1
|
Liu CW, Tsutsui H. Sample-to-answer sensing technologies for nucleic acid preparation and detection in the field. SLAS Technol 2023; 28:302-323. [PMID: 37302751 DOI: 10.1016/j.slast.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Efficient sample preparation and accurate disease diagnosis under field conditions are of great importance for the early intervention of diseases in humans, animals, and plants. However, in-field preparation of high-quality nucleic acids from various specimens for downstream analyses, such as amplification and sequencing, is challenging. Thus, developing and adapting sample lysis and nucleic acid extraction protocols suitable for portable formats have drawn significant attention. Similarly, various nucleic acid amplification techniques and detection methods have also been explored. Combining these functions in an integrated platform has resulted in emergent sample-to-answer sensing systems that allow effective disease detection and analyses outside a laboratory. Such devices have a vast potential to improve healthcare in resource-limited settings, low-cost and distributed surveillance of diseases in food and agriculture industries, environmental monitoring, and defense against biological warfare and terrorism. This paper reviews recent advances in portable sample preparation technologies and facile detection methods that have been / or could be adopted into novel sample-to-answer devices. In addition, recent developments and challenges of commercial kits and devices targeting on-site diagnosis of various plant diseases are discussed.
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Hideaki Tsutsui
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
2
|
Airs PM, Ventura-Cordero J, Mvula W, Takahashi T, Van Wyk J, Nalivata P, Safalaoh A, Morgan ER. Low-cost molecular methods to characterise gastrointestinal nematode co-infections of goats in Africa. Parasit Vectors 2023; 16:216. [PMID: 37386642 PMCID: PMC10311829 DOI: 10.1186/s13071-023-05816-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/20/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Veterinary diagnostics aid intervention strategies, track zoonoses, and direct selective breeding programs in livestock. In ruminants, gastrointestinal nematode (GIN) parasites are a major cause of production losses, but morphologically similar species limit our understanding of how specific GIN co-infections impact health in resource-limited settings. To estimate the presence and relative abundance of GINs and other helminths at the species level, we sought to develop a low-cost and low-resource molecular toolkit applied to goats from rural Malawi smallholdings. METHODS Goats were subjected to health scoring and faecal sampling on smallholdings in Lilongwe district, Malawi. Infection intensities were estimated by faecal nematode egg counts with a faecal subsample desiccated for DNA analysis. Two DNA extraction methods were tested (low-resource magbead kit vs high-resource spin-column kit), with resulting DNA screened by endpoint polymerase chain reaction (PCR), semi-quantitative PCR, quantitative PCR (qPCR), high-resolution melt curve analysis (HRMC), and 'nemabiome' internal transcribed spacer 2 (ITS-2) amplicon sequencing. RESULTS Both DNA isolation methods yielded comparable results despite poorer DNA purity and faecal contaminant carryover from the low-resource magbead method. GINs were detected in 100% of samples regardless of infection intensity. Co-infections with GINs and coccidia (Eimeria spp.) were present in most goats, with GIN populations dominated by Haemonchus contortus, Trichostrongylus colubriformis, Trichostrongylus axei, and Oesophagostomum columbianum. Both multiplex PCR and qPCR were highly predictive of GIN species proportions obtained using nemabiome amplicon sequencing; however, HRMC was less reliable than PCR in predicting the presence of particular species. CONCLUSIONS These data represent the first 'nemabiome' sequencing of GINs from naturally infected smallholder goats in Africa and show the variable nature of GIN co-infections between individual animals. A similar level of granularity was detected by semi-quantitative PCR methods, which provided an accurate summary of species composition. Assessing GIN co-infections is therefore possible using cost-efficient low-resource DNA extraction and PCR approaches that can increase the capacity of molecular resources in areas where sequencing platforms are not available; and also open the door to affordable molecular GIN diagnostics. Given the diverse nature of infections in livestock and wildlife, these approaches have potential for disease surveillance in other areas.
Collapse
Affiliation(s)
- Paul M Airs
- School of Biological Sciences, Queen's University Belfast, Belfast, Antrim, UK
| | | | - Winchester Mvula
- Animal Science Department, Lilongwe University of Agriculture and Natural Resources (LUANAR), Lilongwe, Malawi
| | - Taro Takahashi
- Net Zero and Resilient Farming Directorate, Rothamsted Research, Okehampton, Devon, UK
- Bristol Veterinary School, University of Bristol, Langford, Somerset, UK
| | - Jan Van Wyk
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Patson Nalivata
- Animal Science Department, Lilongwe University of Agriculture and Natural Resources (LUANAR), Lilongwe, Malawi
| | - Andrews Safalaoh
- Animal Science Department, Lilongwe University of Agriculture and Natural Resources (LUANAR), Lilongwe, Malawi
| | - Eric R Morgan
- School of Biological Sciences, Queen's University Belfast, Belfast, Antrim, UK.
| |
Collapse
|
3
|
Wang J, Jiang H, Pan L, Gu X, Xiao C, Liu P, Tang Y, Fang J, Li X, Lu C. Rapid on-site nucleic acid testing: On-chip sample preparation, amplification, and detection, and their integration into all-in-one systems. Front Bioeng Biotechnol 2023; 11:1020430. [PMID: 36815884 PMCID: PMC9930993 DOI: 10.3389/fbioe.2023.1020430] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
As nucleic acid testing is playing a vital role in increasingly many research fields, the need for rapid on-site testing methods is also increasing. The test procedure often consists of three steps: Sample preparation, amplification, and detection. This review covers recent advances in on-chip methods for each of these three steps and explains the principles underlying related methods. The sample preparation process is further divided into cell lysis and nucleic acid purification, and methods for the integration of these two steps on a single chip are discussed. Under amplification, on-chip studies based on PCR and isothermal amplification are covered. Three isothermal amplification methods reported to have good resistance to PCR inhibitors are selected for discussion due to their potential for use in direct amplification. Chip designs and novel strategies employed to achieve rapid extraction/amplification with satisfactory efficiency are discussed. Four detection methods providing rapid responses (fluorescent, optical, and electrochemical detection methods, plus lateral flow assay) are evaluated for their potential in rapid on-site detection. In the final section, we discuss strategies to improve the speed of the entire procedure and to integrate all three steps onto a single chip; we also comment on recent advances, and on obstacles to reducing the cost of chip manufacture and achieving mass production. We conclude that future trends will focus on effective nucleic acid extraction via combined methods and direct amplification via isothermal methods.
Collapse
Affiliation(s)
- Jingwen Wang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Han Jiang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Leiming Pan
- Zhejiang Hongzheng Testing Co., Ltd., Ningbo, China
| | - Xiuying Gu
- Zhejiang Gongzheng Testing Center Co., Ltd., Hangzhou, China
| | - Chaogeng Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Pengpeng Liu
- Key Laboratory of Biosafety detection for Zhejiang Market Regulation, Zhejiang Fangyuan Testing Group LO.T, Hangzhou, China
| | - Yulong Tang
- Hangzhou Tiannie Technology Co., Ltd., Hangzhou, China
| | - Jiehong Fang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoqian Li
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Chenze Lu
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
4
|
Curtin K, Fike BJ, Binkley B, Godary T, Li P. Recent Advances in Digital Biosensing Technology. BIOSENSORS 2022; 12:bios12090673. [PMID: 36140058 PMCID: PMC9496261 DOI: 10.3390/bios12090673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022]
Abstract
Digital biosensing assays demonstrate remarkable advantages over conventional biosensing systems because of their ability to achieve single-molecule detection and absolute quantification. Unlike traditional low-abundance biomarking screening, digital-based biosensing systems reduce sample volumes significantly to the fL-nL level, which vastly reduces overall reagent consumption, improves reaction time and throughput, and enables high sensitivity and single target detection. This review presents the current technology for compartmentalizing reactions and their applications in detecting proteins and nucleic acids. We also analyze existing challenges and future opportunities associated with digital biosensing and research opportunities for developing integrated digital biosensing systems.
Collapse
Affiliation(s)
- Kathrine Curtin
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Bethany J. Fike
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Brandi Binkley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Toktam Godary
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
- Correspondence:
| |
Collapse
|
5
|
Wang K, Wang Q, Peng C, Guo Y, Li Y, Zhou J, Wu W. Portable Heating System Based on a Liquid Metal Bath for Rapid PCR. ACS OMEGA 2022; 7:26165-26173. [PMID: 35936432 PMCID: PMC9352155 DOI: 10.1021/acsomega.2c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
With the outbreak of COVID-19 around the world, rapid and accurate detection of new coronaviruses is the key to stop the transmission of the disease and prevent and control the novel coronavirus, among which polymerase chain reaction (PCR) is the mainstream nucleic acid detection method. A temperature cycling device is the core of the PCR amplification micro-device. The precision of the temperature control and temperature change rate directly affect the efficiency of PCR amplification. This study proposes a new PCR method based on rapid PCR chip optimization of a liquid metal bath, which realizes precise and rapid temperature rise and fall control. We systematically explored the feasibility of using liquid metals with different melting points in the system and proposed a 47 °C bismuth-based liquid metal bath as the heat conduction medium of the system to optimize the system. The heat conduction properties of the thermally conductive silicone oil bath were compared. Compared with the thermally conductive silicone oil bath, thermal cycle efficiency is improved nearly 3 times. The average heating rate of the liquid metal bath is fast, and the temperature control stability is good, which can significantly reduce the hysteresis, and the temperature change curve is more gentle, which can greatly improve the efficiency of PCR amplification. The results of gene amplification using rat DNA as the template and SEC61A as the target also indicate that the system can be successfully used in PCR devices, and the types of PCR containers can be not limited to PCR tubes. Based on the experiment, we proved that the PCR method optimized by the liquid metal bath multi-gene rapid PCR chip can further improve the temperature response speed. It has the advantages of accurate data, fast response speed, low price, safety, and environmental protection and can effectively reduce the time of PCR and improve the application efficiency. As far as we know, this is the first international report on using a liquid metal bath to do rapid-cooling PCR.
