1
|
Paspunurwar AS, Moure A, Gomez H. Dynamic cluster field modeling of collective chemotaxis. Sci Rep 2024; 14:25162. [PMID: 39448677 PMCID: PMC11502788 DOI: 10.1038/s41598-024-75653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Collective migration of eukaryotic cells is often guided by chemotaxis, and is critical in several biological processes, such as cancer metastasis, wound healing, and embryogenesis. Understanding collective chemotaxis has challenged experimental, theoretical and computational scientists because cells can sense very small chemoattractant gradients that are tightly controlled by cell-cell interactions and the regulation of the chemoattractant distribution by the cells. Computational models of collective cell migration that offer a high-fidelity resolution of the cell motion and chemoattractant dynamics in the extracellular space have been limited to a small number of cells. Here, we present Dynamic cluster field modeling (DCF), a novel computational method that enables simulations of collective chemotaxis of cellular systems with O ( 1000 ) cells and high-resolution transport dynamics of the chemoattractant in the time-evolving extracellular space. We illustrate the efficiency and predictive capabilities of our approach by comparing our numerical simulations with experiments in multiple scenarios that involve chemoattractant secretion and uptake by the migrating cells, cell migration in confined spaces, regulation of the attractant distribution by cell motion, and interactions of the chemoattractant with an enzyme. The proposed algorithm opens new opportunities to address outstanding problems that involve collective cell migration in the central nervous system, immune response and cancer metastasis.
Collapse
Affiliation(s)
| | - Adrian Moure
- Department of Mechanical and Civil Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, 91125, CA, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, 47907, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, 47907, IN, USA.
- Purdue Institute for Cancer Research, Purdue University, 201 S. University Street, West Lafayette, 47907, IN, USA.
| |
Collapse
|
2
|
Sadhukhan S, Nandi MK, Pandey S, Paoluzzi M, Dasgupta C, Gov NS, Nandi SK. Motility driven glassy dynamics in confluent epithelial monolayers. SOFT MATTER 2024; 20:6160-6175. [PMID: 39044639 DOI: 10.1039/d4sm00352g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
As wounds heal, embryos develop, cancer spreads, or asthma progresses, the cellular monolayer undergoes a glass transition between solid-like jammed and fluid-like flowing states. During some of these processes, the cells undergo an epithelial-to-mesenchymal transition (EMT): they acquire in-plane polarity and become motile. Thus, how motility drives the glassy dynamics in epithelial systems is critical for the EMT process. However, no analytical framework that is indispensable for deeper insights exists. Here, we develop such a theory inspired by a well-known glass theory. One crucial result of this work is that the confluency affects the effective persistence time-scale of active force, described by its rotational diffusivity, Deffr. Deffr differs from the bare rotational diffusivity, Dr, of the motile force due to cell shape dynamics, which acts to rectify the force dynamics: Deffr is equal to Dr when Dr is small and saturates when Dr is large. We test the theoretical prediction of Deffr and how it affects the relaxation dynamics in our simulations of the active Vertex model. This novel effect of Deffr is crucial to understanding the new and previously published simulation data of active glassy dynamics in epithelial monolayers.
Collapse
Affiliation(s)
- Souvik Sadhukhan
- Tata Institute of Fundamental Research, 36/P Gopanpally Village, Hyderabad-500046, India.
| | - Manoj Kumar Nandi
- Institut National de la Santé et de la Recherche Médicale, Stem Cell and Brain Research Institute, Université Claude Bernard Lyon 1, Bron 69500, France
| | - Satyam Pandey
- Tata Institute of Fundamental Research, 36/P Gopanpally Village, Hyderabad-500046, India.
| | - Matteo Paoluzzi
- Istituto per le Applicazioni del Calcolo del Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Chandan Dasgupta
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
- International Centre for Theoretical Sciences, TIFR, Bangalore 560089, India
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Saroj Kumar Nandi
- Tata Institute of Fundamental Research, 36/P Gopanpally Village, Hyderabad-500046, India.
| |
Collapse
|
3
|
Wang W, Law RA, Perez Ipiña E, Konstantopoulos K, Camley BA. Confinement, jamming, and adhesion in cancer cells dissociating from a collectively invading strand. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601053. [PMID: 38979161 PMCID: PMC11230418 DOI: 10.1101/2024.06.28.601053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
When cells in a primary tumor work together to invade into nearby tissue, this can lead to cell dissociations-cancer cells breaking off from the invading front-leading to metastasis. What controls the dissociation of cells, and whether they break off singly or in small groups? Can this be determined by cell-cell adhesion or chemotactic cues given to cells? We develop a physical model for this question, based on experiments that mimic aspects of cancer cell invasion using microfluidic devices with microchannels of different widths. Experimentally, most dissociation events ("ruptures") involve single cells breaking off, but we observe some ruptures of large groups ( ∼ 20 cells) in wider channels. The rupture probability is nearly independent of channel width. We recapitulate the experimental results with a phase field cell motility model by introducing three different cell states (follower, guided, and high-motility metabolically active leader cells) based on their spatial position. These leader cells may explain why single-cell rupture is the universal most probable outcome. Our simulation results show that cell-channel adhesion is necessary for cells in narrow channels to invade, and strong cell-cell adhesion leads to fewer but larger ruptures. Chemotaxis also influences the rupture behavior: Strong chemotaxis strength leads to larger and faster ruptures. Finally, we study the relationship between biological jamming transitions and cell dissociations. Our results suggest unjamming is necessary but not sufficient to create ruptures.
Collapse
|
4
|
Li X, Chen B. Dynamics of multicellular swirling on micropatterned substrates. Proc Natl Acad Sci U S A 2024; 121:e2400804121. [PMID: 38900800 PMCID: PMC11214149 DOI: 10.1073/pnas.2400804121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Chirality plays a crucial role in biology, as it is highly conserved and fundamentally important in the developmental process. To better understand the relationship between the chirality of individual cells and that of tissues and organisms, we develop a generalized mechanics model of chiral polarized particles to investigate the swirling dynamics of cell populations on substrates. Our analysis reveals that cells with the same chirality can form distinct chiral patterns on ring-shaped or rectangular substrates. Interestingly, our studies indicate that an excessively strong or weak individual cellular chirality hinders the formation of such chiral patterns. Our studies also indicate that there exists the influence distance of substrate boundaries in chiral patterns. Smaller influence distances are observed when cell-cell interactions are weaker. Conversely, when cell-cell interactions are too strong, multiple cells tend to be stacked together, preventing the formation of chiral patterns on substrates in our analysis. Additionally, we demonstrate that the interaction between cells and substrate boundaries effectively controls the chiral distribution of cellular orientations on ring-shaped substrates. This research highlights the significance of coordinating boundary features, individual cellular chirality, and cell-cell interactions in governing the chiral movement of cell populations and provides valuable mechanics insights into comprehending the intricate connection between the chirality of single cells and that of tissues and organisms.
Collapse
Affiliation(s)
- Xi Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou310027, People’s Republic of China
| | - Bin Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou310027, People’s Republic of China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, People’s Republic of China
| |
Collapse
|
5
|
Radman BA, Alhameed AMM, Shu G, Yin G, Wang M. Cellular elasticity in cancer: a review of altered biomechanical features. J Mater Chem B 2024; 12:5299-5324. [PMID: 38742281 DOI: 10.1039/d4tb00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A large number of studies have shown that changes in biomechanical characteristics are an important indicator of tumor transformation in normal cells. Elastic deformation is one of the more studied biomechanical features of tumor cells, which plays an important role in tumourigenesis and development. Altered cell elasticity often brings many indications. This manuscript reviews the effects of altered cellular elasticity on cell characteristics, including adhesion viscosity, migration, proliferation, and differentiation elasticity and stiffness. Also, the physical factors that may affect cell elasticity, such as temperature, cell height, cell-viscosity, and aging, are summarized. Then, the effects of cell-matrix, cytoskeleton, in vitro culture medium, and cell-substrate with different three-dimensional structures on cell elasticity during cell tumorigenesis are outlined. Importantly, we summarize the current signaling pathways that may affect cellular elasticity, as well as tests for cellular elastic deformation. Finally, we summarize current hybrid materials: polymer-polymer, protein-protein, and protein-polymer hybrids, also, nano-delivery strategies that target cellular resilience and cases that are at least in clinical phase 1 trials. Overall, the behavior of cancer cell elasticity is modulated by biological, chemical, and physical changes, which in turn have the potential to alter cellular elasticity, and this may be an encouraging prediction for the future discovery of cancer therapies.
Collapse
Affiliation(s)
- Bakeel A Radman
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
- Department of Biology, College of Science and Education, Albaydha University, Yemen
| | | | - Guang Shu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
6
|
Monfared S, Ravichandran G, Andrade JE, Doostmohammadi A. Short-range correlation of stress chains near solid-to-liquid transition in active monolayers. J R Soc Interface 2024; 21:20240022. [PMID: 38715321 PMCID: PMC11077009 DOI: 10.1098/rsif.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Using a three-dimensional model of cell monolayers, we study the spatial organization of active stress chains as the monolayer transitions from a solid to a liquid state. The critical exponents that characterize this transition map the isotropic stress percolation onto the two-dimensional random percolation universality class, suggesting short-range stress correlations near this transition. This mapping is achieved via two distinct, independent pathways: (i) cell-cell adhesion and (ii) active traction forces. We unify our findings by linking the nature of this transition to high-stress fluctuations, distinctly linked to each pathway. The results elevate the importance of the transmission of mechanical information in dense active matter and provide a new context for understanding the non-equilibrium statistical physics of phase transition in active systems.
