1
|
Ni J, Ren S, Hu Y, Ma D, Kuang Y, Yoshimura N. Water-avoidance stress aggravates prostatic inflammation in a murine model of chronic prostatitis. Neurourol Urodyn 2024; 43:2249-2257. [PMID: 38847321 DOI: 10.1002/nau.25518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 10/23/2024]
Abstract
OBJECTIVES To date, few studies have considered the influence of psychological factors on chronic prostatitis (PRO) models. Here, we aimed to refine a murine PRO model combining chemically induced prostatitis with psychological stress. METHODS A total of 40 mice were randomly divided into four groups: normal control (NC) group, PRO group, water avoidance stress (WAS) group, and PRO + WAS group. Ten mice were assigned to each group: five for cystometrograms (CMGs) and five for von Frey testing and histological analysis. PRO was induced through a prostatic injection of 10% paraformaldehyde. The WAS mice were placed on the middle platform for 1 h per day for 10 consecutive days. RESULTS The results of the von Frey test demonstrated that both WAS and PRO induced bladder hyperalgesia in mice, and the WAS + PRO group showed significant pelvic pain symptoms either. The CMG results suggested that the PRO group, the WAS group, and the PRO + WAS group all exhibited bladder overactivity, presented as a shortened micturition interval and decreased threshold pressure evoking bladder contraction. The symptoms of the PRO group and the PRO + WAS group were more severe than those of the WAS group. The tissue staining results indicated that WAS itself caused only mild prostatic inflammation but could significantly aggravate chemical-induced prostatic inflammation, as well as the total number of mast cells and proportion of activated mast cells. CONCLUSIONS Our refined murine PRO model could manifest persistent bladder overactivity, pelvic hyperalgesia and prostatic inflammation. WAS could induce mild prostatic inflammation and aggravate primary prostatic inflammation.
Collapse
Affiliation(s)
- Jianshu Ni
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Dongni Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yifang Kuang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Salazar FC, Martinez MS, Paira DA, Chocobar YA, Olivera C, Godoy GJ, Acosta-Rodriguez EV, Rivero VE, Motrich RD. CD8 T cells are dispensable for experimental autoimmune prostatitis induction and chronic pelvic pain development. Front Immunol 2024; 15:1387142. [PMID: 38807587 PMCID: PMC11130463 DOI: 10.3389/fimmu.2024.1387142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction Chronic Pelvic Pain Syndrome or Chronic Prostatitis (CPPS/CP) is the most prevalent urologic affliction among young adult men. It is a challenging condition to treat, which significantly decreases patient quality of life, mostly because of its still uncertain aetiology. In that regard, an autoimmune origin is a prominent supported theory. Indeed, studies in patients and in rodent models of Experimental Autoimmune Prostatitis (EAP) have provided compelling evidence suggesting a key role of CD4 Th1 cells in disease pathogenesis. However, the implication of other prominent effectors of the immune system, such as CD8 T cells, has yet to be studied. Methods We herein analyzed the induction of prostatitis and the development of chronic pelvic pain in EAP using CD8 T cell-deficient animals. Results We found similarly elevated PA-specific immune responses, with high frequencies of specific IFNg+CD4+ and IL17+CD4+ T cells in prostate draining lymph nodes from PA-immunized either CD8 KO or wild type animals with respect to controls. Moreover, these peripheral immune responses were paralleled by the development of significant chronic pelvic pain, and accompanied by prostate histological lesions, characterized by hemorrhage, epithelial cell desquamation, marked periglandular leukocyte infiltration, and increased collagen deposition in both, PA-immunized CD8 KO and wild type animals. As expected, control animals did not develop prostate histological lesions. Discussion Our results indicate that CD8 T cells do not play a major role in EAP pathogenesis and chronic pelvic pain development. Moreover, our results corroborate the previous notion that a CD4 Th1 associated immune response drives the induction of prostate tissue inflammation and the development of chronic pelvic pain.
Collapse
Affiliation(s)
- Florencia C. Salazar
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Maria S. Martinez
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Cordoba, Argentina
| | - Daniela A. Paira
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Cordoba, Argentina
| | - Yair A. Chocobar
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Cordoba, Argentina
| | - Carolina Olivera
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Cordoba, Argentina
| | - Gloria J. Godoy
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Eva V. Acosta-Rodriguez
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Virginia E. Rivero
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Cordoba, Argentina
| | - Ruben D. Motrich
- Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI)-CONICET, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Cordoba, Argentina
| |
Collapse
|
3
|
Inflammation in Urological Malignancies: The Silent Killer. Int J Mol Sci 2023; 24:ijms24010866. [PMID: 36614308 PMCID: PMC9821648 DOI: 10.3390/ijms24010866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Several studies have investigated the role of inflammation in promoting tumorigenesis and cancer progression. Neoplastic as well as surrounding stromal and inflammatory cells engage in well-orchestrated reciprocal interactions to establish an inflammatory tumor microenvironment. The tumor-associated inflammatory tissue is highly plastic, capable of continuously modifying its phenotypic and functional characteristics. Accumulating evidence suggests that chronic inflammation plays a critical role in the development of urological cancers. Here, we review the origins of inflammation in urothelial, prostatic, renal, testicular, and penile cancers, focusing on the mechanisms that drive tumor initiation, growth, progression, and metastasis. We also discuss how tumor-associated inflammatory tissue may be a diagnostic marker of clinically significant tumor progression risk and the target for future anti-cancer therapies.
Collapse
|
4
|
Bleeker J, Wang ZA. Applications of Vertebrate Models in Studying Prostatitis and Inflammation-Associated Prostatic Diseases. Front Mol Biosci 2022; 9:898871. [PMID: 35865005 PMCID: PMC9294738 DOI: 10.3389/fmolb.2022.898871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
It has long been postulated that the inflammatory environment favors cell proliferation, and is conducive to diseases such as cancer. In the prostate gland, clinical data implicate important roles of prostatitis in the progression of both benign prostatic hyperplasia (BPH) and prostate cancer (PCa). However, their causal relationships have not been firmly established yet due to unresolved molecular and cellular mechanisms. By accurately mimicking human disease, vertebrate animals provide essential in vivo models to address this question. Here, we review the vertebrate prostatitis models that have been developed and discuss how they may reveal possible mechanisms by which prostate inflammation promotes BPH and PCa. Recent studies, particularly those involving genetically engineered mouse models (GEMMs), suggest that such mechanisms are multifaceted, which include epithelium barrier disruption, DNA damage and cell proliferation induced by paracrine signals, and expansion of potential cells of origin for cancer. Future research using rodent prostatitis models should aim to distinguish the etiologies of BPH and PCa, and facilitate the development of novel clinical approaches for prostatic disease prevention.
Collapse
|
5
|
Cyril AC, Jan RK, Radhakrishnan R. Pain in chronic prostatitis and the role of ion channels: a brief overview. Br J Pain 2022; 16:50-59. [PMID: 35111314 PMCID: PMC8801692 DOI: 10.1177/20494637211015265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Prostatitis is the third most common urologic condition affecting more than half the male population at some point in their lives. There are different categories of prostatitis, of which approximately 90% of cases can be classified under the National Institute of Health (NIH) type III category (chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS)) with no causative agents identified. CP/CPPS is associated with several symptoms, of which the most prominent being chronic pain. Despite its high incidence, pain management in patients with CP/CPPS has been poor, possibly due to the lack of understanding of aetiological factors and mechanisms underlying pain development. METHODS An extensive literature search of published articles on the molecular mechanisms of pain in CP/CPPS was conducted using PubMed and Google Scholar search engines (https://pubmed.ncbi.nlm.nih.gov and https://scholar.google.com). The terms used for the search were: prostatitis, pain mechanism in CP/CPPS, prostatitis pain models, acid-sensing ion channels (ASICs), transient receptor potential vanilloid type 1 (TRPVs), purinergic channels (P2X) in prostatitis pain mechanism and inflammatory mediators in CP/CPPS. The papers were identified based on the title and abstract, and after excluding the articles that did not emphasize the pain mechanism in CP/CPPS. Ninety-five articles (36 review and 59 original research papers) met our criteria and were included in the review. RESULTS A number of inflammatory mediator molecules and pain channels, including ASICs, transient receptor potential vanilloid channels (TRPVs) and P2Xs have been investigated for their role in prostatitis pain pathology using various animal models. CONCLUSION This review summarizes the pain mechanisms in CP/CPPS focusing on the inflammatory mediators, neurotransmitters, pain-transducing ion channels and small animal models developed for studying prostatitis.
Collapse
Affiliation(s)
| | | | - Rajan Radhakrishnan
- Rajan Radhakrishnan, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai Healthcare City, P.O Box 505055, Dubai, UAE.
| |
Collapse
|
6
|
The Translational Role of Animal Models for Estrogen-Related Functional Bladder Outlet Obstruction and Prostatic Inflammation. Vet Sci 2022; 9:vetsci9020060. [PMID: 35202312 PMCID: PMC8877003 DOI: 10.3390/vetsci9020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
The prevalence of LUTS and prostatic diseases increases with age both in humans and companion animals, suggesting that a common underlying cause of these conditions may be age-associated alterations in the balance of sex hormones. The symptoms are present with different and variable micturition dysfunctions and can be assigned to different clinical conditions including bladder outlet obstruction (BOO). LUTS may also be linked to chronic non-bacterial prostatitis/chronic pelvic pain syndrome (CP/CPPS), but the relationship between these conditions is unknown. This review summarizes the preclinical data that supports a role for excessive estrogen action in the development of obstructive voiding and nonbacterial prostatic inflammation. Preclinical studies that are emphasized in this review have unequivocally indicated that estrogens can induce functional and structural changes resembling those seen in human diseases. Recognizing excessive estrogen action as a possible hormonal basis for the effects observed at multiple sites in the LUT may inspire the development of innovative treatment options for human and animal patients with LUTS associated with functional BOO and CP/CPPS.
Collapse
|
7
|
Mechanism of Acupuncture and Moxibustion on Chronic Prostatitis/Chronic Pelvic Pain Syndrome: A Narrative Review of Animal Studies. Pain Res Manag 2021; 2021:2678242. [PMID: 34925658 PMCID: PMC8674039 DOI: 10.1155/2021/2678242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a genitourinary disease commonly seen in males, with symptoms involving pelvic pain, urinary system disease, and sexual dysfunction, which seriously affects physical and mental health, and it also influences the quality of life of patients. At present, the disease's aetiology and pathogenesis are unclear, and there is also no effective treatment for it. Acupuncture and moxibustion have been a way to CP/CPPS, showing good curative effect with advantages of safety and affordability. However, the relevant research in this field is less discussed. By adopting databases, such as CNKI, VIP, Wanfang, PubMed, and Medline, this review article used keywords including chronic prostatitis, chronic pelvic pain syndrome, and electric acupuncture, manual acupuncture, moxibustion, and animal experiments, rats, mice, and mechanism research and reviewing research papers published from 1998 to 2021. Then, it further summarized and evaluated the mechanism research and gave a brief comment about modeling methods, acupoints selection, and stimulus parameters that have been used in the selected research papers. Equally important, this review article proposes a reference for the in-depth study of the mechanism of acupuncture and moxibustion on CP/CPPS and provides a theoretical basis to better treat the disease in the clinic.
