1
|
Vinijkumthorn R, Kingkaw A, Yanyongsirikarn P, Phaonakrop N, Roytrakul S, Vongsangnak W, Tesena P. Phosphorylation of SNW1 protein associated with equine melanocytic neoplasm identified in serum and feces. Sci Rep 2024; 14:30842. [PMID: 39730520 DOI: 10.1038/s41598-024-81338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024] Open
Abstract
Equine melanocytic neoplasm (EMN) represents a form of skin tumor observed predominantly in grey horses aged over 15 years. Despite its prevalence, current therapeutic and preventive strategies for EMN have been subject to limited investigation. This study endeavors to shed light on potential phosphoproteins present in equine serum and fecal samples, potentially linked to EMN, with a specific focus on functional interactions in EMN pathogenesis. We examined 50 samples (25 serum, 25 feces), divided into three groups based on EMN severity: normal (n = 16), mild (n = 18), and severe EMN (n = 16). Equine phosphoproteome analysis identified 2,359 annotated serum phosphoproteins and 2002 annotated fecal phosphoproteins through differentially expressed proteins (DEPs). KEGG analysis emphasized the role of environmental information processing. Notably, the integrin NF-kappaB binding P-TEFb to stimulate transcriptional elongation signaling pathway, involving SNW1 protein, was implicated in early stage of EMN development in both serum and fecal samples. This highlights SNW1's potential role in mediating transcriptional processes, offering a novel marker within environmental information processing. This study enhances understanding of EMN mechanisms in horses, suggesting early detection through non-invasive methods and identifying a functional pathway involving SNW1, which could inform future treatment and prevention strategies.
Collapse
Affiliation(s)
- Ruethaiwan Vinijkumthorn
- Department of Clinical Science and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Puttamonthon, Nakhon Pathom, 73170, Thailand
| | - Amornthep Kingkaw
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Petchpailin Yanyongsirikarn
- Prasuarthon Small Animal Hospital, Faculty of Veterinary Science, Equine Clinic, Mahidol University, Salaya, Puttamonthon, Nakhon Pathom, 73170, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand.
| | - Parichart Tesena
- Department of Clinical Science and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Puttamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
2
|
Twumasi G, Wang H, Xi Y, Qi J, Li L, Bai L, Liu H. Genome-Wide Association Studies Reveal Candidate Genes Associated with Pigmentation Patterns of Single Feathers of Tianfu Nonghua Ducks. Animals (Basel) 2023; 14:85. [PMID: 38200816 PMCID: PMC10778472 DOI: 10.3390/ani14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024] Open
Abstract
In modern advanced genetics and breeding programs, the study of genes related to pigmentation in ducks is gaining much attention and popularity. Genes and DNA mutation cause variations in the plumage color traits of ducks. Therefore, discovering related genes responsible for different color traits and pigment patterns on each side of the single feathers in Chinese ducks is important for genetic studies. In this study, we collected feather images from 340 ducks and transported them into Image Pro Plus (IPP) 6.0 software to quantify the melanin content in the feathers. Thereafter, a genome-wide association study was conducted to reveal the genes responsible for variations in the feather color trait. The results from this study revealed that the pigmented region was larger in the male ducks as compared to the female ducks. In addition, the pigmented region was larger on the right side of the feather vane than on the left side in both dorsal and ventral feathers, and a positive correlation was observed among the feather color traits. Further, among the annotated genes, WNT3A, DOCK1, RAB1A, and ALDH1A3 were identified to play important roles in the variation in pigmented regions of the various feathers. This study also revealed that five candidate genes, including DPP8, HACD3, INTS14, SLC24A1, and DENND4A, were associated with the color pigment on the dorsal feathers of the ducks. Genes such as PRKG1, SETD6, RALYL, and ZNF704 reportedly play important roles in ventral feather color traits. This study revealed that genes such as WNT3A, DOCK1, RAB1A, and ALDH1A3 were associated with different pigmentation patterns, thereby providing new insights into the genetic mechanisms of single-feather pigmentation patterns in ducks.
Collapse
Affiliation(s)
- Grace Twumasi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Huazhen Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Xi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingjing Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hehe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.T.); (H.W.); (Y.X.); (J.Q.); (L.L.); (L.B.)
- Farm Animal Genetic Resources Exploration and Innovation, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Bento-Lopes L, Cabaço LC, Charneca J, Neto MV, Seabra MC, Barral DC. Melanin's Journey from Melanocytes to Keratinocytes: Uncovering the Molecular Mechanisms of Melanin Transfer and Processing. Int J Mol Sci 2023; 24:11289. [PMID: 37511054 PMCID: PMC10379423 DOI: 10.3390/ijms241411289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Skin pigmentation ensures efficient photoprotection and relies on the pigment melanin, which is produced by epidermal melanocytes and transferred to surrounding keratinocytes. While the molecular mechanisms of melanin synthesis and transport in melanocytes are now well characterized, much less is known about melanin transfer and processing within keratinocytes. Over the past few decades, distinct models have been proposed to explain how melanin transfer occurs at the cellular and molecular levels. However, this remains a debated topic, as up to four different models have been proposed, with evidence presented supporting each. Here, we review the current knowledge on the regulation of melanin exocytosis, internalization, processing, and polarization. Regarding the different transfer models, we discuss how these might co-exist to regulate skin pigmentation under different conditions, i.e., constitutive and facultative skin pigmentation or physiological and pathological conditions. Moreover, we discuss recent evidence that sheds light on the regulation of melanin exocytosis by melanocytes and internalization by keratinocytes, as well as how melanin is stored within these cells in a compartment that we propose be named the melanokerasome. Finally, we review the state of the art on the molecular mechanisms that lead to melanokerasome positioning above the nuclei of keratinocytes, forming supranuclear caps that shield the nuclear DNA from UV radiation. Thus, we provide a comprehensive overview of the current knowledge on the molecular mechanisms regulating skin pigmentation, from melanin exocytosis by melanocytes and internalization by keratinocytes to processing and polarization within keratinocytes. A better knowledge of these molecular mechanisms will clarify long-lasting questions in the field that are crucial for the understanding of skin pigmentation and can shed light on fundamental aspects of organelle biology. Ultimately, this knowledge can lead to novel therapeutic strategies to treat hypo- or hyper-pigmentation disorders, which have a high socio-economic burden on patients and healthcare systems worldwide, as well as cosmetic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Duarte C. Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (L.B.-L.); (L.C.C.); (J.C.); (M.V.N.); (M.C.S.)