Collapse
Affiliation(s)
- Siavash Monfared
- Niels Bohr Institute, University of Copenhagen, Kobenhavn, 2100, Denmark
| | - Guruswami Ravichandran
- Division of Engineering and Applied Science, California Institute of Technology, , CA, 91125, USA
| | - José E. Andrade
- Division of Engineering and Applied Science, California Institute of Technology, , CA, 91125, USA
| | | |
Collapse
|
7
|
Happel L, Voigt A. Coordinated Motion of Epithelial Layers on Curved Surfaces. PHYSICAL REVIEW LETTERS 2024; 132:078401. [PMID: 38427891 DOI: 10.1103/physrevlett.132.078401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/21/2023] [Indexed: 03/03/2024]
Abstract
Coordinated cellular movements are key processes in tissue morphogenesis. Using a cell-based modeling approach we study the dynamics of epithelial layers lining surfaces with constant and varying curvature. We demonstrate that extrinsic curvature effects can explain the alignment of cell elongation with the principal directions of curvature. Together with specific self-propulsion mechanisms and cell-cell interactions this effect gets enhanced and can explain observed large-scale, persistent, and circumferential rotation on cylindrical surfaces. On toroidal surfaces the resulting curvature coupling is an interplay of intrinsic and extrinsic curvature effects. These findings unveil the role of curvature and postulate its importance for tissue morphogenesis.
Collapse
Affiliation(s)
- L Happel
- Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany
| | - A Voigt
- Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Cluster of Excellence, Physics of Life, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| |
Collapse
|
8
|
Pozzi G, Ciarletta P. Geometric control by active mechanics of epithelial gap closure. SOFT MATTER 2024; 20:900-908. [PMID: 38180343 DOI: 10.1039/d3sm01419c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Epithelial wound healing is one of the most important biological processes occurring during the lifetime of an organism. It is a self-repair mechanism closing wounds or gaps within tissues to restore their functional integrity. In this work we derive a new diffuse interface approach for modelling the gap closure by means of a variational principle in the framework of non-equilibrium thermodynamics. We investigate the interplay between the crawling with lamellipodia protrusions and the supracellular tension exerted by the actomyosin cable on the closure dynamics. These active features are modeled as Korteweg forces into a generalised chemical potential. From an asymptotic analysis, we derive a pressure jump across the gap edge in the sharp interface limit. Moreover, the chemical potential diffuses as a Mullins-Sekerka system, and its interfacial value is given by a Gibbs-Thompson relation for its local potential driven by the curvature-dependent purse-string tension. The finite element simulations show an excellent quantitative agreement between the closure dynamics and the morphology of the edge with respect to existing biological experiments. The resulting force patterns are also in good qualitative agreement with existing traction force microscopy measurements. Our results shed light on the geometrical control of the gap closure dynamics resulting from the active forces that are chemically activated around the gap edge.
Collapse
Affiliation(s)
- G Pozzi
- MOX, Dipartimento di Matematica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - P Ciarletta
- MOX, Dipartimento di Matematica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|
9
|
Hopkins A, Loewe B, Chiang M, Marenduzzo D, Marchetti MC. Motility induced phase separation of deformable cells. SOFT MATTER 2023; 19:8172-8178. [PMID: 37850477 DOI: 10.1039/d3sm01059g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Using a multi-phase field model, we examine how particle deformability, which is a proxy for cell stiffness, affects motility induced phase separation (MIPS). We show that purely repulsive deformable, i.e., squishy, cells phase separate more effectively than their rigid counterparts. This can be understood as due to the fact that deformability increases the effective duration of collisions. In addition, the dense regions become increasingly disordered as deformability increases. Our results contextualize the applicability of MIPS to biological systems and have implications for how cells in biological systems may self-organize.
Collapse
Affiliation(s)
- Austin Hopkins
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Benjamin Loewe
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Michael Chiang
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Davide Marenduzzo
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
10
|
Prasad M, Obana N, Lin SZ, Zhao S, Sakai K, Blanch-Mercader C, Prost J, Nomura N, Rupprecht JF, Fattaccioli J, Utada AS. Alcanivorax borkumensis biofilms enhance oil degradation by interfacial tubulation. Science 2023; 381:748-753. [PMID: 37590351 DOI: 10.1126/science.adf3345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/21/2023] [Indexed: 08/19/2023]
Abstract
During the consumption of alkanes, Alcanivorax borkumensis will form a biofilm around an oil droplet, but the role this plays during degradation remains unclear. We identified a shift in biofilm morphology that depends on adaptation to oil consumption: Longer exposure leads to the appearance of dendritic biofilms optimized for oil consumption effected through tubulation of the interface. In situ microfluidic tracking enabled us to correlate tubulation to localized defects in the interfacial cell ordering. We demonstrate control over droplet deformation by using confinement to position defects, inducing dimpling in the droplets. We developed a model that elucidates biofilm morphology, linking tubulation to decreased interfacial tension and increased cell hydrophobicity.
Collapse
Affiliation(s)
- M Prasad
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - N Obana
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - S-Z Lin
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living systems, Marseille, France
| | - S Zhao
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - K Sakai
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
| | - C Blanch-Mercader
- Laboratoire Physico-Chimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, 75248 Paris, France
| | - J Prost
- Laboratoire Physico-Chimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, 75248 Paris, France
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - N Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- TARA center, Univeristy of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - J-F Rupprecht
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living systems, Marseille, France
| | - J Fattaccioli
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
| | - A S Utada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
11
|
Feng L, Zhao T, Xu H, Shi X, Li C, Hsia KJ, Zhang S. Physical forces guide curvature sensing and cell migration mode bifurcating. PNAS NEXUS 2023; 2:pgad237. [PMID: 37680491 PMCID: PMC10482382 DOI: 10.1093/pnasnexus/pgad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023]
Abstract
The ability of cells to sense and adapt to curvy topographical features has been implicated in organ morphogenesis, tissue repair, and tumor metastasis. However, how individual cells or multicellular assemblies sense and differentiate curvatures remains elusive. Here, we reveal a curvature sensing mechanism in which surface tension can selectively activate either actin or integrin flows, leading to bifurcating cell migration modes: focal adhesion formation that enables cell crawling at convex front edges and actin cable assembly that pulls cells forward at concave front edges. The molecular flows and curved front morphogenesis are sustained by coordinated cellular tension generation and transmission. We track the molecular flows and mechanical force transduction pathways by a phase-field model, which predicts that multicellular curvature sensing is more efficient than individual cells, suggesting collective intelligence of cells. The unique ability of cells in curvature sensing and migration mode bifurcating may offer insights into emergent collective patterns and functions of living active systems at different length scales.
Collapse
Affiliation(s)
- Luyi Feng
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Tiankai Zhao
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Hongmei Xu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xuechen Shi
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Changhao Li
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - K Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Sulin Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
12
|
Roshal DS, Azzag K, Fedorenko KK, Rochal SB, Baghdiguian S. Topological properties and shape of proliferative and nonproliferative cell monolayers. Phys Rev E 2023; 108:024404. [PMID: 37723673 DOI: 10.1103/physreve.108.024404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/02/2023] [Indexed: 09/20/2023]
Abstract
During embryonic development, structures with complex geometry can emerge from planar epithelial monolayers; studying these shape transitions is of key importance for revealing the biophysical laws involved in the morphogenesis of biological systems. Here, using the example of normal proliferative monkey kidney (COS) cell monolayers, we investigate global and local topological characteristics of this model system in dependence on its shape. The obtained distributions of cells by their valence demonstrate a difference between the spherical and planar monolayers. In addition, in both spherical and planar monolayers, the probability of observing a pair of neighboring cells with certain valences depends on the topological charge of the pair. The zero topological charge of the cell pair can increase the probability for the cells to be the nearest neighbors. We then test and confirm that analogous relationships take place in a more ordered spherical system with a larger fraction of 6-valent cells, namely, in the nonproliferative epithelium (follicular system) of ascidian species oocytes. However, unlike spherical COS cell monolayers, ascidian monolayers are prone to nonrandom agglomeration of 6-valent cells and have linear topological defects called scars and pleats. The reasons for this difference in morphology are discussed. The morphological peculiarities found are compared with predictions of the widely used vertex model of epithelium.
