1
|
Ferdoush J, Kadir RA, Ogle M, Saha A. Regulation of eukaryotic transcription initiation in response to cellular stress. Gene 2024; 924:148616. [PMID: 38795856 DOI: 10.1016/j.gene.2024.148616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-β, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Matthew Ogle
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Ayan Saha
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| |
Collapse
|
2
|
Reynolds SR, Zhang Z, Salas LA, Christensen BC. Tumor microenvironment deconvolution identifies cell-type-independent aberrant DNA methylation and gene expression in prostate cancer. Clin Epigenetics 2024; 16:5. [PMID: 38173042 PMCID: PMC10765773 DOI: 10.1186/s13148-023-01609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Among men, prostate cancer (PCa) is the second most common cancer and the second leading cause of cancer death. Etiologic factors associated with both prostate carcinogenesis and somatic alterations in tumors are incompletely understood. While genetic variants associated with PCa have been identified, epigenetic alterations in PCa are relatively understudied. To date, DNA methylation (DNAm) and gene expression (GE) in PCa have been investigated; however, these studies did not correct for cell-type proportions of the tumor microenvironment (TME), which could confound results. METHODS The data (GSE183040) consisted of DNAm and GE data from both tumor and adjacent non-tumor prostate tissue of 56 patients who underwent radical prostatectomies prior to any treatment. This study builds upon previous studies that examined methylation patterns and GE in PCa patients by using a novel tumor deconvolution approach to identify and correct for cell-type proportions of the TME in its epigenome-wide association study (EWAS) and differential expression analysis (DEA). RESULTS The inclusion of cell-type proportions in EWASs and DEAs reduced the scope of significant alterations associated with PCa. We identified 2,093 significantly differentially methylated CpGs (DMC), and 51 genes associated with PCa, including PCA3, SPINK1, and AMACR. CONCLUSIONS This work illustrates the importance of correcting for cell types of the TME when performing EWASs and DEAs on PCa samples, and establishes a more confounding-adverse methodology. We identified a more tumor-cell-specific set of altered genes and epigenetic marks that can be further investigated as potential biomarkers of disease or potential therapeutic targets.
Collapse
Affiliation(s)
- Samuel R Reynolds
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| | - Ze Zhang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
3
|
Wang Z, Wang H, Lin S, Labib M, Ahmed S, Das J, Angers S, Sargent EH, Kelley SO. Efficient Delivery of Biological Cargos into Primary Cells by Electrodeposited Nanoneedles via Cell-Cycle-Dependent Endocytosis. NANO LETTERS 2023. [PMID: 37040490 DOI: 10.1021/acs.nanolett.2c05083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Nanoneedles are a useful tool for delivering exogenous biomolecules to cells. Although therapeutic applications have been explored, the mechanism regarding how cells interact with nanoneedles remains poorly studied. Here, we present a new approach for the generation of nanoneedles, validated their usefulness in cargo delivery, and studied the underlying genetic modulators during delivery. We fabricated arrays of nanoneedles based on electrodeposition and quantified its efficacy of delivery using fluorescently labeled proteins and siRNAs. Notably, we revealed that our nanoneedles caused the disruption of cell membranes, enhanced the expression of cell-cell junction proteins, and downregulated the expression of transcriptional factors of NFκB pathways. This perturbation trapped most of the cells in G2 phase, in which the cells have the highest endocytosis activities. Taken together, this system provides a new model for the study of interactions between cells and high-aspect-ratio materials.
Collapse
Affiliation(s)
- Zongjie Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
| | - Sichun Lin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Mahmoud Labib
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208, United States
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, PL6 8BU, United Kingdom
| | - Sharif Ahmed
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jagotamoy Das
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada
| | - Shana O Kelley
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
4
|
Grandt CL, Brackmann LK, Poplawski A, Schwarz H, Marini F, Hankeln T, Galetzka D, Zahnreich S, Mirsch J, Spix C, Blettner M, Schmidberger H, Marron M. Identification of lncRNAs involved in response to ionizing radiation in fibroblasts of long-term survivors of childhood cancer and cancer-free controls. Front Oncol 2023; 13:1158176. [PMID: 37182169 PMCID: PMC10174438 DOI: 10.3389/fonc.2023.1158176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Long non-coding ribonucleic acids (lncRNAs) are involved in the cellular damage response following exposure to ionizing radiation as applied in radiotherapy. However, the role of lncRNAs in radiation response concerning intrinsic susceptibility to late effects of radiation exposure has not been examined in general or in long-term survivors of childhood cancer with and without potentially radiotherapy-related second primary cancers, in particular. Methods Primary skin fibroblasts (n=52 each) of long-term childhood cancer survivors with a first primary cancer only (N1), at least one second primary neoplasm (N2+), as well as tumor-free controls (N0) from the KiKme case-control study were matched by sex, age, and additionally by year of diagnosis and entity of the first primary cancer. Fibroblasts were exposed to 0.05 and 2 Gray (Gy) X-rays. Differentially expressed lncRNAs were identified with and without interaction terms for donor group and dose. Weighted co-expression networks of lncRNA and mRNA were constructed using WGCNA. Resulting gene sets (modules) were correlated to the radiation doses and analyzed for biological function. Results After irradiation with 0.05Gy, few lncRNAs were differentially expressed (N0: AC004801.4; N1: PCCA-DT, AF129075.3, LINC00691, AL158206.1; N2+: LINC02315). In reaction to 2 Gy, the number of differentially expressed lncRNAs was higher (N0: 152, N1: 169, N2+: 146). After 2 Gy, AL109976.1 and AL158206.1 were prominently upregulated in all donor groups. The co-expression analysis identified two modules containing lncRNAs that were associated with 2 Gy (module1: 102 mRNAs and 4 lncRNAs: AL158206.1, AL109976.1, AC092171.5, TYMSOS, associated with p53-mediated reaction to DNA damage; module2: 390 mRNAs, 7 lncRNAs: AC004943.2, AC012073.1, AC026401.3, AC092718.4, MIR31HG, STXBP5-AS1, TMPO-AS1, associated with cell cycle regulation). Discussion For the first time, we identified the lncRNAs AL158206.1 and AL109976.1 as involved in the radiation response in primary fibroblasts by differential expression analysis. The co-expression analysis revealed a role of these lncRNAs in the DNA damage response and cell cycle regulation post-IR. These transcripts may be targets in cancer therapy against radiosensitivity, as well as provide grounds for the identification of at-risk patients for immediate adverse reactions in healthy tissues. With this work we deliver a broad basis and new leads for the examination of lncRNAs in the radiation response.
Collapse
Affiliation(s)
- Caine Lucas Grandt
- Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
- Faculty of Human and Health Sciences, University of Bremen, Bremen, Germany
- *Correspondence: Caine Lucas Grandt,
| | - Lara Kim Brackmann
- Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heike Schwarz
- Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Claudia Spix
- Division of Childhood Cancer Epidemiology, German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| |
Collapse
|
5
|
Kallenbach J, Atri Roozbahani G, Heidari Horestani M, Baniahmad A. Distinct mechanisms mediating therapy-induced cellular senescence in prostate cancer. Cell Biosci 2022; 12:200. [PMID: 36522745 PMCID: PMC9753376 DOI: 10.1186/s13578-022-00941-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is an age-related malignancy in men with a high incidence rate. PCa treatments face many obstacles due to cancer cell resistance and many bypassing mechanisms to escape therapy. According to the intricacy of PCa, many standard therapies are being used depending on PCa stages including radical prostatectomy, radiation therapy, androgen receptor (AR) targeted therapy (androgen deprivation therapy, supraphysiological androgen, and AR antagonists) and chemotherapy. Most of the aforementioned therapies have been implicated to induce cellular senescence. Cellular senescence is defined as a stable cell cycle arrest in the G1 phase and is one of the mechanisms that prevent cancer proliferation. RESULTS In this review, we provide and analyze different mechanisms of therapy-induced senescence (TIS) in PCa and their effects on the tumor. Interestingly, it seems that different molecular pathways are used by cancer cells for TIS. Understanding the complexity and underlying mechanisms of cellular senescence is very critical due to its role in tumorigenesis. The most prevalent analyzed pathways in PCa as TIS are the p53/p21WAF1/CIP1, the p15INK4B/p16INK4A/pRb/E2F/Cyclin D, the ROS/ERK, p27Kip1/CDK/pRb, and the p27Kip1/Skp2/C/EBP β signaling. Despite growth inhibition, senescent cells are highly metabolically active. In addition, their secretome, which is termed senescence-associated secretory phenotype (SASP), affects within the tumor microenvironment neighboring non-tumor and tumor cells and thereby may regulate the growth of tumors. Induction of cancer cell senescence is therefore a double-edged sword that can lead to reduced or enhanced tumor growth. CONCLUSION Thus, dependent on the type of senescence inducer and the specific senescence-induced cellular pathway, it is useful to develop pathway-specific senolytic compounds to specifically targeting senescent cells in order to evict senescent cells and thereby to reduce SASP side effects.
Collapse
Affiliation(s)
- Julia Kallenbach
- grid.9613.d0000 0001 1939 2794Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07740 Jena, Germany
| | - Golnaz Atri Roozbahani
- grid.9613.d0000 0001 1939 2794Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07740 Jena, Germany
| | - Mehdi Heidari Horestani
- grid.9613.d0000 0001 1939 2794Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07740 Jena, Germany
| | - Aria Baniahmad
- grid.9613.d0000 0001 1939 2794Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07740 Jena, Germany
| |
Collapse
|
6
|
Pu J, Yu H, Guo Y. A Novel Strategy to Identify Prognosis-Relevant Gene Sets in Cancers. Genes (Basel) 2022; 13:862. [PMID: 35627247 PMCID: PMC9141699 DOI: 10.3390/genes13050862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Molecular prognosis markers hold promise for improved prediction of patient survival, and a pathway or gene set may add mechanistic interpretation to their prognostic prediction power. In this study, we demonstrated a novel strategy to identify prognosis-relevant gene sets in cancers. Our study consists of a first round of gene-level analyses and a second round of gene-set-level analyses, in which the Composite Gene Expression Score critically summarizes a surrogate expression value at gene set level and a permutation procedure is exerted to assess prognostic significance of gene sets. An optional differential coexpression module is appended to the two phases of survival analyses to corroborate and refine prognostic gene sets. Our strategy was demonstrated in 33 cancer types across 32,234 gene sets. We found oncogenic gene sets accounted for an increased proportion among the final gene sets, and genes involved in DNA replication and DNA repair have ubiquitous prognositic value for multiple cancer types. In summary, we carried out the largest gene set based prognosis study to date. Compared to previous similar studies, our approach offered multiple improvements in design and methodology implementation. Functionally relevant gene sets of ubiquitous prognostic significance in multiple cancer types were identified.