Collapse
|
8
|
Liu H, Zhu X, Cao X, Chi A, Dai J, Wang Z, Deng C, Zhang M. IL-1β-primed mesenchymal stromal cells exert enhanced therapeutic effects to alleviate Chronic Prostatitis/Chronic Pelvic Pain Syndrome through systemic immunity. Stem Cell Res Ther 2021; 12:514. [PMID: 34563249 PMCID: PMC8466748 DOI: 10.1186/s13287-021-02579-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/04/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) seriously affects patient health. Despite the elusiveness of innate therapeutic effects, mesenchymal stromal cells (MSCs) hold great promise for inflammation-related diseases. Recent evidence indicates that disease-specific inflammatory cytokines could enhance the therapeutic effects of MSCs. METHODS By establishing a CP/CPPS mouse model and pretreating MSCs with the cytokine interleukin-1β (IL-1β), we studied the IL-1β-primed MSC immunoregulatory ability and targeted migration ability in vitro and in CP/CPPS mice. RESULTS IL-1β levels significantly increased in the prostate tissue and serum of experimental autoimmune prostatitis (EAP) mice. Pretreatment with IL-1β enhanced the immunomodulatory potential and targeted migration of MSCs in vitro. Furthermore, intravenous infusion of IL-1β-primed MSCs dampened inflammation in prostate tissues and alleviated hyperalgesia in EAP mice. The infused MSCs inhibited monocyte infiltration and promoted regulatory T lymphocyte formation in prostate tissue, thus remodeling the local environment. Surprisingly, IL-1β-primed MSCs exhibited improved accumulation in the spleen but not in prostate tissue. Accordingly, infused MSCs reshaped systemic immunity by reducing the proportion of Ly6ChighCD11b+ monocytes and boosting the proportion of CD4+Foxp3+ regulatory T lymphocytes in the spleen and lung. Inflammatory chemokine (C-C motif) ligand 2 (CCL2) decreased through the downregulation of the NF-κB and JNK/MAPK pathways by inflammatory resolution via MSCs infusion to alleviate pain. CONCLUSION In summary, IL-1β-primed MSCs restored systemic immunologic homeostasis to alleviate CP/CPPS by modulating systemic immunity. These findings provide a novel strategy to boost the therapeutic effects of MSC-based therapy for CP/CPPS and reveal the essential role of systematic immunity in the treatment of CP/CPPS with MSC infusion.
Collapse
Affiliation(s)
- Hanchao Liu
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China
| | - Xinning Zhu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaohui Cao
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, 16 North Guilin Road, Huangshi, 435003, Hubei, China
| | - Ani Chi
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China
| | - Jian Dai
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 51008, China
| | - Zhenqing Wang
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China.
| | - Min Zhang
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China.
| |
Collapse
|
9
|
Almeer RS, Muhammad NAE, Othman MS, Aref AM, Elgamal B, Moneim AEA. The Potential Protective Effect of Orange Peel and Selenium against 17β-Estradiol- Induced Chronic Non-Bacterial Prostatitis in Rats. Anticancer Agents Med Chem 2021; 20:1061-1071. [PMID: 32228431 DOI: 10.2174/1871520620666200331102609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Prostate Cancer (PCa) is defined as a major health problem faced by the male population. AIM We aimed to investigate the protective effects of Orange Peel Extract (OPE) and/or Selenium (Se) on chronic non-bacterial prostatitis in a rat model. METHODS Fifty-six adult male Wistar albino rats were castrated; after 5 days, they were divided randomly into eight groups (n= 7). The control group received saline treatment; while 17β-estradiol (E2) (0.25mg/kg) was injected subcutaneously in rats from Groups V, VI, VII, and VIII to induce chronic non-bacterial prostatitis. They were then treated with OPE (400mg/kg body weight; Groups II, IV, VI, and VIII) and/or sodium selenite (0.5mg/kg body weight; Groups III, IV, VII, and VIII) for 30 days. Interleukin-2 (IL2) and Prostate Cancer Antigen 3 (PCA3) mRNA expressions were determined using qPCR; Prostate-Specific Antigen (PSA) protein expression was determined immunohistochemically. Prostate tissue histology was examined by hematoxylin and eosin staining, and the levels of oxidative stress markers and antioxidant enzymes were measured. RESULTS E2 administration significantly increased IL2 and PCA3 mRNA expressions, and PSA protein expression. It also increased the prostate wet weight and body weight, and lipid peroxidation, nitric oxide, TNF-α, and IL-1β levels, decreased the glutathione and antioxidant enzyme levels and caused distinct histological alterations in the prostate gland. OPE and/or Se markedly improved all the studied parameters due to their antioxidant properties and anti-inflammatory effects. CONCLUSION OPE and Se showed protective effects against 17β-estradiol-induced chronic non-bacterial prostatitis. These results suggest that protection of chronic non-bacterial prostatitis by OPE+Se combination involves anti-oxidation and anti-inflammation. Moreover, their synergistic mechanism was mostly achieved via the regulation of oxidative stress and inflammation processes.
Collapse
Affiliation(s)
- Rafa S Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nada A E Muhammad
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohamed S Othman
- Faculty of Biotechnology, Modern Sciences and Arts University (MSA), Giza, Egypt
| | - Ahmed M Aref
- Faculty of Biotechnology, Modern Sciences and Arts University (MSA), Giza, Egypt
| | - Basma Elgamal
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
10
|
Peng X, Guo H, Yuan J, Chen Y, Xia Y, Wang L, Wang Y, Huang Y, Xie H, Wang Y, Chen F. Extracellular vesicles released from hiPSC-derived MSCs attenuate chronic prostatitis/chronic pelvic pain syndrome in rats by immunoregulation. Stem Cell Res Ther 2021; 12:198. [PMID: 33743834 PMCID: PMC7981875 DOI: 10.1186/s13287-021-02269-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is an intractable nonbacterial inflammatory disease. Mesenchymal stem cells (MSCs) derived from human induced pluripotent stem cells (hiPSCs, iMSCs) have been well documented for the management of inflammatory and autoimmune disorders because of their powerful immunoregulatory and anti-inflammatory capacities. Recently, studies have indicated that extracellular vesicles (EVs) released from iMSCs hold biological functions similar to their parental cells. This study aimed to evaluate the therapeutic efficacy of EVs released from iMSCs (iMSCs-EVs) on CP/CPPS and to explore the underlying mechanisms. METHODS An experimental autoimmune prostatitis (EAP) model was established in rats by subcutaneous injection of prostate antigen with adjuvant. Then, iMSCs-EVs were injected into EAP rats via the tail vein. Pain behavioral measurements, urodynamic tests, and histopathological analyses were performed at 2, 4, and 6 weeks. The expression of cyclooxygenase-2 (COX-2) was evaluated by immunofluorescence staining and Western blot. The alterations of B cells, Th1 cells, Th2 cells, Th17 cells, and Treg cells in peripheral blood and spleen were analyzed using flow cytometry. The levels of Th1-, Th2-, Th17-, and Treg-related inflammatory mediators were determined by ELISA. RESULTS After iMSCs-EVs administration, rats had reduced pain as indicated by the recovery of nociceptive responses to baseline. The voiding pressure was significantly reduced, and the intercontraction interval was increased. The findings of histopathological analysis revealed that iMSCs-EVs could significantly decrease inflammatory cell infiltration and promote basal lamina and glandular epithelial tissue repair. Further studies demonstrated that the overexpression of COX-2 was downregulated by iMSCs-EVs. Meanwhile, the increases in the percentages of Th1 and Th17 cells were dramatically reversed. Also, rats that received iMSCs-EVs showed markedly increased percentages of Treg cells. The levels of those inflammatory mediators showed the same changing tendency. CONCLUSIONS iMSCs-EVs administration has the potential to ameliorate chronic pelvic pain, improve voiding dysfunction, suppress inflammatory reactions, and facilitate prostatic tissue repair. The functions are mediated by downregulating the overexpression of COX-2 and restoring the imbalance of Th1/Th2 and Treg/Th17 cells.
Collapse
Affiliation(s)
- Xufeng Peng
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.,Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hailin Guo
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Ji Yuan
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yu Chen
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yuguo Xia
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Lin Wang
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.,Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ying Wang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yichen Huang
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Hua Xie
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Fang Chen
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China. .,Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
11
|
Liu Y, Zhang Y, Zhang M, Meng J, Ma Q, Hao Z, Zheng M, Zhang L, Chen X, Liang C. Activated autophagy restored the impaired frequency and function of regulatory T cells in chronic prostatitis. Prostate 2021; 81:29-40. [PMID: 33085775 DOI: 10.1002/pros.24073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chronic prostatitis or chronic pelvic pain syndrome (CP/CPPS) is a disease with an unclear pathogenesis. Recent studies have reported that regulatory T (Treg) cells might be involved in the development of CP/CPPS. In this study we aimed to examine the functional role of Treg cells and explore the possible regulatory mechanism of Treg cells in CP/CPPS. METHODS An experimental autoimmune prostatitis (EAP) mouse model was constructed; the numbers and functions of Treg cells in the EAP and control groups were tested. Then, cell differentiation experiments were conducted to evaluate the regulatory effect of autophagy on Treg cell differentiation. Furthermore, autologous CD4+ CD25- cells and CD4+ CD25+ cells from the two groups were magnetically sorted and cocultured to observe differences in cellular inhibitory functions. Finally, in an in vivo experiment, rapamycin was intraperitoneally injected into EAP mice for 4 weeks to observe the therapeutic effects. RESULTS We found that the number and function of Treg cells in the EAP group were diminished compared to those in the control group. Meanwhile, the tolerance of pain in EAP mice had also decreased. Moreover, after using the autophagy activator rapamycin, the expression of the inflammatory cytokines interleukin-1β was decreased and the pain symptoms were alleviated. A mechanistic study found that autophagy activation promoted the differentiation of Treg and increased the suppressive functions of Treg cells, along with the elevated expression of GATA-3 and cytotoxic T lymphocyte antigen 4 (CTLA-4). Furthermore, in vivo administration of the autophagy activator rapamycin had similar effects on recovering the frequency and function of Treg cells as well as the expression of GATA-3 and CTLA-4. CONCLUSION The impaired frequency and function of Treg cells may contribute to the progression of CP/CPPS, and autophagy is a protective mechanism that promotes the differentiation of Treg cells and restores the suppressive functions of Treg cells. Autophagy may be a novel therapeutic option for patients with CP/CPPS.
Collapse
Affiliation(s)
- Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Urology, Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Yong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Urology, Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Jialin Meng
- Department of Urology, Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Qingqing Ma
- Department of Urology, Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Urology, Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Meijuan Zheng
- Department of Urology, Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Urology, Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Urology, Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Urology, Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
12
|
Fang C, Wu L, Zhu C, Xie WZ, Hu H, Zeng XT. A potential therapeutic strategy for prostatic disease by targeting the oral microbiome. Med Res Rev 2020; 41:1812-1834. [PMID: 33377531 PMCID: PMC8246803 DOI: 10.1002/med.21778] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/22/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022]
Abstract
Nowadays, human microbiome research is rapidly growing and emerging evidence has witnessed the critical role that oral microbiome plays in the process of human health and disease. Oral microbial dysbiosis has been confirmed as a contributory cause for diseases in multiple body systems, ranging from the oral cavity to the gastrointestinal, endocrine, immune, cardiovascular, and even nervous system. As research progressing, oral microbiome‐based diagnosis and therapy are proposed and applied, which may represent potential drug targets in systemic diseases. Recent studies have uncovered the possible association between periodontal disease and prostatic disease, suggesting new prevention and therapeutic treatment for the disease by targeting periodontal pathogens. Thus, we performed this review to first explore the association between the oral microbiome and prostatic disease, according to current knowledge based on published articles, and then mainly focus on the underlying molecular and cellular mechanisms and the potential prevention and treatment derived from these mechanistic studies.