Collapse
Affiliation(s)
- Daria S Roshal
- Physics Faculty, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, MN 55455, USA
| | - Kirill K Fedorenko
- Physics Faculty, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Sergei B Rochal
- Physics Faculty, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Stephen Baghdiguian
- Institut des Sciences de l'Evolution-Montpellier, Université de Montpellier, CNRS, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, 34095 Montpellier, France
| |
Collapse
|
13
|
Jain HP, Voigt A, Angheluta L. Robust statistical properties of T1 transitions in a multi-phase field model of cell monolayers. Sci Rep 2023; 13:10096. [PMID: 37344548 DOI: 10.1038/s41598-023-37064-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
Large-scale tissue deformation which is fundamental to tissue development hinges on local cellular rearrangements, such as T1 transitions. In the realm of the multi-phase field model, we analyse the statistical and dynamical properties of T1 transitions in a confluent monolayer. We identify an energy profile that is robust to changes in several model parameters. It is characterized by an asymmetric profile with a fast increase in energy before the T1 transition and a sudden drop after the T1 transition, followed by a slow relaxation. The latter being a signature of the fluidity of the cell monolayer. We show that T1 transitions are sources of localised large deformation of the cells undergoing the neighbour exchange, and they induce other T1 transitions in the nearby cells leading to a chaining of events that propagate local cell deformation to large scale tissue flows.
Collapse
Affiliation(s)
- Harish P Jain
- Njord Centre, Department of Physics, University of Oslo, 0371, Oslo, Norway.
| | - Axel Voigt
- Institute of Scientific Computing, Technische Universität Dresden, 01062, Dresden, Germany
- Center of Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany
- Cluster of Excellence - Physics of Life, TU Dresden, 01062, Dresden, Germany
| | - Luiza Angheluta
- Njord Centre, Department of Physics, University of Oslo, 0371, Oslo, Norway
| |
Collapse
|
14
|
Dow LP, Parmar T, Marchetti MC, Pruitt BL. Engineering tools for quantifying and manipulating forces in epithelia. BIOPHYSICS REVIEWS 2023; 4:021303. [PMID: 38510344 PMCID: PMC10903508 DOI: 10.1063/5.0142537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/20/2023] [Indexed: 03/22/2024]
Abstract
The integrity of epithelia is maintained within dynamic mechanical environments during tissue development and homeostasis. Understanding how epithelial cells mechanosignal and respond collectively or individually is critical to providing insight into developmental and (patho)physiological processes. Yet, inferring or mimicking mechanical forces and downstream mechanical signaling as they occur in epithelia presents unique challenges. A variety of in vitro approaches have been used to dissect the role of mechanics in regulating epithelia organization. Here, we review approaches and results from research into how epithelial cells communicate through mechanical cues to maintain tissue organization and integrity. We summarize the unique advantages and disadvantages of various reduced-order model systems to guide researchers in choosing appropriate experimental systems. These model systems include 3D, 2D, and 1D micromanipulation methods, single cell studies, and noninvasive force inference and measurement techniques. We also highlight a number of in silico biophysical models that are informed by in vitro and in vivo observations. Together, a combination of theoretical and experimental models will aid future experiment designs and provide predictive insight into mechanically driven behaviors of epithelial dynamics.
Collapse
Affiliation(s)
| | - Toshi Parmar
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
15
|
Monfared S, Ravichandran G, Andrade J, Doostmohammadi A. Mechanical basis and topological routes to cell elimination. eLife 2023; 12:82435. [PMID: 37070647 PMCID: PMC10112887 DOI: 10.7554/elife.82435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/22/2023] [Indexed: 04/19/2023] Open
Abstract
Cell layers eliminate unwanted cells through the extrusion process, which underlines healthy versus flawed tissue behaviors. Although several biochemical pathways have been identified, the underlying mechanical basis including the forces involved in cellular extrusion remains largely unexplored. Utilizing a phase-field model of a three-dimensional cell layer, we study the interplay of cell extrusion with cell-cell and cell-substrate interactions in a flat monolayer. Independent tuning of cell-cell versus cell-substrate adhesion forces reveals that extrusion events can be distinctly linked to defects in nematic and hexatic orders associated with cellular arrangements. Specifically, we show that by increasing relative cell-cell adhesion forces the cell monolayer can switch between the collective tendency towards fivefold, hexatic, disclinations relative to half-integer, nematic, defects for extruding a cell. We unify our findings by accessing three-dimensional mechanical stress fields to show that an extrusion event acts as a mechanism to relieve localized stress concentration.
Collapse
Affiliation(s)
- Siavash Monfared
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, United States
| | - Guruswami Ravichandran
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, United States
| | - José Andrade
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, United States
| | | |
Collapse
|
16
|
Kuang X, Guan G, Tang C, Zhang L. MorphoSim: an efficient and scalable phase-field framework for accurately simulating multicellular morphologies. NPJ Syst Biol Appl 2023; 9:6. [PMID: 36806172 PMCID: PMC9938209 DOI: 10.1038/s41540-023-00265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 01/04/2023] [Indexed: 02/19/2023] Open
Abstract
The phase field model can accurately simulate the evolution of microstructures with complex morphologies, and it has been widely used for cell modeling in the last two decades. However, compared to other cellular models such as the coarse-grained model and the vertex model, its high computational cost caused by three-dimensional spatial discretization hampered its application and scalability, especially for multicellular organisms. Recently, we built a phase field model coupled with in vivo imaging data to accurately reconstruct the embryonic morphogenesis of Caenorhabditis elegans from 1- to 8-cell stages. In this work, we propose an improved phase field model by using the stabilized numerical scheme and modified volume constriction. Then we present a scalable phase-field framework, MorphoSim, which is 100 times more efficient than the previous one and can simulate over 100 mechanically interacting cells. Finally, we demonstrate how MorphoSim can be successfully applied to reproduce the assembly, self-repairing, and dissociation of a synthetic artificial multicellular system - the synNotch system.
Collapse
Affiliation(s)
- Xiangyu Kuang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- School of Physics, Peking University, Beijing, 100871, China.
| | - Lei Zhang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.
- Beijing International Center for Mathematical Research, Peking University, Beijing, 100871, China.
- Center for Machine Learning Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
17
|
Zhang G, Yeomans JM. Active Forces in Confluent Cell Monolayers. PHYSICAL REVIEW LETTERS 2023; 130:038202. [PMID: 36763395 DOI: 10.1103/physrevlett.130.038202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
We use a computational phase-field model together with analytical analysis to study how intercellular active forces can mediate individual cell morphology and collective motion in a confluent cell monolayer. We explore the regime where intercellular forces dominate the tissue dynamics, and polar forces are negligible. Contractile intercellular interactions lead to cell elongation, nematic ordering, and active turbulence characterized by motile topological defects. Extensile interactions result in frustration, and perpendicular cell orientations become more prevalent. Furthermore, we show that contractile behavior can change to extensile behavior if anisotropic fluctuations in cell shape are considered.
Collapse
Affiliation(s)
- Guanming Zhang
- Department of Physics, The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- Department of Physics, The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
18
|
Sadhukhan S, Nandi SK. On the origin of universal cell shape variability in confluent epithelial monolayers. eLife 2022; 11:e76406. [PMID: 36563034 PMCID: PMC9833828 DOI: 10.7554/elife.76406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Cell shape is fundamental in biology. The average cell shape can influence crucial biological functions, such as cell fate and division orientation. But cell-to-cell shape variability is often regarded as noise. In contrast, recent works reveal that shape variability in diverse epithelial monolayers follows a nearly universal distribution. However, the origin and implications of this universality remain unclear. Here, assuming contractility and adhesion are crucial for cell shape, characterized via aspect ratio (r), we develop a mean-field analytical theory for shape variability. We find that all the system-specific details combine into a single parameter α that governs the probability distribution function (PDF) of r; this leads to a universal relation between the standard deviation and the average of r. The PDF for the scaled r is not strictly but nearly universal. In addition, we obtain the scaled area distribution, described by the parameter μ. Information of α and μ together can distinguish the effects of changing physical conditions, such as maturation, on different system properties. We have verified the theory via simulations of two distinct models of epithelial monolayers and with existing experiments on diverse systems. We demonstrate that in a confluent monolayer, average shape determines both the shape variability and dynamics. Our results imply that cell shape distribution is inevitable, where a single parameter describes both statics and dynamics and provides a framework to analyze and compare diverse epithelial systems. In contrast to existing theories, our work shows that the universal properties are consequences of a mathematical property and should be valid in general, even in the fluid regime.
Collapse
|
19
|
Zadeh P, Camley BA. Picking winners in cell-cell collisions: Wetting, speed, and contact. Phys Rev E 2022; 106:054413. [PMID: 36559372 DOI: 10.1103/physreve.106.054413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Groups of eukaryotic cells can coordinate their crawling motion to follow cues more effectively, stay together, or invade new areas. This collective cell migration depends on cell-cell interactions, which are often studied by colliding pairs of cells together. Can the outcome of these collisions be predicted? Recent experiments on trains of colliding epithelial cells suggest that cells with a smaller contact angle to the surface or larger speeds are more likely to maintain their direction ("win") upon collision. When should we expect shape or speed to correlate with the outcome of a collision? To investigate this question, we build a model for two-cell collisions within the phase field framework, which allows for cell shape changes. We can reproduce the observation that cells with high speed and small contact angles are more likely to win with two different assumptions for how cells interact: (1) velocity aligning, in which we hypothesize that cells sense their own velocity and align to it over a finite timescale, and (2) front-front contact repolarization, where cells polarize away from cell-cell contact, akin to contact inhibition of locomotion. Surprisingly, though we simulate collisions between cells with widely varying properties, in each case, the probability of a cell winning is completely captured by a single summary variable: its relative speed (in the velocity-aligning model) or its relative contact angle (in the contact repolarization model). Both models are currently consistent with reported experimental results, but they can be distinguished by varying cell contact angle and speed through orthogonal perturbations.
