1
|
Li XM, Zhai HH, An XH, Zhang H, Zhang X, Wang P, Chen H, Tian Y. PpSAUR5 promotes plant growth by regulating lignin and hormone pathways. FRONTIERS IN PLANT SCIENCE 2024; 15:1291693. [PMID: 38984157 PMCID: PMC11231374 DOI: 10.3389/fpls.2024.1291693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 05/08/2024] [Indexed: 07/11/2024]
Abstract
Introduction Peach (Prunus persica) has a high nutritional and economic value. However, its overgrowth can lead to yield loss. Regulating the growth of peach trees is challenging. The small auxin-up RNA (SAUR) gene family is the largest family of auxin-responsive genes, which play important roles in plant growth and development. However, members of this gene family are rarely reported in peach. Methods In this study, we measured leaf area, chlorophyll and lignin content to detect the role of PpSAUR5 on growth through transgenic Arabidopsis. Results PpSAUR5 responds to auxin and gibberellin, promoting and inhibiting the synthesis of gibberellin and auxin, respectively. The heterologous transformation of PpSAUR5 in Arabidopsis led to enhanced growth of leaves and siliques, lightening of leaf color, decrease in chlorophyll content, increase in lignin content, abnormalities in the floral organs, and distortion of the inflorescence axis. Transcriptome data analysis of PpSAUR5 overexpression and wild-type lines revealed 854 differentially expressed genes (DEGs). GO and KEGG analyses showed that the DEGs were primarily involved in biological processes, such as cellular processes, metabolic processes, response to stimuli, and catalytic activity. These genes were mainly enriched in pathways, such as phenylalanine biosynthesis, phytohormone signaling, and MAPK signaling. Discussion In summary, these results suggested that PpSAUR5 might regulate tree vigor by modulating the synthesis of auxin and gibberellin. Future studies can use PpSAUR5 as a candidate gene to elucidate the potential regulatory mechanisms underlying peach tree vigor.
Collapse
Affiliation(s)
- Xin-Miao Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Han-Han Zhai
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiu-Hong An
- National Engineering Research Center for Agriculture in Northern Moutainous Areas, Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - He Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Xueying Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Pengfei Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Haijiang Chen
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Yi Tian
- National Engineering Research Center for Agriculture in Northern Moutainous Areas, Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
2
|
Ren W, Chen L. Integrated Transcriptome and Metabolome Analysis of Salinity Tolerance in Response to Foliar Application of β-Alanine in Cotton Seedlings. Genes (Basel) 2023; 14:1825. [PMID: 37761965 PMCID: PMC10531431 DOI: 10.3390/genes14091825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Salinity is amongst the serious abiotic stresses cotton plants face, impairing crop productivity. Foliar application of β-alanine is employed to improve salt tolerance in various crops, but the exact mechanism behind it is not yet completely understood. An advanced line SDS-01 of upland cotton Gossypium hirsutum L. was utilized to determine its salt tolerance. Foliar treatment with the β-alanine solution at different concentrations was applied to the seedlings stressed with 0.8% NaCl solution. On the 10th day of treatment, samples were collected for transcriptome and metabolome analyses. β-alanine solution at a concentration of 25 mM was found to be the best treatment with the lowest mortality rate and highest plant height and above-ground biomass under salt stress. Both differentially expressed genes and accumulated metabolites analyses showed improved tolerance of treated seedlings. The photosynthetic efficiency improved in seedlings due to higher expression of photosynthesis-antenna proteins and activation of hormones signal transduction after treatment with β-alanine. Highly expressed transcription factors observed were MYB, HD-ZIP, ARF, MYC, EREB, DELLA, ABF, H2A, H4, WRKY, and HK involved in the positive regulation of salinity tolerance in β-alanine-treated seedlings. Furthermore, compared to the control, the high accumulation of polyamines, coumarins, organic acids, and phenolic compounds in the β-alanine-treated seedlings helped regulate cellular antioxidant (glutathione and L-Cysteine) production. Hence, to improve salt tolerance and productivity in cotton, foliar application of β-alanine at the seedling stage can be a valuable management practice.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
| | - Li Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
| |
Collapse
|
3
|
Khan A, Jie Z, Xiangjun K, Ullah N, Short AW, Diao Y, Zhou R, Xiong YC. Pre treatment of melatonin rescues cotton seedlings from cadmium toxicity by regulating key physio-biochemical and molecular pathways. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130530. [PMID: 36463746 DOI: 10.1016/j.jhazmat.2022.130530] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 05/26/2023]
Abstract
Melatonin, a plant/animal origin hormone, regulates plant response to abiotic stresses by protecting them from oxidative damage. This study identified physiochemical and molecular mechanism of melatonin-induced cadmium (Cd) stress tolerance and detoxification in cotton seedlings. Cotton seedlings, with or without melatonin (15 µM) pretreatment, were subjected to Cd (100 µM) stress in a hydroponic medium for eight days. We found that higher cellular Cd accumulation in leaf tissues significantly inhibited the growth and physiology of cotton seedlings. In contrast, melatonin-treated seedlings maintained leaf photosynthetic capacity, producing relatively higher fresh (17.4%) and dry (19.3%) weights than non-melatonin-treated plants under Cd-contaminated environments. The improved growth and leaf functioning were strongly linked with the melatonin-induced repression of Cd transporter genes (LOC107894197, LOC107955631, LOC107899273) in roots. Thus, melatonin induced downregulation of the Cd transporter genes further inhibited Cd ion transport towards leaf tissues. This suggests that the differentially expressed transporter genes (DEG) are key drivers of the melatonin-mediated regulation of Cd transportation and sequestration in cotton. Melatonin also protected cotton seedlings from Cd-induced oxidative injury by reducing tissues malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels and increasing the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) enzymes. Transcriptomic analysis revealed that melatonin activated mitogen-activated protein kinase (MAPK) signaling pathways to simulate stomatal adjustment and photosynthesis in Cd-stressed leaves. Further, melatonin protects intercellular organs, particularly ribosomes, from Cd-induced oxidative damage by promoting ribosomal biosynthesis and improving translational efficiency. The findings elucidated the molecular basis of melatonin-mediated Cd stress tolerance in plants and provided a key for the effective strategy of Cd accumulation in cotton.