Collapse
Affiliation(s)
- Junyi Pu
- School of Life Sciences, Northwest University, Xi’an 710069, China;
| | - Hui Yu
- Comprehensive Cancer Center, New Mexico University, Albuquerque, NM 87131, USA;
| | - Yan Guo
- Comprehensive Cancer Center, New Mexico University, Albuquerque, NM 87131, USA;
| |
Collapse
|
7
|
Han Z, Mo R, Cai S, Feng Y, Tang Z, Ye J, Liu R, Cai Z, Zhu X, Deng Y, Zou Z, Wu Y, Cai Z, Liang Y, Zhong W. Differential Expression of E2F Transcription Factors and Their Functional and Prognostic Roles in Human Prostate Cancer. Front Cell Dev Biol 2022; 10:831329. [PMID: 35531101 PMCID: PMC9068940 DOI: 10.3389/fcell.2022.831329] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Given the tumor heterogeneity, most of the current prognostic indicators cannot accurately evaluate the prognosis of patients with prostate cancer, and thus, the best opportunity to intervene in the progression of this disease is missed. E2F transcription factors (E2Fs) have been reported to be involved in the growth of various cancers. Accumulating studies indicate that prostate cancer (PCa) carcinogenesis is attributed to aberrant E2F expression or E2F alteration. However, the expression patterns and prognostic value of the eight E2Fs in prostate cancer have yet to be explored. In this study, The Cancer Genome Atlas (TCGA), Kaplan–Meier Plotter, Metascape, the Kyoto Encyclopedia of Genes and Genomes (KEGG), CIBERSORT, and cBioPortal and bioinformatic analysis were used to investigate E2Fs in patients with PCa. Our results showed that the expression of E2F1–3, E2F5, and E2F6 was higher in prostate cancer tissues than in benign tissues. Furthermore, elevated E2F1–3 and E2F5 expression levels were associated with a higher Gleason score (GS), advanced tumor stage, and metastasis. Survival analysis suggested that high transcription levels of E2F1–3, E2F5, E2F6, and E2F8 were associated with a higher risk of biochemical recurrence. In addition, we developed a prognostic model combining E2F1, E2F6, Gleason score, and the clinical stage that may accurately predict a biochemical recurrence-free survival. Functional enrichment analysis revealed that the E2F family members and their neighboring genes were mainly enriched in cell cycle-related pathways. Somatic mutations in different subgroups were also investigated, and immune components were predicted. Further experiments are warranted to clarify the biological associations between Pca-related E2F family genes, which may influence prognosis via the cell cycle pathway.
Collapse
Affiliation(s)
- Zhaodong Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Rujun Mo
- Department of Urology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Shanghua Cai
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yuanfa Feng
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhenfeng Tang
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jianheng Ye
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ren Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhiduan Cai
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuejin Zhu
- Department of Urology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yulin Deng
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhihao Zou
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongding Wu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhouda Cai
- Department of Andrology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuxiang Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Yuxiang Liang, ; Weide Zhong,
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yuxiang Liang, ; Weide Zhong,
| |
Collapse
|
8
|
Wang D, Tang W, Zhang P, Liu Z, Lyu F, Xiao Y, Ni D, Zhang P. Comprehensive analysis of the functional and prognostic value of E2F transcription factors in human prostate cancer through data mining and experimental validation. Transl Cancer Res 2022; 10:5095-5109. [PMID: 35116361 PMCID: PMC8797606 DOI: 10.21037/tcr-21-1532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023]
Abstract
Background A growing body of evidence shows that E2F transcription factors play a significant role in the tumorigenesis of prostate cancer. However, their functional and prognostic value has not been fully illustrated. Therefore, we used bioinformatics methods to further analyze the possible roles of E2F transcription factors in the development and progression of prostate cancer. Methods We explored the expression levels of E2F transcription factors using data from The Cancer Genome Atlas (TCGA) and Oncomine database in paired and unpaired samples. The clinical correlation and prognostic value of E2F transcription factors were assessed. Using the R package “pROC”, we judged the diagnostic value of E2F transcription factors. The online website tool cBioPortal was also employed to find possible gene alterations of E2F transcription factors in samples from TCGA. The R package “clusterprofiler” was used to conduct functional analysis. Moreover, we also used the Tumor Immune Estimation Resource to search for the associations between E2F transcription factors and the infiltration levels of 6 kinds of immune cells. Finally, quantitative real-time polymerase chain reaction (PCR) was conducted to validate the expression levels of E2F transcription factors in human paired prostate tissues. Results E2F1/2/3/5 messenger RNA (mRNA) expression levels were higher in prostate cancer tissues than in normal tissues, while E2F4 and E2F6 mRNA expression levels were lower (P<0.05). All E2F transcription factors were associated with clinical parameters. Kaplan-Meier analysis revealed that E2F1/4/6/8 were notably associated with the overall survival of patients with prostate cancer (P<0.05). Receiver operating characteristic (ROC) curve results showed that except for E2F7, the other E2F transcription factors had diagnostic value for prostate cancer (P<0.05). We further found close associations between E2F transcription factors and the infiltration levels of immune cells. The results of quantitative real-time PCR were consistent with those from public databases. Conclusions E2F transcription factor family members are differentially expressed in prostate cancer and are significantly related to the prognosis of patients, suggesting that they may be adopted as biomarkers for prognosis prediction and the treatment of prostate cancer.
Collapse
Affiliation(s)
- Decai Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wensen Tang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingbao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zijian Liu
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Lyu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Ni
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pu Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Kim J, Yim GW, Lee DW, Kim YT, Lee YJ, Rhee YJ. Knockdown of E2F4 suppresses the growth of ovarian cancer cells through the cell cycle pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:866-874. [PMID: 34527129 PMCID: PMC8414426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Ovarian cancer remains one of the major causes of death from gynecologic cancer in developed countries. The E2F family has been shown to have a central role in the control of cell proliferation, differentiation, and cell cycle progression in various types of cancer. Despite advances in cancer research, the carcinogenic role of E2F transcription factor 4 (E2F4) in ovarian cancer remains unclear. In this study, we investigated the underlying molecular mechanism of E2F4 in human ovarian cancer cells (OCC). E2F4 expression was demonstrated by quantitative real time polymerase chain reaction (qRT-PCR) in OCC. The alterations of expression values were determined using 2(-ΔΔCt) method. The effects of suppressing E2F4 on cell proliferation, migration, and differentiation were evaluated by cell proliferation assay, colony formation assay and wound healing assay in vitro. Overexpression of E2F4 was found at both mRNA and protein levels in OCC. Small interfering RNA was used to suppress E2F4 expression. Depletion of E2F4 inhibited cell proliferation and suppressed the cell migration and colony formation ability compared to controls. The expression of cell cycle machinery including cyclin A, cyclin D and cyclin dependent kinase 2 (CDK2) was increased after E2F4 knockdown. E2F4 modulates ovarian cancer cell proliferation and migration through cell cycle components including cyclin A, cyclin D, and CDK2. Our findings indicate that E2F4 may serve as a valuable candidate and therapeutic target for ovarian cancer treatment in regard to cell cycle control.
Collapse
Affiliation(s)
- Jaein Kim
- Department of Obstetrics and Gynecology, Yonsei University Graduate SchoolSeoul, Republic of Korea
- Institute of Women’s Life Medical Science, Department of Obstetrics and Gynecology, Yonsei University College of MedicineSeoul, Republic of Korea
| | - Ga Won Yim
- Department of Obstetrics and Gynecology, Dongguk University College of MedicineGoyang, Republic of Korea
| | - Dae Woo Lee
- Department of Obstetrics and Gynecology, Bucheon St. Mary’s Hospital, The Catholic University College of MedicineBucheon, Korea
| | - Young Tae Kim
- Department of Obstetrics and Gynecology, Yonsei University Graduate SchoolSeoul, Republic of Korea
- Institute of Women’s Life Medical Science, Department of Obstetrics and Gynecology, Yonsei University College of MedicineSeoul, Republic of Korea
| | - Young Joo Lee
- Department of Obstetrics and Gynecology, Yonsei University Graduate SchoolSeoul, Republic of Korea
| | - Yeo Jin Rhee
- Department of Obstetrics and Gynecology, Yonsei University Graduate SchoolSeoul, Republic of Korea
| |
Collapse
|
10
|
Abstract
The use of DNA-damaging agents such as radiotherapy and chemotherapy has been a mainstay treatment protocol for many cancers, including lung and prostate. Recently, FDA approval of inhibitors of DNA repair, and targeting innate immunity to enhance the efficacy of DNA-damaging agents have gained much attention. Yet, inherent or acquired resistance against DNA-damaging therapies persists as a fundamental drawback. While cancer eradication by causing cancer cell death through induction of apoptosis is the ultimate goal of anti-cancer treatments, autophagy and senescence are two major cellular responses induced by clinically tolerable doses of DNA-damaging therapies. Unlike apoptosis, autophagy and senescence can act as both pro-tumorigenic as well as tumor suppressive mechanisms. DNA damage-induced senescence is associated with a pro-inflammatory secretory phenotype, which contributes to reshaping the tumor- immune microenvironment. Moreover, PTEN (phosphatase and tensin homolog) is a tumor supressor deleted in many tumors, and has been implicated in both senescence and autophagy. This review presents an overview of the literature on the regulation and consequences of DNA damage- induced senescence in cancer cells, with a specific focus on autophagy and PTEN. Both autophagy and senescence occur concurrently in the same cells in response to DNA damaging agents. However, a deterministic relationship between these fundamental processes has been controversial. We present experimental evidence obtained with tumor cells, with a prime focus on two models of cancer, prostate and lung. A better understanding of mechanisms associated with DNA damage-induced cellular senescence is central to fully exploit the potential of DNA-damaging agents against cancer.