Collapse
Affiliation(s)
- Pedrom Zadeh
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21210, USA
| | - Brian A Camley
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21210, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
20
|
Hopkins A, Chiang M, Loewe B, Marenduzzo D, Marchetti MC. Local Yield and Compliance in Active Cell Monolayers. PHYSICAL REVIEW LETTERS 2022; 129:148101. [PMID: 36240394 DOI: 10.1103/physrevlett.129.148101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
The rheology of biological tissue plays an important role in many processes, from organ formation to cancer invasion. Here, we use a multiphase field model of motile cells to simulate active microrheology within a tissue monolayer. When unperturbed, the tissue exhibits a transition between a solidlike state and a fluidlike state tuned by cell motility and deformability-the ratio of the energetic costs of steric cell-cell repulsion and cell-edge tension. When perturbed, solid tissues exhibit local yield-stress behavior, with a threshold force for the onset of motion of a probe particle that vanishes upon approaching the solid-to-liquid transition. This onset of motion is qualitatively different in the low and high deformability regimes. At high deformability, the tissue is amorphous when solid, it responds compliantly to deformations, and the probe transition to motion is smooth. At low deformability, the monolayer is more ordered translationally and stiffer, and the onset of motion appears discontinuous. Our results suggest that cellular or nanoparticle transport in different types of tissues can be fundamentally different and point to ways in which it can be controlled.
Collapse
Affiliation(s)
- Austin Hopkins
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Michael Chiang
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Benjamin Loewe
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
21
|
Ardaševa A, Mueller R, Doostmohammadi A. Bridging microscopic cell dynamics to nematohydrodynamics of cell monolayers. SOFT MATTER 2022; 18:4737-4746. [PMID: 35703313 DOI: 10.1039/d2sm00537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is increasingly being realized that liquid-crystalline features can play an important role in the properties and dynamics of cell monolayers. Here, we present a cell-based model of cell layers, based on the phase-field formulation, that connects cell-cell interactions specified at the single cell level to large-scale nematic and hydrodynamic properties of the tissue. In particular, we present a minimal formulation that reproduces the well-known bend and splay hydrodynamic instabilities of the continuum nemato-hydrodynamic formulation of active matter, together with an analytical description of the instability threshold in terms of activity and elasticity of the cells. Furthermore, we provide a quantitative characterisation and comparison of flows and topological defects for extensile and contractile stress generation mechanisms, and demonstrate activity-induced heterogeneity and spontaneous formation of gaps within a confluent monolayer. Together, these results contribute to bridging the gap between cell-scale dynamics and tissue-scale collective cellular organisation.
Collapse
Affiliation(s)
| | - Romain Mueller
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, UK
| | | |
Collapse
|
22
|
Numerical Study on Dynamics of Blood Cell Migration and Deformation in Atherosclerotic Vessels. MATHEMATICS 2022. [DOI: 10.3390/math10122022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A phase field model is used to study the effect of atherosclerotic plaque on hemodynamics. The migration of cells in blood flows is described by a set of multiple phase field equations, which incorporate elastic energies and the interacting effects of cells. Several simulations are carried out to reveal the influences of initial velocities of blood cells, cellular elasticity and block rates of hemodynamic vessels. The results show that the cell deformation increases with the growth of the initial active velocity and block rate but with the decrease of the cellular elasticity. The atherosclerotic plaque not only affects the deformation and migration of cells but also can promote the variation in hemodynamic properties. The atherosclerotic plaque causes a burst in cell velocity, and the greater the block rate and cellular elasticity, the more dramatic the variation of instantaneous velocity. The present work demonstrates that the phase field method could be extended to reveal formation atherosclerosis at the microscopic level from the perspective of hemodynamics.
Collapse
|
23
|
Chang SJ, Chen CH, Chen KC. Assessment of the mechanical suppression of nonuniform electrodeposition in lithium metal batteries. Phys Chem Chem Phys 2022; 24:11086-11095. [PMID: 35471206 DOI: 10.1039/d1cp05310h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dendrite formation is a long-standing issue in lithium metal batteries. Replacing the conventional liquid electrolytes with semi-solid ones, the non-uniform lithium growth can be potentially mitigated by the mechanical deformation in the solid matrix. The underlying dendrite suppression mechanism is investigated in this study using a mechano-electrochemical phase-field method. Two indicators, namely the arithmetic average height and the elongation rate, are proposed to characterize the surface roughness of lithium dendrites. Our simulation results are summarized in two-dimensional design maps as a function of the porosity and the elastic modulus of the semi-solid electrolytes, which could provide us the guidance for the development of dendrite-free lithium metal batteries.
Collapse
Affiliation(s)
- Shuenn-Jyh Chang
- Institute of Applied Mechanics, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| | - Chih-Hung Chen
- Institute of Applied Mechanics, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| | - Kuo-Ching Chen
- Institute of Applied Mechanics, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| |
Collapse
|
24
|
Jain HP, Wenzel D, Voigt A. Impact of contact inhibition on collective cell migration and proliferation. Phys Rev E 2022; 105:034402. [PMID: 35428163 DOI: 10.1103/physreve.105.034402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Contact inhibition limits migration and proliferation of cells in cell colonies. We consider a multiphase field model to investigate the growth dynamics of a cell colony, composed of proliferating cells. The model takes into account the mechanism of contact inhibition of proliferation by local mechanical interactions. We compare nonmigrating and migrating cells, in order to provide a quantitative characterization of the dynamics and analyze the velocity of the colony boundary for both cases. Additionally, we measure single cell velocities, number of neighbor distributions, as well as the influence of stress and age on positions of the cells and with respect to each other.
Collapse
Affiliation(s)
- H P Jain
- Institute of Scientific Computing, Technische Universität Dresden, D-01062 Dresden, Germany
| | - D Wenzel
- Institute of Scientific Computing, Technische Universität Dresden, D-01062 Dresden, Germany
| | - A Voigt
- Institute of Scientific Computing, Technische Universität Dresden, D-01062 Dresden, Germany
- Center for Systems Biology Dresden (CSBD), Pfotenhauerstr. 108, D-01307 Dresden, Germany
- Cluster of Excellence - Physics of Life, TU Dresden, D-01062 Dresden, Germany
| |
Collapse
|
25
|
Wen H, Zhu Y, Peng C, Kumar PBS, Laradji M. Collective motion of cells modeled as ring polymers. SOFT MATTER 2022; 18:1228-1238. [PMID: 35043821 DOI: 10.1039/d1sm01640g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this article, we use a coarse-grained model of disjoint semi-flexible ring polymers to investigate computationally the spatiotemporal collective behavior of cell colonies. A ring polymer in this model is self-propelled by a motility force along the cell's polarity, which depends on its historical kinetics. Despite the repulsive interaction between the cells, a collective behavior sets in as a result of cells pushing against each other. This cooperative motion emerges as the amplitude of the motility force is increased and/or their areal density is increased. The degree of collectivity, characterized by the average cluster size, the velocity field order parameter, and the polarity field nematic order parameter, is found to increase with increasing the amplitude of the motility force and area coverage of the cells. Furthermore, the degree of alignment exhibited by the cell velocity field within a cluster is found to be stronger than that exhibited by the cell polarity. Comparison between the collective behavior of elongated cells and that of circular cells, at the same area coverage and motility force, shows that elongated cells exhibit a stronger collective behavior than circular cells, in agreement with earlier studies of self-propelled anisotropic particles. An investigation of two-cell collisions shows that while two clustered cells move in tandem, their polarities are misaligned. As such the cells push against each other while moving coherently.
Collapse
Affiliation(s)
- Haosheng Wen
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| | - Yu Zhu
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| | - Chenhui Peng
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| | - P B Sunil Kumar
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad-668557, Kerala, India
| | - Mohamed Laradji
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
26
|
Wenzel D, Voigt A. Multiphase field models for collective cell migration. Phys Rev E 2021; 104:054410. [PMID: 34942697 DOI: 10.1103/physreve.104.054410] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/05/2021] [Indexed: 01/23/2023]
Abstract
Confluent cell monolayers and epithelia tissues show remarkable patterns and correlations in structural arrangements and actively driven collective flows. We simulate these properties using multiphase field models. The models are based on cell deformations and cell-cell interactions and we investigate the influence of microscopic details to incorporate active forces on emerging phenomena. We compare four different approaches, one in which the activity is determined by a random orientation, one where the activity is related to the deformation of the cells, and two models with subcellular details to resolve the mechanochemical interactions underlying cell migration. The models are compared with respect to generic features, such as coordination number distribution, cell shape variability, emerging nematic properties, as well as vorticity correlations and flow patterns in large confluent monolayers and confinements. All results are compared with experimental data for a large variety of cell cultures. The appearing qualitative differences of the models show the importance of microscopic details and provide a route towards predictive simulations of patterns and correlations in cell colonies.