Collapse
Affiliation(s)
- Aziz Khan
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; School of Life Science and Technology, Henan Institute of Science and Technology, Hualan St. 90, Xinxiang 453003, China
| | - Zheng Jie
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 450000, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya 572024, China
| | - Kong Xiangjun
- School of Life Science and Technology, Henan Institute of Science and Technology, Hualan St. 90, Xinxiang 453003, China
| | - Najeeb Ullah
- Faculty of Science, University Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Aidan W Short
- Institute of Ecology and Evolution, 5289 University of Oregon, Eugene, OR 97403, USA
| | - Yong Diao
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd, Wuhan, China
| | - Ruiyang Zhou
- School of Life Science and Technology, Henan Institute of Science and Technology, Hualan St. 90, Xinxiang 453003, China.
| | - You-Cai Xiong
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Ayala PG, Acevedo RM, Luna CV, Rivarola M, Acuña C, Marcucci Poltri S, González AM, Sansberro PA. Transcriptome Dynamics of Rooting Zone and Leaves during In Vitro Adventitious Root Formation in Eucalyptus nitens. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233301. [PMID: 36501341 PMCID: PMC9740172 DOI: 10.3390/plants11233301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 05/13/2023]
Abstract
Wood properties and agronomic traits associated with fast growth and frost tolerance make Eucalyptus nitens a valuable forest alternative. However, the rapid age-related decline in the adventitious root (AR) formation (herein, meaning induction, initiation, and expression stages) limits its propagation. We analyzed transcriptomic profile variation in leaves and stem bases during AR induction of microcuttings to elucidate the molecular mechanisms involved in AR formation. In addition, we quantified expressions of candidate genes associated with recalcitrance. We delimited the ontogenic phases of root formation using histological techniques and Scarecrow and Short-Root expression quantification for RNA sequencing sample collection. We quantified the gene expressions associated with root meristem formation, auxin biosynthesis, perception, signaling, conjugation, and cytokinin signaling in shoots harvested from 2- to 36-month-old plants. After IBA treatment, 702 transcripts changed their expressions. Several were involved in hormone homeostasis and the signaling pathways that determine cell dedifferentiation, leading to root meristem formation. In part, the age-related decline in the rooting capacity is attributable to the increase in the ARR1 gene expression, which negatively affects auxin homeostasis. The analysis of the transcriptomic variation in the leaves and rooting zones provided profuse information: (1) To elucidate the auxin metabolism; (2) to understand the hormonal and signaling processes involved; (3) to collect data associated with their recalcitrance.
Collapse
Affiliation(s)
- Paula G. Ayala
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sgto. Cabral 2131, Corrientes W3402BKG, Argentina
- Mejoramiento Genético Forestal, INTA-EEA Concordia, CC 34, Concordia E3200AQK, Argentina
| | - Raúl M. Acevedo
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sgto. Cabral 2131, Corrientes W3402BKG, Argentina
| | - Claudia V. Luna
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sgto. Cabral 2131, Corrientes W3402BKG, Argentina
| | - Máximo Rivarola
- Instituto de Biotecnología, CICVyA (INTA), Nicolas Repetto y de los Reseros s/n, Hurlingham, Buenos Aires B1686IGC, Argentina
| | - Cintia Acuña
- Instituto de Biotecnología, CICVyA (INTA), Nicolas Repetto y de los Reseros s/n, Hurlingham, Buenos Aires B1686IGC, Argentina
| | - Susana Marcucci Poltri
- Instituto de Biotecnología, CICVyA (INTA), Nicolas Repetto y de los Reseros s/n, Hurlingham, Buenos Aires B1686IGC, Argentina
| | - Ana M. González
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sgto. Cabral 2131, Corrientes W3402BKG, Argentina
| | - Pedro A. Sansberro
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sgto. Cabral 2131, Corrientes W3402BKG, Argentina
- Correspondence: or ; Tel.: +54-3794427589
| |
Collapse
|
5
|
Jin Q, Gao G, Guo C, Yang T, Li G, Song J, Zheng N, Yin S, Yi L, Li Z, Ge X, King GJ, Wang J, Zhou G. Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3469-3483. [PMID: 35997786 DOI: 10.1007/s00122-022-04193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
We identified two new transposon insertions within the promoter of BnaFT.A2 in addition to an existing 288 bp MITE within the second intron. Each insertion event corresponds to a distinct BnaFT.A2 haplotype and is closely associated with established crop seasonal ecotypes. Florigen, encoded by FLOWERING LOCUS T (FT), plays key roles not only as a flowering hormone, but also a universal growth factor affecting several aspects of plant architecture. In rapeseed, BnaFT.A2 has been revealed as one of the major loci associated with flowering time and different ecotypes. However, it is unclear how allelic variations of BnaFT.A2 affect its function in flowering time regulation and beyond. In this study, we confirmed an existing 288 bp miniature inverted-repeat transposable element (MITE) insertion within the second intron and identified two new insertions within the promoter of BnaFT.A2-a 3971 bp CACTA and a 1079 bp Helitron. Each insertion event corresponds to a distinct BnaFT.A2 haplotype and is closely associated with established crop seasonal ecotypes. These alleles have similar tissue-specific expression patterns but discrete transcriptional patterns tightly associated with rapeseed flowering time and ecotype. RNAi lines and mutants of BnaFT.A2 flowered significantly later than controls. Differentially expressed genes (DEGs), identified in transcriptomic profiling of seedling leaves from two loss-of-function mutants (Bnaft.a2-L1 and Bnaft.a2-L2) compared with controls, indicated significant enrichment for hormone metabolic genes and roles related to plant cell wall synthesis and photosynthesis. Plants with loss-of-function BnaFT.A2 had smaller leaves and lower net photosynthetic rate compared to controls. These findings not only further clarify the genetic basis of flowering time variation and ecotype formation in B. napus, but also provide an additional toolbox for genetic improvement of seasonal adaptation and production.
Collapse
Affiliation(s)
- Qingdong Jin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gengdong Gao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaocheng Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taihua Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ge Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jurong Song
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Na Zheng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Yin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Licong Yi
- Cash Crops Institute, Hubei Academy of Agricultural Science, Wuhan, 430064, China
| | - Zhen Li
- School of Agriculture, Jinhua Polytechnic, Jinhua, 321007, China
| | - Xianhong Ge
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Jing Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guangsheng Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Involvement of Auxin-Mediated CqEXPA50 Contributes to Salt Tolerance in Quinoa (Chenopodium quinoa) by Interaction with Auxin Pathway Genes. Int J Mol Sci 2022; 23:ijms23158480. [PMID: 35955612 PMCID: PMC9369402 DOI: 10.3390/ijms23158480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
Soil salinization is a global problem that limits crop yields and threatens agricultural development. Auxin-induced expansins contribute to plant salt tolerance through cell wall loosening. However, how auxins and expansins contribute to the adaptation of the halophyte quinoa (Chenopodium quinoa) to salt stress has not yet been reported. Here, auxin was found to contribute to the salt tolerance of quinoa by promoting the accumulation of photosynthetic pigments under salt stress, maintaining enzymatic and nonenzymatic antioxidant systems and scavenging excess reactive oxygen species (ROS). The Chenopodium quinoa expansin (Cqexpansin) family and the auxin pathway gene family (Chenopodium quinoa auxin response factor (CqARF), Chenopodium quinoa auxin/indoleacetic acid (CqAux/IAA), Chenopodium quinoa Gretchen Hagen 3 (CqGH3) and Chenopodium quinoa small auxin upregulated RNA (CqSAUR)) were identified from the quinoa genome. Combined expression profiling identified Chenopodium quinoa α-expansin 50 (CqEXPA50) as being involved in auxin-mediated salt tolerance. CqEXPA50 enhanced salt tolerance in quinoa seedlings was revealed by transient overexpression and physiological and biochemical analyses. Furthermore, the auxin pathway and salt stress-related genes regulated by CqEXPA50 were identified. The interaction of CqEXPA50 with these proteins was demonstrated by bimolecular fluorescence complementation (BIFC). The proteins that interact with CqEXPA50 were also found to improve salt tolerance. In conclusion, this study identified some genes potentially involved in the salt tolerance regulatory network of quinoa, providing new insights into salt tolerance.