Collapse
Affiliation(s)
- Cheng Fang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lan Wu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cong Zhu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen-Zhong Xie
- Department of Stomatology, Kaifeng University Health Science Center, Kaifeng, Henan, China
| | - Hailiang Hu
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA.,School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
13
|
Liang W, Wu Z, Zhang G, Chen W, Hu X, Yang J, Meng J, Zeng Y, Li H, Shang X. A urine-based biomarker for chronic prostatitis/chronic pelvic pain syndrome: a retrospective multi-center study. Transl Androl Urol 2020; 9:2218-2226. [PMID: 33209686 PMCID: PMC7658121 DOI: 10.21037/tau-20-1268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Chronic prostatitis (CP) or chronic pelvic pain syndrome (CPPS) is one of the most common diseases in young and middle-aged men, accounting for 30% of outpatient men in urology OPD. There are no definitive diagnostic criteria for CP or CPPS and no accepted therapies that cure the disease. Methods We identified 372 patients with CP diagnosed from 2015 to 2018 and collect the information of age, routine urinary test, express prostatic secretion (EPS), and NIH-Chronic Prostatitis Symptom Index (NIH-CPSI). Results Our study proved a correlation between the increase of prostatic exosomal proteins (PSEPs) level and NIH-CPSI scores. Spearman’s correlation coefficient showed a significant level correlation between NIH-CPSI and PSEP level (rs=0.194, P=0.0035). In the meantime, the correlation was found between the PSEP level and EPS-white blood cells. Spearman’s correlation coefficient showed that there was a significant hierarchical correlation between EPS-white blood cells and PSEP level (rs=0.183, P=0.001). Conclusions These findings highlight the potential of PSEP is a practical indicator of the symptomatic progression of CP/CPPS. Applications of PSEP assay may guide drug discovery and lead to better treatment to improve the patient’s quality of life.All in all, PSEP detection in urine is safe and effective, and it is worthy of further promotion and application in clinical practice.
Collapse
Affiliation(s)
- Weining Liang
- Department of Andrology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Zhigang Wu
- Department of Andrology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Guowei Zhang
- Department of Urology, Suqian First Hospital, Suqian, China
| | - Weikang Chen
- Department of Andrology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangnong Hu
- Department of Urology, Suqian First Hospital, Suqian, China
| | - Jianjun Yang
- Department of Urology, Suqian First Hospital, Suqian, China
| | - Jie Meng
- Onco Biomedical Technology (Suzhou) CO. LTD, Taicang, China
| | - Yan Zeng
- Department of Immunology, Jinan Military General Hospital, Jinan, China
| | - Hongjun Li
- Urological Department of Peking Union Medical College Hospital (PUMCH), Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
14
|
Natural killer and NKT cells in the male reproductive tract. J Reprod Immunol 2020; 142:103178. [PMID: 32739646 DOI: 10.1016/j.jri.2020.103178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 01/01/2023]
Abstract
Natural killer (NK) cells are important effector lymphocytes that play a pivotal role in the innate and adaptive immune responses to tumors and viral infection. NKT cells are a heterogeneous group of T cells that share properties with both T cells and NK cells. They display immunoregulatory properties as they facilitate the cell-mediated immune response to tumors and infectious diseases, and inhibit cell-mediated immunity associated with autoimmune diseases and allograft rejection. However, the roles of NK and NKT cells in the male reproductive tract remain largely unexplored, in particular, NKT cells, tissue distribution, and state of health or disease. Infection and inflammation of the male genital tract are thought to be the primary etiological factors of male infertility. In this review, we considered this complex and rapidly growing field. We summarize the recent findings and the characterization and roles of NK and NKT cells in the male reproductive tract, including the testis, epididymis, prostate, seminal vesicle, and semen, to enhance our understanding of the immunological mechanisms of male infertility and for the design effective vaccines for male reproductive health in the future.
Collapse
|
15
|
Ho DR, Chang PJ, Lin WY, Huang YC, Lin JH, Huang KT, Chan WN, Chen CS. Beneficial Effects of Inflammatory Cytokine-Targeting Aptamers in an Animal Model of Chronic Prostatitis. Int J Mol Sci 2020; 21:ijms21113953. [PMID: 32486412 PMCID: PMC7312664 DOI: 10.3390/ijms21113953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 01/10/2023] Open
Abstract
Non-bacterial prostatitis is an inflammatory disease that is difficult to treat. Oligonucleotide aptamers are well known for their stability and flexibility in conjugating various inflammatory molecules. In this study, we investigated the effects of inflammatory cytokine-targeting aptamers (ICTA), putative neutralizers of TNF-alpha and IL-1 beta activation, on local carrageenan-induced prostate inflammation, allodynia, and hyperalgesia in rats. In vitro evaluation confirmed the binding capability of ICTA. Intraprostatic injection of carrageenan or control vehicle was performed in six-week-old rats, and ICTA (150 µg) or vehicle was administered in the prostate along with carrageenan injection. The von Frey filament test was performed to determine mechanical allodynia, and prostate inflammation was examined seven days after drug administration. Local carrageenan administration resulted in a reduction of the tactile threshold. The levels of mononuclear cell infiltration, pro-inflammatory cytokine interleukin-1 beta (b), caspase-1 (casp-1), and Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing proteins 1 and 3 (NALP1 and NALP3) in the prostate of rats were increased seven days after carrageenan injection. Treatment with ICTA significantly attenuated the carrageenan-induced hyperalgesia and reduced the elevated levels of proteins including TNF-a and IL-1b in the rats. Apoptosis markers, B-cell lymphoma 2-associated X protein (Bax) and caspase-3, were elevated in ICTA-treated Chronic pelvic pain syndrome (CPPS) rats. These results suggest that ICTA provides protection against local carrageenan-induced enhanced pain sensitivity, and that the neutralization of proinflammatory cytokines may result in inflammatory cell apoptosis.
Collapse
Affiliation(s)
- Dong-Ru Ho
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (D.-R.H.); (W.-Y.L.); (Y.-C.H.); (J.-H.L.); (K.-T.H.); (W.-N.C.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333323, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 333323, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333323, Taiwan;
| | - Wei-Yu Lin
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (D.-R.H.); (W.-Y.L.); (Y.-C.H.); (J.-H.L.); (K.-T.H.); (W.-N.C.)
| | - Yun-Ching Huang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (D.-R.H.); (W.-Y.L.); (Y.-C.H.); (J.-H.L.); (K.-T.H.); (W.-N.C.)
| | - Jian-Hui Lin
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (D.-R.H.); (W.-Y.L.); (Y.-C.H.); (J.-H.L.); (K.-T.H.); (W.-N.C.)
| | - Kuo-Tsai Huang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (D.-R.H.); (W.-Y.L.); (Y.-C.H.); (J.-H.L.); (K.-T.H.); (W.-N.C.)
| | - Wai-Nga Chan
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (D.-R.H.); (W.-Y.L.); (Y.-C.H.); (J.-H.L.); (K.-T.H.); (W.-N.C.)
| | - Chih-Shou Chen
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (D.-R.H.); (W.-Y.L.); (Y.-C.H.); (J.-H.L.); (K.-T.H.); (W.-N.C.)
- Correspondence: ; Tel.: +886-975-353211
| |
Collapse
|
16
|
Santos PB, Patel H, Henrique R, Félix A. Can epigenetic and inflammatory biomarkers identify clinically aggressive prostate cancer? World J Clin Oncol 2020; 11:43-52. [PMID: 32133274 PMCID: PMC7046922 DOI: 10.5306/wjco.v11.i2.43] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) is a highly prevalent malignancy and constitutes a major cause of cancer-related morbidity and mortality. It emerges through the acquisition of genetic and epigenetic alterations. Epigenetic modifications include DNA methylation, histone modifications and microRNA deregulation. These generate heritable transformations in the expression of genes but do not change the DNA sequence. Alterations in DNA methylation (hypo and hypermethylation) are the most characterized in PCa. They lead to genomic instability and inadequate gene expression. Major and minor-specific modifications in chromatin recasting are involved in PCa, with signs suggesting a dysfunction of enzymes modified by histones. MicroRNA deregulation also contributes to the initiation of PCa, including involvement in androgen receptor signalization and apoptosis. The influence of inflammation on prostate tumor carcinogenesis is currently much better known. Recent discoveries about microbial species resident in the urinary tract suggest that these are the initiators of chronic inflammation, promoting prostate inflammatory atrophy and eventually leading to PCa. Complete characterization of the relationship between the urinary microbiome and prostatic chronic inflammation will be crucial to develop plans for the prevention of PCa. The prevalent nature of epigenetic and inflammatory alterations may provide potential biomarkers for PCa diagnosis, treatment decisions, evaluation of prognosis and posttreatment surveillance.
Collapse
Affiliation(s)
- Pedro Bargão Santos
- Department of Urology, Prof. Doutor Fernando Fonseca Hospital, Amadora 2720-276, Portugal
| | - Hitendra Patel
- Department of Urology, University Hospital North Norway, Tromsø 9019, Norway
- Department of Urology, St George’s University Hospitals, Tooting, London SW17 0QT, United Kingdom
| | - Rui Henrique
- Departments of Pathology and Cancer Biology and Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto, Porto 4200-072, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4099-002, Portugal
| | - Ana Félix
- Department of Pathology, Portuguese Oncology Institute of Lisbon, Lisbon 1099-023, Portugal
- Department of Pathology, NOVA Medical School, Lisbon 1169-056, Portugal
| |
Collapse
|
17
|
Chen Y, Guo KM, Nagy T, Guo TL. Chronic oral exposure to glycated whey proteins increases survival of aged male NOD mice with autoimmune prostatitis by regulating the gut microbiome and anti-inflammatory responses. Food Funct 2020; 11:153-162. [PMID: 31829366 PMCID: PMC6992484 DOI: 10.1039/c9fo01740b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glycated whey proteins have been shown to be protective against type 1 diabetes in our previous studies, suggesting their potential application as medical food. To determine if the protection could be extended to other autoimmune diseases, aged male non-obese diabetic (NOD) mice that develop a wide spectrum of autoimmune pathologies, including spontaneous autoimmune prostatitis, were used. After a 6-month oral exposure to whey protein-derived early glycation products (EGPs), EGP-treated NOD mice had an increased survival rate, decreased macrophage infiltration in the anterior lobe and decreased inflammation in the prostate when compared to the mice that received non-reacted controls. The systemic immunity was regulated towards anti-inflammation, evidenced by an increase in serum IL-10 level and decreases in total splenocytes, splenic M1 macrophages, CD4+ T cells, CD8+ T cells and B cells. Consistent with an overall anti-inflammatory status, the gut microbiome was altered in abundance but not diversity, with increased Allobaculum, Anaerostipes, Bacteroides, Parabacteroides and Prevotella and decreased Adlercreutzia and Roseburia at the genus level. Moreover, increased Bacteroides acidifaciens correlated with most of the immune parameters measured. Collectively, chronic oral exposure to EGPs produced an anti-inflammatory effect in aged male NOD mice, which might contribute to the protective effects against spontaneous autoimmune prostatitis and/or other organ specific autoimmune diseases.