Collapse
Affiliation(s)
- D Wenzel
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany
| | - A Voigt
- Institute of Scientific Computing, Technische Universität Dresden, 01062 Dresden, Germany.,Center for Systems Biology Dresden (CSBD), Pfotenhauerstr. 108, 01307 Dresden, Germany.,Cluster of Excellence-Physics of Life, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
27
|
Silber SA, Karttunen M. SymPhas
—General Purpose Software for Phase‐Field, Phase‐Field Crystal, and Reaction‐Diffusion Simulations. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Steven A. Silber
- Department of Physics and Astronomy Centre for Advanced Materials and Biomaterials Research The University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
| | - Mikko Karttunen
- Department of Physics and Astronomy Centre for Advanced Materials and Biomaterials Research The University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
- Department of Chemistry The University of Western Ontario 1151 Richmond Street London ON N6A 3K7 Canada
| |
Collapse
|
28
|
Balasubramaniam L, Doostmohammadi A, Saw TB, Narayana GHNS, Mueller R, Dang T, Thomas M, Gupta S, Sonam S, Yap AS, Toyama Y, Mège RM, Yeomans JM, Ladoux B. Investigating the nature of active forces in tissues reveals how contractile cells can form extensile monolayers. NATURE MATERIALS 2021; 20:1156-1166. [PMID: 33603188 PMCID: PMC7611436 DOI: 10.1038/s41563-021-00919-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 12/23/2020] [Indexed: 05/24/2023]
Abstract
Actomyosin machinery endows cells with contractility at a single-cell level. However, within a monolayer, cells can be contractile or extensile based on the direction of pushing or pulling forces exerted by their neighbours or on the substrate. It has been shown that a monolayer of fibroblasts behaves as a contractile system while epithelial or neural progentior monolayers behave as an extensile system. Through a combination of cell culture experiments and in silico modelling, we reveal the mechanism behind this switch in extensile to contractile as the weakening of intercellular contacts. This switch promotes the build-up of tension at the cell-substrate interface through an increase in actin stress fibres and traction forces. This is accompanied by mechanotransductive changes in vinculin and YAP activation. We further show that contractile and extensile differences in cell activity sort cells in mixtures, uncovering a generic mechanism for pattern formation during cell competition, and morphogenesis.
Collapse
Affiliation(s)
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.
| | - Thuan Beng Saw
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, Singapore
- National University of Singapore, Department of Biomedical Engineering, Singapore, Singapore
| | | | - Romain Mueller
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Tien Dang
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France
| | - Minnah Thomas
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, Singapore
| | - Shafali Gupta
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Surabhi Sonam
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France
- D Y Patil International University, Pune, India
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yusuke Toyama
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, Singapore
| | - René-Marc Mège
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France.
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.
| | - Benoît Ladoux
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France.
| |
Collapse
|
29
|
Baggioli M, La Nave G, Phillips PW. Anomalous diffusion and Noether's second theorem. Phys Rev E 2021; 103:032115. [PMID: 33862806 DOI: 10.1103/physreve.103.032115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/23/2021] [Indexed: 11/07/2022]
Abstract
Despite the fact that conserved currents have dimensions that are determined solely by dimensional analysis (and hence no anomalous dimensions), Nature abounds in examples of anomalous diffusion in which L∝t^{γ}, with γ≠1/2, and heat transport in which the thermal conductivity diverges as L^{α}. Aside from breaking of Lorentz invariance, the true common link in such problems is an anomalous dimension for the underlying conserved current, thereby violating the basic tenet of field theory. We show here that the phenomenological nonlocal equations of motion that are used to describe such anomalies all follow from Lorentz-violating gauge transformations arising from Noether's second theorem. The generalizations lead to a family of diffusion and heat transport equations that systematize how nonlocal gauge transformations generate more general forms of Fick's and Fourier's laws for diffusive and heat transport, respectively. In particular, the associated Goldstone modes of the form ω∝k^{α}, α∈R are direct consequences of fractional equations of motion.
Collapse
Affiliation(s)
- Matteo Baggioli
- Instituto de Fisica Teorica UAM/CSIC, c/ Nicolas Cabrera 13-15, Cantoblanco, 28049 Madrid, Spain
| | - Gabriele La Nave
- Department of Mathematics, University of Illinois, Urbana, Illinois 61801, USA
| | - Philip W Phillips
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois 1110 W. Green Street, Urbana, Illinois 61801, USA
| |
Collapse
|
30
|
Shatkin G, Yeoman B, Birmingham K, Katira P, Engler AJ. Computational models of migration modes improve our understanding of metastasis. APL Bioeng 2020; 4:041505. [PMID: 33195959 PMCID: PMC7647620 DOI: 10.1063/5.0023748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023] Open
Abstract
Tumor cells migrate through changing microenvironments of diseased and healthy tissue, making their migration particularly challenging to describe. To better understand this process, computational models have been developed for both the ameboid and mesenchymal modes of cell migration. Here, we review various approaches that have been used to account for the physical environment's effect on cell migration in computational models, with a focus on their application to understanding cancer metastasis and the related phenomenon of durotaxis. We then discuss how mesenchymal migration models typically simulate complex cell–extracellular matrix (ECM) interactions, while ameboid migration models use a cell-focused approach that largely ignores ECM when not acting as a physical barrier. This approach greatly simplifies or ignores the mechanosensing ability of ameboid migrating cells and should be reevaluated in future models. We conclude by describing future model elements that have not been included to date but would enhance model accuracy.
Collapse
Affiliation(s)
- Gabriel Shatkin
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | | | - Katherine Birmingham
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
31
|
Chojowski R, Schwarz US, Ziebert F. Reversible elastic phase field approach and application to cell monolayers. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:63. [PMID: 33009970 DOI: 10.1140/epje/i2020-11988-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Motion and generation of forces by single cells and cell collectives are essential elements of many biological processes, including development, wound healing and cancer cell migration. Quantitative wound healing assays have demonstrated that cell monolayers can be both dynamic and elastic at the same time. However, it is very challenging to model this combination with conventional approaches. Here we introduce an elastic phase field approach that allows us to predict the dynamics of elastic sheets under the action of active stresses and localized forces, e.g. from leader cells. Our method ensures elastic reversibility after release of forces. We demonstrate its potential by studying several paradigmatic situations and geometries relevant for single cells and cell monolayers, including elastic bars, contractile discs and expanding monolayers with leader cells.
Collapse
Affiliation(s)
- Robert Chojowski
- Institute for Theoretical Physics, Heidelberg University, D-69120, Heidelberg, Germany
- BioQuant, Heidelberg University, D-69120, Heidelberg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics, Heidelberg University, D-69120, Heidelberg, Germany
- BioQuant, Heidelberg University, D-69120, Heidelberg, Germany
| | - Falko Ziebert
- Institute for Theoretical Physics, Heidelberg University, D-69120, Heidelberg, Germany.
- BioQuant, Heidelberg University, D-69120, Heidelberg, Germany.
| |
Collapse
|
32
|
Zhang G, Mueller R, Doostmohammadi A, Yeomans JM. Active inter-cellular forces in collective cell motility. J R Soc Interface 2020; 17:20200312. [PMID: 32781933 DOI: 10.1098/rsif.2020.0312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The collective behaviour of confluent cell sheets is strongly influenced both by polar forces, arising through cytoskeletal propulsion, and by active inter-cellular forces, which are mediated by interactions across cell-cell junctions. We use a phase-field model to explore the interplay between these two contributions and compare the dynamics of a cell sheet when the polarity of the cells aligns to (i) their main axis of elongation, (ii) their velocity and (iii) when the polarity direction executes a persistent random walk. In all three cases, we observe a sharp transition from a jammed state (where cell rearrangements are strongly suppressed) to a liquid state (where the cells can move freely relative to each other) when either the polar or the inter-cellular forces are increased. In addition, for case (ii) only, we observe an additional dynamical state, flocking (solid or liquid), where the majority of the cells move in the same direction. The flocking state is seen for strong polar forces, but is destroyed as the strength of the inter-cellular activity is increased.
Collapse
Affiliation(s)
- Guanming Zhang
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Romain Mueller
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Amin Doostmohammadi
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, DK
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| |
Collapse
|
33
|
Loewe B, Chiang M, Marenduzzo D, Marchetti MC. Solid-Liquid Transition of Deformable and Overlapping Active Particles. PHYSICAL REVIEW LETTERS 2020; 125:038003. [PMID: 32745423 DOI: 10.1103/physrevlett.125.038003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/24/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Experiments and theory have shown that cell monolayers and epithelial tissues exhibit solid-liquid and glass-liquid transitions. These transitions are biologically relevant to our understanding of embryonic development, wound healing, and cancer. Current models of confluent epithelia have focused on the role of cell shape, with less attention paid to cell extrusion, which is key for maintaining homeostasis in biological tissue. Here, we use a multiphase field model to study the solid-liquid transition in a confluent monolayer of deformable cells. Cell overlap is allowed and provides a way for modeling the precursor for extrusion. When cells overlap rather than deform, we find that the melting transition changes from continuous to first order like, and that there is an intermittent regime close to the transition, where solid and liquid states alternate over time. By studying the dynamics of five- and sevenfold disclinations in the hexagonal lattice formed by the cell centers, we observe that these correlate with spatial fluctuations in the cellular overlap, and that cell extrusion tends to initiate near fivefold disclinations.