| |
Collapse
|
4
|
Chao TY, Cheng YY, Wang ZY, Fang TF, Chang YR, Fuh CS, Su MT, Su YW, Hsu PH, Su YC, Chang YC, Lee TY, Chou WH, Middeldorp JM, Saraste J, Chen MR. Subcellular Distribution of BALF2 and the Role of Rab1 in the Formation of Epstein-Barr Virus Cytoplasmic Assembly Compartment and Virion Release. Microbiol Spectr 2023; 11:e0436922. [PMID: 36602343 PMCID: PMC9927466 DOI: 10.1128/spectrum.04369-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Epstein-Barr virus (EBV) replicates its genome in the nucleus and undergoes tegumentation and envelopment in the cytoplasm. We are interested in how the single-stranded DNA binding protein BALF2, which executes its function and distributes predominantly in the nucleus, is packaged into the tegument of virions. At the mid-stage of virus replication in epithelial TW01-EBV cells, a small pool of BALF2 colocalizes with tegument protein BBLF1, BGLF4 protein kinase, and the cis-Golgi marker GM130 at the perinuclear viral assembly compartment (AC). A possible nuclear localization signal (NLS) between amino acids 1100 and 1128 (C29), which contains positive charged amino acid 1113RRKRR1117, is able to promote yellow fluorescent protein (YFP)-LacZ into the nucleus. In addition, BALF2 interacts with the nucleocapsid-associated protein BVRF1, suggesting that BALF2 may be transported into the cytoplasm with nucleocapsids in a nuclear egress complex (NEC)-dependent manner. A group of proteins involved in intracellular transport were identified to interact with BALF2 in a proteomic analysis. Among them, the small GTPase Rab1A functioning in bi-directional trafficking at the ER-Golgi interface is also a tegument component. In reactivated TW01-EBV cells, BALF2 colocalizes with Rab1A in the cytoplasmic AC. Expression of dominant-negative GFP-Rab1A(N124I) diminished the accumulation of BALF2 in the AC, coupling with attenuation of gp350/220 glycosylation. Virion release was significantly downregulated by expressing dominant-negative GFP-Rab1A(N124I). Overall, the subcellular distribution of BALF2 is regulated through its complex interaction with various proteins. Rab1 activity is required for proper gp350/220 glycosylation and the maturation of EBV. IMPORTANCE Upon EBV lytic reactivation, the virus-encoded DNA replication machinery functions in the nucleus, while the newly synthesized DNA is encapsidated and transported to the cytoplasm for final virus assembly. The single-stranded DNA binding protein BALF2 executing functions within the nucleus was also identified in the tegument layer of mature virions. Here, we studied the functional domain of BALF2 that contributes to the nuclear targeting and used a proteomic approach to identify novel BALF2-interacting cellular proteins that may contribute to virion morphogenesis. The GTPase Rab1, a master regulator of anterograde and retrograde endoplasmic reticulum (ER)-Golgi trafficking, colocalizes with BALF2 in the juxtanuclear concave region at the midstage of EBV reactivation. Rab1 activity is required for BALF2 targeting to the cytoplasmic assembly compartment (AC) and for gp350/220 targeting to cis-Golgi for proper glycosylation and virion release. Our study hints that EBV hijacks the bi-directional ER-Golgi trafficking machinery to complete virus assembly.
Collapse
Affiliation(s)
- Tsung-Yu Chao
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Yi-Ying Cheng
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Zi-Yun Wang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Tien-Fang Fang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Yu-Ruei Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Chi-Shane Fuh
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Mei-Tzu Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Yuan-Wei Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Chen Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Yu-Ching Chang
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Ting-Yau Lee
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Wei-Han Chou
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| | - Jaap M. Middeldorp
- VU University Medical Center, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Tipei, Taiwan
| |
Collapse
|
5
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
6
|
Maruta Y, Fukuda M. Large Rab GTPase Rab44 regulates microtubule-dependent retrograde melanosome transport in melanocytes. J Biol Chem 2022; 298:102508. [PMID: 36126775 PMCID: PMC9586991 DOI: 10.1016/j.jbc.2022.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/27/2022] Open
Abstract
Melanosomes are melanin-containing organelles in melanocytes, and they are responsible for skin and hair pigmentation in mammals. The intracellular distribution of melanosomes is mainly determined by the balance between their anterograde transport on actin filaments and retrograde transport on microtubules. Although we have shown previously that melanoregulin and Rab36 serve as cargo receptors on melanosomes for retrograde transport, their knockdown does not completely inhibit retrograde melanosome transport, suggesting the existence of an additional cargo receptor(s) in melanocytes. In this study, we investigated the possible involvement of an atypical large Rab, Rab44, which also contains EF-hand domains and a coiled-coil domain, in retrograde melanosome transport in mouse melanocytes (Rab27A-deficient melan-ash cells). Our results showed that Rab44 localizes on mature melanosomes through lipidation of its C-terminal Rab-like GTPase domain, and that its knockdown results in suppression of retrograde melanosome transport. In addition, our biochemical analysis indicated that Rab44 interacts with the dynein–dynactin motor complex via its coiled-coil domain–containing middle region. Since simultaneous depletion of Rab44, melanoregulin, and Rab36 resulted in almost complete inhibition of retrograde melanosome transport, we propose that Rab44 is the third cargo receptor. We also showed that the N-terminal region of Rab44, which contains EF-hand domains, is required for both retrograde melanosome transport and its Ca2+-modulated activities. Our findings indicated that Rab44 is a third melanosomal cargo receptor, and that, unlike other cargo receptors previously described, its transport function is regulated by Ca2+.
Collapse
Affiliation(s)
- Yuto Maruta
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
7
|
Cabaço LC, Tomás A, Pojo M, Barral DC. The Dark Side of Melanin Secretion in Cutaneous Melanoma Aggressiveness. Front Oncol 2022; 12:887366. [PMID: 35619912 PMCID: PMC9128548 DOI: 10.3389/fonc.2022.887366] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Skin cancers are among the most common cancers worldwide and are increasingly prevalent. Cutaneous melanoma (CM) is characterized by the malignant transformation of melanocytes in the epidermis. Although CM shows lower incidence than other skin cancers, it is the most aggressive and responsible for the vast majority of skin cancer-related deaths. Indeed, 75% of patients present with invasive or metastatic tumors, even after surgical excision. In CM, the photoprotective pigment melanin, which is produced by melanocytes, plays a central role in the pathology of the disease. Melanin absorbs ultraviolet radiation and scavenges reactive oxygen/nitrogen species (ROS/RNS) resulting from the radiation exposure. However, the scavenged ROS/RNS modify melanin and lead to the induction of signature DNA damage in CM cells, namely cyclobutane pyrimidine dimers, which are known to promote CM immortalization and carcinogenesis. Despite triggering the malignant transformation of melanocytes and promoting initial tumor growth, the presence of melanin inside CM cells is described to negatively regulate their invasiveness by increasing cell stiffness and reducing elasticity. Emerging evidence also indicates that melanin secreted from CM cells is required for the immunomodulation of tumor microenvironment. Indeed, melanin transforms dermal fibroblasts in cancer-associated fibroblasts, suppresses the immune system and promotes tumor angiogenesis, thus sustaining CM progression and metastasis. Here, we review the current knowledge on the role of melanin secretion in CM aggressiveness and the molecular machinery involved, as well as the impact in tumor microenvironment and immune responses. A better understanding of this role and the molecular players involved could enable the modulation of melanin secretion to become a therapeutic strategy to impair CM invasion and metastasis and, hence, reduce the burden of CM-associated deaths.
Collapse
Affiliation(s)
- Luís C. Cabaço
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Tomás
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Duarte C. Barral
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Wei X, Huang M, Yang Y, Liu Y, Chi S, Li C. Silencing of Rab23 by siRNA inhibits ultraviolet B-induced melanogenesis via downregulation of PKA/CREB/MITF. Exp Dermatol 2022; 31:1253-1263. [PMID: 35514241 DOI: 10.1111/exd.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Abstract
Recent investigations have shown that the Rab family of GTPases is associated with all aspects of melanogenesis. However, the effect of Rab23, which localizes to the plasma membrane and regulates the endocytic pathway within eukaryotic cells, in melanogenesis has not been reported. To understand the role of Rab23 in UVB-induced melanogenesis, we evaluated changes in the level of melanin, activity of tyrosinase, and levels of melanogenesis-related proteins such as microphthalmia transcription factor and tyrosinase-related protein-1 (TRP-1) and the melanosome transport-related protein complex Rab27a-melanophilin-myosin Va after the downregulation of Rab23 in B16F10 and SK-MEL-2 cells with or without UVB irradiation. Our results showed that downregulating Rab23 reduced the melanin level and tyrosinase activity and inhibited the expression of proteins involved in UVB-induced melanogenesis. Rab23 colocalized with mature melanosomes marked with TRP-1. Furthermore, downregulating Rab23 induced the abnormal accumulation of melanosomes around the nucleus. We demonstrated that the downregulation of Rab23 inhibited melanin synthesis and melanosome transport by decreasing the PKA/CREB/MITF pathway, which is the key regulator of UVB-induced melanogenesis.