Collapse
Affiliation(s)
- Yingjia Chen
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | | | | | | |
Collapse
|
18
|
Roman K, Hall C, Schaeffer AJ, Thumbikat P. TRPV1 in experimental autoimmune prostatitis. Prostate 2020; 80:28-37. [PMID: 31573117 PMCID: PMC7313375 DOI: 10.1002/pros.23913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a disorder that is characterized by persistent pelvic pain in men of any age. Although several studies suggest that the transient receptor potential vanilloid 1 (TRPV1) channel is involved in various pathways of chronic pain, the TRPV1 channel has not been implicated in chronic pelvic pain associated with CP/CPPS. METHODS Male C57BL/6J (B6) and TRPV1 knockout (TRPV1 KO) mice (5-7 weeks old) were used to study the development of pelvic allodynia in a murine model of CP/CPPS called experimental autoimmune prostatitis (EAP). The prostate lobes, dorsal root ganglia (DRG), and spinal cord were excised at day 20. The prostate lobes were assessed for inflammation, TRPV1 expression, and mast cell activity. DRG and spinal cord, between the L6-S4 regions, were analyzed to determine the levels of phosphorylated ERK1/2 (p-ERK 1/2). To examine the therapeutic potential of TRPV1, B6 mice with EAP received intraurethral infusion of a TRPV1 antagonist at day 20 (repeated every 2 days) and pelvic pain was evaluated at days 20, 25, 30, and 35. RESULTS Our data showed that B6 mice with EAP developed pelvic tactile allodynia at days 7, 14, and 20. In contrast, TRPV1 KO mice with EAP do not develop pelvic tactile allodynia at any time point. Although we observed no change in the levels of TRPV1 protein expression in the prostate from B6 mice with EAP, there was evidence of significant inflammation and elevated mast cell activation. Interestingly, the prostate from TRPV1 KO mice with EAP showed a lack of mast cell activation despite evidence of prostate inflammation. Next, we observed a significant increase of p-ERK1/2 in the DRG and spinal cord from B6 mice with EAP; however, p-ERK1/2 expression was unaltered in TRPV1 KO mice with EAP. Finally, we confirmed that intraurethral administration of a TRPV1 antagonist peptide reduced pelvic tactile allodynia in B6 mice with EAP after day 20. CONCLUSIONS We demonstrated that in a murine model of CP/CPPS, the TRPV1 channel is key to persistent pelvic tactile allodynia and blocking TRPV1 in the prostate may be a promising strategy to quell chronic pelvic pain.
Collapse
Affiliation(s)
- Kenny Roman
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christel Hall
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anthony J. Schaeffer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Praveen Thumbikat
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
19
|
Low Energy Shock Wave Therapy Inhibits Inflammatory Molecules and Suppresses Prostatic Pain and Hypersensitivity in a Capsaicin Induced Prostatitis Model in Rats. Int J Mol Sci 2019; 20:ijms20194777. [PMID: 31561455 PMCID: PMC6801724 DOI: 10.3390/ijms20194777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
The effect of low energy shock wave (LESW) therapy on the changes of inflammatory molecules and pain reaction was studied in a capsaicin (10 mM, 0.1 cc) induced prostatitis model in rats. Intraprostatic capsaicin injection induced a pain reaction, including closing of the eyes, hypolocomotion, and tactile allodynia, which effects were ameliorated by LESW treatment. LESW therapy (2Hz, energy flux density of 0.12 mJ/mm2) at 200 and 300 shocks significantly decreased capsaicin-induced inflammatory reactions, reflected by a reduction of tissue edema and inflammatory cells, COX-2 and TNF-α stained positive cells, however, the therapeutic effects were not observed at 100 shocks treated group. Capsaicin-induced IL-1β, COX-2, IL-6, caspase-1, and NGF upregulation on day 3 and 7, while NALP1 and TNF-α upregulation was observed on day 7. LESW significantly suppressed the expression of IL-1β, COX-2, caspase-1, NGF on day 3 and IL-1β, TNF-α, COX-2, NALP1, caspase-1, NGF expression on day 7 in a dose-dependent fashion. LESW has no significant effect on IL-6 expression. Intraprostatic capsaicin injection activates inflammatory molecules and induces prostatic pain and hypersensitivity, which effects were suppressed by LESW. These findings might be the potential mechanisms of LESW therapy for nonbacterial prostatitis in humans.
Collapse
|
20
|
Ni J, Mizoguchi S, Bernardi K, Suzuki T, Kurobe M, Takaoka E, Wang Z, DeFranco DB, Tyagi P, Gu B, Yoshimura N. Long-lasting bladder overactivity and bladder afferent hyperexcitability in rats with chemically-induced prostatic inflammation. Prostate 2019; 79:872-879. [PMID: 30900300 PMCID: PMC7327236 DOI: 10.1002/pros.23794] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/22/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is one of the major causes of lower urinary tract symptoms (LUTS), including storage LUTS such as urinary frequency and urgency. Recently, a growing number of clinical studies indicate that prostatic inflammation could be an important pathophysiological mechanism inducing storage LUTS in patients with BPH. Here we aimed to investigate whether nonbacterial prostatic inflammation in a rat model induced by intraprostatic formalin injection can lead to long-lasting bladder overactivity and changes in bladder afferent neuron excitability. METHODS Male Sprague-Dawley rats were divided into four groups (n = 12 each): normal control group, 1-week prostatic inflammation group, 4-week inflammation group, and 8-week inflammation group. Prostatic inflammation was induced by formalin (10%; 50 µL per lobe) injection into bilateral ventral lobes of the prostate. Voiding behavior was evaluated in metabolic cages for each group. Ventral lobes of the prostate and the bladder were then removed for hematoxylin and eosin (HE) staining to evaluate inflammation levels. Continuous cystometrograms (CMG) were recorded to measure intercontraction intervals (ICI) and voided volume per micturition. Whole-cell patch clamp recordings were performed on dissociated bladder afferent neurons labeled by fluorogold injected into the bladder wall, to examine the electrophysiological properties. RESULTS Results of metabolic cage measurements showed that formalin-treated rats exhibited significantly (P < 0.05) increases in micturition episodes/12 hours and decrease in voided volume per micturition at every time point post injection. Continuous CMG illustrated the significant ( P < 0.05) higher number of nonvoiding contractions per void and shorter ICI in formalin-treated rats compared with control rats. HE staining showed significant prostatic inflammation, which declined gradually, in prostate tissues of formalin-induced rats. In patch clamp recordings, capsaicin-sensitive bladder afferent neurons from rats with prostatic inflammation had significantly ( P < 0.05) lower thresholds for spike activation and a "multiple" firing pattern compared with control rats at every time point post injection. CONCLUSIONS Formalin-induced prostatic inflammation can lead to long-lasting bladder overactivity in association with bladder afferent neuron hyperexcitability. This long-lasting model could be a useful tool for the study of inflammation-related aspects of male LUTS pathophysiology.
Collapse
Affiliation(s)
- Jianshu Ni
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
| | - Shinsuke Mizoguchi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kyrie Bernardi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Takahisa Suzuki
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Masahiro Kurobe
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Eiichiro Takaoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Donald B. DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Baojun Gu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Corresponding author: Naoki Yoshimura, MD, PhD., Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA, TEL (412)-692-4137, FAX (412)-692-4380,
| |
Collapse
|
21
|
Zhang J, Yi Q, Gong M, Zhang Y, Liu D, Zhu R. Upregulation of TRPV1 in spinal dorsal root ganglion by activating NGF‐TrkA pathway contributes to pelvic organ cross‐sensitisation in rats with experimental autoimmune prostatitis. Andrologia 2019; 51:e13302. [PMID: 31074030 DOI: 10.1111/and.13302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jie Zhang
- Department of Urology Shanghai Pudong Hospital, Fudan University Pudong Medical Center Shanghai China
| | - Qing‐Tong Yi
- Department of Urology Shanghai Pudong Hospital, Fudan University Pudong Medical Center Shanghai China
| | - Min Gong
- Department of Urology Shanghai Pudong Hospital, Fudan University Pudong Medical Center Shanghai China
| | - Yu‐Qing Zhang
- Department of Urology Shanghai Pudong Hospital, Fudan University Pudong Medical Center Shanghai China
| | - Dong Liu
- Department of Urology Shanghai Pudong Hospital, Fudan University Pudong Medical Center Shanghai China
| | - Ru‐Jian Zhu
- Department of Urology Shanghai Pudong Hospital, Fudan University Pudong Medical Center Shanghai China
| |
Collapse
|
22
|
Ashok A, Keener R, Rubenstein M, Stookey S, Bajpai S, Hicks J, Alme AK, Drake CG, Zheng Q, Trabzonlu L, Yegnasubramanian S, De Marzo AM, Bieberich CJ. Consequences of interleukin 1β-triggered chronic inflammation in the mouse prostate gland: Altered architecture associated with prolonged CD4 + infiltration mimics human proliferative inflammatory atrophy. Prostate 2019; 79:732-745. [PMID: 30900284 DOI: 10.1002/pros.23784] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Elevated expression of the proinflammatory cytokine interleukin 1β (IL-1β) has been observed in expressed prostatic secretions of patients with chronic prostatitis/chronic pelvic pain syndrome, and genetic polymorphisms associated with the IL1B gene are linked to increased risk for aggressive prostate cancer. METHODS To study the role of IL-1β expression in prostate inflammation, we examined IL1B expression in human prostatic proliferative inflammatory atrophy (PIA) lesions and developed a tetracycline-regulated human IL1B transgene in the mouse prostate. RESULTS Here, we demonstrate that IL1B expression is a common finding in human PIA lesions, which harbored focal IL1B expression in epithelial and stromal compartments. Human IL1B expression in the mouse prostate elicited acute and chronic inflammation. Penetrance and expressivity were variable and tunable by altering transgene dosage and the presence of an exogenous inducible marker antigen (green fluorescent protein). Inflammation was characterized by infiltration of CD4+ T cells, demonstrating an adaptive immune response. Chronic inflammation persisted after doxycycline (Dox) withdrawal. Reactive epithelia increased expression of downstream cytokines, and altered glandular architecture was observed upon sustained induction of IL1B. Immunohistochemical analyses revealed a higher proliferative index and decreased Nkx3.1 expression in inflamed mouse prostates. CONCLUSIONS These data implicate IL-1β in human prostate pathology and this model provides a versatile platform to interrogate molecular mechanisms of inflammation-associated prostate pathologies associated with episodic or sustained IL-1β expression.