Collapse
Affiliation(s)
- Kangning Wang
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, Guangzhou 516001, China
| | - Qingran Wang
- State
Key Laboratory of Luminescence and Applications, Changchun Institute
of Optics, Fine Mechanics and Physics, Chinese
Academy of Sciences, Changchun 130033, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Canfu Peng
- State
Key Laboratory of Luminescence and Applications, Changchun Institute
of Optics, Fine Mechanics and Physics, Chinese
Academy of Sciences, Changchun 130033, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Guo
- School
of Mechanical and Electrical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Li
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, Guangzhou 516001, China
| | - Jia Zhou
- State
Key Laboratory of Microelectronics and Integrated Circuits, Fudan University, Shanghai 200433, China
| | - Wenming Wu
- Institute
of Biological and Medical Engineering, Guangdong
Academy of Sciences, Guangzhou 516001, China
| |
Collapse
|
6
|
Hsieh K, Melendez JH, Gaydos CA, Wang TH. Bridging the gap between development of point-of-care nucleic acid testing and patient care for sexually transmitted infections. LAB ON A CHIP 2022; 22:476-511. [PMID: 35048928 PMCID: PMC9035340 DOI: 10.1039/d1lc00665g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The incidence rates of sexually transmitted infections (STIs), including the four major curable STIs - chlamydia, gonorrhea, trichomoniasis and, syphilis - continue to increase globally, causing medical cost burden and morbidity especially in low and middle-income countries (LMIC). There have seen significant advances in diagnostic testing, but commercial antigen-based point-of-care tests (POCTs) are often insufficiently sensitive and specific, while near-point-of-care (POC) instruments that can perform sensitive and specific nucleic acid amplification tests (NAATs) are technically complex and expensive, especially for LMIC. Thus, there remains a critical need for NAAT-based STI POCTs that can improve diagnosis and curb the ongoing epidemic. Unfortunately, the development of such POCTs has been challenging due to the gap between researchers developing new technologies and healthcare providers using these technologies. This review aims to bridge this gap. We first present a short introduction of the four major STIs, followed by a discussion on the current landscape of commercial near-POC instruments for the detection of these STIs. We present relevant research toward addressing the gaps in developing NAAT-based STI POCT technologies and supplement this discussion with technologies for HIV and other infectious diseases, which may be adapted for STIs. Additionally, as case studies, we highlight the developmental trajectory of two different POCT technologies, including one approved by the United States Food and Drug Administration (FDA). Finally, we offer our perspectives on future development of NAAT-based STI POCT technologies.
Collapse
Affiliation(s)
- Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Johan H Melendez
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charlotte A Gaydos
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
7
|
Hossain MA, Brito-Rodriguez B, Sedger LM, Canning J. A Cross-Disciplinary View of Testing and Bioinformatic Analysis of SARS-CoV-2 and Other Human Respiratory Viruses in Pandemic Settings. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:163716-163734. [PMID: 35582017 PMCID: PMC8843158 DOI: 10.1109/access.2021.3133417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/04/2021] [Indexed: 05/26/2023]
Abstract
The SARS-Coronavirus-2 (SARS-CoV-2) infectious disease, COVID-19, has spread rapidly, resulting in a global pandemic with significant mortality. The combination of early diagnosis via rapid screening, contact tracing, social distancing and quarantine has helped to control the pandemic. The absence of real time response and diagnosis is a crucial technology shortfall and is a key reason why current contact tracing methods are inadequate to control spread. In contrast, current information technology combined with a new generation of near-real time tests offers consumer-engaged smartphone-based "lab-in-a-phone" internet-of-things (IoT) connected devices that provide increased pandemic monitoring. This review brings together key aspects required to create an entire global diagnostic ecosystem. Cross-disciplinary understanding and integration of both mechanisms and technologies for effective detection, incidence mapping and disease containment in near real-time is summarized. Available measures to monitor and/or sterilize surfaces, next-generation laboratory and smartphone-based diagnostic approaches can be brought together and networked for instant global monitoring that informs Public Health policy. Cloud-based analysis enabling real-time mapping will enable future pandemic control, drive the suppression and elimination of disease spread, saving millions of lives globally. A new paradigm is introduced - scaled and multiple diagnostics for mapping and spreading of a pandemic rather than traditional accumulation of individual measurements. This can do away with the need for ultra-precise and ultra-accurate analysis by taking mass measurements that can relax tolerances and build resilience through networked analytics and informatics, the basis for novel swarm diagnostics. These include addressing ethical standards, local, national and international collaborative engagement, multidisciplinary and analytical measurements and standards, and data handling and storage protocols.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Electrical and Electronic EngineeringKhulna University of Engineering & TechnologyKhulna9203Bangladesh
| | | | - Lisa M. Sedger
- Faculty of ScienceUniversity of Technology Sydney (UTS)SydneyNSW2007Australia
| | - John Canning
- interdisciplinary Photonic Laboratories (iPL), Global Big Data Technologies Centre (GBDTC), Faculty of Engineering and Information TechnologyUniversity of Technology Sydney (UTS)SydneyNSW2007Australia
| |
Collapse
|
8
|
Chu H, Liu C, Liu J, Yang J, Li Y, Zhang X. Recent advances and challenges of biosensing in point-of-care molecular diagnosis. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 348:130708. [PMID: 34511726 PMCID: PMC8424413 DOI: 10.1016/j.snb.2021.130708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 05/07/2023]
Abstract
Molecular diagnosis, which plays a major role in infectious disease screening with successful understanding of the human genome, has attracted more attention because of the outbreak of COVID-19 recently. Since point-of-care testing (POCT) can expand the application of molecular diagnosis with the benefit of rapid reply, low cost, and working in decentralized environments, many researchers and commercial institutions have dedicated tremendous effort and enthusiasm to POCT-based biosensing for molecular diagnosis. In this review, we firstly summarize the state-of-the-art techniques and the construction of biosensing systems for POC molecular diagnosis. Then, the application scenarios of POCT-based biosensing for molecular diagnosis were also reviewed. Finally, several challenges and perspectives of POC biosensing for molecular diagnosis are discussed. This review is expected to help researchers deepen comprehension and make progresses in POCT-based biosensing field for molecular diagnosis applications.
Collapse
Affiliation(s)
- Hongwei Chu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Conghui Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jinsen Liu
- Shenzhen ENCO Instrument Co., Ltd, Shenzhen 518000, China
| | - Jiao Yang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yingchun Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xueji Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
9
|
Liu W, Yue F, Lee LP. Integrated Point-of-Care Molecular Diagnostic Devices for Infectious Diseases. Acc Chem Res 2021; 54:4107-4119. [PMID: 34699183 DOI: 10.1021/acs.accounts.1c00385] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The global outbreaks of deadly infectious diseases caused by pathogenic microorganisms have threatened public health worldwide and significantly motivated scientists to satisfy an urgent need for a rapid and accurate detection of pathogens. Traditionally, the culture-based technique is considered as the gold standard for pathogen detection, yet it has a long turnaround time due to the overnight culturing and pathogen isolation. Alternatively, nucleic acid amplification tests provide a relatively shorter turnaround time to identify whether pathogens exist in individuals with high sensitivity and high specificity. In most cases, nucleic acid amplification tests undergo three steps: sample preparation, nucleic acid amplification, and signal transduction. Despite the explosive advancement in nucleic acid amplification and signal transduction technologies, the complex and labor-intensive sample preparation steps remain a bottleneck to create a transformative integrated point-of-care (POC) molecular diagnostic device. Researchers have attempted to simplify and integrate the sample preparations for nucleic acid-based molecular diagnostic devices with innovative progress in integration strategies, engineered materials, reagent storages, and fluid actuation. Therefore, understanding the know-how and obtaining truthful knowledge of existing integrated POC molecular diagnostic devices comprising sample preparations, nucleic acid amplification, and signal transduction can generate innovative solutions to achieve personalized precision medicine and improve global health.In this Account, we discuss the challenges of automated sample preparation solutions integrated with nucleic acid amplification and signal transduction for rapid and precise home diagnostics. Blood, nasal swab, saliva, urine, and stool are emphasized as the most commonly used clinical samples for integrated POC molecular diagnostics of infectious diseases. Even though these five types of samples possess relatively correlated biomarkers due to the human body's circulatory system, each shows unique properties and exclusive advantages for molecular diagnostics in specific situations, which are included in this Account. We examine different integrated POC devices for sample preparation, which includes pathogen isolation and enrichment from the crude sample and nucleic acid purification from isolated pathogens. We present the promising on-chip integration approaches for nucleic acid amplification. We also investigate the on-chip integration methods for reagent storage, which is crucial to simplify the manual operation for end-users. Finally, we present several integrated POC molecular diagnostic devices for infectious diseases. The integrated sample preparation and nucleic acid amplification approach reviewed here can potentially impact the next generation of POC molecular home diagnostic chips, which will significantly impact public health, emergency medicine, and global biosecurity.
Collapse
Affiliation(s)
- Wenpeng Liu
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, Massachusetts, United States
| | - Fei Yue
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, Massachusetts, United States
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, Massachusetts, United States
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley 94720, California, United States
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
10
|
Shen Y, Anwar TB, Mulchandani A. Current status, advances, challenges and perspectives on biosensors for COVID-19 diagnosis in resource-limited settings. SENSORS AND ACTUATORS REPORTS 2021; 3:100025. [PMID: 35047829 PMCID: PMC7831652 DOI: 10.1016/j.snr.2021.100025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 05/07/2023]
Abstract
As the COVID-19 pandemic has profoundly impacted human life, prompt diagnostic tests are becoming an essential part of the social activities. However, the expensive and time-consuming laboratory-based traditional methods do not suffice the enormous needs for massive number of tests, especially in resource-limited settings. Therefore, more affordable, rapid, sensitive and specific field-practical diagnostic devices play an important role in the fight against the disease. In this review, we present the current status and advances in the biosensing technologies for diagnosing COVID-19, ranging from commercial achievements to research developments. Starting from a brief introduction to the disease biomarkers, this review summarizes the working principles of the biosensing technologies, followed by a review of the commercial products and research advances in academia. We recapitulate the literatures with a wide scope of bio/marker detections, embracing nucleic acids, viral proteins, human immune responses, and other potential bio/markers. Further, the challenges and perspectives for their employment in future point-of-care applications are discussed, with an extended appraisal on the practical strategies to enlarge the testing capability without high cost. This critical review provides a comprehensive insight into the diagnostic tools for COVID-19 and will encourage the industry and academia in the field of diagnostic biosensing for future evolvement to large-scale point-of-care screening of COVID-19.
Collapse
Affiliation(s)
- Yu Shen
- Chemical and Environmental Engineering Department, University of California Riverside, Riverside, CA, 92521 USA
| | - Touhid Bin Anwar
- Chemical and Environmental Engineering Department, University of California Riverside, Riverside, CA, 92521 USA
| | - Ashok Mulchandani
- Chemical and Environmental Engineering Department, University of California Riverside, Riverside, CA, 92521 USA
- Center for Environmental Research and Technology (CE-CERT), University of California Riverside, Riverside, CA, 92507 USA
| |
Collapse
|
11
|
Moore KJM, Cahill J, Aidelberg G, Aronoff R, Bektaş A, Bezdan D, Butler DJ, Chittur SV, Codyre M, Federici F, Tanner NA, Tighe SW, True R, Ware SB, Wyllie AL, Afshin EE, Bendesky A, Chang CB, Dela Rosa R, Elhaik E, Erickson D, Goldsborough AS, Grills G, Hadasch K, Hayden A, Her SY, Karl JA, Kim CH, Kriegel AJ, Kunstman T, Landau Z, Land K, Langhorst BW, Lindner AB, Mayer BE, McLaughlin LA, McLaughlin MT, Molloy J, Mozsary C, Nadler JL, D'Silva M, Ng D, O'Connor DH, Ongerth JE, Osuolale O, Pinharanda A, Plenker D, Ranjan R, Rosbash M, Rotem A, Segarra J, Schürer S, Sherrill-Mix S, Solo-Gabriele H, To S, Vogt MC, Yu AD, Mason CE. Loop-Mediated Isothermal Amplification Detection of SARS-CoV-2 and Myriad Other Applications. J Biomol Tech 2021; 32:228-275. [PMID: 35136384 PMCID: PMC8802757 DOI: 10.7171/jbt.21-3203-017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.