Collapse
Affiliation(s)
- Arishya Sharma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.
| | - Alexandru Almasan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
11
|
Liu HY, Liu YY, Yang F, Zhang L, Zhang FL, Hu X, Shao ZM, Li DQ. Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer. Nucleic Acids Res 2020; 48:3638-3656. [PMID: 32112098 PMCID: PMC7144926 DOI: 10.1093/nar/gkaa130] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
MORC family CW-type zinc finger 2 (MORC2) is an oncogenic chromatin-remodeling enzyme with an emerging role in DNA repair. Here, we report a novel function for MORC2 in cell-cycle checkpoint control through an acetylation-dependent mechanism. MORC2 is acetylated by the acetyltransferase NAT10 at lysine 767 (K767Ac) and this process is counteracted by the deacetylase SIRT2 under unperturbed conditions. DNA-damaging chemotherapeutic agents and ionizing radiation stimulate MORC2 K767Ac through enhancing the interaction between MORC2 and NAT10. Notably, acetylated MORC2 binds to histone H3 phosphorylation at threonine 11 (H3T11P) and is essential for DNA damage-induced reduction of H3T11P and transcriptional repression of its downstream target genes CDK1 and Cyclin B1, thus contributing to DNA damage-induced G2 checkpoint activation. Chemical inhibition or depletion of NAT10 or expression of an acetylation-defective MORC2 (K767R) forces cells to pass through G2 checkpoint, resulting in hypersensitivity to DNA-damaging agents. Moreover, MORC2 acetylation levels are associated with elevated NAT10 expression in clinical breast tumor samples. Together, these findings uncover a previously unrecognized role for MORC2 in regulating DNA damage-induced G2 checkpoint through NAT10-mediated acetylation and provide a potential therapeutic strategy to sensitize breast cancer cells to DNA-damaging chemotherapy and radiotherapy by targeting NAT10.
Collapse
Affiliation(s)
- Hong-Yi Liu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ying-Ying Liu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fan Yang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lin Zhang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Hu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Min Shao
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China.,International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai 200032, China
| |
Collapse
|
12
|
Abstract
The cyclin-dependent kinase (CDK)-RB-E2F axis forms the core transcriptional machinery driving cell cycle progression, dictating the timing and fidelity of genome replication and ensuring genetic material is accurately passed through each cell division cycle. The ultimate effectors of this axis are members of a family of eight distinct E2F genes encoding transcriptional activators and repressors. E2F transcriptional activity is tightly regulated throughout the cell cycle via transcriptional and translational regulation, post-translational modifications, protein degradation, binding to cofactors and subcellular localization. Alterations in one or more key components of this axis (CDKs, cyclins, CDK inhibitors and the RB family of proteins) occur in virtually all cancers and result in heightened oncogenic E2F activity, leading to uncontrolled proliferation. In this Review, we discuss the activities of E2F proteins with an emphasis on the newest atypical E2F family members, the specific and redundant functions of E2F proteins, how misexpression of E2F transcriptional targets promotes cancer and both current and developing therapeutic strategies being used to target this oncogenic pathway.
Collapse
Affiliation(s)
- Lindsey N Kent
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Gustavo Leone
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
13
|
Ringseis R, Zeitz JO, Weber A, Koch C, Eder K. Hepatic transcript profiling in early-lactation dairy cows fed rumen-protected niacin during the transition from late pregnancy to lactation. J Dairy Sci 2018; 102:365-376. [PMID: 30487053 DOI: 10.3168/jds.2018-15232] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
In dairy cows, administration of high dosages of niacin (nicotinic acid, NA) was found to cause antilipolytic effects, which are mediated by the NA receptor hydroxyl-carboxylic acid receptor 2 (HCAR2) in white adipose tissue (WAT), and thereby an altered hepatic lipid metabolism. However, almost no attention has been paid to possible direct effects of NA in cattle liver, despite evidence that HCAR2 is also expressed in the liver and is even more abundant than in WAT. Because of this, we hypothesized that feeding a high dosage of rumen-protected NA to dairy cows influences critical metabolic or signaling pathways in the liver by inducing changes in the hepatic transcriptome. To identify these pathways, we applied genome-wide transcript profiling in liver biopsies obtained at d 7 postpartum (p.p.) from dairy cows used in our recent study; cows received either no NA (control group, n = 9) or 79 mg of rumen-protected NA/kg of body weight daily (NA group, n = 9) from 21 d before calving until 3 wk p.p. Hepatic transcript profiling revealed that 487 transcripts were differentially expressed (filter criteria: fold change >1.2 or <-1.2 and P < 0.05) in the liver at d 7 p.p. between cows fed NA and control cows. Substantially more transcripts were downregulated (n = 338), whereas only 149 transcripts were upregulated by NA in the liver of cows. Gene set enrichment analysis for the upregulated transcripts revealed that the most-enriched gene ontology biological process terms were exclusively related to immune processes, such as leukocyte differentiation, immune system process, activation of immune response, and acute inflammatory response. Gene set enrichment analysis of the downregulated transcripts showed that the most-enriched biological process terms were related to metabolic processes, such as cellular metabolic process, small molecule metabolic process, lipid catabolic process, organic cyclic compound metabolic process, small molecule biosynthetic process, and cellular lipid catabolic process. In conclusion, hepatic transcriptome analysis showed that rumen-protected NA induces genes that are involved mainly in immune processes, including acute phase response and stress response, in dairy cows at d 7 p.p. Thus, supplementation of a high dosage of rumen-protected NA to dairy cows in the periparturient period may induce or amplify the systemic inflammation-like condition that is typically observed in the liver of high-yielding dairy cows in the p.p. period.
Collapse
Affiliation(s)
- R Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - J O Zeitz
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - A Weber
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
14
|
Bachs O, Gallastegui E, Orlando S, Bigas A, Morante-Redolat JM, Serratosa J, Fariñas I, Aligué R, Pujol MJ. Role of p27 Kip1 as a transcriptional regulator. Oncotarget 2018; 9:26259-26278. [PMID: 29899857 PMCID: PMC5995243 DOI: 10.18632/oncotarget.25447] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
The protein p27Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors. It interacts with both the catalytic and the regulatory subunit (cyclin) and introduces a region into the catalytic cleave of the Cdk inducing its inactivation. Its inhibitory capacity can be modulated by specific tyrosine phosphorylations. p27Kip1 also behaves as a transcriptional regulator. It associates with specific chromatin domains through different transcription factors. ChIP on chip, ChIP-seq and expression microarray analysis allowed the identification of the transcriptional programs regulated by p27Kip1. Thus, important cellular functions as cell division cycle, respiration, RNA processing, translation and cell adhesion, are under p27Kip1 regulation. Moreover, genes involved in pathologies as cancer and neurodegeneration are also regulated by p27Kip1, suggesting its implication in these pathologies. The carboxyl moiety of p27Kip1 can associate with different proteins, including transcriptional regulators. In contrast, its NH2-terminal region specifically interacts with cyclin-Cdk complexes. The general mechanistic model of how p27Kip1 regulates transcription is that it associates by its COOH region to the transcriptional regulators on the chromatin and by the NH2-domain to cyclin-Cdk complexes. After Cdk activation it would phosphorylate the specific targets on the chromatin leading to gene expression. This model has been demonstrated to apply in the transcriptional regulation of p130/E2F4 repressed genes involved in cell cycle progression. We summarize in this review our current knowledge on the role of p27Kip1 in the regulation of transcription, on the transcriptional programs under its regulation and on its relevance in pathologies as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Oriol Bachs
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Edurne Gallastegui
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Serena Orlando
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital Del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
| | - José Manuel Morante-Redolat
- Departamento de Biología Celular, Biología Funcional y Antropología Física and ERI de Biotecnología y Biomedicina, CIBERNED, Universidad de Valencia, Valencia, Spain
| | - Joan Serratosa
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Barcelona, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física and ERI de Biotecnología y Biomedicina, CIBERNED, Universidad de Valencia, Valencia, Spain
| | - Rosa Aligué
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| | - Maria Jesús Pujol
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, IDIBAPS, CIBERONC, Barcelona, Spain
| |
Collapse
|
15
|
Farman FU, Haq F, Muhammad N, Ali N, Rahman H, Saeed M. Aberrant promoter methylation status is associated with upregulation of the E2F4 gene in breast cancer. Oncol Lett 2018; 15:8461-8469. [PMID: 29805583 PMCID: PMC5950537 DOI: 10.3892/ol.2018.8382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/11/2018] [Indexed: 12/30/2022] Open
Abstract
E2F4 is an important basal transcription factor with the potential to promote tumor growth. Its upregulation in various types of cancer has been linked to numerous genetic factors; however, the nature of the involvement of epigenetic mechanisms, including DNA methylation, remains elusive. In the present study, E2F4 expression profiles were determined in 100 paired breast tumor and control samples, through RT-qPCR using the SYBR® green method. Furthermore, the E2F4 promoter methylation status in each of these samples was assessed using methylation specific PCR, in order to evaluate its impact on gene expression. A two-fold increase in E2F4 gene expression was observed in the breast tumors compared with in their respective controls (P=0.022); of these tumors, ~72% were under-methylated. The change in methylation status was also significantly higher (P<0.001) in the tumor samples. Methylation status was negatively correlated (r=-30) with E2F4 expression profiles, indicating that a decrease in methylation may promote higher expression of E2F4. The two study cohorts (>45 and ≤45 years) had comparable methylation profiles, though they had significantly decreased methylation status compared with controls. Various histo-pathological types also have different methylation profiles, indicating the presence of a tissue specific methylation signature. The results of the present study demonstrated that E2F4 methylation status can have a notable influence on its expression, and that it may have prognostic value in breast carcinogenesis.