Collapse
|
7
|
Chen F, Wang RJ, Wu CJ, Lin M, Yan HW, Xiang Y. SAUR8, a small auxin-up RNA Gene in poplar, confers drought tolerance to transgenic Arabidopsis plants. Gene 2022; 837:146692. [PMID: 35760288 DOI: 10.1016/j.gene.2022.146692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
SAUR (small auxin-up RNA) is an early auxin-responsive gene. In this study, a novel SAUR gene PtSAUR8 was cloned from poplar (Populus trichocarpa), and subcellular location analysis showed that it is targeted to the nuclear membrane. In addition, PtSAUR8 overexpression in Arabidopsis improved the plant resistance to drought stress. Meanwhile, the loss of function mutant saur53 showed more drought sensitivity compared to the WT. PtSAUR8 conferred drought tolerance in transgenic Arabidopsis, as determined through phenotypic and stress-associated physiological indicator analyses, namely, root length, germination rate, relative water content, proline content, CAT content, POD content, malondialdehyde content, hydrogen peroxide content, and relative conductivity. In addition, after the 1 μM abscisic acid (ABA) treatment, the PtSAUR8-OE lines promoted stomata closure. Quantitative fluorescence analysis of related genes induced by drought mutant stress further confirmed that overexpression of PtSAUR8 can improve drought resistance in transgenic Arabidopsis lines. Therefore, PtSAUR8 may play a role in plant drought resistance through ABA-mediated pathways; thus, providing new research materials for molecular breeding of poplar resistance.
Collapse
Affiliation(s)
- Feng Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Rui-Jia Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Cai-Juan Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Miao Lin
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Han-Wei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
8
|
Li X, Wang XH, Qiang W, Zheng HJ, ShangGuan LY, Zhang MS. Transcriptome revealing the dual regulatory mechanism of ethylene on the rhynchophylline and isorhynchophylline in Uncaria rhynchophylla. JOURNAL OF PLANT RESEARCH 2022; 135:485-500. [PMID: 35380307 DOI: 10.1007/s10265-022-01387-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Rhynchophylline (RIN) and isorhynchophylline (IRN) are extracted from Uncaria rhynchophylla, which are used to treat Alzheimer's disease. However, the massive accumulation of RIN and IRN in U. rhynchophylla requires exogenous stimulation. Ethylene is a potential stimulant for RIN and IRN biosynthesis, but there is no study on the role of ethylene in RIN or IRN synthesis. This study investigated the regulation of ethylene in RIN and IRN biosynthesis in U. rhynchophylla. An increase in the content of RIN and IRN was observed that could be attributed to the release of ethylene from 18 mM ethephon, while ethylene released from 36 mM ethephon reduced the content of RIN and IRN. The transcriptome and weighted gene co-expression network analysis indicated the up-regulation of seven key enzyme genes related to the RIN/IRN biosynthesis pathway and starch/sucrose metabolism pathway favored RIN/IRN synthesis. In comparison, the down-regulation of these seven key enzyme genes contributed to the reduction of RIN/IRN. Moreover, the inhibition of photosynthesis is associated with a reduction in RIN/IRN. Photosynthesis was restrained owing to the down-regulation of Lhcb1 and Lhcb6 after 36 mM ethephon treatment and further prevented supply of primary metabolites (such as α-D-glucose) for RIN/IRN synthesis. However, uninterrupted photosynthesis ensured a normal supply of primary metabolites at 18 mM ethephon treatment. AP2/ERF1, bHLH1, and bHLH2 may positively regulate the RIN/IRN accumulation, while NAC1 may play a negative regulatory role. Our results construct the potential bidirectional model for ethylene regulation on RIN/IRN synthesis and provide novel insight into the ethylene-mediated regulation of the metabolism of terpenoid indole alkaloids.
Collapse
Affiliation(s)
- Xue Li
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xiao-Hong Wang
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Wei Qiang
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Hao-Jie Zheng
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Li-Yang ShangGuan
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Ming-Sheng Zhang
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
9
|
PpSAUR43, an Auxin-Responsive Gene, Is Involved in the Post-Ripening and Softening of Peaches. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Auxin’s role in the post-ripening of peaches is widely recognized as important. However, little is known about the processes by which auxin regulates fruit post-ripening. As one of the early auxin-responsive genes, it is critical to understand the role of small auxin-up RNA (SAUR) genes in fruit post-ripening and softening. Herein, we identified 72 PpSAUR auxin-responsive factors in the peach genome and divided them into eight subfamilies based on phylogenetic analysis. Subsequently, the members related to peach post-ripening in the PpSAUR gene family were screened, and we targeted PpSAUR43. The expression of PpSAUR43 was decreased with fruit post-ripening in melting flesh (MF) fruit and was high in non-melting flesh (NMF) fruit. The overexpression of PpSAUR43 showed a slower rate of firmness decline, reduced ethylene production, and a delayed fruit post-ripening process. The MADS-box gene family plays an important regulatory role in fruit ripening. In this study, we showed with yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BIFC) experiments that PpSAUR43 can interact with the MADS-box transcription factor PpCMB1(PpMADS2), which indicates that PpSAUR43 may inhibit fruit ripening by suppressing the function of the PpCMB1 protein. Together, these results indicate that PpSAUR43 acts as a negative regulator involved in the peach post-ripening process.