Collapse
Affiliation(s)
- Arya Ashok
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland
| | - Rebecca Keener
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland
| | - Michael Rubenstein
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland
| | - Stephanie Stookey
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland
| | - Sagar Bajpai
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland
| | - Jessica Hicks
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Angela K Alme
- Department of Immunology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Charles G Drake
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Qizhi Zheng
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Levent Trabzonlu
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Srinivasan Yegnasubramanian
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Angelo M De Marzo
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Charles J Bieberich
- Department of Biological Sciences, University of Maryland, Baltimore, Maryland
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland
| |
Collapse
|
23
|
Yamaguchi H, Kurita M, Okamoto K, Kotera T, Oka M. Voiding behavior and chronic pelvic pain in two types of rat nonbacterial prostatitis models: Attenuation of chronic pelvic pain by repeated administration of tadalafil. Prostate 2019; 79:446-453. [PMID: 30549073 DOI: 10.1002/pros.23750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/14/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Experimental autoimmune prostatitis (EAP) and prostatitis induced by 17β-estradiol treatment combined with castration (hormone/castration-induced prostatitis; HCP) are the most commonly used rodent models of nonbacterial prostatitis. We studied the effect of the phosphodiesterase 5 inhibitor tadalafil on chronic pelvic pain in two such models in rats. METHODS EAP was induced by intradermal injection of rat prostate antigen and complete Freund's adjuvant on Days 0 and 28. HCP was induced by castration followed by daily subcutaneous injection of 17β-estradiol for 30 days. On Day 42 after antigen injection in the EAP model and Day 30 after castration in the HCP model, we investigated voiding behavior, pelvic pain (measured by applying von Frey filaments to the lower abdomen), and inflammatory changes, including changes in histopathology and IL-1β, CCL2, and CCL3 mRNA levels. We investigated the effect of repeated administration of tadalafil on chronic pelvic pain in both models. RESULTS In the EAP model, we observed inflammation in the ventral prostate, while in the HCP model, we observed inflammation in the lateral lobe of the prostate. Neither model showed any change in voiding behavior. As well as in the EAP model, in which chronic pelvic pain was observed, we found for the first time that HCP led to a significant increase in chronic pelvic pain. Repeated treatment with tadalafil attenuated the chronic pelvic pain in both models. CONCLUSIONS Chronic pelvic pain was induced in both EAP and HCP models. Tadalafil significantly attenuated the chronic pelvic pain in both models.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Research Laboratories, Nippon Shinyaku Co., Ltd., Minami-ku, Kyoto, Japan
| | - Maki Kurita
- Research Laboratories, Nippon Shinyaku Co., Ltd., Minami-ku, Kyoto, Japan
| | - Ken Okamoto
- Research Laboratories, Nippon Shinyaku Co., Ltd., Minami-ku, Kyoto, Japan
| | - Takashi Kotera
- Research Laboratories, Nippon Shinyaku Co., Ltd., Minami-ku, Kyoto, Japan
| | - Michiko Oka
- Research Laboratories, Nippon Shinyaku Co., Ltd., Minami-ku, Kyoto, Japan
| |
Collapse
|
24
|
Konkol Y, Vuorikoski H, Streng T, Tuomela J, Bernoulli J. Characterization a model of prostatic diseases and obstructive voiding induced by sex hormone imbalance in the Wistar and Noble rats. Transl Androl Urol 2019; 8:S45-S57. [PMID: 31143671 DOI: 10.21037/tau.2019.02.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background Chronic nonbacterial prostatitis associated with lower urinary tract symptoms (LUTS) is a prevalent condition in men. One potential pathophysiological factor is change in sex hormone, testosterone and estrogen, balance. Inflammation, cancer and obstructive voiding has been induced in the Noble rat strain by altering levels of sex hormones. We evaluated if imbalance of sex hormones could induce comparable diseases also in a less estrogen sensitive Wistar strain rats. Methods Subcutaneous testosterone (830 µg/day) and 17β-estradiol (83 µg/day) hormone pellets were used in male Wistar and Noble strain rats to induce prostatic diseases. The rats were followed for 13 and 18 weeks. Urodynamical measurements were performed at the end of the study under anesthesia. Prostates were collected for further histological analysis. A panel of cytokines were measured from collected serum samples. Results Noble rats exhibited stromal and glandular inflammation after 13 weeks that progressed into more severe forms after 18 weeks of hormonal treatment. CD68-positive macrophages were observed in the stromal areas and inside the inflamed acini. CD163-positive macrophages were present in the stromal compartment but absent inside inflammatory foci or prostate acini. Thirteen-week hormonal treatment in Noble rats induced obstructive voiding, which progressed to urinary retention after 18-weeks treatment. In the Wistar rats 18-week treatment was comparable to the 13-week-treated Noble rats judged by progression of prostatic inflammation, being also evident for obstructive voiding. Incidence of PIN-like lesions and carcinomas in the periurethal area in Noble rats were high (100%) but lower (57%) and with smaller lesions in Wistar rats. Serum cytokines leptin, CCL5, and VEGF concentrations showed a decrease in the hormone-treated rats compared to placebo-treated rats. Conclusions Prostate inflammation and obstructive voiding developed also in the Wistar rats but more slowly than in Noble rats. Male non-castrated Wistar strain rats may thus be suitable to use in studies of pathophysiology and hormone-dependent prostate inflammation and obstructive voiding.
Collapse
Affiliation(s)
- Yvonne Konkol
- Cancer Research Laboratory, FICAN West, Institute of Biomedicine, University of Turku, Turku, Finland.,Pharmatest Services Ltd., Turku, Finland
| | | | - Tomi Streng
- Department of Biology, Laboratory of Animal Physiology, University of Turku, Turku, Finland.,Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Johanna Tuomela
- Cancer Research Laboratory, FICAN West, Institute of Biomedicine, University of Turku, Turku, Finland
| | | |
Collapse
|
25
|
Jang KS, Han IH, Lee SJ, Yoo J, Kim YS, Sim S, Ryu JS. Experimental rat prostatitis caused by Trichomonas vaginalis infection. Prostate 2019; 79:379-389. [PMID: 30488471 DOI: 10.1002/pros.23744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/01/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND Trichomonas vaginalis (T. vaginalis) is the most common sexually transmitted parasite. It has been detected in prostatic tissue of patients with prostatitis and reported to be associated with chronic prostatitis and benign prostatic hyperplasia as well as prostate cancer. Recently, experimental rodent models of prostatitis induced by pathogen infection have been developed. However, there have so far been no reports of prostatitis caused by T. vaginalis infection in animals. Here, we investigated whether infection with T. vaginalis via the rat urethra could cause prostatitis. METHODS T. vaginalis was injected into prostate through urethra of rat (Wistar rats), and the rats were killed 1, 2, or 4 weeks later. The presence of T. vaginalis trophozoites in the rat prostates was examined by immunohistochemistry, and pathological changes of the prostate were observed by hematoxylin-eosin staining and evaluated by grading from 0 to 5 for inflammatory cell infiltration, acinar changes, and interstitial fibrosis. Infiltrated mast cells were observed by toluidine blue staining of rat prostate tissue. Chemokine C-C motif ligand 2 (CCL2) levels of the rat prostates were measured by ELISA. RESULTS T. vaginalis trophozoites were observed in acini in the prostates of the injected rats. The prostate tissues had higher pathological scores, and 83% (5/6) and 100% (6/6) of the ventral and dorsolateral lobes (n = 6), respectively, were inflamed. Infiltration and degranulation of mast cells were observed at higher rates in prostate sections of the T. vaginalis-infected rats. Also, prostate tissues of the injected rats had increased CCL2 levels. CONCLUSIONS Injection of T. vaginalis in rats caused prostatitis as revealed by pathologic changes, mast cell infiltration and increased CCL2 production. Therefore, this study provides the first evidence that T. vaginalis infection in rats causes prostatitis.
Collapse
Affiliation(s)
- Ki-Seok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Ik-Hwan Han
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| | - Seung-Ju Lee
- Department of Urology, Saint Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Jin Yoo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Ye-Seul Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Seobo Sim
- Department of Environmental and Tropical Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Jae-Sook Ryu
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Yang F, Meng L, Han P, Chen D, Wang M, Jiang Y, Wu Y, Wu Y, Xing N. New therapy with XLQ
®
to suppress chronic prostatitis through its anti‐inflammatory and antioxidative activities. J Cell Physiol 2019; 234:17570-17577. [PMID: 30790289 DOI: 10.1002/jcp.28380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Feiya Yang
- Department of Urology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing P. R. China
| | - Lingquan Meng
- Department of Urology Qianfoshan Hospital Shandong University Jinan P. R. China
- Department of Urology Beijing Chaoyang Hospital Capital Medical University Beijing P. R. China
| | - Panpan Han
- Department of Hematology Qilu Hospital Shandong University Jinan P. R. China
| | - Dexi Chen
- Department of Hepatology, Beijing You'an Hospital Capital Medical University Beijing P. R. China
- Department of Hepatology, Beijing Institute of Hepatology Beijing P. R. China
| | - Mingshuai Wang
- Department of Urology Beijing Chaoyang Hospital Capital Medical University Beijing P. R. China
| | - Yongguang Jiang
- Department of Urology Beijing Anzhen Hospital Capital Medical University Beijing P. R. China
| | - Yanqiao Wu
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine Shijiazhuang Yiling Pharmaceutical Co., Ltd Shijiazhuang P. R. China
| | - Yiling Wu
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine Shijiazhuang Yiling Pharmaceutical Co., Ltd Shijiazhuang P. R. China
| | - Nianzeng Xing
- Department of Urology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing P. R. China
- Department of Urology Beijing Chaoyang Hospital Capital Medical University Beijing P. R. China
| |
Collapse
|
27
|
Cheng Y, Cao Y, Ihsan AU, Khan FU, Li X, Xie D, Cui X, Wang W, Liu Z, Li C, Ahmad KA, Sembatya KR, Mikrani R, Zhou X. Novel Treatment of Experimental Autoimmune Prostatitis by Nanoparticle-Conjugated Autoantigen Peptide T2. Inflammation 2019; 42:1071-1081. [DOI: 10.1007/s10753-019-00968-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Wang W, Naveed M, Baig MMFA, Abbas M, Xiaohui Z. Experimental rodent models of chronic prostatitis and evaluation criteria. Biomed Pharmacother 2018; 108:1894-1901. [DOI: 10.1016/j.biopha.2018.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
|
29
|
Su Y, Lu J, Chen X, Liang C, Luo P, Qin C, Zhang J. Rapamycin Alleviates Hormone Imbalance-Induced Chronic Nonbacterial Inflammation in Rat Prostate Through Activating Autophagy via the mTOR/ULK1/ATG13 Signaling Pathway. Inflammation 2018; 41:1384-1395. [PMID: 29675586 DOI: 10.1007/s10753-018-0786-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic prostatitis (CP) is a clinically common disease with high morbidity. It affects the patients' quality of life (QoL) as well as physical and mental health seriously due to the recurring symptoms of lower urinary tract and genitalia. As the opinions about the etiology of CP are still not uniform, it is very difficult to be treated or even cured. Autophagy is a highly conserved physiological function which is widely found in eukaryotic cells. In general, cells maintain a certain level of autophagy under physiological conditions, and the basal level of autophagy can be regulated by a variety of autophagy-related genes under stress such as hunger, infection, trauma, and other circumstances. Therefore, the main purpose of this study is to investigate the role of autophagy in chronic nonbacterial prostatitis (CNP, also called CP). In this paper, we established the CNP model via hypodermic injection of 17β-estradiol and subsequently abdominal rapamycin (a common autophagy inducer) treatment based on castrated rats. Then, the expression of nuclear factor-κB (NF-κB), interleukin-1β (IL-1β), and autophagy-related markers as well as autophagosome formation in prostate tissues, peripheral blood mononuclear cells (PBMCs), and serum of rats were evaluated respectively. In addition to some histological changes in the prostate tissues, we found the levels of NF-κB and IL-1β were significantly increased in the model group, along with significantly suppressed autophagy, whereas rapamycin could reverse these effects which involved in the mTOR/ULK1/ATG13 signaling pathway. In conclusion, our results suggested that rapamycin could ameliorate hormone imbalance-induced CNP by activating autophagy.
Collapse
Affiliation(s)
- Yang Su
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingxiao Lu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Pengcheng Luo
- Huangshi Central Hospital, Hubei Polytechnic University, Huangshi, 435000, China
| | - Cong Qin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Huangshi Central Hospital, Hubei Polytechnic University, Huangshi, 435000, China.
| |
Collapse
|
30
|
Lu J, Su Y, Chen X, Chen Y, Luo P, Lin F, Zhang J. Rapamycin‑induced autophagy attenuates hormone‑imbalance‑induced chronic non‑bacterial prostatitis in rats via the inhibition of NLRP3 inflammasome‑mediated inflammation. Mol Med Rep 2018; 19:221-230. [PMID: 30483781 PMCID: PMC6297772 DOI: 10.3892/mmr.2018.9683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
Chronic non-bacterial prostatitis (CNBP) is a common urinary disease and no standard treatments are available at present. Although autophagy serves an important role in a variety of chronic diseases, its role in CNBP is yet to be fully elucidated. Therefore, the present study aimed to investigate the effects of rapamycin-induced autophagy on CNBP by establishing a rat model. In the present study, a total of 30 male Sprague-Dawley rats were randomly divided into three groups (n=10 per group): i) Control, in which rats underwent a sham operation; ii) the model (CNBP), in which rats were castrated and administered 17β-estradiol (0.25 mg/kg via subcutaneous injection) for 30 consecutive days; and iii) rapamycin treatment, in which rats were employed in accordance with the CNBP model, but also received a daily intraperitoneal injection of rapamycin (1 mg/kg) from the 16th day post-surgery for 15 days. Alterations in histology and the levels of autophagy-associated markers, and components of the NLRP3 inflammasome, were measured in the prostate tissues of the rats. The levels of molecules located further downstream of the NLRP3 inflammasome pathway, including interleukin (IL)-1β and IL-18, were also measured. The results demonstrated that, compared with the control group, increased infiltration levels of inflammatory cells and glandular epithelial degeneration were observed in the prostate tissues of rats with CNBP. Furthermore, a significant increase in the concentration of IL-1β and IL-18 in the serum, as well as the increased expression levels of NLRP3, ASC and caspase-1 in prostate tissues were also observed. In addition, reductions in the number of autophagosomes and the expression levels of autophagy-associated, including microtubule-associated protein 1 light chain 3β (LC3B) and Beclin 1, were also detected in the CNBP group; however, treatment with rapamycin reversed these effects. Collectively, the findings of the present study indicated that the NLRP3 inflammasome-mediated inflammatory response was activated by a hormonal imbalance in the prostate glands of rats; however, these effects may be suppressed via rapamycin-induced autophagy.