Collapse
Affiliation(s)
- Keith J M Moore
- School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| | | | - Guy Aidelberg
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
- Just One Giant Lab, Centre de Recherches Interdisciplinaires (CRI), 75004 Paris, France
| | - Rachel Aronoff
- Just One Giant Lab, Centre de Recherches Interdisciplinaires (CRI), 75004 Paris, France
- Action for Genomic Integrity Through Research! (AGiR!), Lausanne, Switzerland
- Association Hackuarium, Lausanne, Switzerland
| | - Ali Bektaş
- Oakland Genomics Center, Oakland, CA 94609, USA
| | - Daniela Bezdan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, 72076 Tübingen, Germany
- Poppy Health, Inc, San Francisco, CA 94158, USA
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital, 72076 Tübingen, Germany
| | - Daniel J Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sridar V Chittur
- Center for Functional Genomics, Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, 12222, USA
| | - Martin Codyre
- GiantLeap Biotechnology Ltd, Wicklow A63 Kv91, Ireland
| | - Fernan Federici
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | | | | | - Randy True
- FloodLAMP Biotechnologies, San Carlos, CA 94070, USA
| | - Sarah B Ware
- Just One Giant Lab, Centre de Recherches Interdisciplinaires (CRI), 75004 Paris, France
- BioBlaze Community Bio Lab, 1800 W Hawthorne Ln, Ste J-1, West Chicago, IL 60185, USA
- Blossom Bio Lab, 1800 W Hawthorne Ln, Ste K-2, West Chicago, IL 60185, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andres Bendesky
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Connie B Chang
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, 59717, USA
| | - Richard Dela Rosa
- School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| | - Eran Elhaik
- Department of Biology, Lund University, Sölvegatan 35, Lund, Sweden
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA
| | | | - George Grills
- Department of Microbiology, University of Pennsylvania, Philadelphia, 19104, USA
| | - Kathrin Hadasch
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Lab3 eV, Labspace Darmstadt, 64295 Darmstadt, Germany
- IANUS Verein für Friedensorientierte Technikgestaltung eV, 64289 Darmstadt, Germany
| | - Andrew Hayden
- Center for Functional Genomics, Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, 12222, USA
| | | | - Julie A Karl
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Madison 53705, USA
| | | | | | | | - Zeph Landau
- Department of Computer Science, University of California, Berkeley, Berkeley, 94720, USA
| | - Kevin Land
- Mologic, Centre for Advanced Rapid Diagnostics, (CARD), Bedford Technology Park, Thurleigh MK44 2YA, England
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, 0028 Pretoria, South Africa
| | | | - Ariel B Lindner
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Benjamin E Mayer
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Lab3 eV, Labspace Darmstadt, 64295 Darmstadt, Germany
| | | | - Matthew T McLaughlin
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Madison 53705, USA
| | - Jenny Molloy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, England
| | - Christopher Mozsary
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jerry L Nadler
- Department of Pharmacology, New York Medical College, Valhalla, 10595, USA
| | - Melinee D'Silva
- Department of Pharmacology, New York Medical College, Valhalla, 10595, USA
| | - David Ng
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Madison 53705, USA
| | - Jerry E Ongerth
- University of Wollongong, Environmental Engineering, Wollongong NSW 2522, Australia
| | - Olayinka Osuolale
- Applied Environmental Metagenomics and Infectious Diseases Research (AEMIDR), Department of Biological Sciences, Elizade University, Ilara Mokin, Nigeria
| | - Ana Pinharanda
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Dennis Plenker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute for Applied Life Sciences, University of Massachusetts, Amherst, 01003, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | | | | | | | - Scott Sherrill-Mix
- Department of Microbiology, University of Pennsylvania, Philadelphia, 19104, USA
| | | | - Shaina To
- School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| | - Merly C Vogt
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Albert D Yu
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
12
|
Shu B, Lin L, Wu B, Huang E, Wang Y, Li Z, He H, Lei X, Xu B, Liu D. A pocket-sized device automates multiplexed point-of-care RNA testing for rapid screening of infectious pathogens. Biosens Bioelectron 2021; 181:113145. [PMID: 33752027 DOI: 10.1016/j.bios.2021.113145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/13/2021] [Accepted: 03/01/2021] [Indexed: 01/03/2023]
Abstract
Rapid screening of infectious pathogens at the point-of-care (POC) is ideally low-cost, portable, easy to use, and capable of multiplex detection with high sensitivity. However, satisfying all these features in a single device without compromise remains a challenging task. Here, we introduce an ultraportable, automated RNA amplification testing device that allows rapid screening of infectious pathogens from clinical samples. In this device, 3D-printed structural parts incorporated with off-the-shelf mechanic/electronic components are utilized to create an inexpensive and automated droplet manipulation platform. On this platform, a simple configuration that couples a linear displacement of the chip with a tunable magnet array allows parallel and versatile droplet operations, including mixing, splitting, transporting, and merging. By exploiting a multi-channel droplet array chip to preload necessary reagents in "water-in-oil" format, bacteria lysis, RNA extraction and amplification are seamlessly integrated and implemented by the combination of droplet operations. Furthermore, visual readout and geometrically-multiplexed quantitative detection are provided by an integrated wireless video camera-enabled wide-field fluorescence imaging. We demonstrated that this droplet-based device could have a shorter RNA extraction time (12 min) and lower detection limits for pathogenic RNA (approaching to 102 copies per reaction). We also verified its clinical applicability for the rapid screening of four sexually transmitted pathogens from urine specimens. Results show that the sample-to-answer assay could be completed in approximately 42 min, with 100% concordance with the laboratory-based molecular testing. The exhibiting features may render this microdevice an easily accessible POC molecular diagnostic platform for infectious disease, especially in resource-limited settings.
Collapse
Affiliation(s)
- Bowen Shu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou, 510180, China; Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou, 510180, China
| | - Ling Lin
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Bin Wu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou, 510180, China; Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou, 510180, China
| | - Enqi Huang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yu Wang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou, 510180, China; Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou, 510180, China
| | - Zhujun Li
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Haoyan He
- Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Xiuxia Lei
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou, 510180, China
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China; Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou, 510180, China.
| | - Dayu Liu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China; Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou, 510180, China; Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou, 510180, China.
| |
Collapse
|
13
|
An innovative and user-friendly smartphone-assisted molecular diagnostic approach for rapid detection of canine vector-borne diseases. Parasitol Res 2021; 120:1799-1809. [PMID: 33649963 PMCID: PMC7920752 DOI: 10.1007/s00436-021-07077-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/01/2021] [Indexed: 11/17/2022]
Abstract
Present-day diagnostic tools and technologies for canine diseases and other vector-borne parasitic diseases hardly meet the requirements of an efficient and rapid diagnostic tool, which can be suitable for use at the point-of-care in resource-limited settings. Loop-mediated isothermal amplification (LAMP) technique has been always a method of choice in the development and validation of quick, precise, and sensitive diagnostic assays for pathogen detection and to reorganize point-of-care (POC) molecular diagnostics. In this study, we have demonstrated an efficient detection system for parasitic vector-borne pathogens like Ehrlichia canis and Hepatozoon canis by linking the LAMP assay to a smartphone via a simple, inexpensive, and a portable “LAMP box,” All the components of the LAMP box were connected to each other wirelessly. This LAMP box was made up of an isothermal heating pad mounted below an aluminum base which served as a platform for the reaction tubes and LAMP assay. The entire setup could be connected to a smartphone via an inbuilt Wi-Fi that allowed the user to establish the connection to control the LAMP box. A 5 V USB power source was used as a power supply. The sensitivity of the LAMP assay was estimated to be up to 10−6 dilution limit using the amplified, purified, and quantified specific DNA templates. It can also serve as an efficient diagnostic platform for many other veterinary infectious or parasitic diseases of zoonotic origin majorly towards field-based diagnostics.
Collapse
|
14
|
Fozouni P, Son S, Díaz de León Derby M, Knott GJ, Gray CN, D'Ambrosio MV, Zhao C, Switz NA, Kumar GR, Stephens SI, Boehm D, Tsou CL, Shu J, Bhuiya A, Armstrong M, Harris AR, Chen PY, Osterloh JM, Meyer-Franke A, Joehnk B, Walcott K, Sil A, Langelier C, Pollard KS, Crawford ED, Puschnik AS, Phelps M, Kistler A, DeRisi JL, Doudna JA, Fletcher DA, Ott M. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 2021; 184:323-333.e9. [PMID: 33306959 DOI: 10.1016/j.cell.2020.12.00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/03/2020] [Accepted: 11/25/2020] [Indexed: 05/28/2023]
Abstract
The December 2019 outbreak of a novel respiratory virus, SARS-CoV-2, has become an ongoing global pandemic due in part to the challenge of identifying symptomatic, asymptomatic, and pre-symptomatic carriers of the virus. CRISPR diagnostics can augment gold-standard PCR-based testing if they can be made rapid, portable, and accurate. Here, we report the development of an amplification-free CRISPR-Cas13a assay for direct detection of SARS-CoV-2 from nasal swab RNA that can be read with a mobile phone microscope. The assay achieved ∼100 copies/μL sensitivity in under 30 min of measurement time and accurately detected pre-extracted RNA from a set of positive clinical samples in under 5 min. We combined crRNAs targeting SARS-CoV-2 RNA to improve sensitivity and specificity and directly quantified viral load using enzyme kinetics. Integrated with a reader device based on a mobile phone, this assay has the potential to enable rapid, low-cost, point-of-care screening for SARS-CoV-2.
Collapse
Affiliation(s)
- Parinaz Fozouni
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sungmin Son
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - María Díaz de León Derby
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gavin J Knott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, VIC 3800, Australia
| | - Carley N Gray
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael V D'Ambrosio
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chunyu Zhao
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Neil A Switz
- Department of Physics and Astronomy, San José State University, San Jose, CA 95192, USA
| | - G Renuka Kumar
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stephanie I Stephens
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniela Boehm
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chia-Lin Tsou
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey Shu
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Abdul Bhuiya
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Maxim Armstrong
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andrew R Harris
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Pei-Yi Chen
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | - Bastian Joehnk
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Keith Walcott
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anita Sil
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charles Langelier
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Katherine S Pollard
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Epidemiology and Biostatistics and Institute of Computational Health Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emily D Crawford
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Maira Phelps
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Amy Kistler
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Joseph L DeRisi
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Division of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer A Doudna
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel A Fletcher
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Biophysics Program, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Fozouni P, Son S, Díaz de León Derby M, Knott GJ, Gray CN, D'Ambrosio MV, Zhao C, Switz NA, Kumar GR, Stephens SI, Boehm D, Tsou CL, Shu J, Bhuiya A, Armstrong M, Harris AR, Chen PY, Osterloh JM, Meyer-Franke A, Joehnk B, Walcott K, Sil A, Langelier C, Pollard KS, Crawford ED, Puschnik AS, Phelps M, Kistler A, DeRisi JL, Doudna JA, Fletcher DA, Ott M. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 2020; 184:323-333.e9. [PMID: 33306959 PMCID: PMC7834310 DOI: 10.1016/j.cell.2020.12.001] [Citation(s) in RCA: 511] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/03/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022]
Abstract
The December 2019 outbreak of a novel respiratory virus, SARS-CoV-2, has become an ongoing global pandemic due in part to the challenge of identifying symptomatic, asymptomatic, and pre-symptomatic carriers of the virus. CRISPR diagnostics can augment gold-standard PCR-based testing if they can be made rapid, portable, and accurate. Here, we report the development of an amplification-free CRISPR-Cas13a assay for direct detection of SARS-CoV-2 from nasal swab RNA that can be read with a mobile phone microscope. The assay achieved ∼100 copies/μL sensitivity in under 30 min of measurement time and accurately detected pre-extracted RNA from a set of positive clinical samples in under 5 min. We combined crRNAs targeting SARS-CoV-2 RNA to improve sensitivity and specificity and directly quantified viral load using enzyme kinetics. Integrated with a reader device based on a mobile phone, this assay has the potential to enable rapid, low-cost, point-of-care screening for SARS-CoV-2.