Collapse
Affiliation(s)
- Farman Ullah Farman
- Cancer Genetics and Epigenetics Laboratory, Department of Biosciences, COMSATS Institute of Information Technology, Chak Shahzad, Islamabad 45550, Pakistan
| | - Farhan Haq
- Cancer Genetics and Epigenetics Laboratory, Department of Biosciences, COMSATS Institute of Information Technology, Chak Shahzad, Islamabad 45550, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Nawab Ali
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Muhammad Saeed
- Cancer Genetics and Epigenetics Laboratory, Department of Biosciences, COMSATS Institute of Information Technology, Chak Shahzad, Islamabad 45550, Pakistan
| |
Collapse
|
16
|
Chaiswing L, Weiss HL, Jayswal RD, St. Clair DK, Kyprianou N. Profiles of Radioresistance Mechanisms in Prostate Cancer. Crit Rev Oncog 2018; 23:39-67. [PMID: 29953367 PMCID: PMC6231577 DOI: 10.1615/critrevoncog.2018025946] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Radiation therapy (RT) is commonly used for the treatment of localized prostate cancer (PCa). However, cancer cells often develop resistance to radiation through unknown mechanisms and pose an intractable challenge. Radiation resistance is highly unpredictable, rendering the treatment less effective in many patients and frequently causing metastasis and cancer recurrence. Understanding the molecular events that cause radioresistance in PCa will enable us to develop adjuvant treatments for enhancing the efficacy of RT. Radioresistant PCa depends on the elevated DNA repair system and the intracellular levels of reactive oxygen species (ROS) to proliferate, self-renew, and scavenge anti-cancer regimens, whereas the elevated heat shock protein 90 (HSP90) and the epithelial-mesenchymal transition (EMT) enable radioresistant PCa cells to metastasize after exposure to radiation. The up-regulation of the DNA repairing system, ROS, HSP90, and EMT effectors has been studied extensively, but not targeted by adjuvant therapy of radioresistant PCa. Here, we emphasize the effects of ionizing radiation and the mechanisms driving the emergence of radioresistant PCa. We also address the markers of radioresistance, the gene signatures for the predictive response to radiotherapy, and novel therapeutic platforms for targeting radioresistant PCa. This review provides significant insights into enhancing the current knowledge and the understanding toward optimization of these markers for the treatment of radioresistant PCa.
Collapse
Affiliation(s)
| | - Heidi L. Weiss
- The Markey Biostatistics and Bioinformatics Shared Resource Facility
| | - Rani D. Jayswal
- The Markey Biostatistics and Bioinformatics Shared Resource Facility
| | | | - Natasha Kyprianou
- Department of Toxicology and Cancer Biology
- Department of Urology
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
17
|
Souza TM, van den Beucken T, Kleinjans JCS, Jennen DGJ. Inferring transcription factor activity from microarray data reveals novel targets for toxicological investigations. Toxicology 2017; 389:101-107. [PMID: 28743512 DOI: 10.1016/j.tox.2017.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 01/09/2023]
Abstract
Transcription factors (TFs) are important modulators of the inducible portion of the transcriptome, and therefore relevant in the context of exposure to exogenous compounds. Current approaches to predict the activity of TFs in biological systems are usually restricted to a few entities at a time due to low-throughput techniques targeting a limited fraction of annotated human TFs. Therefore, high-throughput alternatives may help to identify new targets of mechanistic and predictive value in toxicological investigations. In this study, we inferred the activity multiple TFs using publicly available microarray data from primary human hepatocytes exposed to hundreds of chemicals and evaluated these molecular profiles using multiple correspondence analysis. Our results demonstrate that the lowest dose and latest exposure time (24h) in a subset of chemicals generates a signature indicative of carcinogenicity possibly due to DNA-damaging properties. Furthermore, profiles from the earliest exposure time (2h) and highest dose creates clusters of chemicals implicated in the development of diverse forms of drug-induced liver injury (DILI). Both approaches yielded a number of TFs with similar activity across groups of chemicals, including TFs known in toxicological responses such as AhR, NFE2L2 (Nrf2), NF-κB and PPARG. FOXM1, IRF1 and E2F4 were some of the TFs identified that may be relevant in genotoxic carcinogenesis. SMADs (SMAD1, SMAD2, SMAD5) and KLF5 were identified as some of potentially new TFs whose inferred activities were linked to acute and progressive outcomes in DILI. In conclusion this study offers a novel mechanistic approach targeting TF activity during chemical exposure.
Collapse
Affiliation(s)
- T M Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| | - T van den Beucken
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - J C S Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - D G J Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
18
|
Abstract
The E2F family of transcription factors is a key determinant of cell proliferation in response to extra- and intra-cellular signals. Within this family, E2F4 is a transcriptional repressor whose activity is critical to engage and maintain cell cycle arrest in G0/G1 in conjunction with members of the retinoblastoma (RB) family. However, recent observations challenge this paradigm and indicate that E2F4 has a multitude of functions in cells besides this cell cycle regulatory role, including in embryonic and adult stem cells, during regenerative processes, and in cancer. Some of these new functions are independent of the RB family and involve direct activation of target genes. Here we review the canonical functions of E2F4 and discuss recent evidence expanding the role of this transcription factor, with a focus on cell fate decisions in tissue homeostasis and regeneration.
Collapse
Affiliation(s)
- Jenny Hsu
- a Departments of Pediatrics and Genetics , Stanford University , Stanford , CA , USA
| | - Julien Sage
- a Departments of Pediatrics and Genetics , Stanford University , Stanford , CA , USA
| |
Collapse
|
19
|
Lal M, Gupta D. Studies on radiation sensitization efficacy by silymarin in colon carcinoma cells. Discoveries (Craiova) 2016; 4:e56. [PMID: 32309577 PMCID: PMC6941569 DOI: 10.15190/d.2016.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 11/22/2022] Open
Abstract
Recent reports demonstrated the role of silymarin as a cytoprotective agent for normal cells against ionizing or non-ionizing (UV) radiation, and in inhibiting the chemically initiated or promoted carcinogenesis in several malignancies, such as skin or prostate cancers. Silymarin is a plant flavonoid obtained from milk thistle; the main active principles in milk thistle are silybin (silibinin), sylichrisitin and silydianin, commonly referred as silymarin. In the present study, we aimed to investigate the radiation modulatory effects of silymarin on cancer cells. For this, we used the HCT-15 and RKO colon cancer cell lines as a model. Pre-irradiation treatment of cells with silymarin (20 mg/ml) followed by radiation exposure inhibits colon cancer cell proliferation and enhances cell death in a time-dependent manner. We have also examined the changes in p53 phosphorylation at Ser15, phosphorylation of p38 and their association with DNA damage. Silymarin was found to reduce proliferation of the human colon carcinoma cells in a concentration and time-dependent manner. Moreover, percentage of cell death was also increased in combined treatment (20µg/ml of silymarin + radiation). Our studies indicate that the combination increases the arrest of cells in G2/M phase of cell cycle, DNA damage-induced decrease in mitochondrial membrane potential (MMP) and a decrease of the reactive oxygen species (ROS) levels, which are associated with an increase in cell death. Altogether, these results suggest that silymarin sensitizes colon cancer cells to radiation, strategy with potential for colon cancer treatment. Noteworthy, since silymarin was previously shown to confer protection against radiation in at least some types of normal tissues, additional studies are needed to further investigate the potential of silymarin in colon cancer therapy when combined with radiation, its potential protective effects on normal tissues and its mechanisms of action.
Collapse
Affiliation(s)
- Mitu Lal
- Division of Metabolic Cell Signaling and Research, Institute of Nuclear Medicine & Allied Sciences, DRDO, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Damodar Gupta
- Division of Metabolic Cell Signaling and Research, Institute of Nuclear Medicine & Allied Sciences, DRDO, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| |
Collapse
|
20
|
Zhu H, Mao Y. Robustness of cell cycle control and flexible orders of signaling events. Sci Rep 2015; 5:14627. [PMID: 26419873 PMCID: PMC4588580 DOI: 10.1038/srep14627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/01/2015] [Indexed: 11/10/2022] Open
Abstract
The highly robust control of cell cycles in eukaryotes enables cells to undergo strictly ordered G1/S/G2/M phases and respond adaptively to regulatory signals; however the nature of the robustness remains obscure. Specifically, it is unclear whether events of signaling should be strictly ordered and whether some events are more robust than others. To quantitatively address the two questions, we have developed a novel cell cycle model upon experimental observations. It contains positive and negative E2F proteins and two Cdk inhibitors, and is parameterized, for the first time, to generate not only oscillating protein concentrations but also periodic signaling events. Events and their orders reconstructed under varied conditions indicate that proteolysis of cyclins and Cdk complexes by APC and Skp2 occurs highly robustly in a strict order, but many other events are either dispensable or can occur in flexible orders. These results suggest that strictly ordered proteolytic events are essential for irreversible cell cycle progression and the robustness of cell cycles copes with flexible orders of signaling events, and unveil a new and important dimension to the robustness of cell cycle control in particular and to biological signaling in general.
