID: 25444896 DOI: 10.1016/j.canlet.2014.11.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 12/30/2022]
Abstract
In a wide range of neuroblastoma-derived lines oxovanadium compounds such as bis(maltolato)oxovanadium(IV) (BMOV) are cytotoxic. This is not explained by oxidative stress or inhibition of ion channels. Genotoxicity is unlikely given that a p53 response is absent and p53-mutant lines are also sensitive. Cytotoxicity is inhibited by N-acetyl cysteine and glutathione ester, indicating that BMOV action is sensitive to cytoplasmic redox and thiol status. Significantly, combining BMOV with glutathione synthesis inhibition greatly enhances BMOV-induced cell death. This combination treatment triggers high AKT pathway activation, highlighting the potential functional importance of PTP inhibition by BMOV. AKT activation itself, however, is not required for cytotoxicity. Oxovanadium compounds may thus represent novel leads as p53-independent therapeutics for neuroblastoma.
Collapse
Affiliation(s)
- Owen Clark
- Cancer Section, Developmental Biology & Cancer Programme, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Inhye Park
- Cancer Section, Developmental Biology & Cancer Programme, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Alessia Di Florio
- Cancer Section, Developmental Biology & Cancer Programme, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Ann-Christin Cichon
- Cancer Section, Developmental Biology & Cancer Programme, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Sarah Rustin
- Cancer Section, Developmental Biology & Cancer Programme, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Roman Jugov
- Cancer Section, Developmental Biology & Cancer Programme, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Ruhina Maeshima
- Cancer Section, Developmental Biology & Cancer Programme, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Andrew W Stoker
- Cancer Section, Developmental Biology & Cancer Programme, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
42
|
Dunleavy K, Roschewski M, Wilson WH. Precision treatment of distinct molecular subtypes of diffuse large B-cell lymphoma: ascribing treatment based on the molecular phenotype. Clin Cancer Res 2014; 20:5182-93. [PMID: 25320368 PMCID: PMC7521674 DOI: 10.1158/1078-0432.ccr-14-0497] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin lymphoma, was once considered to be a single disease, novel insights into its biology have revealed that it is molecularly heterogeneous. Technologies such as gene expression profiling have revealed that DLBCL consists of at least three distinct molecular diseases that have disparate outcomes following standard therapy. These subtypes arise from different stages of B-cell differentiation and are characterized by distinct oncogenic activation mechanisms. This knowledge has led to the investigation of strategies and novel agents that have selective activity within molecular subtypes and sets the stage for an era of precision medicine in DLBCL therapeutics, where therapy can be ascribed based on molecular phenotype. This work offers the chance of improving the curability of DLBCL, particularly in the activated B-cell subtype, where standard approaches are inadequate for a high proportion of patients. See all articles in this CCR Focus section, "Paradigm Shifts in Lymphoma."
Collapse
Affiliation(s)
- Kieron Dunleavy
- Lymphoid Malignancy Branch, National Cancer Institute, Bethesda, Maryland
| | - Mark Roschewski
- Lymphoid Malignancy Branch, National Cancer Institute, Bethesda, Maryland
| | - Wyndham H Wilson
- Lymphoid Malignancy Branch, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
43
|
Translocation of the proto-oncogene Bcl-6 in human glioblastoma multiforme. Cancer Lett 2014; 353:41-51. [DOI: 10.1016/j.canlet.2014.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 01/13/2023]
|
44
|
High concentrations of glucose suppress etoposide-induced cell death of B-cell lymphoma through BCL-6. Biochem Biophys Res Commun 2014; 450:227-33. [DOI: 10.1016/j.bbrc.2014.05.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/21/2014] [Indexed: 11/18/2022]
|
45
|
Forbes-Hernández TY, Giampieri F, Gasparrini M, Mazzoni L, Quiles JL, Alvarez-Suarez JM, Battino M. The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem Toxicol 2014; 68:154-82. [PMID: 24680691 DOI: 10.1016/j.fct.2014.03.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/09/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential organelles for cellular integrity and functionality maintenance and their imparement is implicated in the development of a wide range of diseases, including metabolic, cardiovascular, degenerative and hyperproliferative pathologies. The identification of different compounds able to interact with mitochondria for therapeutic purposes is currently becoming of primary importance. Indeed, it is well known that foods, particularly those of vegetable origin, present several constituents with beneficial effects on health. This review summarizes and updates the most recent findings concerning the mechanisms through which different dietary compounds from plant foods affect mitochondria functionality in healthy and pathological in vitro and in vivo models, paying particular attention to the pathways involved in mitochondrial biogenesis and apoptosis.
Collapse
Affiliation(s)
- Tamara Y Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Francesca Giampieri
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - Luca Mazzoni
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Spain
| | - José M Alvarez-Suarez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy; Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Italy
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Italy.
| |
Collapse
|
46
|
Roschewski M, Dunleavy K, Wilson WH. Moving beyond rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone for diffuse large B-cell lymphoma. Leuk Lymphoma 2014; 55:2428-37. [PMID: 24438195 DOI: 10.3109/10428194.2014.883075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell non-Hodgkin lymphoma (NHL). While the de facto treatment standard R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone) is curative in most cases, it is ineffective for a significant proportion of patients, particularly those with intermediate and high-risk disease. Efforts to improve upon the results of R-CHOP have principally explored dose intensification of chemotherapy and resulted in considerable additive toxicity without clear benefit. DLBCL is not a uniform disease, however, and can be dissected into distinct molecular subtypes by gene expression profiling. These subtypes are characterized by distinct oncogenic mechanisms of activation and addictions to aberrant intracellular signaling pathways. Novel therapeutic agents that target these pathway addictions are emerging, and may have specific activity within molecular subtypes of DLBCL. To move beyond R-CHOP for all patients with DLBCL, targeted therapies added to the most effective chemotherapy platforms must be studied within the context of molecularly defined subsets.