Collapse
Affiliation(s)
- Parinaz Fozouni
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sungmin Son
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - María Díaz de León Derby
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gavin J Knott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, VIC 3800, Australia
| | - Carley N Gray
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael V D'Ambrosio
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chunyu Zhao
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Neil A Switz
- Department of Physics and Astronomy, San José State University, San Jose, CA 95192, USA
| | - G Renuka Kumar
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stephanie I Stephens
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniela Boehm
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chia-Lin Tsou
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey Shu
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Abdul Bhuiya
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Maxim Armstrong
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andrew R Harris
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Pei-Yi Chen
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | - Bastian Joehnk
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Keith Walcott
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anita Sil
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charles Langelier
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Katherine S Pollard
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Epidemiology and Biostatistics and Institute of Computational Health Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emily D Crawford
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Maira Phelps
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Amy Kistler
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Joseph L DeRisi
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Division of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer A Doudna
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel A Fletcher
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Biophysics Program, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
16
|
Moehling TJ, Lee DH, Henderson ME, McDonald MK, Tsang PH, Kaakeh S, Kim ES, Wereley ST, Kinzer-Ursem TL, Clayton KN, Linnes JC. A smartphone-based particle diffusometry platform for sub-attomolar detection of Vibrio cholerae in environmental water. Biosens Bioelectron 2020; 167:112497. [PMID: 32836088 PMCID: PMC7532658 DOI: 10.1016/j.bios.2020.112497] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 11/30/2022]
Abstract
Each year, 3.4 million people die from waterborne diseases worldwide. Development of a rapid and portable platform for detecting and monitoring waterborne pathogens would significantly aid in reducing the incidence and spread of infectious diseases. By combining optical methods and smartphone technology with molecular assays, the sensitivity required to detect exceedingly low concentrations of waterborne pathogens can readily be achieved. Here, we implement smartphone-based particle diffusometry (PD) detection of loop-mediated isothermal amplification (LAMP) targeting the waterborne pathogen Vibrio cholerae (V. cholerae). By measuring the diffusion of 400 nm streptavidin-coated fluorescent nanoparticles imaged at 68X magnification on a smartphone, we can detect as few as 6 V. cholerae cells per reaction (0.66 aM) in just 35 minutes. In a double-blinded study with 132 pond water samples, we establish a 91.8% sensitivity, 95.2% specificity, and 94.3% accuracy of the smartphone-based PD platform for detection of V. cholerae. Together, these results demonstrate the utility of this smartphone-based PD platform for rapid and sensitive detection of V. cholerae at the point of use.
Collapse
Affiliation(s)
- Taylor J Moehling
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Dong Hoon Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Meghan E Henderson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Mariah K McDonald
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Preston H Tsang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Seba Kaakeh
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Eugene S Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Steven T Wereley
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Katherine N Clayton
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA; OmniVis LLC, Indianapolis, IN, 46201, USA.
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
17
|
Rajendran VK, Bakthavathsalam P, Bergquist PL, Sunna A. Smartphone technology facilitates point-of-care nucleic acid diagnosis: a beginner's guide. Crit Rev Clin Lab Sci 2020; 58:77-100. [PMID: 32609551 DOI: 10.1080/10408363.2020.1781779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The reliable detection of nucleic acids at low concentrations in clinical samples like blood, urine and saliva, and in food can be achieved by nucleic acid amplification methods. Several portable and hand-held devices have been developed to translate these laboratory-based methods to point-of-care (POC) settings. POC diagnostic devices could potentially play an important role in environmental monitoring, health, and food safety. Use of a smartphone for nucleic acid testing has shown promising progress in endpoint as well as real-time analysis of various disease conditions. The emergence of smartphone-based POC devices together with paper-based sensors, microfluidic chips and digital droplet assays are used currently in many situations to provide quantitative detection of nucleic acid targets. State-of-the-art portable devices are commercially available and rapidly emerging smartphone-based POC devices that allow the performance of laboratory-quality colorimetric, fluorescent and electrochemical detection are described in this review. We present a comprehensive review of smartphone-based POC sensing applications, specifically on microbial diagnostics, assess their performance and propose recommendations for the future.
Collapse
Affiliation(s)
| | - Padmavathy Bakthavathsalam
- School of Chemistry and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Peter L Bergquist
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
18
|
Lee Y, Kang BH, Kang M, Chung DR, Yi GS, Lee LP, Jeong KH. Nanoplasmonic On-Chip PCR for Rapid Precision Molecular Diagnostics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12533-12540. [PMID: 32101396 DOI: 10.1021/acsami.9b23591] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Emerging molecular diagnosis requires ultrafast polymerase chain reaction (PCR) on chip for rapid precise detection of infectious diseases in the point-of-care test. Here, we report nanoplasmonic on-chip PCR for rapid precision molecular diagnostics. The nanoplasmonic pillar arrays (NPA) comprise gold nanoislands on the top and sidewall of large-scale glass nanopillar arrays. The nanoplasmonic pillars enhance light absorption of a white light-emitting diode (LED) over the whole visible range due to strong electromagnetic hotspots between the nanoislands. As a result, they effectively induce photothermal heating for ultrafast PCR thermal cycling. The temperature profile of NPA exhibits 30 cycles between 98 and 60 °C for a total of 3 min and 30 s during the cyclic excitation of white LED light. The experimental results also demonstrate the rapid DNA amplification of both 0.1 ng μL-1 of λ-DNA in 20 thermal cycles and 0.1 ng μL-1 of complementary DNA of Middle East respiratory syndrome coronavirus in 30 thermal cycles using a conventional PCR volume of 15 μL. This nanoplasmonic PCR technique provides a new opportunity for rapid precision molecular diagnostics.
Collapse
Affiliation(s)
- Youngseop Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Byoung-Hoon Kang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Minhee Kang
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
- Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Doo Ryeon Chung
- Division of Infectious Disease, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
- Center for Infection Prevention and Control, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
- Asia Pacific Foundation for infectious Diseases (APFID), 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Luke P Lee
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, California 94720, United States
- Biophysics Graduate Program, University of California, Berkeley, California 94720, United States
| | - Ki-Hun Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
19
|
Bono MS, Beasley S, Hanhauser E, Hart AJ, Karnik R, Vaishnav C. Fieldwork-based determination of design priorities for point-of-use drinking water quality sensors for use in resource-limited environments. PLoS One 2020; 15:e0228140. [PMID: 31978158 PMCID: PMC6980542 DOI: 10.1371/journal.pone.0228140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/08/2020] [Indexed: 01/16/2023] Open
Abstract
Improved capabilities in microfluidics, electrochemistry, and portable assays have resulted in the development of a wide range of point-of-use sensors intended for environmental, medical, and agricultural applications in resource-limited environments of developing countries. However, these devices are frequently developed without direct interaction with their often-remote intended user base, creating the potential for a disconnect between users' actual needs and those perceived by sensor developers. As different analytical techniques have inherent strengths and limitations, effective measurement solution development requires determination of desired sensor attributes early in the development process. In this work, we present our findings on design priorities for point-of-use microbial water sensors based on fieldwork in rural India, as well as a guide to fieldwork methodologies for determining desired sensor attributes. We utilized group design workshops for initial identification of design priorities, and then conducted choice-based conjoint analysis interviews for quantification of user preferences among these priorities. We found the highest user preference for integrated reporting of contaminant concentration and recommended actions, as well as significant preferences for mostly reusable sensor architectures, same-day results, and combined ingredients. These findings serve as a framework for future microbial sensor development and a guide for fieldwork-based understanding of user needs.
Collapse
Affiliation(s)
- Michael S. Bono
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Tata Center for Technology and Design, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Sydney Beasley
- Tata Center for Technology and Design, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Technology and Policy Program, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Emily Hanhauser
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Tata Center for Technology and Design, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - A. John Hart
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Rohit Karnik
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Chintan Vaishnav
- Tata Center for Technology and Design, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Novel technologies, such as high-definition cameras, encryption software, electronic stethoscopes, microfluidic diagnostic systems, and widely available broadband Internet have expanded the potential for telemedicine. This narrative review presents current and future uses of telemedicine in the prevention, diagnosis, treatment, stewardship, and management of infectious disease. RECENT FINDINGS Beginning in the 1990s, early approaches to telemedicine in infectious disease focused largely on treatment of HIV/AIDS, hepatitis C, and tuberculosis. However, recent innovations allow for targeting of additional diseases and in increasingly remote settings. Telemedicine allows virtual visits between patients in the home and remote providers, permitting outpatient management of complex conditions, such as post-surgical site monitoring, and non-urgent infectious maladies, such as uncomplicated urinary tract infection. Remote provider education by videoconference and integrated clinical decision support tools create avenues to improve inpatient care, including antimicrobial stewardship. Technological strides from miniaturization of diagnostic tests to robotic telepresence physical exams improve access to infectious disease care in isolated and infrastructure-poor environments, from cargo ships to other resource-limited settings. Telemedicine in the field of infectious disease is rapidly expanding in clinical, technological, geographical, and human capacity. Recent innovations narrow gaps in access to care for populations traditionally underserved, stigmatized, isolated by remote geography, or lacking technological infrastructure. Current and future approaches will transform inpatient, outpatient, and remote care.
Collapse
|
21
|
Blohmke CJ, Muller J, Gibani MM, Dobinson H, Shrestha S, Perinparajah S, Jin C, Hughes H, Blackwell L, Dongol S, Karkey A, Schreiber F, Pickard D, Basnyat B, Dougan G, Baker S, Pollard AJ, Darton TC. Diagnostic host gene signature for distinguishing enteric fever from other febrile diseases. EMBO Mol Med 2019; 11:e10431. [PMID: 31468702 PMCID: PMC6783646 DOI: 10.15252/emmm.201910431] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Misdiagnosis of enteric fever is a major global health problem, resulting in patient mismanagement, antimicrobial misuse and inaccurate disease burden estimates. Applying a machine learning algorithm to host gene expression profiles, we identified a diagnostic signature, which could distinguish culture-confirmed enteric fever cases from other febrile illnesses (area under receiver operating characteristic curve > 95%). Applying this signature to a culture-negative suspected enteric fever cohort in Nepal identified a further 12.6% as likely true cases. Our analysis highlights the power of data-driven approaches to identify host response patterns for the diagnosis of febrile illnesses. Expression signatures were validated using qPCR, highlighting their utility as PCR-based diagnostics for use in endemic settings.