Collapse
|
10
|
Peng Z, Zhao C, Li S, Guo Y, Xu H, Hu G, Liu Z, Chen X, Chen J, Lin S, Su W, Yang X. Integration of genomics, transcriptomics and metabolomics identifies candidate loci underlying fruit weight in loquat. HORTICULTURE RESEARCH 2022; 9:uhac037. [PMID: 35137085 PMCID: PMC9071381 DOI: 10.1093/hr/uhac037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 05/05/2023]
Abstract
Fruit weight is an integral part of fruit-quality traits and directly influences commodity values and economic returns of fruit crops. Despite its importance, the molecular mechanisms underlying fruit weight remain understudied, especially for perennial fruit tree crops such as cultivated loquat (Eriobotrya japonica Lindl.). Auxin is known to regulate fruit development, whereas its role and metabolism in fruit development remain obscure in loquat. In this study, we applied a multi-omics approach, integrating whole-genome resequencing-based quantitative trait locus (QTL) mapping with an F1 population, population genomics analysis using germplasm accessions, transcriptome analysis, and metabolic profiling to identify the genomic regions potentially associated with fruit weight in loquat. We identified three major loci associated with fruit weight, supported by both QTL mapping and comparative genomic analysis between small- and big-fruited loquat cultivars. Comparison between two genotypes with contrasting fruit weight performance through transcriptomic and metabolic profiling revealed an important role of auxin in regulating fruit development, especially at the fruit enlarging stage. The multi-omics approach identified two homologs of ETHYLENE INSENSITIVE 4 (EjEIN4) and TORNADO 1 (EjTRN1) as promising candidates controlling fruit weight. Moreover, three single nucleotide polymorphism (SNP) markers were closely associated with fruit weight. Results from this study provided insights from multiple perspectives into the genetic and metabolic controls of fruit weight in loquat. The candidate genomic regions, genes, and sequence variants will facilitate understanding the molecular basis of fruit weight and lay a foundation for future breeding and manipulation of fruit weight in loquat.
Collapse
Affiliation(s)
- Ze Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Chongbin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuqing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yihan Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hongxia Xu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zongli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiuping Chen
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| | - Junwei Chen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Shunquan Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wenbing Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| | - Xianghui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
11
|
Zanin FC, Freitas NC, Pinto RT, Máximo WPF, Diniz LEC, Paiva LV. The SAUR gene family in coffee: genome-wide identification and gene expression analysis during somatic embryogenesis. Mol Biol Rep 2022; 49:1973-1984. [PMID: 35034287 DOI: 10.1007/s11033-021-07011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Small auxin-up RNA (SAUR) genes form a wide family supposedly involved in different physiological and developmental processes in plants such as leaf senescence, auxin signaling and transport, hypocotyl development and tolerance to abiotic stresses. The transcription of SAUR genes is quickly induced by auxins, a group of phytohormones of major importance on embryo development. To better understand the distribution and expression profile of such still not explored family in Coffea sp., especially during the development of somatic embryogenesis (SE), SAUR members were characterized in silico using the available Coffea canephora genome data and analyzed for gene expression by RT-qPCR in C. arabica embryogenic samples. METHODS AND RESULTS Over C. canephora genome 31 CcSAURs were distributed by 11 chromosomes. Out of these 31 gene members, 5 SAURs were selected for gene expression analysis in C. arabica embryogenic materials. CaSAUR12 and CaSAUR18 were the members highly expressed through almost all plant materials. The other genes had more expression in at least one of the developing embryo stages or plantlets. The CaSAUR12 was the only member to exhibit an increased expression in both non-embryogenic calli and the developing embryo stages. CONCLUSION The identification of SAUR family on C. canephora genome followed by the analysis of gene expression profile across coffee somatic embryogenesis process on C. arabica represents a further additional step towards a better comprehension of molecular components acting on SE. Along with new research about this gene family such knowledge may support studies about clonal propagation methods via somatic embryogenesis to help the scientific community towards improvements into coffee crop.
Collapse
Affiliation(s)
- Fabiana Couto Zanin
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, 37200000, Brazil
| | - Natália Chagas Freitas
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, 37200000, Brazil
| | - Renan Terassi Pinto
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, 37200000, Brazil
| | - Wesley Pires Flausino Máximo
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, 37200000, Brazil
| | | | - Luciano Vilela Paiva
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, 37200000, Brazil.
| |
Collapse
|
12
|
Transcriptomic Analysis of Sex-Associated DEGs in Female and Male Flowers of Kiwifruit (Actinidia deliciosa [A. Chev] C. F. Liang & A. R. Ferguson). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kiwifruit (Actinidia deliciosa [A. Chev.], C.V. Liang & A. R. Ferguson, 1984) is a perennial plant, with morphologically hermaphroditic and functionally dioecious flowers. Fruits of this species are berries of great commercial and nutritional importance. Nevertheless, few studies have analyzed the molecular mechanisms involved in sexual differentiation in this species. To determine these mechanisms, we performed RNA-seq in floral tissue at stage 60 on the BBCH scale in cultivar ‘Hayward’ (H, female) and a seedling from ‘Green Light’ × ‘Tomuri’ (G × T, male). From these analyses, we obtained expression profiles of 24,888 (H) and 27,027 (G × T) genes, of which 6413 showed differential transcript abundance. Genetic ontology (GO) and KEGG analysis revealed activation of pathways associated with the translation of hormonal signals, plant-pathogen interaction, metabolism of hormones, sugars, and nucleotides. The analysis of the protein-protein interaction network showed that the genes ERL1, AG, AGL8, LFY, WUS, AP2, WRKY, and CO, are crucial elements in the regulation of the hormonal response for the formation and development of anatomical reproductive structures and gametophytes. On the other hand, genes encoding four Putative S-adenosyl-L-methionine-dependent methyltransferases (Achn201401, Achn281971, Achn047771 and Achn231981) were identified, which were up-regulated mainly in the male flowers. Moreover, the expression profiles of 15 selected genes through RT-qPCR were consistent with the results of RNA-seq. Finally, this work provides gene expression-based interactions between transcription factors and effector genes from hormonal signaling pathways, development of floral organs, biological and metabolic processes or even epigenetic mechanisms which could be involved in the kiwi sex-determination. Thus, in order to decode the nature of these interactions, it could be helpful to propose new models of flower development and sex determination in the Actinidia genus.
Collapse
|
13
|
Li M, Chen R, Gu H, Cheng D, Guo X, Shi C, Li L, Xu G, Gu S, Wu Z, Chen J. Grape Small Auxin Upregulated RNA ( SAUR) 041 Is a Candidate Regulator of Berry Size in Grape. Int J Mol Sci 2021; 22:ijms222111818. [PMID: 34769249 PMCID: PMC8584205 DOI: 10.3390/ijms222111818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
Grape (Vitis vinifera) is an important horticultural crop that can be used to make juice and wine. However, the small size of the berry limits its yield. Cultivating larger berry varieties can be an effective way to solve this problem. As the largest family of auxin early response genes, SAUR (small auxin upregulated RNA) plays an important role in the growth and development of plants. Berry size is one of the important factors that determine grape quality. However, the SAUR gene family’s function in berry size of grape has not been studied systematically. We identified 60 SAUR members in the grape genome and divided them into 12 subfamilies based on phylogenetic analysis. Subsequently, we conducted a comprehensive and systematic analysis on the SAUR gene family by analyzing distribution of key amino acid residues in the domain, structural features, conserved motifs, and protein interaction network, and combined with the heterologous expression in Arabidopsis and tomato. Finally, the member related to grape berry size in SAUR gene family were screened. This genome-wide study provides a systematic analysis of grape SAUR gene family, further understanding the potential functions of candidate genes, and provides a new idea for grape breeding.