Collapse
Affiliation(s)
- Jingxiao Lu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Su
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Chen
- Department of Clinical Laboratory, Children and Women Hospital of Edong Health Group, Huangshi, Hubei 435000, P.R. China
| | - Pengcheng Luo
- Department of Urology, Huangshi Central Hospital, Hubei Polytechnic University, Huangshi, Hubei 435000, P.R. China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
31
|
Konkol Y, Keskitalo A, Vuorikoski H, Pietilä S, Elo LL, Munukka E, Bernoulli J, Tuomela J. Chronic nonbacterial prostate inflammation in a rat model is associated with changes of gut microbiota that can be modified with a galactoglucomannan-rich hemicellulose extract in the diet. BJU Int 2018; 123:899-908. [PMID: 30256506 DOI: 10.1111/bju.14553] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To investigate dietary effects on the gut microbiota composition in a rat model of nonbacterial chronic prostate inflammation (CPI). MATERIALS AND METHODS Nonbacterial CPI was induced in the Wistar rat strain with subcutaneous testosterone and 17β-oestradiol (E2 ) hormone pellets for 18 weeks. Rats with placebo pellets served as healthy controls. Rats with CPI were stratified into two groups, which drank either plain tap water (control group) or tap water supplemented with 2% galactoglucomannan-rich hemicellulose extract (GGM group) from Norway spruce (Picea abies) for 5 weeks. Faecal samples were collected at the end of the study, total DNA was extracted, and the bacterial composition was analysed by 16S rRNA gene sequencing. In addition, faecal samples were assayed for short-chain fatty acid (SCFA) concentrations using gas chromatography. Lipopolysaccharide-binding protein (LBP) was measured in serum samples, as an indirect indicator for bacterial lipopolysaccharide (LPS) load in blood. RESULTS The microbial biodiversity was significantly different between the treatment groups. In the rats with CPI, there was a significant increase in gut microbial populations Rikenellaceae, Odoribacter, Clostridiaceae, Allobaculum and Peptococcaceae compared with healthy rats. Conversely, levels of Bacteroides uniformis, Lactobacillus and Lachnospiraceae were decreased in rats with CPI. SCFA butyric-, valeric- and caproic-acid concentrations were also decreased in the faecal samples of the rats with CPI. In contrast, acetic acid concentrations and serum LBP were significantly elevated in CPI rats compared with healthy ones. Amongst rats with CPI, treatment with the GGM extract significantly reduced the abundance of Odoribacter and Clostridiaceae levels, and increased the B. uniformis levels compared with CPI rats drinking tap water only. In addition, GGM significantly increased the levels of butyric acid and caproic acid, and reduced the levels of LBP in serum. CONCLUSIONS Hormone-induced nonbacterial CPI in rats is associated with specific changes in gut microbiota and secondary changes in SCFAs and LPS due to gut microbiota alteration. Our results further suggest that fermentable compounds may have a beneficial effect on CPI.
Collapse
Affiliation(s)
- Yvonne Konkol
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Anniina Keskitalo
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | | | - Sami Pietilä
- Bioinformatics Unit, Turku Centre of Biotechnology, University of Turku, Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Bioinformatics Unit, Turku Centre of Biotechnology, University of Turku, Åbo Akademi University, Turku, Finland
| | - Eveliina Munukka
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | | | - Johanna Tuomela
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| |
Collapse
|
32
|
Kurita M, Yamaguchi H, Okamoto K, Kotera T, Oka M. Chronic pelvic pain and prostate inflammation in rat experimental autoimmune prostatitis: Effect of a single treatment with phosphodiesterase 5 inhibitors on chronic pelvic pain. Prostate 2018; 78:1157-1165. [PMID: 30009466 DOI: 10.1002/pros.23690] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Experimental autoimmune prostatitis (EAP) is most often used as a nonbacterial model of chronic prostatitis/chronic pelvic pain. We investigated the development of chronic pelvic pain and inflammatory changes in rat EAP and examined the effect of a single treatment with phosphodiesterase 5 (PDE5) inhibitors on the chronic pelvic pain. METHODS EAP was induced in rats by intradermal injection of rat prostate antigen and complete Freund's adjuvant on days 0 and 28. On day 42, after antigen injection, prostatic inflammatory changes, including the mRNA and protein levels of cytokines/chemokines, were measured and histological analysis of the prostate was performed. Pelvic pain was measured by applying von Frey filaments to the lower abdomen. To confirm that this model is appropriate for evaluating pelvic pain, we tested two drugs, celecoxib and pregabalin, which are clinically used for the treatment of prostatitis-related pain. Subsequently, we examined the effects of single treatments with three phosphodiesterase 5 inhibitors, including tadalafil, on pelvic pain in this model. RESULTS On day 42, after antigen injection, the mRNA levels of 44 of 84 kinds of cytokines/chemokines and their receptors increased significantly in EAP rats, as did the protein levels of seven of 23 kinds of cytokines/chemokines. Histological analysis revealed inflammation characterized by neutrophils and/or mononuclear cells in the glandular and stromal tissue of the ventral prostate from rats in the EAP group. Some animals in this group showed fibrosis and hemorrhage in the stromal tissue. Pelvic pain had developed in EAP rats, which was attenuated by a single treatment with celecoxib or pregabalin, suggesting that EAP is an appropriate model for prostatitis-related pain. A single treatment with any of the three PDE5 inhibitors tested attenuated the chronic pelvic pain. CONCLUSIONS Prostatitis leads to inflammatory changes in the prostate, which may contribute to the development and maintenance of chronic pelvic pain. PDE5 inhibitors, including tadalafil, may have the ability to block chronic pelvic pain.
Collapse
Affiliation(s)
- Maki Kurita
- Research Laboratories, Nippon Shinyaku Co., Ltd., Minami-ku, Kyoto, Japan
| | - Hiroshi Yamaguchi
- Research Laboratories, Nippon Shinyaku Co., Ltd., Minami-ku, Kyoto, Japan
| | - Ken Okamoto
- Research Laboratories, Nippon Shinyaku Co., Ltd., Minami-ku, Kyoto, Japan
| | - Takashi Kotera
- Research Laboratories, Nippon Shinyaku Co., Ltd., Minami-ku, Kyoto, Japan
| | - Michiko Oka
- Research Laboratories, Nippon Shinyaku Co., Ltd., Minami-ku, Kyoto, Japan
| |
Collapse
|
33
|
Popovics P, Cai R, Sha W, Rick FG, Schally AV. Growth hormone-releasing hormone antagonists reduce prostatic enlargement and inflammation in carrageenan-induced chronic prostatitis. Prostate 2018; 78:970-980. [PMID: 29786867 DOI: 10.1002/pros.23655] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/07/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Inflammation plays a key role in the etiology of benign prostatic hyperplasia (BPH) through multiple pathways involving the stimulation of proliferation by cytokines and growth factors as well as the induction of the focal occurrence of epithelial-to-mesenchymal transition (EMT). We have previously reported that GHRH acts as a prostatic growth factor in experimental BPH and in autoimmune prostatitis models and its blockade with GHRH antagonists offer therapeutic approaches for these conditions. Our current study was aimed at the investigation of the beneficial effects of GHRH antagonists in λ-carrageenan-induced chronic prostatitis and at probing the downstream molecular pathways that are implicated in GHRH signaling. METHODS To demonstrate the complications triggered by recurrent/chronic prostatic inflammation in Sprague-Dawley rats, 50 μL 3% carrageenan was injected into both ventral prostate lobes two times, 3 weeks apart. GHRH antagonist, MIA-690, was administered 5 days after the second intraprostatic injection at 20 μg daily dose for 4 weeks. GHRH-induced signaling events were identified in BPH-1 and in primary prostate epithelial (PrEp) cells at 5, 15, 30, and 60 min with Western blot. RESULTS Inflammation induced prostatic enlargement and increased the area of the stromal compartment whereas treatment with the GHRH antagonist significantly reduced these effects. This beneficial activity was consistent with a decrease in prostatic GHRH, inflammatory marker COX-2, growth factor IGF-1 and inflammatory and EMT marker TGF-β1 protein levels and the expression of multiple genes related to EMT. In vitro, GHRH stimulated multiple pathways involved in inflammation and growth in both BPH-1 and PrEp cells including NFκB p65, AKT, ERK1/2, EGFR, STAT3 and increased the levels of TGF-β1 and Snail/Slug. Most interestingly, GHRH also stimulated the transactivation of the IGF receptor. CONCLUSIONS The study demonstrates that GHRH antagonists could be beneficial for the treatment of prostatic inflammation and BPH in part by inhibiting the growth-promoting and inflammatory effects of locally produced GHRH.
Collapse
Affiliation(s)
- Petra Popovics
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida
| | - Renzhi Cai
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida
| | - Wei Sha
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida
| | - Ferenc G Rick
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida
- Department of Urology, Herbert Wertheim College of Medicine, Florida International, University, Miami, Florida
| | - Andrew V Schally
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida
- Sylvester Comprehensive Cancer Center, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
34
|
Meng LQ, Yang FY, Wang MS, Shi BK, Chen DX, Chen D, Zhou Q, He QB, Ma LX, Cheng WL, Xing NZ. Quercetin protects against chronic prostatitis in rat model through NF-κB and MAPK signaling pathways. Prostate 2018; 78:790-800. [PMID: 29654614 DOI: 10.1002/pros.23536] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/27/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) is a common disease of urology, of which the pathogenesis and therapy remain to be further elucidated. Quercetin has been reported to improve the symptoms of CP/CPPS patients. We aimed to verify the therapeutic effect of quercetin on CP/CPPS and identify the mechanism responsible for it. METHODS A novel CP/CPPS model induced with Complete Freund Adjuvant in Sprague Dawley rats was established and the prostates and blood specimens were harvested for further measurement after oral administration of quercetin for 4 weeks. RESULTS Increased prostate index and infiltration of lymphocytes, up-regulated expression of IL-1β, IL-2, IL-6, IL-17A, MCP1, and TNFα, decreased T-SOD, CAT, GSH-PX, and increased MDA, enhanced phosphorylation of NF-κB, P38, ERK1/2, and SAPK/JNK were detected in CP/CPPS rat model. Quercetin was identified to ameliorate the histo-pathologic changes, decrease the expression of pro-inflammatory cytokines IL-1β, IL-2, IL-6, IL-17A, MCP1, and TNFα, improve anti-oxidant capacity, and suppress the phosphorylation of NF-κB and MAPKs. CONCLUSIONS Quercetin has specific protective effect on CP/CPPS, which is mediated by anti-inflammation, anti-oxidation, and at least partly through NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Ling-Quan Meng
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Fei-Ya Yang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Ming-Shuai Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Ben-Kang Shi
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China
| | - De-Xi Chen
- Beijing You'an Hospital, Capital Medical University, Beijing, P.R. China
- Beijing Institute of Hepatology, Beijing, P.R. China
| | - Dong Chen
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Qiang Zhou
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, P.R. China
| | - Qing-Bao He
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Lin-Xiang Ma
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Wen-Long Cheng
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing, P.R. China
| | - Nian-Zeng Xing
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
35
|
Fuentes IM, Christianson JA. The Influence of Early Life Experience on Visceral Pain. Front Syst Neurosci 2018; 12:2. [PMID: 29434541 PMCID: PMC5790786 DOI: 10.3389/fnsys.2018.00002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
Pain is the most reported and troublesome symptom of nearly all functional disorders affecting the genitourinary and gastrointestinal organs. Patients with irritable bowel syndrome (IBS), interstitial cystitis/painful bladder syndrome (IC/PBS), vulvodynia, and/or chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS; collectively termed chronic pelvic pain syndromes) report pain severe enough to impact quality of life and often suffer from symptoms of or are diagnosed with more than one of these syndromes. This increased comorbidity between chronic pelvic pain syndromes, and with pain disorders of disparate body regions, as well as with mood disorders, can be influenced by disruptions in the hypothalamic-pituitary-adrenal (HPA) axis, which regulates the response to stress and influences the perception of pain. Experiencing trauma, neglect, or abuse in early life can permanently affect the functioning of the HPA axis. As such, a significant proportion of patients suffering from comorbid chronic pelvic pain syndromes report a history of early life stress or trauma. Here we will report on how these early life experiences influence chronic pelvic pain in patients. We will also discuss various rodent models that have been developed to study this phenomenon to understand the mechanisms underlying HPA axis dysfunction, as well as potential underlying mechanisms connecting these syndromes to one another.