Collapse
Affiliation(s)
- Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | | | | |
Collapse
|
47
|
Abstract
Abstract
Over the past 30 years, many treatment platforms have been developed for diffuse large B-cell lymphoma, but none proved better than CHOP (cyclophosphamide, hydroxydaunorubicin, vincristine, prednisone/prednisolone). In the immunochemotherapy era, however, there is convincing evidence for superior chemotherapy platforms. A randomized study from the Groupe d'Etude des Lymphomes de l'Adulte showed that R-ACVBP (rituximab plus doxorubicin, cyclophosphamide, vindesine, bleomycin, prednisone) was superior to rituximab plus CHOP (R-CHOP) in patients under 60 years of age, but toxicity limits its use to younger patients. Studies also suggest that DA-EPOCH-R (dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, rituximab) is more effective in some subtypes of diffuse large B-cell lymphoma and a randomized comparison with R-CHOP is now nearing completion. The simplicity and safety of R-CHOP and the long history of failed contenders, however, has set a high bar for new approaches.
Collapse
|
48
|
Zhong YY, Chen HP, Tan BZ, Yu HH, Huang XS. Triptolide avoids cisplatin resistance and induces apoptosis via the reactive oxygen species/nuclear factor-κB pathway in SKOV3 PT platinum-resistant human ovarian cancer cells. Oncol Lett 2013; 6:1084-1092. [PMID: 24137468 PMCID: PMC3796418 DOI: 10.3892/ol.2013.1524] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/10/2013] [Indexed: 01/15/2023] Open
Abstract
An acquired resistance to platinum-based drugs has emerged as a significant impediment to effective ovarian cancer therapy. The present study explored the anticancer mechanisms of triptolide (TPL) in SKOV3PT platinum-resistant human ovarian cancer cells and observed that TPL activated caspase 3 and induced the dose-dependent apoptosis of the SKOV3PT cells. Furthermore, TPL inhibited complex I of the mitochondrial respiratory chain (MRC) followed by an increase of reactive oxygen species (ROS), which further inhibited nuclear factor (NF)-κB activation and resulted in the downregulation of anti-apoptotic proteins, Bcl-2 and X-linked inhibitor of apoptosis protein (XIAP). Notably, the pre-treatment with N-acetyl-L-cysteine (NAC) abolished the TPL-induced ROS generation, NF-κB inhibition and cell apoptosis, but did not affect the inhibitory effect of TPL on complex I activity. These results suggested that TPL negatively regulated the NF-κB pathway through mitochondria-derived ROS accumulation, promoting the apoptosis of the SKOV3PT cells. Furthermore, TPL synergistically enhanced the cytotoxicity of cisplatin against platinum-resistant ovarian cancer cells. Collectively, these findings suggest that TPL is able to overcome chemoresistance and that it may be an effective treatment for platinum-resistant ovarian cancer, either alone or as an adjuvant therapy.
Collapse
Affiliation(s)
- Yan-Ying Zhong
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China ; Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | | | | | | | | |
Collapse
|
49
|
Martinez-Outschoorn UE, Whitaker-Menezes D, Valsecchi M, Martinez-Cantarin MP, Dulau-Florea A, Gong J, Howell A, Flomenberg N, Pestell RG, Wagner J, Arana-Yi C, Sharma M, Sotgia F, Lisanti MP. Reverse Warburg Effect in a Patient With Aggressive B-Cell Lymphoma: Is Lactic Acidosis a Paraneoplastic Syndrome? Semin Oncol 2013; 40:403-18. [DOI: 10.1053/j.seminoncol.2013.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Attia SM, Ahmad SF, Harisa GI, Mansour AM, El Sayed ESM, Bakheet SA. Wogonin attenuates etoposide-induced oxidative DNA damage and apoptosis via suppression of oxidative DNA stress and modulation of OGG1 expression. Food Chem Toxicol 2013; 59:724-30. [PMID: 23872129 DOI: 10.1016/j.fct.2013.07.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022]
Abstract
Damage to DNA can lead to many different acute and chronic pathophysiological conditions, ranging from cancer to endothelial damage. The current study has been initiated to determine whether the flavonoid wogonin can attenuate etoposide-induced oxidative DNA damage and apoptosis in mouse bone marrow cells. We found that oral administration of wogonin before etoposide injection significantly attenuates etoposide-induced oxidative DNA damage and apoptosis in a dose dependent manner. Etoposide induced a significant down-regulation of mRNA expression of the OGG1 repair gene and marked biochemical alterations characteristic of oxidative DNA stress, including increased 8-OHdG, enhanced lipid peroxidation and reduction in reduced glutathione. Prior administration of wogonin ahead of etoposide challenge restored these altered parameters. Importantly, wogonin had no antagonizing effect on etoposide-induce topoisomerase-II inhibition. Conclusively, our study indicates that wogonin has a protective role in the abatement of etoposide-induced oxidative DNA damage and apoptosis in the bone marrow cells of mice via suppression of oxidative DNA stress and enhancing DNA repair through modulation of OGG1 repair gene expression. Therefore, wogonin can be a promising chemoprotective agent and might be useful to avert secondary leukemia and other drug-related cancers in cured cancer patients and medical personnel exposing to the potent carcinogen etoposide.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|