Collapse
Affiliation(s)
- Christoph J Blohmke
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | | | - Malick M Gibani
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | - Hazel Dobinson
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | - Sonu Shrestha
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | - Soumya Perinparajah
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | - Celina Jin
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | - Harri Hughes
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | - Luke Blackwell
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | - Sabina Dongol
- Patan Academy of Healthy SciencesOxford University Clinical Research UnitKathmanduNepal
| | - Abhilasha Karkey
- Patan Academy of Healthy SciencesOxford University Clinical Research UnitKathmanduNepal
| | | | - Derek Pickard
- Infection Genomics ProgramThe Wellcome Trust Sanger InstituteHinxtonUK
| | - Buddha Basnyat
- Patan Academy of Healthy SciencesOxford University Clinical Research UnitKathmanduNepal
| | - Gordon Dougan
- Infection Genomics ProgramThe Wellcome Trust Sanger InstituteHinxtonUK
| | - Stephen Baker
- The Hospital for Tropical DiseasesWellcome Trust Major Overseas ProgrammeOxford University Clinical Research UnitHo Chi Minh CityVietnam
| | - Andrew J Pollard
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
| | - Thomas C Darton
- Department of PaediatricsCentre for Clinical Vaccinology and Tropical MedicineOxford Vaccine GroupOxfordUK
- Oxford National Institute of Health Research Biomedical CentreUniversity of OxfordOxfordUK
- The Hospital for Tropical DiseasesWellcome Trust Major Overseas ProgrammeOxford University Clinical Research UnitHo Chi Minh CityVietnam
- Department of Infection, Immunity and Cardiovascular DiseaseUniversity of SheffieldSheffieldUK
| |
Collapse
|
22
|
Tran MV, Susumu K, Medintz IL, Algar WR. Supraparticle Assemblies of Magnetic Nanoparticles and Quantum Dots for Selective Cell Isolation and Counting on a Smartphone-Based Imaging Platform. Anal Chem 2019; 91:11963-11971. [DOI: 10.1021/acs.analchem.9b02853] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Michael V. Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kimihiro Susumu
- KeyW Corporation, Hanover, Maryland 21076, United States
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - W. Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
23
|
Kong M, Li Z, Wu J, Hu J, Sheng Y, Wu D, Lin Y, Li M, Wang X, Wang S. A wearable microfluidic device for rapid detection of HIV-1 DNA using recombinase polymerase amplification. Talanta 2019; 205:120155. [PMID: 31450450 DOI: 10.1016/j.talanta.2019.120155] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/07/2019] [Accepted: 07/13/2019] [Indexed: 12/26/2022]
Abstract
Although isothermal nucleic acid amplification is advantageous in pathogen detection in resource-limited settings, an electricity-dependent heating module is often required. Here, we developed a wearable microfluidic device combined with recombinase polymerase amplification (RPA) for simple and rapid amplification of HIV-1 DNA using human body heat. The human body temperature at the human wrist varied from 33 to 34 °C in the ambient environment, which is sufficient to perform RPA reactions. With the aid of a cellphone-based fluorescence detection system, this device detected HIV-1 DNA quantitatively ranging from 102 to 105 copies/mL with a log linearity of 0.98 in 24 min. These results demonstrate that this wearable point-of-care (POC) nucleic acid testing method is advantageous over traditional PCR and other isothermal nucleic acid amplification methods in terms of time, portability and independence on electricity. This wearable microfluidic device in conjunction with a cellphone-based fluorescence detection system can be potentially used for the detection of HIV-1 and adapted for POC detection of a broad range of infectious pathogens in resource-limited settings.
Collapse
Affiliation(s)
- Mengqi Kong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Zihan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Jianguo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Jie Hu
- Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore (NUS), 117599, Singapore
| | - Yefeng Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Di Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - Yong Lin
- College of Science, Ningbo University of Technology, Ningbo, China
| | - Ming Li
- State Key Laboratory of CAD &CG, Zhejiang University, Hangzhou, China
| | - Xiaozhi Wang
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China
| | - ShuQi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, China.
| |
Collapse
|
24
|
Lee SH, Park SM, Kim BN, Kwon OS, Rho WY, Jun BH. Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics. Biosens Bioelectron 2019; 141:111448. [PMID: 31252258 DOI: 10.1016/j.bios.2019.111448] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Over the last decade, nucleic acid amplification tests (NAATs) including polymerase chain reaction (PCR) were an indispensable methodology for diagnosing cancers, viral and bacterial infections owing to their high sensitivity and specificity. Because the NAATs can recognize and discriminate even a few copies of nucleic acid (NA) and species-specific NA sequences, NAATs have become the gold standard in a wide range of applications. However, limitations of NAAT approaches have recently become more apparent by reason of their lengthy run time, large reaction volume, and complex protocol. To meet the current demands of clinicians and biomedical researchers, new NAATs have developed to achieve ultrafast sample-to-answer protocols for the point-of-care testing (POCT). In this review, ultrafast NA-POCT platforms are discussed, outlining their NA amplification principles as well as delineating recent advances in ultrafast NAAT applications. The main focus is to provide an overview of NA-POCT platforms in regard to sample preparation of NA, NA amplification, NA detection process, interpretation of the analysis, and evaluation of the platform design. Increasing importance will be given to innovative, ultrafast amplification methods and tools which incorporate artificial intelligence (AI)-associated data analysis processes and mobile-healthcare networks. The future prospects of NA POCT platforms are promising as they allow absolute quantitation of NA in individuals which is essential to precision medicine.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Bioengineering, University of California Berkeley, CA, USA
| | | | - Brian N Kim
- Department of Electrical and Computer Engineering, University of Central Florida, FL, USA
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - Won-Yep Rho
- School of International Engineering and Science, Chonbuk National University, Jeonju, South Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, South Korea.
| |
Collapse
|
25
|
Kaprou GD, Papadopoulos V, Papageorgiou DP, Kefala I, Papadakis G, Gizeli E, Chatzandroulis S, Kokkoris G, Tserepi A. Ultrafast, low-power, PCB manufacturable, continuous-flow microdevice for DNA amplification. Anal Bioanal Chem 2019; 411:5297-5307. [PMID: 31161322 DOI: 10.1007/s00216-019-01911-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
The design and fabrication of a continuous-flow μPCR device with very short amplification time and low power consumption are presented. Commercially available, 4-layer printed circuit board (PCB) substrates are employed, with in-house designed yet industrially manufactured embedded Cu micro-resistive heaters lying at very close distance from the microfluidic network, where DNA amplification takes place. The 1.9-m-long microchannel in combination with desirably high flow velocities (for fast amplification) challenged the robustness of the sealing that was overcome with the development of a novel bonding method rendering the microdevice robust even at extreme pressure drops (12 bars). The proposed fabrication methods are PCB compatible, allowing for mass and reliable production of the μPCR device in the established PCB industry. The μPCR chip was successfully validated during the amplification of two different DNA fragments (and with different target DNA copies) corresponding to the exon 20 of the BRCA1 gene, and to the plasmid pBR322, a commonly used cloning vector in E. coli. Successful DNA amplification was demonstrated at total reaction times down to 2 min, with a power consumption of 2.7 W, rendering the presented μPCR one of the fastest and lowest power-consuming devices, suitable for implementation in low-resource settings. Detailed numerical calculations of the DNA residence time distributions, within an acceptable temperature range for denaturation, annealing, and extension, performed for the first time in the literature, provide useful information regarding the actual on-chip PCR protocol and justify the maximum volumetric flow rate for successful DNA amplification. The calculations indicate that the shortest amplification time is achieved when the device is operated at its enzyme kinetic limit (i.e., extension rate). Graphical abstract.
Collapse
Affiliation(s)
- Georgia D Kaprou
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece.,Department of Biology, University of Crete, Voutes, 70013, Heraklion, Greece
| | - Vasileios Papadopoulos
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece
| | - Dimitris P Papageorgiou
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ioanna Kefala
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece
| | - George Papadakis
- Institute of Molecular Biology and Biotechnology-FORTH, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - Electra Gizeli
- Department of Biology, University of Crete, Voutes, 70013, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology-FORTH, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - Stavros Chatzandroulis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece
| | - George Kokkoris
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece.
| | - Angeliki Tserepi
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece.
| |
Collapse
|
26
|
Jeong SW, Park YM, Jo SH, Lee SJ, Kim YT, Lee KG. Smartphone operable centrifugal system (SOCS) for on-site DNA extraction from foodborne bacterial pathogen. BIOMICROFLUIDICS 2019; 13:034111. [PMID: 31149321 PMCID: PMC6531255 DOI: 10.1063/1.5093752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/06/2019] [Indexed: 05/16/2023]
Abstract
The on-site recovery of nucleic acid from foodborne bacteria is in high demand to further understand on-site molecular diagnosis, which is especially applicable in developing countries. Here, we first proposed a smartphone operable centrifugal system (SOCS) for nucleic acid extraction with the assistance of a low power consumable motor and hydrogel beads. The SOCS consists of a centrifugal motor, 3D-printed cartridge, a nucleic acid collection column, and a smartphone. The SOCS shows excellent DNA extraction performance within 6 min, and it can operate more than 100 times using a smartphone. The purified effluent DNA was accumulated in the nucleic acid collection column. The performance of the SOCS was confirmed by amplifying the recovered DNA from Escherichia coli O157:H7. Moreover, the artificially inoculated food and blood samples also confirmed the performance of SOCS. The proposed SOCS provides an on-site operable nucleic acid separation platform in terms of simplicity, easy usability, cost-effectiveness, and portability in pathogenic point-of-care diagnostics.