Collapse
Affiliation(s)
- Ming Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Rui Chen
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China;
| | - Hong Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Dawei Cheng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Xizhi Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Caiyun Shi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Lan Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Guoyi Xu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Shicao Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Zhiyong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
| | - Jinyong Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (M.L.); (H.G.); (D.C.); (X.G.); (C.S.); (L.L.); (G.X.); (S.G.); (Z.W.)
- Correspondence:
| |
Collapse
|
14
|
Chu L, He X, Shu W, Wang L, Tang F. Knockdown of miR393 Promotes the Growth and Biomass Production in Poplar. FRONTIERS IN PLANT SCIENCE 2021; 12:714907. [PMID: 34335671 PMCID: PMC8317616 DOI: 10.3389/fpls.2021.714907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Short tandem target mimic (STTM), which is composed of two short sequences mimicking small RNA target sites, separated by a linker of optimal size, can block the functions of all members in a miRNA family. microRNA393 (miR393), which is one of the conserved miRNA families in plants, can regulate plant root growth, leaf development, plant architecture, and stress resistance. In order to verify the role of miR393 in the secondary growth of trees, we created its STTM transgenic poplar lines (STTM393). The expression of miR393 in STTM393 lines was reduced by over 10 times compared with the control plants. STTM393 lines showed promoted growth with about 20% higher, 15% thicker, and 2-4 more internodes than the control plants after 3 months of growth. The cross-section of the stems showed that STTM393 lines had wider phloem, xylem, and more cambium cell layers than control plants, and the lignin content in STTM393 lines was also higher as revealed by staining and chemical determination. Based on the transcriptome analysis, the genes related to the auxin signaling pathway, cell cyclin, cell expansion, and lignin synthesis had higher expression in STTM393 lines than that in control plants. The higher expression levels of FBL family members suggested that the auxin signaling pathway was strengthened in STTM393 lines to promote plant growth. Therefore, the knockdown of miR393 using the STTM approach provides a way to improve poplar growth and biomass production.
Collapse
Affiliation(s)
- Liwei Chu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xuejiao He
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenbo Shu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Fang Tang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
15
|
Li J, Li ML, Zhu TT, Zhang XN, Li MF, Wei JH. Integrated transcriptomics and metabolites at different growth stages reveals the regulation mechanism of bolting and flowering of Angelica sinensis. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:574-582. [PMID: 33660347 DOI: 10.1111/plb.13249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The root of Angelica sinensis is one of the most widely used traditional Chinese medicines. In commercial planting, early bolting and flowering (EBF) of ca. 40% of 2-year-old plants reduces root yield and quality. Although changes in physiology in bolted plants have been investigated, the mechanism activating EBF has not been identified. Here, transcriptomics profiles at four different growth stages (S1 to S4) were performed, gene expression was validated by qRT-PCR and the accumulation of endogenous hormones quantified by HPLC. A total of 60,282 unigenes were generated, with 2,282, 1,359 and 2,246 differentially expressed genes (DEGs) observed at S2 versus S1, S3 versus S2 and S4 versus S3, respectively; 558 genes that co-exist in at least three stages from S1 to S4 were obtained. Functional annotation classified 38 DEGs linked to flowering pathways: photoperiodism, hormone signalling, carbohydrate metabolism and floral development. The levels of gene expression, hormones (GA1 , GA4 and IAA) and soluble sugars were consistent with the EBF. It can be concluded that the EBF of A. sinensis is controlled by multiple genes. This integrated analysis of transcriptomics, together with targeted hormones and soluble sugars, provides new insights into the regulation of EBF of A. sinensis.
Collapse
Affiliation(s)
- J Li
- Key Lab of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - M L Li
- Key Lab of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - T T Zhu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - X N Zhang
- Gansu Herbal Medicine Planting Co., Ltd, Lanzhou, 730000, China
| | - M F Li
- Key Lab of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - J H Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
16
|
Lee S, Wang W, Huq E. Spatial regulation of thermomorphogenesis by HY5 and PIF4 in Arabidopsis. Nat Commun 2021; 12:3656. [PMID: 34135347 PMCID: PMC8209091 DOI: 10.1038/s41467-021-24018-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 05/29/2021] [Indexed: 12/13/2022] Open
Abstract
Plants respond to high ambient temperature by implementing a suite of morphological changes collectively termed thermomorphogenesis. Here we show that the above and below ground tissue-response to high ambient temperature are mediated by distinct transcription factors. While the central hub transcription factor, PHYTOCHROME INTERCTING FACTOR 4 (PIF4) regulates the above ground tissue response, the below ground root elongation is primarily regulated by ELONGATED HYPOCOTYL 5 (HY5). Plants respond to high temperature by largely expressing distinct sets of genes in a tissue-specific manner. HY5 promotes root thermomorphogenesis via directly controlling the expression of many genes including the auxin and BR pathway genes. Strikingly, the above and below ground thermomorphogenesis is impaired in spaQ. Because SPA1 directly phosphorylates PIF4 and HY5, SPAs might control the stability of PIF4 and HY5 to regulate thermomorphogenesis in both tissues. These data collectively suggest that plants employ distinct combination of SPA-PIF4-HY5 module to regulate tissue-specific thermomorphogenesis. Plants undergo morphological changes collectively termed thermomorphogenesis when exposed to elevated temperature. Here the authors show that the SPA1 kinase regulates distinct thermomorphogenic responses according to tissue type by interactions with PIF4 and HY5 in shoots and roots, respectively.