Collapse
Affiliation(s)
- Xuanjin Wei
- Department of Dermatology, First Medical Center of PLA General Hospital, No. 28 Fuxing Road, Beijing, China
| | - Min Huang
- Department of Dermatology, Chuiyangliu Hospital, Beijing, China
| | - Yi Yang
- Department of Dermatology, First Medical Center of PLA General Hospital, No. 28 Fuxing Road, Beijing, China
| | - Yali Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, Xi'an, Shanxi Province, China
| | - Sumin Chi
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, Xi'an, Shanxi Province, China
| | - Chengxin Li
- Department of Dermatology, First Medical Center of PLA General Hospital, No. 28 Fuxing Road, Beijing, China
| |
Collapse
|
9
|
Mast cell granule motility and exocytosis is driven by dynamic microtubule formation and kinesin-1 motor function. PLoS One 2022; 17:e0265122. [PMID: 35316306 PMCID: PMC8939832 DOI: 10.1371/journal.pone.0265122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Mast cells are tissue-resident immune cells that have numerous cytoplasmic granules which contain preformed pro-inflammatory mediators. Upon antigen stimulation, sensitized mast cells undergo profound changes to their morphology and rapidly release granule mediators by regulated exocytosis, also known as degranulation. We have previously shown that Rho GTPases regulate exocytosis, which suggests that cytoskeleton remodeling is involved in granule transport. Here, we used live-cell imaging to analyze cytoskeleton remodeling and granule transport in real-time as mast cells were antigen stimulated. We found that granule transport to the cell periphery was coordinated by de novo microtubule formation and not F-actin. Kinesore, a drug that activates the microtubule motor kinesin-1 in the absence of cargo, inhibited microtubule-granule association and significantly reduced exocytosis. Likewise, shRNA knock-down of Kif5b, the kinesin-1 heavy chain, also reduced exocytosis. Imaging showed granules accumulated in the perinuclear region after kinesore treatment or Kif5b knock-down. Complete microtubule depolymerization with nocodazole or colchicine resulted in the same effect. A biochemically enriched granule fraction showed kinesin-1 levels increase in antigen-stimulated cells, but are reduced by pre-treatment with kinesore. Kinesore had no effect on the levels of Slp3, a mast cell granule cargo adaptor, in the granule-enriched fraction which suggests that cargo adaptor recruitment to granules is independent of motor association. Taken together, these results show that granules associate with microtubules and are driven by kinesin-1 to facilitate exocytosis.
Collapse
|
10
|
Shah SH, Schiapparelli LM, Ma Y, Yokota S, Atkins M, Xia X, Cameron EG, Huang T, Saturday S, Sun CB, Knasel C, Blackshaw S, Yates Iii JR, Cline HT, Goldberg JL. Quantitative transportomics identifies Kif5a as a major regulator of neurodegeneration. eLife 2022; 11:68148. [PMID: 35259089 PMCID: PMC8947766 DOI: 10.7554/elife.68148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Many neurons in the adult central nervous system, including retinal ganglion cells (RGCs), degenerate and die after injury. Early axon protein and organelle trafficking failure is a key component in many neurodegenerative disorders yet changes to axoplasmic transport in disease models have not been quantified. We analyzed early changes in the protein ‘transportome’ from RGC somas to their axons after optic nerve injury and identified transport failure of an anterograde motor protein Kif5a early in RGC degeneration. We demonstrated that manipulating Kif5a expression affects anterograde mitochondrial trafficking in RGCs and characterized axon transport in Kif5a knockout mice to identify proteins whose axon localization was Kif5a-dependent. Finally, we found that knockout of Kif5a in RGCs resulted in progressive RGC degeneration in the absence of injury. Together with expression data localizing Kif5a to human RGCs, these data identify Kif5a transport failure as a cause of RGC neurodegeneration and point to a mechanism for future therapeutics.
Collapse
Affiliation(s)
- Sahil H Shah
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | | | - Yuanhui Ma
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| | - Satoshi Yokota
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Melissa Atkins
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Xin Xia
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Evan G Cameron
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Thanh Huang
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sarah Saturday
- Neuroscience Department, The Scripps Research Institute, La Jolla, United States
| | - Catalin B Sun
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Cara Knasel
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - John R Yates Iii
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| | - Hollis T Cline
- Neuroscience Department, The Scripps Research Institute, La Jolla, United States
| | - Jeffrey L Goldberg
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, United States
| |
Collapse
|
11
|
Hazim RA, Williams DS. Microtubule Motor Transport of Organelles in a Specialized Epithelium: The RPE. Front Cell Dev Biol 2022; 10:852468. [PMID: 35309899 PMCID: PMC8930850 DOI: 10.3389/fcell.2022.852468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a uniquely polarized epithelium that lies adjacent to the photoreceptor cells in the retina, and is essential for photoreceptor function and viability. Two major motile organelles present in the RPE are the melanosomes, which are important for absorbing stray light, and phagosomes that result from the phagocytosis of the distal tips of the photoreceptor cilium, known as the photoreceptor outer segment (POS). These organelles are transported along microtubules, aligned with the apical-basal axis of the RPE. Although they undergo a directional migration, the organelles exhibit bidirectional movements, indicating both kinesin and dynein motor function in their transport. Apical melanosome localization requires dynein; it has been suggested that kinesin contribution might be complex with the involvement of more than one type of kinesin. POS phagosomes undergo bidirectional movements; roles of both plus- and minus-end directed motors appear to be important in the efficient degradation of phagosomes. This function is directly related to retinal health, with defects in motor proteins, or in the association of the phagosomes with the motors, resulting in retinal degenerative pathologies.
Collapse
Affiliation(s)
- Roni A. Hazim
- Department of Ophthalmology and Stein Eye Institute, Los Angeles, CA, United States
| | - David S. Williams
- Department of Ophthalmology and Stein Eye Institute, Los Angeles, CA, United States
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
12
|
Chassefeyre R, Chaiamarit T, Verhelle A, Novak SW, Andrade LR, Leitão ADG, Manor U, Encalada SE. Endosomal sorting drives the formation of axonal prion protein endoggresomes. SCIENCE ADVANCES 2021; 7:eabg3693. [PMID: 34936461 PMCID: PMC8694590 DOI: 10.1126/sciadv.abg3693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 11/05/2021] [Indexed: 05/15/2023]
Abstract
The pathogenic aggregation of misfolded prion protein (PrP) in axons underlies prion disease pathologies. The molecular mechanisms driving axonal misfolded PrP aggregate formation leading to neurotoxicity are unknown. We found that the small endolysosomal guanosine triphosphatase (GTPase) Arl8b recruits kinesin-1 and Vps41 (HOPS) onto endosomes carrying misfolded mutant PrP to promote their axonal entry and homotypic fusion toward aggregation inside enlarged endomembranes that we call endoggresomes. This axonal rapid endosomal sorting and transport-dependent aggregation (ARESTA) mechanism forms pathologic PrP endoggresomes that impair calcium dynamics and reduce neuronal viability. Inhibiting ARESTA diminishes endoggresome formation, rescues calcium influx, and prevents neuronal death. Our results identify ARESTA as a key pathway for the regulation of endoggresome formation and a new actionable antiaggregation target to ameliorate neuronal dysfunction in the prionopathies.