Collapse
Affiliation(s)
- Isabella M Fuentes
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Julie A Christianson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
36
|
Dos Santos Gomes FO, Oliveira AC, Ribeiro EL, da Silva BS, Dos Santos LAM, de Lima IT, Silva AKSE, da Rocha Araújo SM, Gonçalves T, de Melo-Junior MR, Peixoto CA. Intraurethral injection with LPS: an effective experimental model of prostatic inflammation. Inflamm Res 2017; 67:43-55. [PMID: 29151155 DOI: 10.1007/s00011-017-1094-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE Chronic inflammation has been recognized as having a prominent role pathogenesis of benign prostatic hyperplasia (BPH) and cancer. It is believed that chronic inflammation induces prostatic fibromuscular growth. This correlation has been clearly illustrated by both in vivo and in vitro studies; however, current experimental models of BPH require complex surgery or hormonal treatment. Therefore, the aim of the present study was to propose a new murine model of BPH/prostatitis induced by intraurethral injection of LPS. METHODS Male Swiss and C57Bl/6 mice were then sacrificed 3, 7, 10, and 14 days after intraurethral injection of LPS. The prostates were quickly dissected and fixed for morphological and immunohistochemical analyses. RESULTS The results showed that LPS played an important role in the cell proliferation of the prostate. Histological and ultrastructural analysis showed epithelial hyperplasia, clear stromal cells, little inflammatory infiltration, and heavy bleeding. Treatment with LPS also promoted the increase of growth factor (FGF-7 and TGF-β), α-actin, and proinflammatory cytokines (IL-1, IL-6, IL-17), both in the stroma and epithelium. CONCLUSION According to the present findings, it can be concluded that the intraurethral administration of LPS promotes tissue remodeling, as well as stimulating the pattern of pro-inflammatory cytokines, and therefore, constitutes an effective experimental model of BPH/inflammation.
Collapse
Affiliation(s)
- Fabiana Oliveira Dos Santos Gomes
- Ultrastructure Laboratory, Instituto Aggeu Magalhães, Centro de Pesquisas Aggeu Magalhães (CPqAM-FIOCRUZ), Fundação Oswaldo Cruz, Av. Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.,Pós-graduação em Ciências Biológicas da Universidade Federal de Pernambuco (UFPE), Recife, Brazil.,Faculdade Integrada de Pernambuco (FACIPE), Recife, Brazil
| | - Amanda Costa Oliveira
- Ultrastructure Laboratory, Instituto Aggeu Magalhães, Centro de Pesquisas Aggeu Magalhães (CPqAM-FIOCRUZ), Fundação Oswaldo Cruz, Av. Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.,Pós-graduação em Ciências Biológicas da Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - Edlene Lima Ribeiro
- Ultrastructure Laboratory, Instituto Aggeu Magalhães, Centro de Pesquisas Aggeu Magalhães (CPqAM-FIOCRUZ), Fundação Oswaldo Cruz, Av. Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.,Pós-graduação em Ciências Biológicas da Universidade Federal de Pernambuco (UFPE), Recife, Brazil.,Faculdade Integrada de Pernambuco (FACIPE), Recife, Brazil
| | - Bruna Santos da Silva
- Ultrastructure Laboratory, Instituto Aggeu Magalhães, Centro de Pesquisas Aggeu Magalhães (CPqAM-FIOCRUZ), Fundação Oswaldo Cruz, Av. Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Laise Aline Martins Dos Santos
- Ultrastructure Laboratory, Instituto Aggeu Magalhães, Centro de Pesquisas Aggeu Magalhães (CPqAM-FIOCRUZ), Fundação Oswaldo Cruz, Av. Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.,Pós-graduação em Ciências Biológicas da Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - Ingrid Tavares de Lima
- Ultrastructure Laboratory, Instituto Aggeu Magalhães, Centro de Pesquisas Aggeu Magalhães (CPqAM-FIOCRUZ), Fundação Oswaldo Cruz, Av. Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.,Pós-graduação em Ciências Biológicas da Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - Amanda Karolina Soares E Silva
- Ultrastructure Laboratory, Instituto Aggeu Magalhães, Centro de Pesquisas Aggeu Magalhães (CPqAM-FIOCRUZ), Fundação Oswaldo Cruz, Av. Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.,Pós-graduação em Ciências Biológicas da Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - Shyrlene Meiry da Rocha Araújo
- Ultrastructure Laboratory, Instituto Aggeu Magalhães, Centro de Pesquisas Aggeu Magalhães (CPqAM-FIOCRUZ), Fundação Oswaldo Cruz, Av. Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.,Pós-graduação em Ciências Biológicas da Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - Terezinha Gonçalves
- Pós-graduação em Ciências Biológicas da Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | | | - Christina Alves Peixoto
- Ultrastructure Laboratory, Instituto Aggeu Magalhães, Centro de Pesquisas Aggeu Magalhães (CPqAM-FIOCRUZ), Fundação Oswaldo Cruz, Av. Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
37
|
Sfanos KS, Yegnasubramanian S, Nelson WG, De Marzo AM. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol 2017; 15:11-24. [PMID: 29089606 DOI: 10.1038/nrurol.2017.167] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic inflammation promotes the development of several types of solid cancers and might contribute to prostate carcinogenesis. This hypothesis partly originates in the frequent observation of inflammatory cells in the prostate microenvironment of adult men. Inflammation is associated with putative prostate cancer precursor lesions, termed proliferative inflammatory atrophy. Inflammation might drive prostate carcinogenesis via oxidative stress and generation of reactive oxygen species that induce mutagenesis. Additionally, inflammatory stress might cause epigenetic alterations that promote neoplastic transformation. Proliferative inflammatory atrophy is enriched for proliferative luminal epithelial cells of intermediate phenotype that might be prone to genomic alterations leading to prostatic intraepithelial neoplasia and prostate cancer. Studies in animals suggest that inflammatory changes in the prostate microenvironment contribute to reprogramming of prostate epithelial cells, a possible step in tumour initiation. Prostatic infection, concurrent with epithelial barrier disruption, might be a key driver of an inflammatory microenvironment; the discovery of a urinary microbiome indicates a potential source of frequent exposure of the prostate to a diverse number of microorganisms. Hence, current evidence suggests that inflammation and atrophy are involved in prostate carcinogenesis and suggests a role for the microbiome in establishing an inflammatory prostate microenvironment that might promote prostate cancer development and progression.
Collapse
Affiliation(s)
- Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
| | - Srinivasan Yegnasubramanian
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA
| | - William G Nelson
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21231, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, Maryland 21287, USA
| |
Collapse
|
38
|
Galactoglucomannan-rich hemicellulose extract from Norway spruce ( Picea abies ) exerts beneficial effects on chronic prostatic inflammation and lower urinary tract symptoms in vivo. Int J Biol Macromol 2017; 101:222-229. [DOI: 10.1016/j.ijbiomac.2017.03.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/21/2017] [Accepted: 03/14/2017] [Indexed: 12/30/2022]
|
39
|
Breser ML, Salazar FC, Rivero VE, Motrich RD. Immunological Mechanisms Underlying Chronic Pelvic Pain and Prostate Inflammation in Chronic Pelvic Pain Syndrome. Front Immunol 2017; 8:898. [PMID: 28824626 PMCID: PMC5535188 DOI: 10.3389/fimmu.2017.00898] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 07/13/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is the most common urologic morbidity in men younger than 50 years and is characterized by a diverse range of pain and inflammatory symptoms, both in type and severity, that involve the region of the pelvis, perineum, scrotum, rectum, testes, penis, and lower back. In most patients, pain is accompanied by inflammation in the absence of an invading infectious agent. Since CP/CPPS etiology is still not well established, available therapeutic options for patients are far from satisfactory for either physicians or patients. During the past two decades, chronic inflammation has been deeply explored as the cause of CP/CPPS. In this review article, we summarize the current knowledge regarding immunological mechanisms underlying chronic pelvic pain and prostate inflammation in CP/CPPS. Cumulative evidence obtained from both human disease and animal models indicate that several factors may trigger chronic inflammation in the form of autoimmunity against prostate, fostering chronic prostate recruitment of Th1 cells, and different other leukocytes, including mast cells, which might be the main actors in the consequent development of chronic pelvic pain. Thus, the local inflammatory milieu and the secretion of inflammatory mediators may induce neural sensitization leading to chronic pelvic pain development. Although scientific advances are encouraging, additional studies are urgently needed to establish the relationship between prostatitis development, mast cell recruitment to the prostate, and the precise mechanisms by which they would induce pelvic pain.
Collapse
Affiliation(s)
- María L Breser
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia C Salazar
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Viginia E Rivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rubén D Motrich
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
40
|
Khan FU, Ihsan AU, Nawaz W, Khan MZ, Yang M, Wang G, Liao X, Han L, Zhou X. A novel mouse model of chronic prostatitis/chronic pelvic pain syndrome induced by immunization of special peptide fragment with aluminum hydroxide adjuvant. Immunol Lett 2017; 187:61-67. [DOI: 10.1016/j.imlet.2017.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/28/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
|
41
|
Quintar AA, Maldonado CA. Androgen regulation of host defenses and response to inflammatory stimuli in the prostate gland. Cell Biol Int 2017; 41:1223-1233. [PMID: 28244686 DOI: 10.1002/cbin.10755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/24/2017] [Indexed: 12/19/2022]
Abstract
The prostate gland is a strictly androgen-dependent organ which is also the main target of infectious and inflammatory diseases in the male reproductive tract. Host defenses and immunity of the gland have unique features to maintain a constant balance between response and tolerance to diverse antigens. In this context, the effects of reproductive hormones on the male tract are thus complex and have just started to be defined. From the classical description of "the prostatic antibacterial factor," many host defense proteins with potent microbicidal and anti-tumoral activities have been described in the organ. Indeed, it has been proposed a central role for resident cells, that is, epithelial and smooth muscle cells, in the prostatic response against injuries. However, these cells also represent the target of the inflammatory damage, leading to the development of a Proliferative Inflammatory Atrophy-like process in the epithelium and a myofibroblastic-like reactive stroma. Available data on androgen regulation of inflammation led to a model of the complex control, in which the final effect will depend on the tissue microenvironment, the cause of inflammation, and the levels of androgens among other factors. In this paper, we review the current scientific literature about the inflammatory process in the gland, the modulation of host defense proteins, and the influence of testosterone on the resolution of prostatitis.