Collapse
Affiliation(s)
- Soon Woo Jeong
- Nano-Bio Application Team, National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Yoo Min Park
- Nano-Bio Application Team, National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Sung Hee Jo
- Nano-Bio Application Team, National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Seok Jae Lee
- Nano-Bio Application Team, National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Yong Tae Kim
- Department of Chemical Engineering & Biotechnology, Korea Polytechnic University, 237 Sangidaehak-ro, Siheung-si, Gyeonggi-do 15073, South Korea
- Authors to whom correspondence should be addressed:, Fax: +82-31-8041-0629 and
, Fax: +82-42-366-1990
| | - Kyoung G. Lee
- Nano-Bio Application Team, National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Authors to whom correspondence should be addressed:, Fax: +82-31-8041-0629 and
, Fax: +82-42-366-1990
| |
Collapse
|
27
|
Martzy R, Kolm C, Krska R, Mach RL, Farnleitner AH, Reischer GH. Challenges and perspectives in the application of isothermal DNA amplification methods for food and water analysis. Anal Bioanal Chem 2019; 411:1695-1702. [PMID: 30617408 PMCID: PMC6453865 DOI: 10.1007/s00216-018-1553-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/09/2018] [Accepted: 12/14/2018] [Indexed: 12/04/2022]
Abstract
Molecular diagnostic tools in the field of food and water quality analysis are becoming increasingly widespread. Usually, based on DNA amplification techniques such as polymerase chain reaction (PCR), these methods are highly sensitive and versatile but require well-equipped laboratories and trained personnel. To reduce analysis time and avoid expensive equipment, isothermal DNA amplification methods for detecting various target organisms have been developed. However, to make molecular diagnostics suitable for low-resource settings and in-field applications, it is crucial to continuously adapt the working steps associated with DNA amplification, namely sample preparation, DNA extraction, and visualization of the results. Many novel approaches have been evaluated in recent years to tackle these challenges, e.g., the use of ionic liquids for the rapid isolation of nucleic acids from organisms relevant for food and water analysis or the integration of entire analytical workflows on microfluidic chips. In any event, the future of applications in the field of isothermal amplification will probably lie in ready-to-use cartridges combined with affordable handheld devices for on-site analysis. This trend article aims to make prospective users more familiar with this technology and its potential for moving molecular diagnostics from the laboratory to the field. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Roland Martzy
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Molecular Diagnostics Group, Department of Agrobiotechnology (IFA-Tulln), 3430, Tulln, Austria
- ICC Interuniversity Cooperation Centre Water & Health, Vienna, Austria
| | - Claudia Kolm
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Molecular Diagnostics Group, Department of Agrobiotechnology (IFA-Tulln), 3430, Tulln, Austria
- ICC Interuniversity Cooperation Centre Water & Health, Vienna, Austria
| | - Rudolf Krska
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Agrobiotechnology (IFA-Tulln), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
- Queen's University Belfast, Institute for Global Food Security, School of Biological Sciences, Belfast, Northern Ireland, BT71NN, UK
| | - Robert L Mach
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Research Area Biochemical Technology, Research Group of Synthetic Biology and Molecular Biotechnology, 1060, Vienna, Austria
| | - Andreas H Farnleitner
- ICC Interuniversity Cooperation Centre Water & Health, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Research Unit Water Quality and Health, 3500, Krems, Austria
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Research Area Biochemical Technology, Research Group of Environmental Microbiology and Molecular Diagnostics, 1060, Vienna, Austria
| | - Georg H Reischer
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Molecular Diagnostics Group, Department of Agrobiotechnology (IFA-Tulln), 3430, Tulln, Austria.
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Research Area Biochemical Technology, Research Group of Environmental Microbiology and Molecular Diagnostics, 1060, Vienna, Austria.
| |
Collapse
|
28
|
Lee SH, Song J, Cho B, Hong S, Hoxha O, Kang T, Kim D, Lee LP. Bubble-free rapid microfluidic PCR. Biosens Bioelectron 2019; 126:725-733. [DOI: 10.1016/j.bios.2018.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 01/30/2023]
|
29
|
Abstract
Kaposi sarcoma (KS) gained public attention as an AIDS-defining malignancy; its appearance on the skin was a highly stigmatizing sign of HIV infection during the height of the AIDS epidemic. The widespread introduction of effective antiretrovirals to control HIV by restoring immunocompetence reduced the prevalence of AIDS-related KS, although KS does occur in individuals with well-controlled HIV infection. KS also presents in individuals without HIV infection in older men (classic KS), in sub-Saharan Africa (endemic KS) and in transplant recipients (iatrogenic KS). The aetiologic agent of KS is KS herpesvirus (KSHV; also known as human herpesvirus-8), and viral proteins can induce KS-associated cellular changes that enable the virus to evade the host immune system and allow the infected cell to survive and proliferate despite viral infection. Currently, most cases of KS occur in sub-Saharan Africa, where KSHV infection is prevalent owing to transmission by saliva in childhood compounded by the ongoing AIDS epidemic. Treatment for early AIDS-related KS in previously untreated patients should start with the control of HIV with antiretrovirals, which frequently results in KS regression. In advanced-stage KS, chemotherapy with pegylated liposomal doxorubicin or paclitaxel is the most common treatment, although it is seldom curative. In sub-Saharan Africa, KS continues to have a poor prognosis. Newer treatments for KS based on the mechanisms of its pathogenesis are being explored.
Collapse
Affiliation(s)
- Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Blossom Damania
- Department of Microbiology and Immunology, Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Mark Bower
- National Centre for HIV Malignancy, Chelsea & Westminster Hospital, London, UK
| | - Denise Whitby
- Leidos Biomedical Research, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
30
|
Hernández-Neuta I, Neumann F, Brightmeyer J, Ba Tis T, Madaboosi N, Wei Q, Ozcan A, Nilsson M. Smartphone-based clinical diagnostics: towards democratization of evidence-based health care. J Intern Med 2019; 285:19-39. [PMID: 30079527 PMCID: PMC6334517 DOI: 10.1111/joim.12820] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advancements in bioanalytical techniques have led to the development of novel and robust diagnostic approaches that hold promise for providing optimal patient treatment, guiding prevention programs and widening the scope of personalized medicine. However, these advanced diagnostic techniques are still complex, expensive and limited to centralized healthcare facilities or research laboratories. This significantly hinders the use of evidence-based diagnostics for resource-limited settings and the primary care, thus creating a gap between healthcare providers and patients, leaving these populations without access to precision and quality medicine. Smartphone-based imaging and sensing platforms are emerging as promising alternatives for bridging this gap and decentralizing diagnostic tests offering practical features such as portability, cost-effectiveness and connectivity. Moreover, towards simplifying and automating bioanalytical techniques, biosensors and lab-on-a-chip technologies have become essential to interface and integrate these assays, bringing together the high precision and sensitivity of diagnostic techniques with the connectivity and computational power of smartphones. Here, we provide an overview of the emerging field of clinical smartphone diagnostics and its contributing technologies, as well as their wide range of areas of application, which span from haematology to digital pathology and rapid infectious disease diagnostics.
Collapse
Affiliation(s)
- I Hernández-Neuta
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| | - F Neumann
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| | - J Brightmeyer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - T Ba Tis
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - N Madaboosi
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| | - Q Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - A Ozcan
- Electrical and Computer Engineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - M Nilsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| |
Collapse
|
31
|
Lu Z, Rey E, Vemulapati S, Srinivasan B, Mehta S, Erickson D. High-yield paper-based quantitative blood separation system. LAB ON A CHIP 2018; 18:3865-3871. [PMID: 30444230 PMCID: PMC6287273 DOI: 10.1039/c8lc00717a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Interest in developing paper-based devices for point-of-care diagnostics in resource-limited settings has risen remarkably in recent decades. In this paper, we demonstrate what we refer to as "high yield passive rrythrocyte removal" (HYPER) technology, which utilizes capillary forces in a unique cross-flow filtration for the separation of whole blood with performance comparable to centrifuges. As we will demonstrate, state-of-the-art passive blood separation methods implemented in paper-based systems exhibit rapid blood cell clogging on the filtration media or serum outlet and yield only about 10-30% of the total serum present in the sample. Our innovation results from the inclusion of a differentiation pad, which exploits hydrodynamic effects to reduce the formation of a fouling layer on the blood filtration membrane resulting in more than 60% serum yield with undiluted whole blood as direct input. To demonstrate the effectiveness of the HYPER technology we implement it in a lateral flow system and demonstrate the accurate quantification of vitamin A and iron levels in whole blood samples in 15 minutes.
Collapse
Affiliation(s)
- Zhengda Lu
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Elizabeth Rey
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Sasank Vemulapati
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Balaji Srinivasan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Saurabh Mehta
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA. and Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA. and Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA. and Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
32
|
Sreejith KR, Ooi CH, Jin J, Dao DV, Nguyen NT. Digital polymerase chain reaction technology - recent advances and future perspectives. LAB ON A CHIP 2018; 18:3717-3732. [PMID: 30402632 DOI: 10.1039/c8lc00990b] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Digital polymerase chain reaction (dPCR) technology has remained a "hot topic" in the last two decades due to its potential applications in cell biology, genetic engineering, and medical diagnostics. Various advanced techniques have been reported on sample dispersion, thermal cycling and output monitoring of digital PCR. However, a fully automated, low-cost and handheld digital PCR platform has not been reported in the literature. This paper attempts to critically evaluate the recent developments in techniques for sample dispersion, thermal cycling and output evaluation for dPCR. The techniques are discussed in terms of hardware simplicity, portability, cost-effectiveness and suitability for automation. The present paper also discusses the research gaps observed in each step of dPCR and concludes with possible improvements toward portable, low-cost and automatic digital PCR systems.
Collapse
Affiliation(s)
- Kamalalayam Rajan Sreejith
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia.
| | | | | | | | | |
Collapse
|
33
|
Snodgrass R, Gardner A, Semeere A, Kopparthy VL, Duru J, Maurer T, Martin J, Cesarman E, Erickson D. A portable device for nucleic acid quantification powered by sunlight, a flame or electricity. Nat Biomed Eng 2018; 2:657-665. [PMID: 30906647 PMCID: PMC6425734 DOI: 10.1038/s41551-018-0286-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A decentralized approach to diagnostics can decrease the time to
treatment of infectious diseases in resource-limited settings. Yet most modern
diagnostic tools require stable electricity and are not portable. Here, we
describe a portable device for isothermal nucleic-acid quantification that can
operate with power from electricity, sunlight or a flame, and that can store
heat from intermittent energy sources, for operation when electrical power is
not available or reliable. We deployed the device in two Ugandan health clinics,
where it successfully operated through multiple power outages, with equivalent
performance when powered via sunlight or electricity. A direct comparison
between the portable device and commercial qPCR (quantitative polymerase chain
reaction) machines for samples from 71 Ugandan patients (29 of which were tested
in Uganda) for the presence of Kaposi’s sarcoma-associated herpesvirus
DNA showed 94% agreement, with the four discordant samples having the lowest
concentration of the herpesvirus DNA. The device’s flexibility in power
supply provides a needed solution for on-field diagnostics.
Collapse
Affiliation(s)
- Ryan Snodgrass
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Andrea Gardner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | - Jens Duru
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Toby Maurer
- Department of Dermatology, University of California, San Francisco, CA, USA
| | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
34
|
Vohra P, Strobbia P, Ngo HT, Lee WT, Vo-Dinh T. Rapid Nanophotonics Assay for Head and Neck Cancer Diagnosis. Sci Rep 2018; 8:11410. [PMID: 30061592 PMCID: PMC6065408 DOI: 10.1038/s41598-018-29428-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/31/2018] [Indexed: 01/13/2023] Open
Abstract
Efficient and timely diagnosis of head and neck squamous cell carcinoma (HNSCC) is a critical challenge, particularly in low and middle income countries. These regions, which are expected to witness a drastic increase in HNSCC rates, are ill-prepared to handle the diagnostic burden due to limited resources, especially the low ratio of pathologists per population, resulting in delayed diagnosis and treatment. Here, we demonstrate the potential of an alternative diagnostic method as a low-cost, resource-efficient alternative to histopathological analysis. Our novel technology employs unique surface-enhanced Raman scattering (SERS) "nanorattles" targeting cytokeratin nucleic acid biomarkers specific for HNSCC. In this first study using SERS diagnostics for head and neck cancers, we tested the diagnostic accuracy of our assay using patient tissue samples. In a blinded trial, our technique demonstrated a sensitivity of 100% and specificity of 89%, supporting its use as a useful alternative to histopathological diagnosis. The implications of our method are vast and significant in the setting of global health. Our method can provide a rapid diagnosis, allowing for earlier treatment before the onset of distant metastases. In comparison to histopathology, which can take several months in remote limited-resources regions, our method provides a diagnosis within a few hours.