Collapse
Affiliation(s)
- Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Shatai Road, Guangzhou, 510515, China
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
21
|
Ruppender N, Larson S, Lakely B, Kollath L, Brown L, Coleman I, Coleman R, Nguyen H, Nelson PS, Corey E, Snyder LA, Vessella RL, Morrissey C, Lam HM. Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy. PLoS One 2015; 10:e0130565. [PMID: 26090669 PMCID: PMC4475050 DOI: 10.1371/journal.pone.0130565] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/21/2015] [Indexed: 12/20/2022] Open
Abstract
Dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the disease process. In some patients, disseminated tumor cells (DTC) proliferate to form active metastases after a prolonged period of undetectable disease known as tumor dormancy. Identifying mechanisms of PCa dormancy and reactivation remain a challenge partly due to the lack of in vitro models. Here, we characterized in vitro PCa dormancy-reactivation by inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor cell contact with each other and with bone marrow stroma. Proliferating PCa cells demonstrated tumor cell-cell contact and integrin clustering by immunofluorescence. Global gene expression analyses on proliferating cells cultured on bone marrow stroma revealed a downregulation of TGFB2 in all of the three proliferating PCa PDX lines when compared to their non-proliferating counterparts. Furthermore, constitutive activation of myosin light chain kinase (MLCK), a downstream effector of integrin-beta1 and TGF-beta2, in non-proliferating cells promoted cell proliferation. This cell proliferation was associated with an upregulation of CDK6 and a downregulation of E2F4. Taken together, our data provide the first clinically relevant in vitro model to support cellular adhesion and downregulation of TGFB2 as a potential mechanism by which PCa cells may escape from dormancy. Targeting the TGF-beta2-associated mechanism could provide novel opportunities to prevent lethal PCa metastasis.
Collapse
Affiliation(s)
- Nazanin Ruppender
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Sandy Larson
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Bryce Lakely
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Lori Kollath
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Lisha Brown
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Ilsa Coleman
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Roger Coleman
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Holly Nguyen
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Peter S. Nelson
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Linda A. Snyder
- Janssen Research and Development, LLC, Spring House, Pennsylvania, United States of America
| | - Robert L. Vessella
- Department of Urology, University of Washington, Seattle, Washington, United States of America
- Department of Veterans Affairs Medical Center, Seattle, Washington, United States of America
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
22
|
Chatterjee P, Choudhary GS, Alswillah T, Xiong X, Heston WD, Magi-Galluzzi C, Zhang J, Klein EA, Almasan A. The TMPRSS2-ERG Gene Fusion Blocks XRCC4-Mediated Nonhomologous End-Joining Repair and Radiosensitizes Prostate Cancer Cells to PARP Inhibition. Mol Cancer Ther 2015; 14:1896-906. [PMID: 26026052 DOI: 10.1158/1535-7163.mct-14-0865] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 05/19/2015] [Indexed: 11/16/2022]
Abstract
Exposure to genotoxic agents, such as ionizing radiation (IR), produces DNA damage, leading to DNA double-strand breaks (DSB); IR toxicity is augmented when the DNA repair is impaired. We reported that radiosensitization by a PARP inhibitor (PARPi) was highly prominent in prostate cancer cells expressing the TMPRSS2-ERG gene fusion protein. Here, we show that TMPRSS2-ERG blocks nonhomologous end-joining (NHEJ) DNA repair by inhibiting DNA-PKcs. VCaP cells, which harbor TMPRSS2-ERG and PC3 cells that stably express it, displayed γH2AX and 53BP1 foci constitutively, indicating persistent DNA damage that was absent if TMPRSS2-ERG was depleted by siRNA in VCaP cells. The extent of DNA damage was enhanced and associated with TMPRSS2-ERG's ability to inhibit DNA-PKcs function, as indicated by its own phosphorylation (Thr2609, Ser2056) and that of its substrate, Ser1778-53BP1. DNA-PKcs deficiency caused by TMPRSS2-ERG destabilized critical NHEJ components on chromatin. Thus, XRCC4 was not recruited to chromatin, with retention of other NHEJ core factors being reduced. DNA-PKcs autophosphorylation was restored to the level of parental cells when TMPRSS2-ERG was depleted by siRNA. Following IR, TMPRSS2-ERG-expressing PC3 cells had elevated Rad51 foci and homologous recombination (HR) activity, indicating that HR compensated for defective NHEJ in these cells, hence addressing why TMPRSS2-ERG alone did not lead to radiosensitization. However, the presence of TMPRSS2-ERG, by inhibiting NHEJ DNA repair, enhanced PARPi-mediated radiosensitization. IR in combination with PARPi resulted in enhanced DNA damage in TMPRSS2-ERG-expressing cells. Therefore, by inhibiting NHEJ, TMPRSS2-ERG provides a synthetic lethal interaction with PARPi in prostate cancer patients expressing TMPRSS2-ERG.
Collapse
Affiliation(s)
- Payel Chatterjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio. School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Gaurav S Choudhary
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio. Department of Pathology, Case Western Reserve University School of Medicine, Ohio
| | | | - Xiahui Xiong
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Warren D Heston
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Cristina Magi-Galluzzi
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio. Robert J. Tomisch Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Junran Zhang
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Alexandru Almasan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio. Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
23
|
MiRNA-494 inhibits metastasis of cervical cancer through Pttg1. Tumour Biol 2015; 36:7143-9. [PMID: 25877755 DOI: 10.1007/s13277-015-3440-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 01/23/2023] Open
Abstract
Many cervical cancer (CC) patients experience early cancer metastasis, resulting in poor therapeutic outcome after resection of primary cancer. Hence, there is a compelling requirement for understanding of the molecular mechanisms underlying the invasiveness control of CC. Pituitary tumor-transforming gene 1 (Pttg1) has been recently reported to promote cancer cell growth and metastasis in a number of various tumors. However, its regulation by microRNAs (miRNAs) as well as its role in CC have not been clarified. Here, we reported significantly higher levels of Pttg1 and significantly lower levels of miR-494 in the resected CC tissue, compared with the adjacent normal cervical tissue from the same patient. Interestingly, Pttg1 levels inversely correlated with miR-494 levels. In vitro, Pttg1 levels determined CC cell invasiveness and were inhibited by miR-494 levels. However, miR-494 levels were not affected by Pttg1 levels. Furthermore, miR-494 inhibited Pttg1 expression in CC cells, through directly binding and inhibition on 3'-UTR of Pttg1 mRNA. Together, our data suggest that Pttg1 may increase CC cell metastasis, which is negatively regulated by miR-494. Our work thus highlights a novel molecular regulatory machinery in metastasis of CC.
Collapse
|
24
|
Singh V, Gupta D, Arora R, Tripathi RP, Almasan A, Macklis RM. Surface levels of CD20 determine anti-CD20 antibodies mediated cell death in vitro. PLoS One 2014; 9:e111113. [PMID: 25364827 PMCID: PMC4217761 DOI: 10.1371/journal.pone.0111113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/29/2014] [Indexed: 12/04/2022] Open
Abstract
Background The sensitivity of human Burkitt's lymphoma cells to rituximab (Rtx) and tositumomab (Tst) was assessed on cells expressing different levels of CD20 on surface. Cells that harbor low CD20 levels may resists against therapeutics response to CD20-specific antibodies. We postulated that, radiation-induced modulation of CD20 surface levels may play a crucial and central role in determining the relative efficacy of rituximab and tositumomab in treating Burkitt's lymphoma disease. Here, we examined the γ-radiation-induced CD20 expression in the Burkitt lymphoma cell line ‘Daudi’ and the relation of differential levels of CD20 with anti-CD20 mAbs mediated cell death. Methodology In this study we examined kinetics of CD20 expression following sub lethal doses ofγ-radiation to Daudi cells and thereafter anti-CD20 mAbs (rituximab and tositumomab) were added in cell suspensions. The correlation of kinetics of CD20 expression and cells treated with anti-CD20 mAbs/or corresponding isotype Abs with special reference to changes in mitochondrial membrane potential and reactive oxygen species generation was also examined. Further, we also investigated the efficacy of anti-CD20 mAbs and possible induction of cell death in relation to levels of CD20 cell surface expression. Conclusion This report provides evidence that CD20 expression can be induced by exposure of cells to γ-radiation. In addition, these findings demonstrated that the efficacy of anti-CD20 mAbs is dependent on the surface levels of CD20. Based on these findings, we hypothesized (i) irradiation just prior to immunotherapy may provide new treatment options even in aggressive B cell tumors, which are resistant to current therapies in vivo (ii) The efficacy of induction of apoptosis varies with type of monoclonal antibodies in vitro.
Collapse
Affiliation(s)
- Vijay Singh
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Damodar Gupta
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
- * E-mail: (DG); (RMM)
| | - Rajesh Arora
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Rajendra Prashad Tripathi
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Alexandru Almasan
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Roger M. Macklis
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail: (DG); (RMM)
| |
Collapse
|
25
|
Han YY, Zhou Z, Cao JX, Jin YQ, Li SY, Ni JH, An GS, Zhang YX, Jia HT. E2F1-mediated DNA damage is implicated in 8-Cl-adenosine-induced chromosome missegregation and apoptosis in human lung cancer H1299 cells. Mol Cell Biochem 2013; 384:187-96. [PMID: 24037421 DOI: 10.1007/s11010-013-1797-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/23/2013] [Indexed: 11/24/2022]
Abstract
Although E2F1-mediated DNA double-stranded breaks (DSBs) and tetraploid have been extensively studied, the role of E2F1 in mitotic catastrophe is still unknown. We have previously shown that 8-chloro-adenosine (8-Cl-Ado) induces DNA DSBs and aberrant mitosis in human lung cancer cells, followed by delayed apoptosis. Here, we demonstrate that E2F1-mediated DNA damage is implicated in 8-Cl-Ado-induced chromosome missegregation and apoptosis in lung cancer H1299 cells. We showed that E2F1 was accumulated upon 8-Cl-Ado-induced DNA DSBs. Induction of E2F1 by 8-Cl-Ado caused DNA damage in cycling cells including M cells. In contrast, silencing of E2F1 expression decreased 8-Cl-Ado-induced DNA DSBs, particularly eliminated E2F1-mediated mitotic DNA damage. Over-expression of E2F1 and/or 8-Cl-Ado exposure resulted in aberrant mitotic spindles and chromosome segregation errors. Furthermore, over-expression of E2F1 expression enhanced 8-Cl-Ado-induced apoptosis. Together, our data indicate that E2F1-mediated DNA damage, in particular mitotic DNA damage, is an important fraction of 8-Cl-Ado-induced DNA damage, which is implicated in 8-Cl-Ado-induced mitotic catastrophe and delayed apoptosis. Induction of E2F1 by 8-Cl-Ado may contribute at least partly to the drug-inhibited proliferation of cancer cells.