Collapse
Affiliation(s)
- Romain Chassefeyre
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tai Chaiamarit
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adriaan Verhelle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Leonardo R. Andrade
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - André D. G. Leitão
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sandra E. Encalada
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Hatoyama Y, Homma Y, Hiragi S, Fukuda M. Establishment and analysis of conditional Rab1- and Rab5-knockout cells using the auxin-inducible degron system. J Cell Sci 2021; 134:273782. [PMID: 34817057 DOI: 10.1242/jcs.259184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Two small GTPases, Rab1 and Rab5, are key membrane trafficking regulators that are conserved in all eukaryotes. They have recently been found to be essential for cell survival and/or growth in cultured mammalian cells, thereby precluding the establishment of Rab1-knockout (KO) and Rab5-KO cells, making it extremely difficult to assess the impact of complete Rab1 or Rab5 protein depletion on cellular functions. Here, we generated and analyzed cell lines with conditional KO (CKO) of either Rab1 (Rab1A and Rab1B) or Rab5 (Rab5A, Rab5B and Rab5C) by using the auxin-inducible protein degradation system. Rab1 CKO and Rab5 CKO led to eventual cell death from 18 h and 48 h, respectively, after auxin exposure. After acute Rab1 protein depletion, the Golgi stack and ribbon structures were completely disrupted, and endoplasmic reticulum (ER)-to-Golgi trafficking was severely inhibited. Moreover, we discovered a novel Rab1-depletion phenotype: perinuclear clustering of early endosomes and delayed transferrin recycling. In contrast, acute Rab5 protein depletion resulted in loss of early endosomes and late endosomes, but lysosomes appeared to be normal. We also observed a dramatic reduction in the intracellular signals of endocytic cargos via receptor-mediated or fluid-phase endocytosis in Rab5-depleted cells.
Collapse
Affiliation(s)
- Yuki Hatoyama
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shu Hiragi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
14
|
Castellano-Pellicena I, Morrison CG, Bell M, O’Connor C, Tobin DJ. Melanin Distribution in Human Skin: Influence of Cytoskeletal, Polarity, and Centrosome-Related Machinery of Stratum basale Keratinocytes. Int J Mol Sci 2021; 22:ijms22063143. [PMID: 33808676 PMCID: PMC8003549 DOI: 10.3390/ijms22063143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022] Open
Abstract
Melanin granules cluster within supra-nuclear caps in basal keratinocytes (KCs) of the human epidermis, where they protect KC genomic DNA against ultraviolet radiation (UVR) damage. While much is known about melanogenesis in melanocytes (MCs) and a moderate amount about melanin transfer from MC to KC, we know little about the fate of melanin once inside KCs. We recently reported that melanin fate in progenitor KCs is regulated by rare asymmetric organelle movement during mitosis. Here, we explore the role of actin, microtubules, and centrosome-associated machinery in distributing melanin within KCs. Short-term cultures of human skin explants were treated with cytochalasin-B and nocodazole to target actin filaments and microtubules, respectively. Treatment effects on melanin distribution were assessed by the Warthin-Starry stain, on centrosome-associated proteins by immunofluorescence microscopy, and on co-localisation with melanin granules by brightfield microscopy. Cytochalasin-B treatment disassembled supra-nuclear melanin caps, while nocodazole treatment moved melanin from the apical to basal KC domain. Centrosome and centriolar satellite-associated proteins showed a high degree of co-localisation with melanin. Thus, once melanin granules are transferred to KCs, their preferred apical distribution appears to be facilitated by coordinated movement of centrosomes and centriolar satellites. This mechanism may control melanin's strategic position within UVR-exposed KCs.
Collapse
Affiliation(s)
- Irene Castellano-Pellicena
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Ciaran G. Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland;
| | - Mike Bell
- Walgreens Boots Alliance, Nottingham NG90 1BS, UK; (M.B.); (C.O.)
| | - Clare O’Connor
- Walgreens Boots Alliance, Nottingham NG90 1BS, UK; (M.B.); (C.O.)
| | - Desmond J. Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
- The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- Correspondence: ; Tel.: +353-(0)-1-716-6262
| |
Collapse
|
15
|
Keren-Kaplan T, Bonifacino JS. ARL8 Relieves SKIP Autoinhibition to Enable Coupling of Lysosomes to Kinesin-1. Curr Biol 2020; 31:540-554.e5. [PMID: 33232665 DOI: 10.1016/j.cub.2020.10.071] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/16/2020] [Accepted: 10/23/2020] [Indexed: 01/24/2023]
Abstract
Long-range movement of organelles within the cytoplasm relies on coupling to microtubule motors, a process that is often mediated by adaptor proteins. In many cases, this coupling involves organelle- or adaptor-induced activation of the microtubule motors by conformational reversal of an autoinhibited state. Herein, we show that a similar regulatory mechanism operates for an adaptor protein named SKIP (also known as PLEKHM2). SKIP binds to the small guanosine triphosphatase (GTPase) ARL8 on the lysosomal membrane to couple lysosomes to the anterograde microtubule motor kinesin-1. Structure-function analyses of SKIP reveal that the C-terminal region comprising three pleckstrin homology (PH) domains interacts with the N-terminal region comprising ARL8- and kinesin-1-binding sites. This interaction inhibits coupling of lysosomes to kinesin-1 and, consequently, lysosome movement toward the cell periphery. We also find that ARL8 does not just recruit SKIP to the lysosomal membrane but also relieves SKIP autoinhibition, promoting kinesin-1-driven, anterograde lysosome transport. Finally, our analyses show that the largely disordered middle region of SKIP mediates self-association and that this self-association enhances the interaction of SKIP with kinesin-1. These findings indicate that SKIP is not just a passive connector of lysosome-bound ARL8 to kinesin-1 but is itself subject to intra- and inter-molecular interactions that regulate its function. We anticipate that similar organelle- or GTPase-induced conformational changes could regulate the activity of other kinesin adaptors.
Collapse
Affiliation(s)
- Tal Keren-Kaplan
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Li M, Knapp SK, Iden S. Mechanisms of melanocyte polarity and differentiation: What can we learn from other neuroectoderm-derived lineages? Curr Opin Cell Biol 2020; 67:99-108. [PMID: 33099084 DOI: 10.1016/j.ceb.2020.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 01/16/2023]
Abstract
Melanocytes are neuroectoderm-derived pigment-producing cells with highly polarized dendritic morphology. They protect the skin against ultraviolet radiation by providing melanin to neighbouring keratinocytes. However, the mechanisms underlying melanocyte polarization and its relevance for diseases remain mostly elusive. Numerous studies have instead revealed roles for polarity regulators in other neuroectoderm-derived lineages including different neuronal cell types. Considering the shared ontogeny and morphological similarities, these lineages may be used as reference models for the exploration of melanocyte polarity, for example, regarding dendrite formation, spine morphogenesis and polarized organelle transport. In this review, we summarize and compare the latest progress in understanding polarity regulation in neuronal cells and melanocytes and project key open questions for future work.