Collapse
Affiliation(s)
- P Vohra
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, USA
- Division of Head and Neck Surgery and Communication Sciences, Duke School of Medicine, Durham, NC, USA
| | - P Strobbia
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, USA
| | - H T Ngo
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, USA
- Biomedical Engineering Department, International University, Vietnam National University-Ho Chi Minh City (VNU-HCMC), Ho Chi Minh City, Vietnam
| | - W T Lee
- Division of Head and Neck Surgery and Communication Sciences, Duke School of Medicine, Durham, NC, USA
| | - T Vo-Dinh
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, USA.
| |
Collapse
|
35
|
Automatic smartphone-based microfluidic biosensor system at the point of care. Biosens Bioelectron 2018; 110:78-88. [DOI: 10.1016/j.bios.2018.03.018] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 12/18/2022]
|
36
|
Mendoza-Gallegos RA, Rios A, Garcia-Cordero JL. An Affordable and Portable Thermocycler for Real-Time PCR Made of 3D-Printed Parts and Off-the-Shelf Electronics. Anal Chem 2018; 90:5563-5568. [DOI: 10.1021/acs.analchem.7b04843] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Roberto A. Mendoza-Gallegos
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León C.P. 66628, Mexico
| | - Amelia Rios
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León C.P. 66628, Mexico
| | - Jose L. Garcia-Cordero
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León C.P. 66628, Mexico
| |
Collapse
|
37
|
Hárendarčíková L, Petr J. Smartphones & microfluidics: Marriage for the future. Electrophoresis 2018; 39:1319-1328. [DOI: 10.1002/elps.201700389] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Lenka Hárendarčíková
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science; Palacký University in Olomouc; Olomouc Czech Republic
| | - Jan Petr
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science; Palacký University in Olomouc; Olomouc Czech Republic
| |
Collapse
|
38
|
Yang K, Wu J, Peretz-Soroka H, Zhu L, Li Z, Sang Y, Hipolito J, Zhang M, Santos S, Hillier C, de Faria RL, Liu Y, Lin F. M kit: A cell migration assay based on microfluidic device and smartphone. Biosens Bioelectron 2018; 99:259-267. [PMID: 28772229 PMCID: PMC5585005 DOI: 10.1016/j.bios.2017.07.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 11/23/2022]
Abstract
Mobile sensing based on the integration of microfluidic device and smartphone, so-called MS2 technology, has enabled many applications over recent years, and continues to stimulate growing interest in both research communities and industries. In particular, it has been envisioned that MS2 technology can be developed for various cell functional assays to enable basic research and clinical applications. Toward this direction, in this paper, we describe the development of a MS2-based cell functional assay for testing cell migration (the Mkit). The system is constructed as an integrated test kit, which includes microfluidic chips, a smartphone-based imaging platform, the phone apps for image capturing and data analysis, and a set of reagent and accessories for performing the cell migration assay. We demonstrated that the Mkit can effectively measure purified neutrophil and cancer cell chemotaxis. Furthermore, neutrophil chemotaxis can be tested from a drop of whole blood using the Mkit with red blood cell (RBC) lysis. The effects of chemoattractant dose and gradient profile on neutrophil chemotaxis were also tested using the Mkit. In addition to research applications, we demonstrated the effective use of the Mkit for on-site test at the hospital and for testing clinical samples from chronic obstructive pulmonary disease patient. Thus, this developed Mkit provides an easy and integrated experimental platform for cell migration related research and potential medical diagnostic applications.
Collapse
Affiliation(s)
- Ke Yang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Hagit Peretz-Soroka
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Ling Zhu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Zhigang Li
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Yaoshuo Sang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Jolly Hipolito
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | | | - Susy Santos
- Victoria General Hospital and River Heights/Fort Garry Community areas, Winnipeg, MB, Canada
| | | | | | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada; Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
39
|
Abstract
Micronutrient deficiencies such as those of vitamin A and iron affect a third of the world's population with consequences such as night blindness, higher child mortality, anemia, poor pregnancy outcomes, and reduced work capacity. Many efforts to prevent or treat these deficiencies are hampered by the lack of adequate, accessible, and affordable diagnostic methods that can enable better targeting of interventions. In this work, we demonstrate a rapid diagnostic test and mobile enabled platform for simultaneously quantifying iron (ferritin), vitamin A (retinol-binding protein), and inflammation (C-reactive protein) status. Our approach, enabled by combining multiple florescent markers and immunoassay approaches on a single test, allows us to provide accurate quantification in 15 min even though the physiological range of the markers of interest varies over five orders of magnitude. We report sensitivities of 88%, 100%, and 80% and specificities of 97%, 100%, and 97% for iron deficiency (ferritin <15 ng/mL or 32 pmol/L), vitamin A deficiency (retinol-binding protein <14.7 μg/mL or 0.70 μmol/L) and inflammation status (C-reactive protein >3.0 μg/mL or 120 nmol/L), respectively. This technology is suitable for point-of-care use in both resource-rich and resource-limited settings and can be read either by a standard laptop computer or through our previously developed NutriPhone technology. If implemented as either a population-level screening or clinical diagnostic tool, we believe this platform can transform nutritional status assessment and monitoring globally.
Collapse
|
40
|
Haney K, Tandon P, Divi R, Ossandon MR, Baker H, Pearlman PC. The Role of Affordable, Point-of-Care Technologies for Cancer Care in Low- and Middle-Income Countries: A Review and Commentary. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2017; 5:2800514. [PMID: 29204328 PMCID: PMC5706528 DOI: 10.1109/jtehm.2017.2761764] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022]
Abstract
As the burden of non-communicable diseases such as cancer continues to rise in low- and middle-income countries (LMICs), it is essential to identify and invest in promising solutions for cancer control and treatment. Point-of-care technologies (POCTs) have played critical roles in curbing infectious disease epidemics in both high- and low-income settings, and their successes can serve as a model for transforming cancer care in LMICs, where access to traditional clinical resources is often limited. The versatility, cost-effectiveness, and simplicity of POCTs warrant attention for their potential to revolutionize cancer detection, diagnosis, and treatment. This paper reviews the landscape of affordable POCTs for cancer care in LMICs with a focus on imaging tools, in vitro diagnostics, and treatment technologies and aspires to encourage innovation and further investment in this space.
Collapse
Affiliation(s)
- Karen Haney
- Dell Medical SchoolThe University of Texas at Austin
| | | | | | | | | | | |
Collapse
|
41
|
Long KD, Woodburn EV, Le HM, Shah UK, Lumetta SS, Cunningham BT. Multimode smartphone biosensing: the transmission, reflection, and intensity spectral (TRI)-analyzer. LAB ON A CHIP 2017; 17:3246-3257. [PMID: 28752875 PMCID: PMC5614857 DOI: 10.1039/c7lc00633k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We demonstrate a smartphone-integrated handheld detection instrument capable of utilizing the internal rear-facing camera as a high-resolution spectrometer for measuring the colorimetric absorption spectrum, fluorescence emission spectrum, and resonant reflection spectrum from a microfluidic cartridge inserted into the measurement light path. Under user selection, the instrument gathers light from either the white "flash" LED of the smartphone or an integrated green laser diode to direct illumination into a liquid test sample or onto a photonic crystal biosensor. Light emerging from each type of assay is gathered via optical fiber and passed through a diffraction grating placed directly over the smartphone camera to generate spectra from the assay when an image is collected. Each sensing modality is associated with a unique configuration of a microfluidic "stick" containing a linear array of liquid chambers that are swiped through the instrument while the smartphone captures video and the software automatically selects spectra representative of each compartment. The system is demonstrated for representative assays in the field of point-of-care (POC) maternal and infant health: an ELISA assay for the fetal fibronectin protein used as an indicator for pre-term birth and a fluorescent assay for phenylalanine as an indicator for phenylketonuria. In each case, the TRI-analyzer is capable of achieving limits of detection that are comparable to those obtained for the same assay measured with a conventional laboratory microplate reader, demonstrating the flexibility of the system to serve as a platform for rapid, simple translation of existing commercially available biosensing assays to a POC setting.
Collapse
Affiliation(s)
- Kenneth D Long
- Department of Bioengineering, Micro and Nano Technology Laboratory, University of Illinois at Urbana-Champaign, 208 N. Wright Street, Urbana, IL 61801, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Yao Y, Zhang C. A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine. Biomed Microdevices 2017; 18:92. [PMID: 27628060 DOI: 10.1007/s10544-016-0115-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel screen-printed microfluidic paper-based analytical device with all-carbon electrode-enabled electrochemical assay (SP-ACE-EC-μPAD) has been developed. The fabrication of these devices involved wax screen-printing, which was simple, low-cost and energy-efficient. The working, counter and reference electrodes were screen-printed using carbon ink on the patterned paper devices. Different wax screen-printing processes were examined and optimized, which led to an improved method with a shorter heating time (~5 s) and a lower heating temperature (75 °C). Different printing screens were examined, with a 300-mesh polyester screen yielding the highest quality wax screen-prints. The carbon electrodes were screen-printed on the μPADs and then examined using cyclic voltammetry. The analytical performance of the SP-ACE-EC-μPADs for the detection of glucose and uric acid in standard solutions was investigated. The results were reproducible, with a linear relationship [R(2) = 0.9987 (glucose) or 0.9997 (uric acid)] within the concentration range of interest, and with detection limits as low as 0.35 mM (glucose) and 0.08 mM (uric acid). To determine the clinical utility of the μPADs, chronoamperometry was used to analyze glucose and uric acid in real urine samples using the standard addition method. Our devices were able to detect the analytes of interest in complex real-world biological samples, and have the potential for use in a wide variety of applications.
Collapse
Affiliation(s)
- Yong Yao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
43
|
Ozcelik D, Cai H, Leake KD, Hawkins AR, Schmidt H. Optofluidic bioanalysis: fundamentals and applications. NANOPHOTONICS 2017; 6:647-661. [PMID: 29201591 PMCID: PMC5708574 DOI: 10.1515/nanoph-2016-0156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Over the past decade, optofluidics has established itself as a new and dynamic research field for exciting developments at the interface of photonics, microfluidics, and the life sciences. The strong desire for developing miniaturized bioanalytic devices and instruments, in particular, has led to novel and powerful approaches to integrating optical elements and biological fluids on the same chip-scale system. Here, we review the state-of-the-art in optofluidic research with emphasis on applications in bioanalysis and a focus on waveguide-based approaches that represent the most advanced level of integration between optics and fluidics. We discuss recent work in photonically reconfigurable devices and various application areas. We show how optofluidic approaches have been pushing the performance limits in bioanalysis, e.g. in terms of sensitivity and portability, satisfying many of the key requirements for point-of-care devices. This illustrates how the requirements for bianalysis instruments are increasingly being met by the symbiotic integration of novel photonic capabilities in a miniaturized system.