Collapse
Affiliation(s)
- Benjamin Loewe
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Michael Chiang
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
34
|
Moreira-Soares M, Cunha SP, Bordin JR, Travasso RDM. Adhesion modulates cell morphology and migration within dense fibrous networks. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:314001. [PMID: 32378515 DOI: 10.1088/1361-648x/ab7c17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
One of the most fundamental abilities required for the sustainability of complex life forms is active cell migration, since it is essential in diverse processes from morphogenesis to leukocyte chemotaxis in immune response. The movement of a cell is the result of intricate mechanisms, that involve the coordination between mechanical forces, biochemical regulatory pathways and environmental cues. In particular, epithelial cancer cells have to employ mechanical strategies in order to migrate through the tissue's basement membrane and infiltrate the bloodstream during the invasion stage of metastasis. In this work we explore how mechanical interactions such as spatial restriction and adhesion affect migration of a self-propelled droplet in dense fibrous media. We have performed a systematic analysis using a phase-field model and we propose a novel approach to simulate cell migration with dissipative particle dynamics modelling. With this purpose we have measured in our simulation the cell's velocity and quantified its morphology as a function of the fibre density and of its adhesiveness to the matrix fibres. Furthermore, we have compared our results to a previousin vitromigration assay of fibrosarcoma cells in fibrous matrices. The results show good agreement between the two methodologies and experiments in the literature, which indicates that these minimalist descriptions are able to capture the main features of the system. Our results indicate that adhesiveness is critical for cell migration, by modulating cell morphology in crowded environments and by enhancing cell velocity. In addition, our analysis suggests that matrix metalloproteinases (MMPs) play an important role as adhesiveness modulators. We propose that new assays should be carried out to address the role of adhesion and the effect of different MMPs in cell migration under confined conditions.
Collapse
Affiliation(s)
| | - Susana P Cunha
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - José Rafael Bordin
- Department of Physics, Institute of Physics and Mathematics, Federal University of Pelotas, Rua dos Ipês, Capão do Leão, RS, 96050-500, Brazil
| | - Rui D M Travasso
- CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
35
|
He S, Green Y, Saeidi N, Li X, Fredberg JJ, Ji B, Pismen LM. A theoretical model of collective cell polarization and alignment. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2020; 137:103860. [PMID: 33518805 PMCID: PMC7842695 DOI: 10.1016/j.jmps.2019.103860] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Collective cell polarization and alignment play important roles in tissue morphogenesis, wound healing and cancer metastasis. How cells sense the direction and position in these processes, however, has not been fully understood. Here we construct a theoretical model based on describing cell layer as a nemato-elastic medium, by which the cell polarization, cell alignment and cell active contraction are explicitly expressed as functions of components of the nematic order parameter. To determine the order parameter we derive two sets of governing equations, one for the force equilibrium of the system, and the other for the minimization of the system's free energy including the energy of cell polarization and alignment. By solving these coupled governing equations, we can predict the effects of substrate stiffness, geometries of cell layers, external forces and myosin activity on the direction- and position-dependent cell aspect ratio and cell orientation. Moreover, the axisymmetric problem with cells on a ring-like pattern is solved analytically, and the analytical solution for cell aspect ratio are governed by parameter groups which include the stiffness of the cell and the substrate, the strength of myosin activity and the external forces. Our predictions of the cell aspect ratio and orientation are generally comparable to experimental observations. These results show that the pattern of cell polarization is determined by the anisotropic degree of active contractile stress, and suggest a stress-driven polarization mechanism that enables cells to sense their spatial positions to develop direction- and position-dependent behavior. This, in turn, sheds light on the ways to control pattern formation in tissue engineering for potential biomedical applications.
Collapse
Affiliation(s)
- Shijie He
- Department of Applied Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yoav Green
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beersheva 8410501, Israel
| | - Nima Saeidi
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xiaojun Li
- Department of Applied Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jeffrey J. Fredberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Baohua Ji
- Department of Applied Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Corresponding authors. (B. Ji), (L.M. Pismen)
| | - Len M. Pismen
- Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
- Corresponding authors. (B. Ji), (L.M. Pismen)
| |
Collapse
|
36
|
Sadhukhan S, Basu SK. Avascular tumour growth models based on anomalous diffusion. J Biol Phys 2020; 46:67-94. [PMID: 32185594 DOI: 10.1007/s10867-020-09541-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/05/2020] [Indexed: 11/26/2022] Open
Abstract
In this study, we model avascular tumour growth in epithelial tissue. This can help us to understand that how an avascular tumour interacts with its microenvironment and what type of physical changes can be observed within the tumour spheroid before angiogenesis. This understanding is likely to assist in the development of better diagnostics, improved therapies, and prognostics. In biological systems, most of the diffusive processes are through cellular membranes which are porous in nature. Due to its porous nature, diffusion in biological systems are heterogeneous. The fractional diffusion equation is well suited to model heterogeneous biological systems, though most of the early studies did not use this fact. They described tumour growth with simple diffusion-based model. We have developed a spherical model based on simple diffusion initially, and then the model is upgraded with fractional diffusion equations to express the anomalous nature of biological system. In this study, two types of fractional models are developed: one of fixed order and the other of variable order. The memory formalism technique is also included in these anomalous diffusion models. These three models are investigated from phenomenological point view by measuring some parameters for characterizing avascular tumour growth over time. Tumour microenvironment is very complex in nature due to several concurrent molecular mechanisms. Diffusion with memory (fixed as well as variable) formation may be an oversimplified technique, and does not reflect the detailed view of the tumour microenvironment. However, it is found that all the models offer realistic and insightful information of the tumour microenvironment at the macroscopic level, and approximate well the physical phenomena. Also, it is observed that the anomalous diffusion based models offer a closer description to clinical facts than the simple model. As the simulation parameters get modified due to different biochemical and biophysical processes, the robustness of the model is determined. It is found that the anomalous diffusion models are moderately sensitive to the parameters.
Collapse
Affiliation(s)
- Sounak Sadhukhan
- Department of Computer Science, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - S K Basu
- Department of Computer Science, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
37
|
Peyret G, Mueller R, d'Alessandro J, Begnaud S, Marcq P, Mège RM, Yeomans JM, Doostmohammadi A, Ladoux B. Sustained Oscillations of Epithelial Cell Sheets. Biophys J 2019; 117:464-478. [PMID: 31307676 DOI: 10.1016/j.bpj.2019.06.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
Morphological changes during development, tissue repair, and disease largely rely on coordinated cell movements and are controlled by the tissue environment. Epithelial cell sheets are often subjected to large-scale deformation during tissue formation. The active mechanical environment in which epithelial cells operate have the ability to promote collective oscillations, but how these cellular movements are generated and relate to collective migration remains unclear. Here, combining in vitro experiments and computational modeling, we describe a form of collective oscillations in confined epithelial tissues in which the oscillatory motion is the dominant contribution to the cellular movements. We show that epithelial cells exhibit large-scale coherent oscillations when constrained within micropatterns of varying shapes and sizes and that their period and amplitude are set by the smallest confinement dimension. Using molecular perturbations, we then demonstrate that force transmission at cell-cell junctions and its coupling to cell polarity are pivotal for the generation of these collective movements. We find that the resulting tissue deformations are sufficient to trigger osillatory mechanotransduction of YAP within cells, potentially affecting a wide range of cellular processes.
Collapse
Affiliation(s)
- Grégoire Peyret
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France
| | - Romain Mueller
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
| | - Joseph d'Alessandro
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France
| | - Simon Begnaud
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France
| | - Philippe Marcq
- Laboratoire Physique et Mécanique des Milieux Hétérogènes, CNRS UMR 7636, Sorbonne Université, ESPCI, Paris, France
| | - René-Marc Mège
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
| | - Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom.
| | - Benoît Ladoux
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France.
| |
Collapse
|
38
|
Bresler Y, Palmieri B, Grant M. Sharp interface model for elastic motile cells. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:52. [PMID: 31073786 DOI: 10.1140/epje/i2019-11815-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
In order to study the effect of cell elastic properties on the behavior of assemblies of motile cells, this paper describes an alternative to the cell phase field (CPF) we have previously proposed. The CPF is a multi-scale approach to simulating many cells which tracked individual cells and allowed for large deformations. Though results were largely in agreement with experiment that focus on the migration of a soft cancer cell in a confluent layer of normal cells, simulations required large computing resources, making a more detailed study unfeasible. In this work we derive a sharp interface limit of CPF, including all interactions and parameters. This new model scales linearly with both system and cell size, compared to our original CPF implementation, which is quadratic in cell size, this gives rise to a considerable speedup, which we discuss in the article. We demonstrate that this model captures a similar behavior and allows us to obtain new results that were previously intractable. We obtain the full velocity distribution for a large range of degrees of confluence, [Formula: see text], and show regimes where its tail is heavier and lighter than a normal distribution. Furthermore, we fully characterize the velocity distribution with a single parameter, and its dependence on [Formula: see text] is fully determined. Finally, cell motility is shown to linearly decrease with increasing [Formula: see text], consistent with previous theoretical results.