Collapse
Affiliation(s)
- Yu-Ying Han
- Department of Biochemistry and Molecular Biology, Capital Medical University, You An Men 8, Beijing, 100069, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chatterjee P, Plesca D, Mazumder S, Boutros J, Yannone SM, Almasan A. Defective chromatin recruitment and retention of NHEJ core components in human tumor cells expressing a Cyclin E fragment. Nucleic Acids Res 2013; 41:10157-69. [PMID: 24021630 PMCID: PMC3905870 DOI: 10.1093/nar/gkt812] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Exposure to genotoxic agents, such as ionizing radiation (IR), produces double-strand breaks, repaired predominantly in mammalian cells by non-homologous end-joining (NHEJ). Ku70 was identified as an interacting partner of a proteolytic Cyclin E (CycE) fragment, p18CycE. p18CycE endogenous generation during IR-induced apoptosis in leukemic cells and its stable expression in epithelial tumor cells sensitized to IR. γH2AX IR-induced foci (IRIFs) and comet assays indicated ineffective NHEJ DNA repair in p18CycE-expressing cells. DNA pull-down and chromatin recruitment assays revealed that retention of NHEJ factors to double-strand breaks, but not recruitment, was diminished. Similarly, IRIFs of phosphorylated T2609 and S2056-DNA-PKcs and its target S1778-53BP1 were greatly decreased in p18CycE-expressing cells. As a result, DNA-PKcs chromatin association was also increased. 53BP1 IRIFs were suppressed when p18CycE was generated in leukemic cells and in epithelial cells stably expressing p18CycE. Ataxia telangiectasia mutated was activated but not its 53BP1 and MDC1 targets. These data indicate a profound influence of p18CycE on NHEJ through its interference with DNA-PKcs conformation and/or dimerization, which is required for effective DNA repair, making the p18CycE-expressing cells more IR sensitive. These studies provide unique mechanistic insights into NHEJ misregulation in human tumor cells, in which defects in NHEJ core components are rare.
Collapse
Affiliation(s)
- Payel Chatterjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA, School of Biomedical Sciences, Kent State University, Kent, OH 44234, USA, Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA and Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
27
|
Chatterjee P, Choudhary GS, Sharma A, Singh K, Heston WD, Ciezki J, Klein EA, Almasan A. PARP inhibition sensitizes to low dose-rate radiation TMPRSS2-ERG fusion gene-expressing and PTEN-deficient prostate cancer cells. PLoS One 2013; 8:e60408. [PMID: 23565244 PMCID: PMC3614551 DOI: 10.1371/journal.pone.0060408] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/26/2013] [Indexed: 11/23/2022] Open
Abstract
Exposure to genotoxic agents, such as irradiation produces DNA damage, the toxicity of which is augmented when the DNA repair is impaired. Poly (ADP-ribose) polymerase (PARP) inhibitors were found to be “synthetic lethal” in cells deficient in BRCA1 and BRCA2 that impair homologous recombination. However, since many tumors, including prostate cancer (PCa) rarely have on such mutations, there is considerable interest in finding alternative determinants of PARP inhibitor sensitivity. We evaluated the effectiveness of radiation in combination with the PARP inhibitor, rucaparib in PCa cells. The combination index for clonogenic survival following radiation and rucaparib treatments revealed synergistic interactions in a panel of PCa cell lines, being strongest for LNCaP and VCaP cells that express ETS gene fusion proteins. These findings correlated with synergistic interactions for senescence activation, as indicated by β--galactosidase staining. Absence of PTEN and presence of ETS gene fusion thus facilitated activation of senescence, which contributed to decreased clonogenic survival. Increased radiosensitivity in the presence of rucaparib was associated with persistent DNA breaks, as determined by χ-H2AX, p53BP1, and Rad51 foci. VCaP cells, which harbor the TMPRSS2-ERG gene fusion and PC3 cells that stably express a similar construct (fusion III) showed enhanced sensitivity towards rucaparib, which, in turn, increased the radiation response to a similar extent as the DNA-PKcs inhibitor NU7441. Rucaparib radiosensitized PCa cells, with a clear benefit of low dose-rate radiation (LDR) administered over a longer period of time that caused enhanced DNA damage. LDR mimicking brachytherapy, which is used successfully in the clinic, was most effective when combined with rucaparib by inducing persistent DNA damage and senescence, leading to decreased clonogenic survival. This combination was most effective in the presence of the TMPRSS2-ERG and in the absence of PTEN, indicating clinical potential for brachytherapy in patients with intermediate and high risk PCa.
Collapse
Affiliation(s)
- Payel Chatterjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Kent State University, Kent, Ohio, United State of America
| | - Gaurav S. Choudhary
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Arishya Sharma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Cleveland State University, Cleveland, Ohio, United States of America
| | - Kamini Singh
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Warren D. Heston
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jay Ciezki
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Eric A. Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Alexandru Almasan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
28
|
Carreras Puigvert J, von Stechow L, Siddappa R, Pines A, Bahjat M, Haazen LCJM, Olsen JV, Vrieling H, Meerman JHN, Mullenders LHF, van de Water B, Danen EHJ. Systems biology approach identifies the kinase Csnk1a1 as a regulator of the DNA damage response in embryonic stem cells. Sci Signal 2013; 6:ra5. [PMID: 23354688 DOI: 10.1126/scisignal.2003208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In pluripotent stem cells, DNA damage triggers loss of pluripotency and apoptosis as a safeguard to exclude damaged DNA from the lineage. An intricate DNA damage response (DDR) signaling network ensures that the response is proportional to the severity of the damage. We combined an RNA interference screen targeting all kinases, phosphatases, and transcription factors with global transcriptomics and phosphoproteomics to map the DDR in mouse embryonic stem cells treated with the DNA cross-linker cisplatin. Networks derived from canonical pathways shared in all three data sets were implicated in DNA damage repair, cell cycle and survival, and differentiation. Experimental probing of these networks identified a mode of DNA damage-induced Wnt signaling that limited apoptosis. Silencing or deleting the p53 gene demonstrated that genotoxic stress elicited Wnt signaling in a p53-independent manner. Instead, this response occurred through reduced abundance of Csnk1a1 (CK1α), a kinase that inhibits β-catenin. Together, our findings reveal a balance between p53-mediated elimination of stem cells (through loss of pluripotency and apoptosis) and Wnt signaling that attenuates this response to tune the outcome of the DDR.
Collapse
Affiliation(s)
- Jordi Carreras Puigvert
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Danielsson A, Claesson K, Parris TZ, Helou K, Nemes S, Elmroth K, Elgqvist J, Jensen H, Hultborn R. Differential gene expression in human fibroblasts after alpha-particle emitter211At compared with60Co irradiation. Int J Radiat Biol 2012; 89:250-8. [DOI: 10.3109/09553002.2013.746751] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Yan H, Zhu S, Song C, Liu N, Kang J. Bone morphogenetic protein (BMP) signaling regulates mitotic checkpoint protein levels in human breast cancer cells. Cell Signal 2011; 24:961-8. [PMID: 22234345 DOI: 10.1016/j.cellsig.2011.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 12/01/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
Abstract
Aberrant expression of mitotic checkpoint genes compromises mitotic checkpoint, leads to chromosome instability and tumorigenesis. However, the cell signals that control mitotic checkpoint gene expression have not been reported so far. In the present study we show that, in human breast cancer cells, chemical inhibition of Bone morphogenetic proteins (BMPs), but not Transforming Growth Factor-β (TGF-β), abrogates the mitotic arrest induced by nocodazole. Protein expression analysis reveals that inhibition of BMP signaling dramatically down regulates protein levels of mitotic checkpoint components BUB3, Hec1, TTK and MAD2, but inhibition of TGF-β has relatively minor effect on the expression of these proteins. Activation of BMP signaling specifically up regulates BUB3, and activation of Activin A signaling globally down regulates these proteins level. Furthermore, overexpressing MAD2, TTK, BUB3 or Hec1 significantly rescues the mitotic arrest defect caused by BMP inhibition. Our results demonstrated for the first time that TGF-β family cytokines are cellular signals regulating mitotic checkpoint and perturbations in intrinsic BMP signaling could lead to suppression of mitotic checkpoint signaling by downregulating key checkpoint proteins. The results suggest a possible mechanism by which dysregulation of TGF-β signaling causes mitotic checkpoint defects and drives tumorigenesis. The finding also provides a potential and more specific strategy for cancer prevention by targeting BMP and mitotic checkpoint connection.
Collapse
Affiliation(s)
- Hualong Yan
- Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, No. 1239 Si-ping Road, Shanghai 200092, PR China
| | | | | | | | | |
Collapse
|
31
|
An antiapoptotic BCL-2 family expression index predicts the response of chronic lymphocytic leukemia to ABT-737. Blood 2011; 118:3579-90. [PMID: 21772052 DOI: 10.1182/blood-2011-03-340364] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The antiapoptotic BCL-2 proteins regulate lymphocyte survival and are over-expressed in lymphoid malignancies, including chronic lymphocytic leukemia. The small molecule inhibitor ABT-737 binds with high affinity to BCL-2, BCL-XL, and BCL-W but with low affinity to MCL-1, BFL-1, and BCL-B. The active analog of ABT-737, navitoclax, has shown a high therapeutic index in lymphoid malignancies; developing a predictive marker for it would be clinically valuable for patient selection or choice of drug combinations. Here we used RT-PCR as a highly sensitive and quantitative assay to compare expression of antiapoptotic BCL-2 genes that are known to be targeted by ABT-737. Our findings reveal that the relative ratio of MCL-1 and BFL-1 to BCL-2 expression provides a highly significant linear correlation with ABT-737 sensitivity (r = 0.6, P < .001). In contrast, antiapoptotic transcript levels, used individually or in combination for high or low affinity ABT-737-binding proteins, could not predict ABT-737 sensitivity. The (MCL-1 + BFL-1)/BCL-2 ratio was validated in a panel of leukemic cell lines subjected to genetic and pharmacologic manipulations. Changes after ABT-737 treatment included increased expression of BFL-1 and BCL-B that may contribute to treatment resistance. This study defines a highly significant BCL-2 expression index for predicting the response of CLL to ABT-737.