Collapse
Affiliation(s)
- Amado A Quintar
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Pabellón de Biología Celular. E. Barros esq. Enfermera Gordillo 1 piso Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Cristina A Maldonado
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Pabellón de Biología Celular. E. Barros esq. Enfermera Gordillo 1 piso Ciudad Universitaria, 5000, Córdoba, Argentina
| |
Collapse
|
42
|
Funahashi Y, Majima T, Matsukawa Y, Yamamoto T, Yoshida M, Gotoh M. Intraprostatic Reflux of Urine Induces Inflammation in a Rat. Prostate 2017; 77:164-172. [PMID: 27683251 DOI: 10.1002/pros.23257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND We examined whether urine reflux into the prostate can induce prostatic inflammation in a rat and evaluated the effect of α1-adrenoreceptor antagonist. METHODS Experiment 1: Male Sprague-Dawley rats were injected with 500 µl of Evans Blue through the urethral orifice. Intravesical pressure was measured, and the prostate was excised to evaluate urine reflux. Experiment 2: Rats were injected with 500 µl urine or saline (control) from the urethral orifice. Silodosin (200 µg/kg/day) was administered to the silodosin group. We evaluated histopathology, the expression of proinflammatory cytokines and oxidative stress markers of the prostate on day 7, after assessing the prostatic microcirculation and cystometrogram. RESULTS Experiment 1: The histopathology showed that Evans Blue instilled through the urethral orifice entered the prostatic ducts. Intravesical pressure during Evans Blue instillation was 47.7 ± 1.6 cmH2 O (mean ± standard error). Experiment 2: On day 7 after urine instillation through the urethral orifice, histopathology showed infiltrated inflammatory cells in the peri-glandular stroma. Inflammation-associated proteins (IL-1α, IL-1β, IL-6, and TNFα) were upregulated in the urine-instilled rats but not in the silodosin group. Erythrocyte speed on the prostatic surface, immunostaining for hypoxyprobe, and quantification of oxidative stress markers (MDA and HIF-1α) demonstrated prostatic hypoxia in the urine-instilled rats, which was ameliorated in the silodosin group. Cystometrogram revealed a shorter intercontraction interval in the urine-instilled rats, which was prolonged in the silodosin group. CONCLUSIONS Urine reflux into the prostatic duct induces abacterial prostatitis. Silodosin relieved prostatic inflammation and bladder overactivity by increasing microcirculation in the prostate. Prostate 77:164-172, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yasuhito Funahashi
- Department of Urology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Tsuyoshi Majima
- Department of Urology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Yoshihisa Matsukawa
- Department of Urology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Tokunori Yamamoto
- Department of Urology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Masaki Yoshida
- Department of Urology, National Center for Geriatrics and Gerontology, Morioka-cho, Ohbu, Japan
| | - Momokazu Gotoh
- Department of Urology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
43
|
Breser ML, Motrich RD, Sanchez LR, Rivero VE. Chronic Pelvic Pain Development and Prostate Inflammation in Strains of Mice With Different Susceptibility to Experimental Autoimmune Prostatitis. Prostate 2017; 77:94-104. [PMID: 27699823 DOI: 10.1002/pros.23252] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/28/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Experimental autoimmune prostatitis (EAP) is an autoimmune inflammatory disease of the prostate characterized by peripheral prostate-specific autoimmune responses associated with prostate inflammation. EAP is induced in rodents upon immunization with prostate antigens (PAg) plus adjuvants and shares important clinical and immunological features with the human disease chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). METHODS EAP was induced in young NOD, C57BL/6, and BALB/c male mice by immunization with PAg plus complete Freund́s adjuvant. Tactile allodynia was assessed using Von Frey fibers as a measure of pelvic pain at baseline and at different time points after immunization. Using conventional histology, immunohistochemistry, FACS analysis, and protein arrays, an interstrain comparative study of prostate cell infiltration and inflammation was performed. RESULTS Chronic pelvic pain development was similar between immunized NOD and C57BL/6 mice, although the severity of leukocyte infiltration was greater in the first case. Coversely, minimal prostate cell infiltration was observed in immunized BALB/c mice, who showed no pelvic pain development. Increased numbers of mast cells, mostly degranulated, were detected in prostate samples from NOD and C57BL/6 mice, while lower total counts and resting were observed in BALB/c mice. Prostate tissue from NOD mice revealed markedly increased expression levels of inflammatory cytokines, chemokines, adhesion molecules, vascular endothelial growth factor, and metalloproteinases. Similar results, but to a lesser extent, were observed when analyzing prostate tissue from C57BL/6 mice. On the contrary, the expression of the above mediators was very low in prostate tissue from immunized BALB/c mice, showing significantly slight increments only for CXCL1 and IL4. CONCLUSIONS Our results provide new evidence indicating that NOD, C57BL/6, and BALB/c mice develop different degrees of chronic pelvic pain, type, and amount of prostate cell infiltration and secretion of inflammatory mediators. Our results corroborate and support the notion that mice with different genetic background have different susceptibility to EAP induction. Prostate 77:94-104, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria L Breser
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Ruben D Motrich
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Leonardo R Sanchez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Virginia E Rivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
44
|
The anti-inflammatory effect of montelukast, a cysteinyl leukotriene receptor-1 antagonist, against estradiol-induced nonbacterial inflammation in the rat prostate. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:197-205. [DOI: 10.1007/s00210-016-1325-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/21/2016] [Indexed: 01/10/2023]
|
45
|
Hu Y, Niu X, Wang G, Huang J, Liu M, Peng B. Chronic prostatitis/chronic pelvic pain syndrome impairs erectile function through increased endothelial dysfunction, oxidative stress, apoptosis, and corporal fibrosis in a rat model. Andrology 2016; 4:1209-1216. [PMID: 27565759 DOI: 10.1111/andr.12273] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/29/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Y. Hu
- Department of Urology; Shanghai Tenth People's Hospital Affiliated to the Tongji University; Shanghai China
| | - X. Niu
- Department of Urology; Shanghai Tenth People's Hospital Affiliated to the Tongji University; Shanghai China
| | - G. Wang
- Department of Urology; Shanghai Tenth People's Hospital Affiliated to the Tongji University; Shanghai China
| | - J. Huang
- Department of Urology; Shanghai Tenth People's Hospital Affiliated to the Tongji University; Shanghai China
| | - M. Liu
- Department of Urology; Shanghai Tenth People's Hospital Affiliated to the Tongji University; Shanghai China
| | - B. Peng
- Department of Urology; Shanghai Tenth People's Hospital Affiliated to the Tongji University; Shanghai China
| |
Collapse
|
46
|
Wang P, Duan YG. The role of dendritic cells in male reproductive tract. Am J Reprod Immunol 2016; 76:186-92. [PMID: 27353336 DOI: 10.1111/aji.12536] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/10/2016] [Indexed: 12/29/2022] Open
Affiliation(s)
- Peng Wang
- Department of Urology; Daping Hospital; Institute of Surgery Research; The Third Military Medical University; Chongqing China
| | - Yong-Gang Duan
- Centre of Reproductive Medicine and Andrology; The First Affiliated Hospital of Shenzhen University; Shenzhen Second People's Hospital; Shenzhen China
| |
Collapse
|
47
|
Abstract
Chronic nonbacterial prostatitis, characterized by genitourinary pain in the pelvic region in the absence of an identifiable cause, is common in adult males. Surprisingly, the sensory innervation of the prostate and mediators that sensitize its innervation have received little attention. We thus characterized a mouse model of chronic prostatitis, focusing on the prostate innervation and how organ inflammation affects gene expression of putative nociceptive markers in prostate afferent somata in dorsal root ganglia (DRG) and mediators in the prostate. Retrograde tracing (fast blue) from the prostate revealed that thoracolumbar and lumbosacral DRG are the principal sources of somata of prostate afferents. Nociceptive markers (eg, transient receptor potential, TREK, and P2X channels) were upregulated in fast blue-labeled thoracolumbar and lumbosacral somata for up to four weeks after inflaming the prostate (intraprostate injection of zymosan). Prostatic inflammation was evident histologically, by monocyte infiltration and a significant increase in mast cell tryptase activity 14, 21, and 28 days after zymosan injection. Interleukin 10 and NGF were also significantly upregulated in the prostate throughout the 4 weeks of inflammation. Open-field pain-related behaviors (eg, rearing) were unchanged in prostate-inflamed mice, suggesting the absence of ongoing nociception, but withdrawal thresholds to lower abdominal pressure were significantly reduced. The increases in IL-10, mast cell tryptase, and NGF in the inflamed prostate were cotemporaneous with reduced thresholds to probing of the abdomen and upregulation of nociceptive markers in DRG somata innervating the prostate. The results provide insight and direction for the study of mechanisms underlying pain in chronic prostatitis.
Collapse
|
48
|
IL-17 is not essential for inflammation and chronic pelvic pain development in an experimental model of chronic prostatitis/chronic pelvic pain syndrome. Pain 2016; 157:585-597. [DOI: 10.1097/j.pain.0000000000000405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Oliveira DSM, Dzinic S, Bonfil AI, Saliganan AD, Sheng S, Bonfil RD. The mouse prostate: a basic anatomical and histological guideline. Bosn J Basic Med Sci 2016; 16:8-13. [PMID: 26773172 DOI: 10.17305/bjbms.2016.917] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 12/16/2022] Open
Abstract
Despite substantial similarities in embryological, cellular and molecular biology features, human and mouse prostates differ in organ morphology and tissue architecture. Thus, a clear understanding of the anatomy and histology of the mouse prostate is essential for the identification of urogenital phenotypes in genetically engineered mice, as well as for the study of the etiology, development, and treatment of human prostatic diseases for which mouse models are used. The purpose of this manuscript is to provide a brief guide for the dissection of the mouse prostate and the identification of its different lobes and histology, to both basic researchers and medical pathologists who are unfamiliar with mouse tissues.
Collapse
|
50
|
Wang X, Zhong S, Xu T, Xia L, Zhang X, Zhu Z, Zhang M, Shen Z. Histopathological classification criteria of rat model of chronic prostatitis/chronic pelvic pain syndrome. Int Urol Nephrol 2014; 47:307-16. [PMID: 25409932 DOI: 10.1007/s11255-014-0868-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/24/2014] [Indexed: 12/23/2022]
Abstract
OBJECTIVE A variety of murine models of experimental prostatitis that mimic the phenotype of human chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) have been developed. However, there is still a lack of explicit diagnosis criteria about those animal model. Our study is to establish histopathological classification criteria, which will be conducive to evaluate the animal models. METHODS We firstly established a rat model of experimental autoimmune prostatitis that is considered a valid model for CP/CPPS. For modelling, male Sprague-Dawley rats were immunized with autologous prostate tissue homogenate supernatant emulsified with complete Freund's adjuvant by subcutaneous injection into abdominal flank and simultaneously immunized with pertussis-diphtheria-tetanus vaccine by intraperitoneal injection. Three immunizations were administered semimonthly. At the 45th day, animals were killed, and prostate tissues were examined for morphology. RESULTS Histologically, the prostate tissues were characterized by lymphoproliferation, atrophy of acini, and chronic inflammatory cells infiltration in the stromal connective tissue around the acini or ducts. Finally, we built histopathological classification criteria incorporating inflammation locations (mesenchyme, glands, periglandular tissues), ranges (focal, multifocal, diffuse), and grades (grade I-IV). To verify the effectiveness and practicability of the histopathological classification criteria, we conducted the treatment study with one of the alpha blockers, tamsulosin. CONCLUSION The histopathological classification criteria of rat model of CP/CPPS will serve for further research of the pathogenesis and treatment strategies of the disease.
Collapse
Affiliation(s)
- Xianjin Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin Er Road, Shanghai, 200025, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|