Collapse
Affiliation(s)
- Yony Bresler
- Department of Physics, McGill University, 3600 University Montréal, H3A 2T8, Québec, Canada.
| | - Benoit Palmieri
- Department of Physics, McGill University, 3600 University Montréal, H3A 2T8, Québec, Canada
| | - Martin Grant
- Department of Physics, McGill University, 3600 University Montréal, H3A 2T8, Québec, Canada
| |
Collapse
|
39
|
Wenzel D, Praetorius S, Voigt A. Topological and geometrical quantities in active cellular structures. J Chem Phys 2019; 150:164108. [PMID: 31042877 DOI: 10.1063/1.5085766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- D. Wenzel
- Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany
| | - S. Praetorius
- Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany
| | - A. Voigt
- Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062 Dresden, Germany
- Center for Systems Biology Dresden (CSBD), Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
40
|
Nogucci H. Dynamic and static analyses of glass-like properties of three-dimensional tissues. Biophys Physicobiol 2019; 16:9-17. [PMID: 30775199 PMCID: PMC6373426 DOI: 10.2142/biophysico.16.0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/15/2018] [Indexed: 12/01/2022] Open
Abstract
The mechanical properties of tissues are influenced by those of constituent cells in various ways. For instance, it has been theoretically demonstrated that two-dimensional confluent tissues comprising mechanically uniform cells can undergo density-independent rigidity transitions, and analysis of the dynamical behavior of tissues near the critical point revealed that the transitions are geometrically controlled by the so-called cell shape parameter. To investigate whether three-dimensional tissues behave similarly to two-dimensional ones, we herein extend the previously developed model to three dimensions both dynamically and statically, demonstrating that two mechanical states similar to those of glassy materials exist in the three-dimensional case. Scaling analysis is applied to the static model focused from the rearrangement viewpoint. The obtained results suggest that the upper critical dimension of tissues equals two and is therefore the same as that of the jamming transition.
Collapse
Affiliation(s)
- Hironobu Nogucci
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 150-8902, Japan
| |
Collapse
|
41
|
Mueller R, Yeomans JM, Doostmohammadi A. Emergence of Active Nematic Behavior in Monolayers of Isotropic Cells. PHYSICAL REVIEW LETTERS 2019; 122:048004. [PMID: 30768306 DOI: 10.1103/physrevlett.122.048004] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 06/09/2023]
Abstract
There is now growing evidence of the emergence and biological functionality of liquid crystal features, including nematic order and topological defects, in cellular tissues. However, how such features that intrinsically rely on particle elongation emerge in monolayers of cells with isotropic shapes is an outstanding question. In this Letter, we present a minimal model of cellular monolayers based on cell deformation and force transmission at the cell-cell interface that explains the formation of topological defects and captures the flow-field and stress patterns around them. By including mechanical properties at the individual cell level, we further show that the instability that drives the formation of topological defects, and leads to active turbulence, emerges from a feedback between shape deformation and active driving. The model allows us to suggest new explanations for experimental observations in tissue mechanics, and to propose designs for future experiments.
Collapse
Affiliation(s)
- Romain Mueller
- The Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
42
|
Molina JJ, Yamamoto R. Modeling the mechanosensitivity of fast-crawling cells on cyclically stretched substrates. SOFT MATTER 2019; 15:683-698. [PMID: 30623962 DOI: 10.1039/c8sm01903g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mechanosensitivity of cells, which determines how they are able to respond to mechanical signals, is crucial for the functioning of biological systems. Experimentally, this is investigated by studying the reorientation of cells on cyclically stretched substrates. The reorientation depends on the type of cell and on the stretching protocol, but the mechanisms responsible for the response are still not completely understood. Here, we introduce a computational model for fast crawling cells on cyclically stretched substrates that accounts for the sub-cellular elements responsible for cell shape and motility. This includes the dynamics of the cell membrane, the actin cytoskeleton, and the focal adhesions with the stretching substrate. These processes evolve over characteristic time scales that can vary by orders of magnitude and naturally give rise to the frequency dependent reorientation observed experimentally. Depending on which processes are being probed by the stretching and on the type of coupling with the substrate, our simulations predict either no reorientation, a bi-stability in the parallel and perpendicular directions, or a complete reorientation in either the parallel or perpendicular direction. In particular, we show that an asymmetry in the adhesion dynamics during the loading and unloading phases of the stretching, whether it comes from the response of the cell itself or from the precise stretching protocol, can be used to selectively align the cells. Our results provide further evidence for the importance of focal adhesion dynamics in determining the mechanosensitive response of cells, as well as a way to interpret recent experiments.
Collapse
Affiliation(s)
- John J Molina
- Department of Chemical Engineering, Kyoto University, Kyoto, Japan.
| | - Ryoichi Yamamoto
- Department of Chemical Engineering, Kyoto University, Kyoto, Japan. and Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
| |
Collapse
|
43
|
Um E, Oh JM, Granick S, Cho YK. Cell migration in microengineered tumor environments. LAB ON A CHIP 2017; 17:4171-4185. [PMID: 28971203 DOI: 10.1039/c7lc00555e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recent advances in microengineered cell migration platforms are discussed critically with a focus on how cell migration is influenced by engineered tumor microenvironments, the medical relevance being to understand how tumor microenvironments may promote or suppress the progression of cancer. We first introduce key findings in cancer cell migration under the influence of the physical environment, which is systematically controlled by microengineering technology, followed by multi-cues of physico-chemical factors, which represent the complexity of the tumor environment. Recognizing that cancer cells constantly communicate not only with each other but also with tumor-associated cells such as vascular, fibroblast, and immune cells, and also with non-cellular components, it follows that cell motility in tumor microenvironments, especially metastasis via the invasion of cancer cells into the extracellular matrix and other tissues, is closely related to the malignancy of cancer-related mortality. Medical relevance of forefront research realized in microfabricated devices, such as single cell sorting based on the analysis of cell migration behavior, may assist personalized theragnostics based on the cell migration phenotype. Furthermore, we urge development of theory and numerical understanding of single or collective cell migration in microengineered platforms to gain new insights in cancer metastasis and in therapeutic strategies.
Collapse
Affiliation(s)
- Eujin Um
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | | | | | | |
Collapse
|
44
|
Camley BA, Rappel WJ. Physical models of collective cell motility: from cell to tissue. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:113002. [PMID: 28989187 PMCID: PMC5625300 DOI: 10.1088/1361-6463/aa56fe] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this article, we review physics-based models of collective cell motility. We discuss a range of techniques at different scales, ranging from models that represent cells as simple self-propelled particles to phase field models that can represent a cell's shape and dynamics in great detail. We also extensively review the ways in which cells within a tissue choose their direction, the statistics of cell motion, and some simple examples of how cell-cell signaling can interact with collective cell motility. This review also covers in more detail selected recent works on collective cell motion of small numbers of cells on micropatterns, in wound healing, and the chemotaxis of clusters of cells.
Collapse
|
45
|
Camley BA, Zhao Y, Li B, Levine H, Rappel WJ. Crawling and turning in a minimal reaction-diffusion cell motility model: Coupling cell shape and biochemistry. Phys Rev E 2017; 95:012401. [PMID: 28208438 DOI: 10.1103/physreve.95.012401] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Indexed: 11/07/2022]
Abstract
We study a minimal model of a crawling eukaryotic cell with a chemical polarity controlled by a reaction-diffusion mechanism describing Rho GTPase dynamics. The size, shape, and speed of the cell emerge from the combination of the chemical polarity, which controls the locations where actin polymerization occurs, and the physical properties of the cell, including its membrane tension. We find in our model both highly persistent trajectories, in which the cell crawls in a straight line, and turning trajectories, where the cell transitions from crawling in a line to crawling in a circle. We discuss the controlling variables for this turning instability and argue that turning arises from a coupling between the reaction-diffusion mechanism and the shape of the cell. This emphasizes the surprising features that can arise from simple links between cell mechanics and biochemistry. Our results suggest that similar instabilities may be present in a broad class of biochemical descriptions of cell polarity.