Collapse
Affiliation(s)
- Mengnan Li
- Cell and Developmental Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Sina K Knapp
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Sandra Iden
- Cell and Developmental Biology, Center for Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.
| |
Collapse
|
17
|
Tian X, Cui Z, Liu S, Zhou J, Cui R. Melanosome transport and regulation in development and disease. Pharmacol Ther 2020; 219:107707. [PMID: 33075361 DOI: 10.1016/j.pharmthera.2020.107707] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Melanosomes are specialized membrane-bound organelles that synthesize and organize melanin, ultimately providing color to the skin, hair, and eyes. Disorders in melanogenesis and melanosome transport are linked to pigmentary diseases, such as Hermansky-Pudlak syndrome, Chediak-Higashi syndrome, and Griscelli syndrome. Clinical cases of these pigmentary diseases shed light on the molecular mechanisms that control melanosome-related pathways. However, only an improved understanding of melanogenesis and melanosome transport will further the development of diagnostic and therapeutic approaches. Herein, we review the current literature surrounding melanosomes with particular emphasis on melanosome membrane transport and cytoskeleton-mediated melanosome transport. We also provide perspectives on melanosome regulatory mechanisms which include hormonal action, inflammation, autophagy, and organelle interactions.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ziyong Cui
- Harvard College, Cambridge, MA 02138, United States of America
| | - Song Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Fukuda M. Rab GTPases: Key players in melanosome biogenesis, transport, and transfer. Pigment Cell Melanoma Res 2020; 34:222-235. [PMID: 32997883 DOI: 10.1111/pcmr.12931] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Melanosomes are specialized intracellular organelles that produce and store melanin pigments in melanocytes, which are present in several mammalian tissues and organs, including the skin, hair, and eyes. Melanosomes form and mature stepwise (stages I-IV) in melanocytes and then are transported toward the plasma membrane along the cytoskeleton. They are subsequently transferred to neighboring keratinocytes by a largely unknown mechanism, and incorporated melanosomes are transported to the perinuclear region of the keratinocytes where they form melanin caps. Melanocytes also extend several dendrites that facilitate the efficient transfer of the melanosomes to the keratinocytes. Since the melanosome biogenesis, transport, and transfer steps require multiple membrane trafficking processes, Rab GTPases that are conserved key regulators of membrane traffic in all eukaryotes are crucial for skin and hair pigmentation. Dysfunctions of two Rab isoforms, Rab27A and Rab38, are known to cause a hypopigmentation phenotype in human type 2 Griscelli syndrome patients and in chocolate mice (related to Hermansky-Pudlak syndrome), respectively. In this review article, I review the literature on the functions of each Rab isoform and its upstream and downstream regulators in mammalian melanocytes and keratinocytes.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
19
|
Jiang M, Paniagua AE, Volland S, Wang H, Balaji A, Li DG, Lopes VS, Burgess BL, Williams DS. Microtubule motor transport in the delivery of melanosomes to the actin-rich apical domain of the retinal pigment epithelium. J Cell Sci 2020; 133:jcs242214. [PMID: 32661088 PMCID: PMC7420818 DOI: 10.1242/jcs.242214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Melanosomes are motile, light-absorbing organelles that are present in pigment cells of the skin and eye. It has been proposed that melanosome localization, in both skin melanocytes and the retinal pigment epithelium (RPE), involves melanosome capture from microtubule motors by an unconventional myosin, which dynamically tethers the melanosomes to actin filaments. Recent studies with melanocytes have questioned this cooperative capture model. Here, we test the model in RPE cells by imaging melanosomes associated with labeled actin filaments and microtubules, and by investigating the roles of different motor proteins. We found that a deficiency in cytoplasmic dynein phenocopies the lack of myosin-7a, in that melanosomes undergo fewer of the slow myosin-7a-dependent movements and are absent from the RPE apical domain. These results indicate that microtubule-based motility is required for the delivery of melanosomes to the actin-rich apical domain and support a capture mechanism that involves both microtubule and actin motors.
Collapse
Affiliation(s)
- Mei Jiang
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Antonio E Paniagua
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Stefanie Volland
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Hongxing Wang
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Adarsh Balaji
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - David G Li
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Vanda S Lopes
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Barry L Burgess
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - David S Williams
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Zhang Q, Pan Y, Zeng B, Zheng X, Wang H, Shen X, Li H, Jiang Q, Zhao J, Meng ZX, Li P, Chen Z, Wei H, Liu Z. Intestinal lysozyme liberates Nod1 ligands from microbes to direct insulin trafficking in pancreatic beta cells. Cell Res 2019; 29:516-532. [PMID: 31201384 PMCID: PMC6796897 DOI: 10.1038/s41422-019-0190-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Long-range communication between intestinal symbiotic bacteria and extra-intestinal organs can occur through circulating bacterial signal molecules, through neural circuits, or through cytokines or hormones from host cells. Here we report that Nod1 ligands derived from intestinal bacteria act as signal molecules and directly modulate insulin trafficking in pancreatic beta cells. The cytosolic peptidoglycan receptor Nod1 and its downstream adapter Rip2 are required for insulin trafficking in beta cells in a cell-autonomous manner. Mechanistically, upon recognizing cognate ligands, Nod1 and Rip2 localize to insulin vesicles, recruiting Rab1a to direct insulin trafficking through the cytoplasm. Importantly, intestinal lysozyme liberates Nod1 ligands into the circulation, thus enabling long-range communication between intestinal microbes and islets. The intestine-islet crosstalk bridged by Nod1 ligands modulates host glucose tolerance. Our study defines a new type of inter-organ communication based on circulating bacterial signal molecules, which has broad implications for understanding the mutualistic relationship between microbes and host.
Collapse
Affiliation(s)
- Qin Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Pan
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China
| | - Xiaojiao Zheng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haifang Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xueying Shen
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Jiang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jiaxu Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China.,Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Pingping Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhengjun Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China.,Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China.,ShanghaiTech Univ, Sch Life Sci & Technol, 100 Haike Rd, Shanghai, 201210, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Zhihua Liu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
van der Beek J, Jonker C, van der Welle R, Liv N, Klumperman J. CORVET, CHEVI and HOPS – multisubunit tethers of the endo-lysosomal system in health and disease. J Cell Sci 2019; 132:132/10/jcs189134. [DOI: 10.1242/jcs.189134] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT
Multisubunit tethering complexes (MTCs) are multitasking hubs that form a link between membrane fusion, organelle motility and signaling. CORVET, CHEVI and HOPS are MTCs of the endo-lysosomal system. They regulate the major membrane flows required for endocytosis, lysosome biogenesis, autophagy and phagocytosis. In addition, individual subunits control complex-independent transport of specific cargoes and exert functions beyond tethering, such as attachment to microtubules and SNARE activation. Mutations in CHEVI subunits lead to arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, while defects in CORVET and, particularly, HOPS are associated with neurodegeneration, pigmentation disorders, liver malfunction and various forms of cancer. Diseases and phenotypes, however, vary per affected subunit and a concise overview of MTC protein function and associated human pathologies is currently lacking. Here, we provide an integrated overview on the cellular functions and pathological defects associated with CORVET, CHEVI or HOPS proteins, both with regard to their complexes and as individual subunits. The combination of these data provides novel insights into how mutations in endo-lysosomal proteins lead to human pathologies.