Collapse
Affiliation(s)
- Damla Ozcelik
- School of Engineering, University of California-Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Hong Cai
- School of Engineering, University of California-Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Kaelyn D. Leake
- School of Engineering, University of California-Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Aaron R. Hawkins
- ECEn Department, 459 Clyde Building, Brigham Young University, Provo, UT 84602, USA
| | - Holger Schmidt
- Corresponding author: Holger Schmidt, School of Engineering, University of California-Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA,
| |
Collapse
|
44
|
Gong MM, Sinton D. Turning the Page: Advancing Paper-Based Microfluidics for Broad Diagnostic Application. Chem Rev 2017. [PMID: 28627178 DOI: 10.1021/acs.chemrev.7b00024] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infectious diseases are a major global health issue. Diagnosis is a critical first step in effectively managing their spread. Paper-based microfluidic diagnostics first emerged in 2007 as a low-cost alternative to conventional laboratory testing, with the goal of improving accessibility to medical diagnostics in developing countries. In this review, we examine the advances in paper-based microfluidic diagnostics for medical diagnosis in the context of global health from 2007 to 2016. The theory of fluid transport in paper is first presented. The next section examines the strategies that have been employed to control fluid and analyte transport in paper-based assays. Tasks such as mixing, timing, and sequential fluid delivery have been achieved in paper and have enabled analytical capabilities comparable to those of conventional laboratory methods. The following section examines paper-based sample processing and analysis. The most impactful advancement here has been the translation of nucleic acid analysis to a paper-based format. Smartphone-based analysis is another exciting development with potential for wide dissemination. The last core section of the review highlights emerging health applications, such as male fertility testing and wearable diagnostics. We conclude the review with the future outlook, remaining challenges, and emerging opportunities.
Collapse
Affiliation(s)
- Max M Gong
- Department of Mechanical and Industrial Engineering, University of Toronto , 5 King's College Road, Toronto, Ontario, Canada M5S 3G8.,Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison , 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto , 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
| |
Collapse
|
45
|
Bissonnette L, Bergeron MG. Portable devices and mobile instruments for infectious diseases point-of-care testing. Expert Rev Mol Diagn 2017; 17:471-494. [PMID: 28343420 DOI: 10.1080/14737159.2017.1310619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Rapidity, simplicity, and portability are highly desirable characteristics of tests and devices designed for performing diagnostics at the point of care (POC), either near patients managed in healthcare facilities or to offer bioanalytical alternatives in external settings. By reducing the turnaround time of the diagnostic cycle, POC diagnostics can reduce the dissemination, morbidity, and mortality of infectious diseases and provide tools to control the global threat of antimicrobial resistance. Areas covered: A literature search of PubMed and Google Scholar, and extensive mining of specialized publications, Internet resources, and manufacturers' websites have been used to organize and write this overview of the challenges and requirements associated with the development of portable sample-to-answer diagnostics, and showcase relevant examples of handheld devices, portable instruments, and less mobile systems which may or could be operated at POC. Expert commentary: Rapid (<1 h) diagnostics can contribute to control infectious diseases and antimicrobial resistant pathogens. Portable devices or instruments enabling sample-to-answer bioanalysis can provide rapid, robust, and reproducible testing at the POC or close from it. Beyond testing, to realize some promises of personalized/precision medicine, it will be critical to connect instruments to healthcare data management systems, to efficiently link decentralized testing results to the electronic medical record of patients.
Collapse
Affiliation(s)
- Luc Bissonnette
- a Centre de recherche en infectiologie de l'Université Laval, Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval , Québec City , Québec , Canada
| | - Michel G Bergeron
- a Centre de recherche en infectiologie de l'Université Laval, Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval , Québec City , Québec , Canada.,b Département de microbiologie-infectiologie et d'immunologie , Faculté de médecine, Université Laval , Québec City , Québec , Canada
| |
Collapse
|
46
|
An integrated versatile lab-on-a-chip platform for the isolation and nucleic acid-based detection of pathogens. Future Sci OA 2017; 3:FSO177. [PMID: 28670469 PMCID: PMC5481810 DOI: 10.4155/fsoa-2016-0088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/18/2017] [Indexed: 11/29/2022] Open
Abstract
Aim: Processing of the samples in molecular diagnostics is complex and labor-intensive. An integrated and automated platform for sample preparation and nucleic acid-based detection can significantly relieve this burden for the users. Results: We present a prototype of a versatile and integrated platform for the detection of pathogens in various liquid media. We describe a proof-of-concept for the integrated isolation of bacteria, cell lysis with optional DNA extraction, DNA amplification and detection in two different reactions, loop-mediated isothermal amplification and PCR, on a single microfluidic platform. Conclusion: The platform enables the transition from large sample volume to microfluidic format. The design and open interface enable its versatile application for various nucleic acid-based assays, from simple to complex setups. DNA-based detection of the pathogens in liquid samples demands many complex steps, various pieces of equipment, and experienced personnel. We developed and demonstrated a platform that can perform these steps automatically on a single instrument. This can enable molecular diagnostics in the places and situations where it was not possible before.
Collapse
|
47
|
A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses. Sci Rep 2017; 7:44778. [PMID: 28317856 PMCID: PMC5357913 DOI: 10.1038/srep44778] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/24/2017] [Indexed: 12/27/2022] Open
Abstract
Current multiplexed diagnostics for Zika, dengue, and chikungunya viruses are situated outside the intersection of affordability, high performance, and suitability for use at the point-of-care in resource-limited settings. Consequently, insufficient diagnostic capabilities are a key limitation facing current Zika outbreak management strategies. Here we demonstrate highly sensitive and specific detection of Zika, chikungunya, and dengue viruses by coupling reverse-transcription loop-mediated isothermal amplification (RT-LAMP) with our recently developed quenching of unincorporated amplification signal reporters (QUASR) technique. We conduct reactions in a simple, inexpensive and portable "LAMP box" supplemented with a consumer class smartphone. The entire assembly can be powered by a 5 V USB source such as a USB power bank or solar panel. Our smartphone employs a novel algorithm utilizing chromaticity to analyze fluorescence signals, which improves the discrimination of positive/negative signals by 5-fold when compared to detection with traditional RGB intensity sensors or the naked eye. The ability to detect ZIKV directly from crude human sample matrices (blood, urine, and saliva) demonstrates our device's utility for widespread clinical deployment. Together, these advances enable our system to host the key components necessary to expand the use of nucleic acid amplification-based detection assays towards point-of-care settings where they are needed most.
Collapse
|
48
|
Wang LJ, Chang YC, Sun R, Li L. A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics. Biosens Bioelectron 2017; 87:686-692. [DOI: 10.1016/j.bios.2016.09.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023]
|
49
|
Chan K, Weaver SC, Wong PY, Lie S, Wang E, Guerbois M, Vayugundla SP, Wong S. Rapid, Affordable and Portable Medium-Throughput Molecular Device for Zika Virus. Sci Rep 2016; 6:38223. [PMID: 27934884 PMCID: PMC5146750 DOI: 10.1038/srep38223] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) has gained global attention as an etiologic agent of fetal microcephaly and Guillain-Barré syndrome. Existing immuno-based rapid tests often fail to distinguish between Zika and related flaviviruses that are common in affected regions of Central and South Americas and the Caribbean. The US CDC and qualified state health department laboratories can perform the reverse transcription polymerase chain reaction (RT-PCR) ZIKV test using highly sophisticated instruments with long turnaround times. The preliminary results of a portable and low-cost molecular diagnostics system for ZIKV infection are reported here. In less than 15 minutes, this low-cost platform can automatically perform high quality RNA extraction from up to 12 ZIKV-spiked urine samples simultaneously. It can also perform reverse transcription recombinase polymerase amplification reaction (RT-RPA) in ≤15 minutes. The fluorescent signal produced from probe-based RT-RPA or RT-PCR assays can be monitored using LEDs and a smartphone camera. In addition, the RT-RPA and RT-PCR assays do not cross-react with dengue and chikungunya viral RNA. This low-cost system lacks complicated, sensitive and high cost components, making it suitable for resource-limited settings. It has the potential to offer simple sample-to-answer molecular diagnostics and can inform healthcare workers of patients' diagnosis promptly.
Collapse
Affiliation(s)
- Kamfai Chan
- AI Biosciences, Inc., College Station, TX, 77845, USA
| | - Scott C. Weaver
- Institute for Human Infections and Immunity and Departments of Microbiology & Immunology and Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Pui-Yan Wong
- AI Biosciences, Inc., College Station, TX, 77845, USA
| | - Sherly Lie
- AI Biosciences, Inc., College Station, TX, 77845, USA
| | - Eryu Wang
- Institute for Human Infections and Immunity and Departments of Microbiology & Immunology and Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mathilde Guerbois
- Institute for Human Infections and Immunity and Departments of Microbiology & Immunology and Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | | | - Season Wong
- AI Biosciences, Inc., College Station, TX, 77845, USA
| |
Collapse
|
50
|
Wu TH, Chang CC, Vaillant J, Bruyant A, Lin CW. DNA biosensor combining single-wavelength colorimetry and a digital lock-in amplifier within a smartphone. LAB ON A CHIP 2016; 16:4527-4533. [PMID: 27778010 DOI: 10.1039/c6lc01170e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Smartphone camera based gold nanoparticle colorimetry (SCB-AuNP colorimetry) has shown good potential for point-of-care applications. However, due to the use of a camera as a photo-detector, there are major limitations to this technique such as a low bit resolution (∼8 bits mainstream) and a low data acquisition rate. These issues have limited the ultimate sensitivity of smartphone based colorimetry as well as the possibility to integrate efficiently a more sensitive approach such as detection based on a lock-in amplifier (LIA). In this paper, we improve the metrological performance of the smartphone to overcome existing issues by adding the LIA capability to AuNP sensing. In this work, instead of using the camera as a photo-detector, the audio jack is used as a photo-detector reader and function generator for driving a laser diode in order to achieve a smartphone based digital lock-in amplifier AuNP colorimetric (SBLIA-AuNP colorimetry) system. A full investigation on the SBLIA design, parameters and performance is comprehensively provided. It is found that the SBLIA can reduce most of the noise and provides a detection noise-to-signal ratio down to -63 dB, which is much better than the -49 dB of the state-of-the-art SCB based method. A DNA detection experiment is demonstrated to reveal the efficacy of the proposed metrological method. The results are compared to UV-visible spectrometry, which is the gold standard for colorimetric measurement. Based on our results, the SBLIA-AuNP colorimetric system has a detection limit of 0.77 nM on short strand DNA detection, which is 5.7 times better than the 4.36 nM limit of a commercial UV-visible spectrometer. Judging from the results, we believe that the sensitive SBLIA would be further extended to other optical diagnostic tools in the near future.
Collapse
Affiliation(s)
- Tzu-Heng Wu
- Institute of Bio-informatics and Bioelectronics, National Taiwan University, Taiwan, Republic of China. and ICD-LNIO, Université de Technologie de Troyes, France.
| | - Chia-Chen Chang
- Institute of Biomedical Engineering, National Taiwan University, Taiwan, Republic of China
| | | | | | - Chii-Wann Lin
- Institute of Bio-informatics and Bioelectronics, National Taiwan University, Taiwan, Republic of China. and Institute of Biomedical Engineering, National Taiwan University, Taiwan, Republic of China
| |
Collapse
|