Collapse
|
32
|
Wan Z, Zhi N, Wong S, Keyvanfar K, Liu D, Raghavachari N, Munson PJ, Su S, Malide D, Kajigaya S, Young NS. Human parvovirus B19 causes cell cycle arrest of human erythroid progenitors via deregulation of the E2F family of transcription factors. J Clin Invest 2010; 120:3530-44. [PMID: 20890043 DOI: 10.1172/jci41805] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 08/04/2010] [Indexed: 12/20/2022] Open
Abstract
Human parvovirus B19 (B19V) is the only human pathogenic parvovirus. It causes a wide spectrum of human diseases, including fifth disease (erythema infectiosum) in children and pure red cell aplasia in immunocompromised patients. B19V is highly erythrotropic and preferentially replicates in erythroid progenitor cells (EPCs). Current understanding of how B19V interacts with cellular factors to regulate disease progression is limited, due to a lack of permissive cell lines and animal models. Here, we employed a recently developed primary human CD36(+) EPC culture system that is highly permissive for B19V infection to identify cellular factors that lead to cell cycle arrest after B19V infection. We found that B19V exploited the E2F family of transcription factors by downregulating activating E2Fs (E2F1 to E2F3a) and upregulating repressive E2Fs (E2F4 to E2F8) in the primary CD36(+) EPCs. B19V nonstructural protein 1 (NS1) was a key viral factor responsible for altering E2F1-E2F5 expression, but not E2F6-E2F8 expression. Interaction between NS1 and E2F4 or E2F5 enhanced the nuclear import of these repressive E2Fs and induced stable G₂ arrest. NS1-induced G₂ arrest was independent of p53 activation and increased viral replication. Downstream E2F4/E2F5 targets, which are potentially involved in the progression from G₂ into M phase and erythroid differentiation, were identified by microarray analysis. These findings provide new insight into the molecular pathogenesis of B19V in highly permissive erythroid progenitors.
Collapse
Affiliation(s)
- Zhihong Wan
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland 20892-1652, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kwon JY, Seo YR. Genome-wide profiling induced by ionizing radiation (IR) in non-small cell lung cancer (NSCLC) grown as three-dimensional spheroid. Mol Cell Toxicol 2010. [DOI: 10.1007/s13273-010-0032-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
D'Urso V, Collodoro A, Mattioli E, Giordano A, Bagella L. Cytometry and DNA ploidy: clinical uses and molecular perspective in gastric and lung cancer. J Cell Physiol 2010; 222:532-9. [PMID: 20020506 DOI: 10.1002/jcp.21991] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Flow cytometry is one of the most powerful and specific methods used for the integrated study of the molecular and morphological events occurring during cell proliferation. Many methods have been described for investigating this process. Several cell cycle regulators controlling the correct entry and progression through the cell cycle are altered in tumors. In fact, in most, if not all, human cancers there is a deregulated control of G1 phase progression, the period when cells decide if they will start proliferation or stay quiescent. Cytometry (flow and image) is able to analyze DNA content thanks to the use of the same "molecule" conjugates with a fluorochrome that permits to identify DNA content of single cell in a sample. Most important results of studies on DNA ploidy have been reviewed during the last years and as a result the analyses of DNA ploidy in cancer may provide clinically useful information on diagnostic, therapeutic and prognostic aspects. In fact, aneuploid cancer has a high proliferative activity and a metastatic or invasive potential, markers of a poor prognosis. Multiparametric flow cytometry should allow the simultaneous determination of morphology, phenotype, intracellular protein expression, and status of chromatin and DNA. Evaluating if a particular protein is responsible for the aggressiveness of cancer, or the alteration of DNA content, or if the activation of its state is the cause of rapid growth of cancer cells, is very important and it can facilitate the clinical treatment of patients.
Collapse
Affiliation(s)
- Vittorio D'Urso
- Division of Biochemistry and Biophysics, Department of Biomedical Sciences, National Institute of Biostructures and Biosystems, University of Sassari, 07100 Sassari, Italy
| | | | | | | | | |
Collapse
|
35
|
Distinct signaling pathways after higher or lower doses of radiation in three closely related human lymphoblast cell lines. Int J Radiat Oncol Biol Phys 2010; 76:212-9. [PMID: 20005454 DOI: 10.1016/j.ijrobp.2009.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 11/23/2022]
Abstract
PURPOSE The tumor suppressor p53 plays an essential role in cellular responses to DNA damage caused by ionizing radiation; therefore, this study aims to further explore the role that p53 plays at different doses of radiation. MATERIALS AND METHODS The global cellular responses to higher-dose (10 Gy) and lower dose (iso-survival dose, i.e., the respective D0 levels) radiation were analyzed using microarrays in three human lymphoblast cell lines with different p53 status: TK6 (wild-type p53), NH32 (p53-null), and WTK1 (mutant p53). Total RNAs were extracted from cells harvested at 0, 1, 3, 6, 9, and 24 h after higher and lower dose radiation exposures. Template-based clustering, hierarchical clustering, and principle component analysis were applied to examine the transcriptional profiles. RESULTS Differential expression profiles between 10 Gy and iso-survival radiation in cells with different p53 status were observed. Moreover, distinct gene expression patterns were exhibited among these three cells after 10 Gy radiation treatment, but similar transcriptional responses were observed in TK6 and NH32 cells treated with iso-survival radiation. CONCLUSIONS After 10 Gy radiation exposure, the p53 signaling pathway played an important role in TK6, whereas the NFkB signaling pathway appeared to replace the role of p53 in WTK1. In contrast, after iso-survival radiation treatment, E2F4 seemed to play a dominant role independent of p53 status. This study dissected the impacts of p53, NFkB and E2F4 in response to higher or lower doses of gamma-irradiation.
Collapse
|
36
|
Wu Z, Zheng S, Yu Q. The E2F family and the role of E2F1 in apoptosis. Int J Biochem Cell Biol 2009; 41:2389-97. [PMID: 19539777 DOI: 10.1016/j.biocel.2009.06.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/02/2009] [Accepted: 06/08/2009] [Indexed: 12/22/2022]
Abstract
The E2F family of transcription factors plays a pivotal role in the regulation of cellular proliferation and differentiation. Although the deregulation of E2Fs is considered an oncogenic event that predisposes immortalized cells to transformation, paradoxically, E2F1 is also equipped with an ability to induce apoptosis under certain cellular contexts. It has become evident that E2Fs, in particular E2F1, participate in many aspects of the apoptotic process, either by acting alone or in cooperation with other factors, such as p53, to protect organisms from tumor development in the face of oncogenic lesions. Given the frequent inactivation of p53 in human cancers, the E2F1-induced apoptosis pathway is rapidly gaining attention as a key mechanism to compensate the loss of p53 in human tumors. In this review, we will focus on the recent progress in our understanding of E2F1-mediated apoptosis and discuss how these discoveries can be translated into potential therapeutic intervention.
Collapse
Affiliation(s)
- Zhenlong Wu
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A*Star (Agency for Science, Technology and Research), Biopolis 02-01, Singapore 138672, Singapore
| | | | | |
Collapse
|
37
|
Ma Y, Kurtyka CA, Boyapalle S, Sung SS, Lawrence H, Guida W, Cress WD. A small-molecule E2F inhibitor blocks growth in a melanoma culture model. Cancer Res 2008; 68:6292-9. [PMID: 18676853 DOI: 10.1158/0008-5472.can-08-0121] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HLM006474 was identified using a computer-based virtual screen and the known crystal structure of the DNA-bound E2F4/DP2 heterodimer. Treatment of multiple cell lines with HLM006474 resulted in the loss of intracellular E2F4 DNA-binding activity as measured by electrophoretic mobility shift assay within hours. Overnight exposure to HLM006474 resulted in down-regulation of total E2F4 protein as well as known E2F targets. The effects of HLM006474 treatment on different cell lines varied but included a reduction in cell proliferation and an increase in apoptosis. HLM006474 induced apoptosis in a manner distinct from cisplatin and doxorubicin. E2F4-null mouse embryonic fibroblasts were less sensitive than wild-type counterparts to the apoptosis-inducing activity of the compound, revealing its biological specificity. A375 cells were extremely sensitive to the apoptosis-inducing activity of the compound in two-dimensional culture, and HLM006474 was a potent inhibitor of melanocytes proliferation and subsequent invasion in a three-dimensional tissue culture model system. Together, these results suggest that interference with E2F activity using small molecules may have clinical application in cancer therapy.