Collapse
Affiliation(s)
- Sanghwa Lee
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Wenli Wang
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
17
|
He Y, Liu Y, Li M, Lamin-Samu AT, Yang D, Yu X, Izhar M, Jan I, Ali M, Lu G. The Arabidopsis SMALL AUXIN UP RNA32 Protein Regulates ABA-Mediated Responses to Drought Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:625493. [PMID: 33777065 PMCID: PMC7994887 DOI: 10.3389/fpls.2021.625493] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/02/2021] [Indexed: 05/27/2023]
Abstract
SMALL AUXIN UP-REGULATED RNAs (SAURs) are recognized as auxin-responsive genes involved in the regulation of abiotic stress adaptive growth. Among the growth-limiting factors, water-deficit condition significantly affects plant growth and development. The putative function of SAUR family member AtSAUR32 has the potential to diminish the negative impact of drought stress, but the exact function and mode of action remain unclear in Arabidopsis. In the current study, AtSAUR32 gene was cloned and functionally analyzed. AtSAUR32 localized to the plasma membrane and nucleus was dominantly expressed in roots and highly induced by abscisic acid and drought treatment at certain time points. The stomatal closure and seed germination of saur32 were less sensitive to ABA relative to AtSAUR32-overexpressed line (OE32-5) and wild type (WT). Moreover, the saur32 mutant under drought stress showed increased ion leakage while quantum yield of photosystem II (ΦPSII) and endogenous ABA accumulation were reduced, along with the expression pattern of ABA/stress-responsive genes compared with WT and the OE32-5 transgenic line. Additionally, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that AtSAUR32 interacted with clade-A PP2C proteins (AtHAI1 and AtAIP1) to regulate ABA sensitivity in Arabidopsis. Taken together, these results indicate that AtSAUR32 plays an important role in drought stress adaptation via mediating ABA signal transduction.
Collapse
Affiliation(s)
- Yanjun He
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengzhuo Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Anthony Tumbeh Lamin-Samu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Dandan Yang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaolin Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Izhar
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Ibadullah Jan
- Department of Agriculture, University of Swabi, Swabi, Pakistan
| | - Muhammad Ali
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Gang Lu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Heydarian Z, Gruber M, Coutu C, Glick BR, Hegedus DD. Gene expression patterns in shoots of Camelina sativa with enhanced salinity tolerance provided by plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression of the corresponding acdS gene. Sci Rep 2021; 11:4260. [PMID: 33608579 PMCID: PMC7895925 DOI: 10.1038/s41598-021-83629-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 11/28/2022] Open
Abstract
Growth of plants in soil inoculated with plant growth promoting bacteria (PGPB) producing 1-aminocyclopropane-1-carboxylate (ACC) deaminase or expression of the corresponding acdS gene in transgenic lines reduces the decline in shoot length, shoot weight and photosynthetic capacity triggered by salt stress in Camelina sativa. Reducing the levels of ethylene attenuated the salt stress response as inferred from decreases in the expression of genes involved in development, senescence, chlorosis and leaf abscission that are highly induced by salt to levels that may otherwise have a negative effect on plant growth and productivity. Growing plants in soil treated with Pseudomonas migulae 8R6 negatively affected ethylene signaling, auxin and JA biosynthesis and signalling, but had a positive effect on the regulation of genes involved in GA signaling. In plants expressing acdS, the expression of the genes involved in auxin signalling was positively affected, while the expression of genes involved in cytokinin degradation and ethylene biosynthesis were negatively affected. Moreover, fine-tuning of ABA signaling appears to result from the application of ACC deaminase in response to salt treatment. Moderate expression of acdS under the control of the root specific rolD promoter or growing plants in soil treated with P. migulae 8R6 were more effective in reducing the expression of the genes involved in ethylene production and/or signaling than expression of acdS under the more active Cauliflower Mosaic Virus 35S promoter.
Collapse
Affiliation(s)
- Zohreh Heydarian
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.,Department of Biotechnology, School of Agriculture, University of Shiraz, Bajgah, Shiraz, Fars, Iran
| | - Margaret Gruber
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada. .,Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
19
|
Zhang H, Yu Z, Yao X, Chen J, Chen X, Zhou H, Lou Y, Ming F, Jin Y. Genome-wide identification and characterization of small auxin-up RNA (SAUR) gene family in plants: evolution and expression profiles during normal growth and stress response. BMC PLANT BIOLOGY 2021; 21:4. [PMID: 33407147 PMCID: PMC7789510 DOI: 10.1186/s12870-020-02781-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/02/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Auxin is critical to plant growth and development, as well as stress responses. Small auxin-up RNA (SAUR) is the largest family of early auxin responsive genes in higher plants. However, the function of few SAUR genes is known owing to functional redundancy among the many family members. RESULTS In this study, we conducted a phylogenetic analysis using protein sequences of 795 SAURs from Anthoceros angustus, Marchantia polymorpha, Physcomitrella patens, Selaginella moellendorffii, Ginkgo biloba, Gnetum montanum, Amborella trichopoda, Arabidopsis thaliana, Oryza sativa, Zea mays, Glycine max, Medicago truncatula and Setaria italica. The phylogenetic trees showed that the SAUR proteins could be divided into 10 clades and three subfamilies, and that SAUR proteins of three bryophyte species were only located in subfamily III, which suggested that they may be ancestral. From bryophyta to anthophyta, SAUR family have appeared very large expansion. The number of SAUR gene in Fabaceae species was considerably higher than that in other plants, which may be associated with independent whole genome duplication event in the Fabaceae lineages. The phylogenetic trees also showed that SAUR genes had expanded independently monocotyledons and dicotyledons in angiosperms. Conserved motif and protein structure prediction revealed that SAUR proteins were highly conserved among higher plants, and two leucine residues in motif I were observed in almost all SAUR proteins, which suggests the residues plays a critical role in the stability and function of SAUR proteins. Expression analysis of SAUR genes using publicly available RNA-seq data from rice and soybean indicated functional similarity of members in the same clade, which was also further confirmed by qRT-PCR. Summarization of SAUR functions also showed that SAUR functions were usually consistent within a subclade. CONCLUSIONS This study provides insights into the evolution and function of the SAUR gene family from bryophyta to anthophyta, particularly in Fabaceae plants. Future investigation to understand the functions of SAUR family members should employ a clade as the study unit.
Collapse
Affiliation(s)
- Hao Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai, 200234, China
| | - Zhenjia Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai, 200234, China
| | - Xiaodie Yao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai, 200234, China
| | - Jingli Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai, 200234, China
| | - Xing Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai, 200234, China
| | - Huiwen Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai, 200234, China
| | - Yuxia Lou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai, 200234, China
| | - Feng Ming
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai, 200234, China.
| | - Yue Jin
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai, 200234, China.