Collapse
Affiliation(s)
- Jan van der Beek
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Caspar Jonker
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Reini van der Welle
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
22
|
Etoh K, Fukuda M. Rab10 regulates tubular endosome formation through KIF13A and KIF13B motors. J Cell Sci 2019; 132:jcs.226977. [PMID: 30700496 DOI: 10.1242/jcs.226977] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/17/2019] [Indexed: 01/02/2023] Open
Abstract
Recycling endosomes are stations that sort endocytic cargoes to their appropriate destinations. Tubular endosomes have been characterized as a recycling endosomal compartment for clathrin-independent cargoes. However, the molecular mechanism by which tubular endosome formation is regulated is poorly understood. In this study, we identified Rab10 as a novel protein localized at tubular endosomes by using a comprehensive localization screen of EGFP-tagged Rab small GTPases. Knockout of Rab10 completely abolished tubular endosomal structures in HeLaM cells. We also identified kinesin motors KIF13A and KIF13B as novel Rab10-interacting proteins by means of in silico screening. The results of this study demonstrated that both the Rab10-binding homology domain and the motor domain of KIF13A are required for Rab10-positive tubular endosome formation. Our findings provide insight into the mechanism by which the Rab10-KIF13A (or KIF13B) complex regulates tubular endosome formation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kan Etoh
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
23
|
Serre C, Busuttil V, Botto JM. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int J Cosmet Sci 2018; 40:328-347. [PMID: 29752874 DOI: 10.1111/ics.12466] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/04/2018] [Indexed: 12/11/2022]
Abstract
In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non-coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non-specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology.
Collapse
Affiliation(s)
- C Serre
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| | - V Busuttil
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| | - J-M Botto
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| |
Collapse
|
24
|
Kjos I, Vestre K, Guadagno NA, Borg Distefano M, Progida C. Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1397-1409. [PMID: 30021127 DOI: 10.1016/j.bbamcr.2018.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023]
Abstract
The intracellular movement and positioning of organelles and vesicles is mediated by the cytoskeleton and molecular motors. Small GTPases like Rab and Arf proteins are main regulators of intracellular transport by connecting membranes to cytoskeleton motors or adaptors. However, it is becoming clear that interactions between these small GTPases and the cytoskeleton are important not only for the regulation of membrane transport. In this review, we will cover our current understanding of the mechanisms underlying the connection between Rab and Arf GTPases and the cytoskeleton, with special emphasis on the double role of these interactions, not only in membrane trafficking but also in membrane and cytoskeleton remodeling. Furthermore, we will highlight the most recent findings about the fine control mechanisms of crosstalk between different members of Rab, Arf, and Rho families of small GTPases in the regulation of cytoskeleton organization.
Collapse
Affiliation(s)
- Ingrid Kjos
- Department of Biosciences, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
25
|
Cabukusta B, Neefjes J. Mechanisms of lysosomal positioning and movement. Traffic 2018; 19:761-769. [PMID: 29900632 PMCID: PMC6175085 DOI: 10.1111/tra.12587] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022]
Abstract
Lysosomes are highly dynamic organelles that can move rapidly throughout the cell. They distribute in a rather immobile pool located around the microtubule‐organizing center in a “cloud,” and a highly dynamic pool in the cell periphery. Their spatiotemporal characteristics allow them to carry out multiple biological functions, such as cargo degradation, antigen presentation and plasma membrane repair. Therefore, it is not surprising that lysosomal dysfunction underlies various diseases, including cancer, neurodegenerative and autoimmune diseases. In most of these biological events, the involvement of lysosomes is dependent on their ability to move throughout the cytoplasm, to find and fuse to the correct compartments to receive and deliver substrates for further handling. These dynamics are orchestrated by motor proteins moving along cytoskeletal components. The complexity of the mechanisms responsible for controlling lysosomal transport has recently been appreciated and has yielded novel insights into interorganellar communication, as well as lipid‐protein interplay. In this review, we discuss the current understanding of the mechanisms of lysosomal transport and the molecular machineries that control this mobility.
Collapse
Affiliation(s)
- Birol Cabukusta
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
26
|
Abstract
GTP-ases of the Rab family (about 70 in human) are key regulators of intracellular transport and membrane trafficking in eukaryotic cells. Remarkably, almost one third associate with membranes of the Golgi complex and TGN (trans-Golgi network). Through interactions with a variety of effectors that include molecular motors, tethering complexes, scaffolding proteins and lipid kinases, they play an important role in maintaining Golgi architecture.
Collapse
Affiliation(s)
- Bruno Goud
- a Institut Curie, PSL Research University, CNRS, UMR 144, Molecular Mechanisms of Intracellular Transport , Paris , France
| | - Shijie Liu
- b Department of Physiology and Biophysics , University of Arkansas for Medical Sciences , Little Rock , USA
| | - Brian Storrie
- b Department of Physiology and Biophysics , University of Arkansas for Medical Sciences , Little Rock , USA
| |
Collapse
|
27
|
Miao Y, Bist P, Wu J, Zhao Q, Li QJ, Wan Y, Abraham SN. Collaboration between Distinct Rab Small GTPase Trafficking Circuits Mediates Bacterial Clearance from the Bladder Epithelium. Cell Host Microbe 2017; 22:330-342.e4. [PMID: 28910634 PMCID: PMC5659305 DOI: 10.1016/j.chom.2017.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 01/21/2023]
Abstract
Rab small GTPases control membrane trafficking through effectors that recruit downstream mediators such as motor proteins. Subcellular trafficking typically involves multiple Rabs, with each specific step mediated by a distinct Rab protein. We describe a collaboration between two distinct Rab-protein-orchestrated trafficking circuits in bladder epithelial cells (BECs) that expels intracellular uropathogenic Escherichia coli (UPEC) from their intracellular niche. RAB11a and RAB27b and their trafficking circuitry are simultaneously involved in UPEC expulsion. While RAB11a recruits its effector RAB11FIP3 and cytoskeletal motor Dynein, RAB27b mobilizes the effector MyRIP and motor Myosin VIIa to mediate bacterial expulsion. This collaboration is coordinated by deposition of the exocyst complex on bacteria-containing vesicles, an event triggered by the innate receptor Toll-like receptor 4. Both RAB11a and RAB27b are recruited and activated by the exocyst complex components SEC6/SEC15. Thus, the cell autonomous defense system can mobilize and coalesce multiple subcellular trafficking circuitries to combat infections.