Collapse
Affiliation(s)
- Brian A Camley
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| | - Yanxiang Zhao
- Department of Mathematics, The George Washington University, Washington, DC 20052, USA
| | - Bo Li
- Department of Mathematics and Graduate Program in Quantitative Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - Herbert Levine
- Department of Bioengineering, Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
46
|
Kulawiak DA, Camley BA, Rappel WJ. Modeling Contact Inhibition of Locomotion of Colliding Cells Migrating on Micropatterned Substrates. PLoS Comput Biol 2016; 12:e1005239. [PMID: 27984579 PMCID: PMC5161303 DOI: 10.1371/journal.pcbi.1005239] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/04/2016] [Indexed: 01/14/2023] Open
Abstract
In cancer metastasis, embryonic development, and wound healing, cells can coordinate their motion, leading to collective motility. To characterize these cell-cell interactions, which include contact inhibition of locomotion (CIL), micropatterned substrates are often used to restrict cell migration to linear, quasi-one-dimensional paths. In these assays, collisions between polarized cells occur frequently with only a few possible outcomes, such as cells reversing direction, sticking to one another, or walking past one another. Using a computational phase field model of collective cell motility that includes the mechanics of cell shape and a minimal chemical model for CIL, we are able to reproduce all cases seen in two-cell collisions. A subtle balance between the internal cell polarization, CIL and cell-cell adhesion governs the collision outcome. We identify the parameters that control transitions between the different cases, including cell-cell adhesion, propulsion strength, and the rates of CIL. These parameters suggest hypotheses for why different cell types have different collision behavior and the effect of interventions that modulate collision outcomes. To reproduce the heterogeneity in cell-cell collision outcomes observed experimentally in neural crest cells, we must either carefully tune our parameters or assume that there is significant cell-to-cell variation in key parameters like cell-cell adhesion. Many cells cooperate with their neighbors to move as a group. However, the mechanisms of these cell-cell interactions are not well understood. One experimental tool to analyze interactions is to allow cells to collide with one another, and see what happens. In order to better understand what features these experiments measure, we develop a computational model of cell-cell collisions, and identify the biochemical and mechanical parameters that lead to different outcomes of collisions. We can recreate all known types of collisions seen in experiments, including cells reversing on contact, sticking, or walking past each other. Our model suggests that what happens in a collision may depend strongly on the mechanical forces between the two cells.
Collapse
Affiliation(s)
| | - Brian A. Camley
- Department of Physics, University of California, San Diego, San Diego, California, United States of America
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Patsch K, Chiu CL, Engeln M, Agus DB, Mallick P, Mumenthaler SM, Ruderman D. Single cell dynamic phenotyping. Sci Rep 2016; 6:34785. [PMID: 27708391 PMCID: PMC5052535 DOI: 10.1038/srep34785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 09/19/2016] [Indexed: 12/25/2022] Open
Abstract
Live cell imaging has improved our ability to measure phenotypic heterogeneity. However, bottlenecks in imaging and image processing often make it difficult to differentiate interesting biological behavior from technical artifact. Thus there is a need for new methods that improve data quality without sacrificing throughput. Here we present a 3-step workflow to improve dynamic phenotype measurements of heterogeneous cell populations. We provide guidelines for image acquisition, phenotype tracking, and data filtering to remove erroneous cell tracks using the novel Tracking Aberration Measure (TrAM). Our workflow is broadly applicable across imaging platforms and analysis software. By applying this workflow to cancer cell assays, we reduced aberrant cell track prevalence from 17% to 2%. The cost of this improvement was removing 15% of the well-tracked cells. This enabled detection of significant motility differences between cell lines. Similarly, we avoided detecting a false change in translocation kinetics by eliminating the true cause: varied proportions of unresponsive cells. Finally, by systematically seeking heterogeneous behaviors, we detected subpopulations that otherwise could have been missed, including early apoptotic events and pre-mitotic cells. We provide optimized protocols for specific applications and step-by-step guidelines for adapting them to a variety of biological systems.
Collapse
Affiliation(s)
- Katherin Patsch
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, USA
| | - Chi-Li Chiu
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, USA
| | - Mark Engeln
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, USA
| | - David B Agus
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, USA
| | - Parag Mallick
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, USA
| | - Daniel Ruderman
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
48
|
Camley BA, Zimmermann J, Levine H, Rappel WJ. Collective Signal Processing in Cluster Chemotaxis: Roles of Adaptation, Amplification, and Co-attraction in Collective Guidance. PLoS Comput Biol 2016; 12:e1005008. [PMID: 27367541 PMCID: PMC4930173 DOI: 10.1371/journal.pcbi.1005008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/30/2016] [Indexed: 11/30/2022] Open
Abstract
Single eukaryotic cells commonly sense and follow chemical gradients, performing chemotaxis. Recent experiments and theories, however, show that even when single cells do not chemotax, clusters of cells may, if their interactions are regulated by the chemoattractant. We study this general mechanism of "collective guidance" computationally with models that integrate stochastic dynamics for individual cells with biochemical reactions within the cells, and diffusion of chemical signals between the cells. We show that if clusters of cells use the well-known local excitation, global inhibition (LEGI) mechanism to sense chemoattractant gradients, the speed of the cell cluster becomes non-monotonic in the cluster's size-clusters either larger or smaller than an optimal size will have lower speed. We argue that the cell cluster speed is a crucial readout of how the cluster processes chemotactic signals; both amplification and adaptation will alter the behavior of cluster speed as a function of size. We also show that, contrary to the assumptions of earlier theories, collective guidance does not require persistent cell-cell contacts and strong short range adhesion. If cell-cell adhesion is absent, and the cluster cohesion is instead provided by a co-attraction mechanism, e.g. chemotaxis toward a secreted molecule, collective guidance may still function. However, new behaviors, such as cluster rotation, may also appear in this case. Co-attraction and adaptation allow for collective guidance that is robust to varying chemoattractant concentrations while not requiring strong cell-cell adhesion.
Collapse
Affiliation(s)
- Brian A. Camley
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| | - Juliane Zimmermann
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
49
|
Muzzio NE, Pasquale MA, Huergo MAC, Bolzán AE, González PH, Arvia AJ. Spatio-temporal morphology changes in and quenching effects on the 2D spreading dynamics of cell colonies in both plain and methylcellulose-containing culture media. J Biol Phys 2016; 42:477-502. [PMID: 27270331 DOI: 10.1007/s10867-016-9418-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 04/04/2016] [Indexed: 10/21/2022] Open
Abstract
To deal with complex systems, microscopic and global approaches become of particular interest. Our previous results from the dynamics of large cell colonies indicated that their 2D front roughness dynamics is compatible with the standard Kardar-Parisi-Zhang (KPZ) or the quenched KPZ equations either in plain or methylcellulose (MC)-containing gel culture media, respectively. In both cases, the influence of a non-uniform distribution of the colony constituents was significant. These results encouraged us to investigate the overall dynamics of those systems considering the morphology and size, the duplication rate, and the motility of single cells. For this purpose, colonies with different cell populations (N) exhibiting quasi-circular and quasi-linear growth fronts in plain and MC-containing culture media are investigated. For small N, the average radial front velocity and its change with time depend on MC concentration. MC in the medium interferes with cell mitosis, contributes to the local enlargement of cells, and increases the distribution of spatio-temporal cell density heterogeneities. Colony spreading in MC-containing media proceeds under two main quenching effects, I and II; the former mainly depending on the culture medium composition and structure and the latter caused by the distribution of enlarged local cell domains. For large N, colony spreading occurs at constant velocity. The characteristics of cell motility, assessed by measuring their trajectories and the corresponding velocity field, reflect the effect of enlarged, slow-moving cells and the structure of the medium. Local average cell size distribution and individual cell motility data from plain and MC-containing media are qualitatively consistent with the predictions of both the extended cellular Potts models and the observed transition of the front roughness dynamics from a standard KPZ to a quenched KPZ. In this case, quenching effects I and II cooperate and give rise to the quenched-KPZ equation. Seemingly, these results show a possible way of linking the cellular Potts models and the 2D colony front roughness dynamics.
Collapse
Affiliation(s)
- N E Muzzio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, Sucursal 4, Casilla de Correo 16, 1900, La Plata, Argentina
| | - M A Pasquale
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, Sucursal 4, Casilla de Correo 16, 1900, La Plata, Argentina.
| | - M A C Huergo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, Sucursal 4, Casilla de Correo 16, 1900, La Plata, Argentina
| | - A E Bolzán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, Sucursal 4, Casilla de Correo 16, 1900, La Plata, Argentina
| | - P H González
- Cátedra de Patología, Facultad de Ciencias Médicas, UNLP, CIC, Calle 60 y 120, 1900, La Plata, Bs. As., Argentina
| | - A J Arvia
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, Sucursal 4, Casilla de Correo 16, 1900, La Plata, Argentina
| |
Collapse
|
50
|
Abstract
We construct a phase-field model for collective cell migration based on a Ginzburg-Landau free-energy formulation. We model adhesion, surface tension, repulsion, coattraction, and polarization, enabling us to follow the cells' morphologies and the effect of their membranes fluctuations on collective motion. We were able to measure the tissue surface tension as a function of the individual cell cortical tension and adhesion and identify a density threshold for cell-sheet formation.
Collapse
Affiliation(s)
- Sara Najem
- Graduate Aerospace Laboratories (GALCIT), California Institute of Technology, Pasadena, California 91125, USA
| | - Martin Grant
- Physics Department, Rutherford Building, 3600 rue University, McGill University, Montréal, Québec, Canada H3A 2T8
| |
Collapse
|