| |
Collapse
|
20
|
Yang S, Zhang Z, Chen W, Li X, Zhou S, Liang C, Li X, Yang B, Zou X, Liu F, Ou L, Ma Y. Integration of mRNA and miRNA profiling reveals the heterosis of three hybrid combinations of Capsicum annuum varieties. GM CROPS & FOOD 2021; 12:224-241. [PMID: 33410724 PMCID: PMC7808418 DOI: 10.1080/21645698.2020.1852064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Capsicum annuum is also known as chili which is one of the most important vegetable crops grown in the world. Breeding new varieties with heterosis could improve the quality of pepper, increase yield, growth potential, disease resistance, adaptability, and seed viability. To investigate the heterosis among three cross combinations of different parents, the mRNA-miRNA integrated analysis was performed. A total number of 22,659,009 to 36,423,818 clean data were generated from mRNA-seq with 81 libraries, and the unique mapped reads were from 35,495,567 (86.81%) to 46,466,622 (88.95%). The plant-hormone signal transduction pathway (40 genes) was detected with a higher DEG number. The SAUR32L, GID1, PYR1, EIN2. ERF1, PR1, JAR1-like, IAA from this pathway play a key role in plant development. From the miRNA-seq, the number of clean reads was ranging from 12,132,221 to 25,632,680. A total of 220 miRNAs were predicted in this study, and all of them were identified as novel miRNA. The top three candidate KEGG pathways of miRNA were ribosome signaling pathway (13 miRNAs), spliceosome pathway (13 miRNAs), and plant hormone signal transduction pathways (10 miRNAs). With the mRNA and miRNA integrated analysis, we found some key genes were regulated by some miRNAs. Among them, the scarecrow-like 6 protein can be up or down regulated by mir8, mir120, mir184, mir_214, mir125, and mir130. The function of Della protein was regulated by mir24, mir74, mir94, mir139, and mir190. This study contributes to understanding how heterosis regulates the traits, such as crop production, fruit weight, and fruit length.
Collapse
Affiliation(s)
- Sha Yang
- Institution of Vegetable Research, Hunan Academy of Agricultural Science , Changsha, Hunan, China.,College of Horticulture, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University , Changsha, Hunan, China
| | - Zhuqing Zhang
- Institution of Vegetable Research, Hunan Academy of Agricultural Science , Changsha, Hunan, China
| | - Wenchao Chen
- Institution of Vegetable Research, Hunan Academy of Agricultural Science , Changsha, Hunan, China
| | - Xuefeng Li
- Institution of Vegetable Research, Hunan Academy of Agricultural Science , Changsha, Hunan, China
| | - Shudong Zhou
- Institution of Vegetable Research, Hunan Academy of Agricultural Science , Changsha, Hunan, China
| | - Chengliang Liang
- Institution of Vegetable Research, Hunan Academy of Agricultural Science , Changsha, Hunan, China
| | - Xin Li
- Institution of Vegetable Research, Hunan Academy of Agricultural Science , Changsha, Hunan, China
| | - Bozhi Yang
- College of Horticulture, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University , Changsha, Hunan, China
| | - Xuexiao Zou
- College of Horticulture, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University , Changsha, Hunan, China
| | - Feng Liu
- Institution of Vegetable Research, Hunan Academy of Agricultural Science , Changsha, Hunan, China
| | - Lijun Ou
- College of Horticulture, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University , Changsha, Hunan, China
| | - Yanqing Ma
- Department of Agriculture and Rural Affairs of Hunan Province, Changsha Hunan, China
| |
Collapse
|
21
|
Zhao H, Yin CC, Ma B, Chen SY, Zhang JS. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:102-125. [PMID: 33095478 DOI: 10.1111/jipb.13028] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 05/22/2023]
Abstract
Ethylene is a gaseous hormone which plays important roles in both plant growth and development and stress responses. Based on studies in the dicot model plant species Arabidopsis, a linear ethylene signaling pathway has been established, according to which ethylene is perceived by ethylene receptors and transduced through CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) and ETHYLENE-INSENSITIVE 2 (EIN2) to activate transcriptional reprogramming. In addition to this canonical signaling pathway, an alternative ethylene receptor-mediated phosphor-relay pathway has also been proposed to participate in ethylene signaling. In contrast to Arabidopsis, rice, a monocot, grows in semiaquatic environments and has a distinct plant structure. Several novel regulators and/or mechanisms of the rice ethylene signaling pathway have recently been identified, indicating that the ethylene signaling pathway in rice has its own unique features. In this review, we summarize the latest progress and compare the conserved and divergent aspects of the ethylene signaling pathway between Arabidopsis and rice. The crosstalk between ethylene and other plant hormones is also reviewed. Finally, we discuss how ethylene regulates plant growth, stress responses and agronomic traits. These analyses should help expand our knowledge of the ethylene signaling mechanism and could further be applied for agricultural purposes.
Collapse
Affiliation(s)
- He Zhao
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- Biology and Agriculture Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Wang J, Sun N, Zhang F, Yu R, Chen H, Deng XW, Wei N. SAUR17 and SAUR50 Differentially Regulate PP2C-D1 during Apical Hook Development and Cotyledon Opening in Arabidopsis. THE PLANT CELL 2020; 32:3792-3811. [PMID: 33093148 PMCID: PMC7721335 DOI: 10.1105/tpc.20.00283] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/28/2020] [Accepted: 10/22/2020] [Indexed: 05/04/2023]
Abstract
Following germination in the dark, Arabidopsis (Arabidopsis thaliana) seedlings undergo etiolation and develop apical hooks, closed cotyledons, and rapidly elongating hypocotyls. Upon light perception, the seedlings de-etiolate, which includes the opening of apical hooks and cotyledons. Here, we identify Arabidopsis Small Auxin Up RNA17 (SAUR17) as a downstream effector of etiolation, which serves to bring about apical hook formation and closed cotyledons. SAUR17 is highly expressed in apical hooks and cotyledons and is repressed by light. The apical organs also express a group of light-inducing SAURs, as represented by SAUR50, which promote hook and cotyledon opening. The development of etiolated or de-etiolated apical structures requires asymmetric differential cell growth. We present evidence that the opposing actions of SAUR17 and SAUR50 on apical development largely result from their antagonistic regulation of Protein Phosphatase 2C D-clade 1 (PP2C-D1), a phosphatase that suppresses cell expansion and promotes apical hook development in the dark. SAUR50 inhibits PP2C-D1, whereas SAUR17 has a higher affinity for PP2C-D1 without inhibiting its activity. PP2C-D1 predominantly associates with SAUR17 in etiolated seedlings, which shields it from inhibitory SAURs such as SAUR50. Light signals turn off SAUR17 and upregulate a subgroup of SAURs including SAUR50 at the inner side of the hook and cotyledon cells, leading to cell expansion and unfolding of the hook and cotyledons.