Collapse
Affiliation(s)
- Yuxuan Miao
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Jianxuan Wu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Qing Zhao
- School of Law, Duke University, Durham, NC 27707, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ying Wan
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
| | - Soman N Abraham
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| |
Collapse
|
28
|
Bonifacino JS, Neefjes J. Moving and positioning the endolysosomal system. Curr Opin Cell Biol 2017; 47:1-8. [PMID: 28231489 PMCID: PMC5537022 DOI: 10.1016/j.ceb.2017.01.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 12/18/2022]
Abstract
The endolysosomal system is extremely dynamic, yet highly organized. The spatio-temporal distribution of endolysosomal organelles depends on transport driven by microtubule motors such as kinesins and dynein, and by actin-based myosin motors. It has recently become appreciated that interactions with motors are controlled by contacts with other organelles, particularly the endoplasmic reticulum (ER). The ER also controls the concentration of endolysosomal organelles in the perinuclear area, as well as their fission and fusion, through a complex system of tethering proteins. Dynamic interactions go both ways, as contacts with endosomes can influence the movement of the ER and peroxisomes. The dynamics of endolysosomal organelles should thus no longer be studied in isolation, but in the context of the whole endomembrane system.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jacques Neefjes
- Department of Chemical Immunology, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| |
Collapse
|
29
|
Kamata H, Tsukasaki Y, Sakai T, Ikebe R, Wang J, Jeffers A, Boren J, Owens S, Suzuki T, Higashihara M, Idell S, Tucker TA, Ikebe M. KIF5A transports collagen vesicles of myofibroblasts during pleural fibrosis. Sci Rep 2017; 7:4556. [PMID: 28676645 PMCID: PMC5496869 DOI: 10.1038/s41598-017-04437-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/16/2017] [Indexed: 01/28/2023] Open
Abstract
Fibrosis involves the production of extracellular matrix proteins in tissues and is often preceded by injury or trauma. In pleural fibrosis excess collagen deposition results in pleural thickening, increased stiffness and impaired lung function. Myofibroblasts are responsible for increased collagen deposition, however the molecular mechanism of transportation of procollagen containing vesicles for secretion is unknown. Here, we studied the role of kinesin on collagen-1 (Col-1) containing vesicle transportation in human pleural mesothelial cells (HPMCs). Among a number of cargo transporting kinesins, KIF5A was notably upregulated during TGF-β induced mesothelial-mesenchymal transition (MesoMT). Using superresolution structured illumination microscopy and the DUO-Link technique, we found that KIF5A colocalized with Col-1 containing vesicles. KIF5A knock-down significantly reduced Col-1 secretion and attenuated TGF-β induced increment in Col-1 localization at cell peripheries. Live cell imaging revealed that GFP-KIF5A and mCherry-Col-1 containing vesicles moved together. Kymography showed that these molecules continuously move with a mean velocity of 0.56 μm/sec, suggesting that the movement is directional but not diffusion limited process. Moreover, KIF5A was notably upregulated along with Col-1 and α-smooth muscle actin in pleural thickening in the carbon-black bleomycin mouse model. These results support our hypothesis that KIF5A is responsible for collagen transportation and secretion from HPMCs.
Collapse
Affiliation(s)
- Hirotoshi Kamata
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA.,Department of Hematology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoshikazu Tsukasaki
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Tsuyoshi Sakai
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Reiko Ikebe
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Julia Wang
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Ann Jeffers
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Jake Boren
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Shuzi Owens
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Takahiro Suzuki
- Department of Hematology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masaaki Higashihara
- Department of Hematology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Steven Idell
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, University of Texas Health Science Center Northeast, 11937 US Highway 271, Tyler, Texas, 75708-3154, USA.
| |
Collapse
|
30
|
Ramkumar A, Murthy D, Raja DA, Singh A, Krishnan A, Khanna S, Vats A, Thukral L, Sharma P, Sivasubbu S, Rani R, Natarajan VT, Gokhale RS. Classical autophagy proteins LC3B and ATG4B facilitate melanosome movement on cytoskeletal tracks. Autophagy 2017; 13:1331-1347. [PMID: 28598240 DOI: 10.1080/15548627.2017.1327509] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macroautophagy/autophagy is a dynamic and inducible catabolic process that responds to a variety of hormonal and environmental cues. Recent studies highlight the interplay of this central pathway in a variety of pathophysiological diseases. Although defective autophagy is implicated in melanocyte proliferation and pigmentary disorders, the mechanistic relationship between the 2 pathways has not been elucidated. In this study, we show that autophagic proteins LC3B and ATG4B mediate melanosome trafficking on cytoskeletal tracks. While studying melanogenesis, we observed spatial segregation of LC3B-labeled melanosomes with preferential absence at the dendritic ends of melanocytes. This LC3B labeling of melanosomes did not impact the steady-state levels of these organelles but instead facilitated their intracellular positioning. Melanosomes primarily traverse on microtubule and actin cytoskeletal tracks and our studies reveal that LC3B enables the assembly of microtubule translocon complex. At the microtubule-actin crossover junction, ATG4B detaches LC3B from melanosomal membranes by enzymatic delipidation. Further, by live-imaging we show that melanosomes transferred to keratinocytes lack melanocyte-specific LC3B. Our study thus elucidates a new role for autophagy proteins in directing melanosome movement and reveal the unconventional use of these proteins in cellular trafficking pathways. Such crosstalk between the central cellular function and housekeeping pathway may be a crucial mechanism to balance melanocyte bioenergetics and homeostasis.
Collapse
Affiliation(s)
- Amrita Ramkumar
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India.,b Academy of Scientific and Innovative Research , Rafi Marg, New Delhi , India
| | - Divya Murthy
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India
| | - Desingu Ayyappa Raja
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India.,b Academy of Scientific and Innovative Research , Rafi Marg, New Delhi , India
| | - Archana Singh
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India
| | - Anusha Krishnan
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India.,b Academy of Scientific and Innovative Research , Rafi Marg, New Delhi , India
| | - Sangeeta Khanna
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India
| | - Archana Vats
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India
| | - Lipi Thukral
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India
| | - Pushkar Sharma
- c National Institute of Immunology , Aruna Asaf Ali Marg, New Delhi , India
| | - Sridhar Sivasubbu
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India
| | - Rajni Rani
- c National Institute of Immunology , Aruna Asaf Ali Marg, New Delhi , India
| | - Vivek T Natarajan
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India.,b Academy of Scientific and Innovative Research , Rafi Marg, New Delhi , India
| | - Rajesh S Gokhale
- a CSIR- Institute of Genomics and Integrative Biology , Mathura Road, New Delhi , India.,b Academy of Scientific and Innovative Research , Rafi Marg, New Delhi , India.,c National Institute of Immunology , Aruna Asaf Ali Marg, New Delhi , India.,d Jawaharlal Nehru Center for Advanced Scientific Research , Jakkur, Bangalore , India
| |
Collapse
|
31
|
Myosin Va's adaptor protein melanophilin enforces track selection on the microtubule and actin networks in vitro. Proc Natl Acad Sci U S A 2017; 114:E4714-E4723. [PMID: 28559319 DOI: 10.1073/pnas.1619473114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pigment organelles, or melanosomes, are transported by kinesin, dynein, and myosin motors. As such, melanosome transport is an excellent model system to study the functional relationship between the microtubule- and actin-based transport systems. In mammalian melanocytes, it is well known that the Rab27a/melanophilin/myosin Va complex mediates actin-based transport in vivo. However, pathways that regulate the overall directionality of melanosomes on the actin/microtubule networks have not yet been delineated. Here, we investigated the role of PKA-dependent phosphorylation on the activity of the actin-based Rab27a/melanophilin/myosin Va transport complex in vitro. We found that melanophilin, specifically its C-terminal actin-binding domain (ABD), is a target of PKA. Notably, in vitro phosphorylation of the ABD closely recapitulated the previously described in vivo phosphorylation pattern. Unexpectedly, we found that phosphorylation of the ABD affected neither the interaction of the complex with actin nor its movement along actin tracks. Surprisingly, the phosphorylation state of melanophilin was instead important for reversible association with microtubules in vitro. Dephosphorylated melanophilin preferred binding to microtubules even in the presence of actin, whereas phosphorylated melanophilin associated with actin. Indeed, when actin and microtubules were present simultaneously, melanophilin's phosphorylation state enforced track selection of the Rab27a/melanophilin/myosin Va transport complex. Collectively, our results unmasked the regulatory dominance of the melanophilin adaptor protein over its associated motor and offer an unexpected mechanism by which filaments of the cytoskeletal network compete for the moving organelles to accomplish directional transport on the cytoskeleton in vivo.