Collapse
Affiliation(s)
- Yihong Ma
- Molecular Oncology Program, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Differential sensitivity of colorectal cancer cell lines to artesunate is associated with expression of beta-catenin and E-cadherin. Eur J Pharmacol 2008; 588:1-8. [DOI: 10.1016/j.ejphar.2008.03.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/06/2008] [Accepted: 03/19/2008] [Indexed: 01/22/2023]
|
39
|
Gupta D, Crosby ME, Almasan A, Macklis RM. Regulation of CD20 expression by radiation-induced changes in intracellular redox status. Free Radic Biol Med 2008; 44:614-23. [PMID: 18060882 PMCID: PMC2917596 DOI: 10.1016/j.freeradbiomed.2007.10.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 10/12/2007] [Accepted: 10/17/2007] [Indexed: 11/15/2022]
Abstract
Increasing the levels of CD20 expression in cells that harbor low CD20 levels may enhance their responsiveness to CD20-specific antibody therapies. Here, we examined the regulation of CD20 expression after treatment with 0.5-2.0 Gy X-irradiation and hydrogen peroxide (H(2)O(2)), in the presence or absence of known antioxidants, in the Burkitt lymphoma cell lines Daudi and Raji. Irradiation of cells enhanced cell-surface CD20 expression; the kinetics and extent of this change were cell-type specific and time-dependent. The kinetics of reactive oxygen species generation and changes in mitochondrial membrane potential after irradiation were also correlated with changes in CD20 expression. Raji and Daudi cells treated with H(2)O(2) showed a 2-to 2.5-fold increase in CD20 expression at 12 and 20 h, respectively. Buthionine sulfoximine, which depletes glutathione, also increased surface CD20, whereas antioxidants, such as PEG-catalase, PEG-SOD, vitamin C, and amifostine, decreased CD20 expression induced by radiation or H(2)O(2). The antioxidant-mediated decrease in CD20 expression induced by radiation or H(2)O(2) suggests a mechanism involving redox regulation. These results demonstrate the critical role of radiation-induced oxidative stress in CD20 expression and may have implications for defining and improving the efficacy of CD20-targeted antibody therapy and radioimmunotherapy.
Collapse
Affiliation(s)
- Damodar Gupta
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Meredith E. Crosby
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Environmental Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alexandru Almasan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Roger M. Macklis
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA
- Corresponding author. Fax: +1 216 445 7595. (R.M. Macklis)
| |
Collapse
|
40
|
Amundson SA, Do KT, Vinikoor LC, Lee RA, Koch-Paiz CA, Ahn J, Reimers M, Chen Y, Scudiero DA, Weinstein JN, Trent JM, Bittner ML, Meltzer PS, Fornace AJ. Integrating global gene expression and radiation survival parameters across the 60 cell lines of the National Cancer Institute Anticancer Drug Screen. Cancer Res 2008; 68:415-24. [PMID: 18199535 DOI: 10.1158/0008-5472.can-07-2120] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 60 cell lines of the National Cancer Institute Anticancer Drug Screen (NCI-60) constitute the most extensively characterized in vitro cancer cell model. They have been tested for sensitivity to more than 100,000 potential chemotherapy agents and have been profiled extensively at the DNA, RNA, protein, functional, and pharmacologic levels. We have used the NCI-60 cell lines and three additional lines to develop a database of responses of cancer cells to ionizing radiation. We compared clonogenic survival, apoptosis, and gene expression response by microarray. Although several studies have profiled relative basal gene expression in the NCI-60, this is the first comparison of large-scale gene expression changes in response to genotoxic stress. Twenty-two genes were differentially regulated in cells with low survival after 2-Gy gamma-rays; 14 genes identified lines more sensitive to 8 Gy. Unlike reported basal gene expression patterns, changes in expression in response to radiation showed little tissue-of-origin effect, except for differentiating the lymphoblastoid cell lines from other cell types. Basal expression patterns, however, discriminated well between radiosensitive and more resistant lines, possibly being more informative than radiation response signatures. The most striking patterns in the radiation data were a set of genes up-regulated preferentially in the p53 wild-type lines and a set of cell cycle regulatory genes down-regulated across the entire NCI-60 panel. The response of those genes to gamma-rays seems to be unaffected by the myriad of genetic differences across this diverse cell set; it represents the most penetrant gene expression response to ionizing radiation yet observed.
Collapse
Affiliation(s)
- Sally A Amundson
- Center for Radiological Research, Columbia University Medical Center, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
A number of methods have been developed to examine the morphologic, biochemical, and molecular changes that happen during the DNA damage response that may ultimately lead to death of cells through various mechanisms that include apoptosis. When cells are exposed to ionizing radiation or chemical DNA-damaging agents, double-stranded DNA breaks (DSB) are generated that rapidly result in the phosphorylation of histone variant H2AX. Because phosphorylation of H2AX at Ser 139 correlates well with each DSB, phospho-H2AX is a sensitive marker to used to examine the DNA damage and its repair. Apoptotic cells are characterized on the basis of their reduced DNA content and morphologic changes, including nuclear condensation, which can be detected by flow cytometry (sub-G1 DNA content), trypan blue, or Hoechst staining. The appearance of phosphatidylserine on the plasma membrane with annexin V-fluorochrome conjugates indicates the changes in plasma membrane composition and function. By combining it with propidium iodide staining, this method can also be used to distinguish early versus late apoptotic or necrotic events. The activation of caspases is another well-known biochemical marker of apoptosis. Finally, the Bcl-2 family of proteins and the mitochondria that play a critical role in DNA damage-induced apoptosis can be examined by translocation of Bax and cytochrome c in and out of mitochondria. In this chapter, we discuss the most commonly used techniques used in our laboratory for determining the DNA damage response leading to apoptosis.
Collapse
Affiliation(s)
- Dragos Plesca
- Department of Cancer Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
42
|
Plesca D, Crosby ME, Gupta D, Almasan A. E2F4 function in G2: maintaining G2-arrest to prevent mitotic entry with damaged DNA. Cell Cycle 2007; 6:1147-52. [PMID: 17507799 PMCID: PMC2596058 DOI: 10.4161/cc.6.10.4259] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mammalian cells undergo cell cycle arrest in response to DNA damage through multiple checkpoint mechanisms. One such checkpoint pathway maintains genomic integrity by delaying mitotic progression in response to genotoxic stress. Transition though the G2 phase and entry into mitosis is considered to be regulated primarily by cyclin B1 and its associated catalytically active partner Cdk1. While not necessary for its initiation, the p130 and Rb-dependent target genes have emerged as being important for stable maintenance of a G2 arrest. It was recently demonstrated that by interacting with p130, E2F4 is present in the nuclei and plays a key role in the maintenance of this stable G2 arrest. Increased E2F4 levels and its translocation to the nucleus following genotoxic stress result in downregulation of many mitotic genes and as a result promote a G0-like state. Irradiation of E2F4-depleted cells leads to enhanced cellular DNA double-strand breaks that may be measured by comet assays. It also results in cell death that is characterized by caspase activation, sub-G1 and sub-G2 DNA content, and decreased clonogenic cell survival. Here we review these recent findings and discuss the mechanisms of G2 phase checkpoint activation and maintenance with a particular focus on E2F4.
Collapse
Affiliation(s)
- Dragos Plesca
- Department of Cancer Biology; The Lerner Research Institute; Cleveland, Ohio USA
- School of Biomedical Sciences; Kent State University; Kent, Ohio USA
| | - Meredith E. Crosby
- Department of Environmental Health Sciences; Case Western Reserve University; Cleveland, Ohio USA
| | - Damodar Gupta
- Department of Cancer Biology; The Lerner Research Institute; Cleveland, Ohio USA
- Department of Radiation Oncology; Cleveland Clinic; Cleveland, Ohio USA
| | - Alexandru Almasan
- Department of Cancer Biology; The Lerner Research Institute; Cleveland, Ohio USA
- Department of Radiation Oncology; Cleveland Clinic; Cleveland, Ohio USA
- Correspondence to: Alexandru Almasan; Departments of Cancer Biology and Radiation Oncology; Lerner Research Institute; Cleveland Clinic; 9500 Euclid Avenue, Cleveland, Ohio 44195 USA; Tel.: 216.444.9970; Fax: 216.445.6269;
| |
Collapse
|
43
|
Ray S, Shyam S, Fraizer GC, Almasan A. S-phase checkpoints regulate Apo2 ligand/TRAIL and CPT-11–induced apoptosis of prostate cancer cells. Mol Cancer Ther 2007; 6:1368-78. [PMID: 17431115 DOI: 10.1158/1535-7163.mct-05-0414] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As S-phase checkpoints play critical roles in maintaining genomic integrity and replicating the human genome correctly, understanding the molecular mechanism by which they regulate the therapeutic response is of great interest. Previously, we reported that the cytotoxic effect of a zinc-bound form of Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL), which is currently evaluated in clinical trials, in combination with low-dose CPT-11, induces apoptosis of C4-2 human prostate cancer cells and tissues. Here, we show that apoptosis, induced synergistically by this combination treatment, was associated with accumulation of cells in early S phase, indicated by cell cycle analyses, increased proliferating cell nuclear antigen, and Chk2-Thr(68) phosphorylation in tumors xenografted in mice. The combination treatment induced an S-phase checkpoint response through activation of Chk2 and Chk1 by the ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3 related kinases, leading to phosphorylation and decreased Cdc25A levels. Cdc25A-dependent regulation of cyclin-dependent kinase 2 (Cdk2) and changes in association of p21(WAF1/CIP1) and hSpy1 with Cdk2 resulted in inhibition of Cdk2-associated kinase activity. Knockdown of ataxia telangiectasia mutated/Chk2 and ataxia telangiectasia mutated and Rad3 related/Chk1 by small inhibitory RNAs abrogated the S-phase checkpoint and accelerated apoptosis, resulting in caspase-3 activation and poly(ADP-ribose) polymerase 1 cleavage following combination treatment. Thus, Apo2L/TRAIL + CPT-11 treatment-induced apoptosis is regulated through an S-phase checkpoint controlled by the Chk2-Cdc25A and Chk1-Cdc25A pathways and inhibition of Cdk2-associated kinase activity. Low-dose CPT-11 and aphidicolin increased the proportion of S-phase cells and sensitized cells to Apo2L/TRAIL, by inducing phosphatidylserine externalization, caspase activation, and poly(ADP-ribose) polymerase 1 cleavage. Combinations with S-phase arrest-inducing chemotherapeutic drugs may represent promising avenues for clinical development of Apo2L/TRAIL.
Collapse
Affiliation(s)
- Subrata Ray
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | |
Collapse
|