Collapse
|
32
|
Robinson CL, Evans RD, Briggs DA, Ramalho JS, Hume AN. Inefficient recruitment of kinesin-1 to melanosomes precludes it from facilitating their transport. J Cell Sci 2017; 130:2056-2065. [PMID: 28490438 PMCID: PMC5482976 DOI: 10.1242/jcs.186064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/03/2017] [Indexed: 12/25/2022] Open
Abstract
Microtubules and F-actin, and their associated motor proteins, are considered to play complementary roles in long- and short-range organelle transport. However, there is growing appreciation that myosin/F-actin networks can drive long-range transport. In melanocytes, myosin-Va and kinesin-1 have both been proposed as long-range centrifugal transporters moving melanosomes into the peripheral dendrites. Here, we investigated the role of kinesin-1 heavy chain (Kif5b) and its suggested targeting factor Rab1a in transport. We performed confocal microscopy and subcellular fractionation, but did not detect Kif5b or Rab1a on melanosomes. Meanwhile functional studies, using siRNA knockdown and dominant negative mutants, did not support a role for Kif5b or Rab1a in melanosome transport. To probe the potential of Kif5b to function in transport, we generated fusion proteins that target active Kif5b to melanosomes and tested their ability to rescue perinuclear clustering in myosin-Va-deficient cells. Expression of these chimeras, but not full-length Kif5b, dispersed melanosomes with similar efficiency to myosin-Va. Our data indicate that kinesin and microtubules can compensate for defects in myosin-Va and actin-based transport in mammals, but that endogenous Kif5b does not have an important role in transport of melanocytes due to its inefficient recruitment to melanosomes. Highlighted Article: We show that Kif5b can compensate for defects in myosin-Va-based transport in mammals, but that endogenous Kif5b plays a minimal role in transport in melanocytes due to inefficient recruitment to melanosomes.
Collapse
Affiliation(s)
| | - Richard D Evans
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Jose S Ramalho
- CEDOC Faculdade de Ciencias Medicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Alistair N Hume
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
33
|
Sanger A, Yip YY, Randall TS, Pernigo S, Steiner RA, Dodding MP. SKIP controls lysosome positioning using a composite kinesin-1 heavy and light chain-binding domain. J Cell Sci 2017; 130:1637-1651. [PMID: 28302907 PMCID: PMC5450233 DOI: 10.1242/jcs.198267] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
The molecular interplay between cargo recognition and regulation of the activity of the kinesin-1 microtubule motor is not well understood. Using the lysosome adaptor SKIP (also known as PLEKHM2) as model cargo, we show that the kinesin heavy chains (KHCs), in addition to the kinesin light chains (KLCs), can recognize tryptophan-acidic-binding determinants on the cargo when presented in the context of an extended KHC-interacting domain. Mutational separation of KHC and KLC binding shows that both interactions are important for SKIP–kinesin-1 interaction in vitro and that KHC binding is important for lysosome transport in vivo. However, in the absence of KLCs, SKIP can only bind to KHC when autoinhibition is relieved, suggesting that the KLCs gate access to the KHCs. We propose a model whereby tryptophan-acidic cargo is first recognized by KLCs, resulting in destabilization of KHC autoinhibition. This primary event then makes accessible a second SKIP-binding site on the KHC C-terminal tail that is adjacent to the autoinhibitory IAK region. Thus, cargo recognition and concurrent activation of kinesin-1 proceed in hierarchical stepwise fashion driven by a dynamic network of inter- and intra-molecular interactions. Summary: The lysosomal kinesin-1 cargo adaptor SKIP is shown to interact with kinesin-1 via both its heavy and light chains. A new stepwise hierarchical model for kinesin-1 activation is proposed.
Collapse
Affiliation(s)
- Anneri Sanger
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Yan Y Yip
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Thomas S Randall
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Stefano Pernigo
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Roberto A Steiner
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Mark P Dodding
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| |
Collapse
|
34
|
Khatter D, Sindhwani A, Sharma M. Arf-like GTPase Arl8: Moving from the periphery to the center of lysosomal biology. CELLULAR LOGISTICS 2015; 5:e1086501. [PMID: 27057420 DOI: 10.1080/21592799.2015.1086501] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/15/2015] [Accepted: 08/19/2015] [Indexed: 02/08/2023]
Abstract
Lysosomes are dynamic organelles that not only mediate degradation of cellular substrates but also play critical roles in processes such as cholesterol homeostasis, plasma membrane repair, antigen presentation, and cell migration. The small GTPase Arl8, a member of Arf-like (Arl) family of proteins, has recently emerged as a crucial regulator of lysosome positioning and membrane trafficking toward lysosomes. Through interaction with its effector SKIP, the human Arl8 paralog (Arl8b) mediates kinesin-1 dependent motility of lysosomes on microtubule tracks toward the cell periphery. Arl8b-mediated kinesin-driven motility is also implicated in regulating lytic granule polarization in NK cells, lysosome tubulation in macrophages, cell spreading, and migration. Moreover, Arl8b regulates membrane traffic toward lysosomes by recruiting subunits of the HOPS complex, a multi-subunit tethering complex that mediates endo-lysosome fusion. Here we provide a brief review on this recently characterized lysosomal GTPase and summarize the studies focusing on its known functions in regulating lysosomal motility and delivery of endocytic cargo to the lysosomes. We also explore the role of human Arl8b and its orthologs upon infection by intracellular pathogens.
Collapse
Affiliation(s)
- Divya Khatter
- Department of Biological Sciences; Indian Institute of Science Education and Research-Mohali (IISERM) ; Mohali, India
| | - Aastha Sindhwani
- Department of Biological Sciences; Indian Institute of Science Education and Research-Mohali (IISERM) ; Mohali, India
| | - Mahak Sharma
- Department of Biological Sciences; Indian Institute of Science Education and Research-Mohali (IISERM) ; Mohali, India
| |
Collapse
|
35
|
Aizawa M, Fukuda M. Small GTPase Rab2B and Its Specific Binding Protein Golgi-associated Rab2B Interactor-like 4 (GARI-L4) Regulate Golgi Morphology. J Biol Chem 2015. [PMID: 26209634 DOI: 10.1074/jbc.m115.669242] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab small GTPases are crucial regulators of the membrane traffic that maintains organelle identity and morphology. Several Rab isoforms are present in the Golgi, and it has been suggested that they regulate the compacted morphology of the Golgi in mammalian cells. However, the functional relationships among the Golgi-resident Rabs, e.g. whether they are functionally redundant or different, are poorly understood. In this study, we used specific siRNAs to perform genome-wide screening for human Rabs that are involved in Golgi morphology in HeLa-S3 cells. The results showed that knockdown of any one of the six Rab isoforms (Rab1A/1B/2A/2B/6B/8A) induced fragmentation of the Golgi in HeLa-S3 cells and that its phenotype was rescued by re-expression of their respective siRNA-resistant construct. We then performed systematic knockdown-rescue experiments in relation to each of the six Rabs. Interestingly, with the exception of the Rab8A knockdown, the Golgi fragmentation phenotype induced by knockdown of a single Rab isoform, e.g. Rab2B, was efficiently rescued by re-expression of its siRNA-resistant Rab alone, not by any of the other five Rabs, e.g. Rab2A, which is highly homologous to Rab2B, indicating that these Rab isoforms non-redundantly regulate Golgi morphology possibly through interaction with isoform-specific effector molecules. In addition, we identified Golgi-associated Rab2B interactor-like 4 (GARI-L4) as a novel Golgi-resident Rab2B-specific binding protein whose knockdown also induced fragmentation of the Golgi. Our findings suggest that the compacted Golgi morphology of mammalian cells is finely tuned by multiple sets of Rab (or Rab-effector complexes) that for the most part function independently.
Collapse
Affiliation(s)
- Megumi Aizawa
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- From the Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|