Collapse
Affiliation(s)
- Jiajun Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, School of Life Sciences, and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ning Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, School of Life Sciences, and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Fangfang Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, School of Life Sciences, and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Renbo Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, School of Life Sciences, and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, School of Life Sciences, and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, School of Life Sciences, and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
23
|
Wang P, Lu S, Xie M, Wu M, Ding S, Khaliq A, Ma Z, Mao J, Chen B. Identification and expression analysis of the small auxin-up RNA (SAUR) gene family in apple by inducing of auxin. Gene 2020; 750:144725. [PMID: 32360839 DOI: 10.1016/j.gene.2020.144725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
The small auxin-up RNA (SAUR) family plays a vital role in the regulation of plant growth and development. We identified 80 MdSAUR genes in this study. Phylogenetic analysis indicated that the SAUR proteins from Arabidopsis, rice, and apple were divided into six groups. Of the 80 MdSAURs, 71 were randomly distributed along the 17 chromosomes, while the remaining genes were located along unassigned scafoolds. Among them, a comprehensive overview of SAUR gene family is presented, including gene structures, chromosome locations, duplication and selection pressure analyses, synteny and promoter analyses, and protein interaction. The expression profiles based on microarray data found that 80 genes showed increased expression levels in at least one tissue including seed, seedling, root, stem, leaf, flower, fruit 100daa, and harvested fruit. MdSAUR7 possibly regulate the development of flower organs, and MdSAUR15, MdSAUR24, and MdSAUR80 promote the growth of fruits by regulating cell division. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated the expression levels of 79 MdSAUR genes in leaves under exogenous IAA treatment. MdSAUR4, MdSAUR22, MdSAUR37, MdSAUR38, MdSAUR49, and MdSAUR54 were up-regulated after IAA treatment compared with the control, indicating that they may play specific roles in the IAA signaling transduction pathway. This work provided a foundation for further investigations for the functional analyses of SAURs in apple.
Collapse
Affiliation(s)
- Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Min Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Maodong Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Sunlei Ding
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Abdul Khaliq
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
24
|
Qiu T, Qi M, Ding X, Zheng Y, Zhou T, Chen Y, Han N, Zhu M, Bian H, Wang J. The SAUR41 subfamily of SMALL AUXIN UP RNA genes is abscisic acid inducible to modulate cell expansion and salt tolerance in Arabidopsis thaliana seedlings. ANNALS OF BOTANY 2020; 125:805-819. [PMID: 31585004 PMCID: PMC7182593 DOI: 10.1093/aob/mcz160] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/02/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Most primary auxin response genes are classified into three families: AUX/IAA, GH3 and SAUR genes. Few studies have been conducted on Arabidopsis thaliana SAUR genes, possibly due to genetic redundancy among different subfamily members. Data mining on arabidopsis transcriptional profiles indicates that the SAUR41 subfamily members of SMALL AUXIN UP RNA genes are, strikingly, induced by an inhibitory phytohormone, abscisic acid (ABA). We aimed to reveal the physiological roles of arabidopsis SAUR41 subfamily genes containing SAUR40, SAUR41, SAUR71 and SAUR72. METHODS Transcriptional responses of arabidopsis SAUR41 genes to phytohormones were determined by quantitative real-time PCR. Knock out of SAUR41 genes was carried out with the CRISPR/Cas9 (clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9) genome editing technique. The saur41/40/71/72 quadruple mutants, SAUR41 overexpression lines and the wild type were subjected to ultrastructural observation, transcriptome analysis and physiological characterization. KEY RESULTS Transcription of arabidopsis SAUR41 subfamily genes is activated by ABA but not by gibberellic acids and brassinosteroids. Quadruple mutations in saur41/40/71/72 led to reduced cell expansion/elongation in cotyledons and hypocotyls, opposite to the overexpression of SAUR41; however, an irregular arrangement of cell size and shape was observed in both cases. The quadruple mutants had increased transcription of calcium homeostasis/signalling genes in seedling shoots, and the SAUR41 overexpression lines had decreased transcription of iron homeostasis genes in roots and increased ABA biosynthesis in shoots. Notably, both the quadruple mutants and the SAUR41 overexpression lines were hypersensitive to salt stress during seedling establishment, whereas specific expression of SAUR41 under the ABA-responsive RD29A (Responsive to Desiccation 29A) promoter in the quadruple mutants rescued the inhibitory effect of salt stress. CONCLUSIONS The SAUR41 subfamily genes of arabidopsis are ABA inducible to modulate cell expansion, ion homeostasis and salt tolerance. Our work may provide new candidate genes for improvement of plant abiotic stress tolerance.
Collapse
Affiliation(s)
- Ting Qiu
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Mengyuan Qi
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohui Ding
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yanyan Zheng
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tianjiao Zhou
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yong Chen
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ning Han
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Muyuan Zhu
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hongwu Bian
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junhui Wang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
- For correspondence. E-mail
| |
Collapse
|
25
|
Mia MS, Liu H, Wang X, Zhang C, Yan G. Root transcriptome profiling of contrasting wheat genotypes provides an insight to their adaptive strategies to water deficit. Sci Rep 2020; 10:4854. [PMID: 32184417 PMCID: PMC7078264 DOI: 10.1038/s41598-020-61680-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Water deficit limits plant growth and productivity in wheat. The effect of water deficit varies considerably in the contrasting genotypes. This study attempted comparative transcriptome profiling of the tolerant (Abura) and susceptible (AUS12671) genotypes under PEG-simulated water stress via genome-wide RNA-seq technology to understand the dynamics of tolerance mechanism. Morphological and physiological analyses indicated that the tolerant genotype Abura had a higher root growth and net photosynthesis, which accounted for its higher root biomass than AUS12671 under stress. Transcriptomic analysis revealed a total of 924 differentially expressed genes (DEGs) that were unique in the contrasting genotypes under stress across time points. The susceptible genotype AUS12671 had slightly more abundant DEGs (505) than the tolerant genotype Abura (419). Gene ontology enrichment and pathway analyses of these DEGs suggested that the two genotypes differed significantly in terms of adaptive mechanism. Predominant upregulation of genes involved in various metabolic pathways was the key adaptive feature of the susceptive genotype AUS12671 indicating its energy-consuming approach in adaptation to water deficit. In contrast, downregulation the expression of genes of key pathways, such as global and overview maps, carbohydrate metabolism, and genetic information processing was the main strategy for the tolerant genotype Abura. Besides, significantly higher number of genes encoding transcription factors (TF) families like MYB and NAC, which were reported to be associated with stress defense, were differentially expressed in the tolerant genotype Abura. Gene encoding transcription factors TIFY were only differentially expressed between stressed and non-stressed conditions in the sensitive genotype. The identified DEGs and the suggested differential adaptive strategies of the contrasting genotypes provided an insight for improving water deficit tolerance in wheat.
Collapse
Affiliation(s)
- Md Sultan Mia
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia.,The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.,Department of Plant Breeding, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Hui Liu
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia. .,The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| | - Xingyi Wang
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia.,The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Chi Zhang
- Beijing Genomics Institute-Shenzhen, Shenzhen, 518083, China
| | - Guijun Yan
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia. .,The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
26
|
Wang J, An C, Guo H, Yang X, Chen J, Zong J, Li J, Liu J. Physiological and transcriptomic analyses reveal the mechanisms underlying the salt tolerance of Zoysia japonica Steud. BMC PLANT BIOLOGY 2020; 20:114. [PMID: 32169028 PMCID: PMC7071773 DOI: 10.1186/s12870-020-02330-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/05/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. RESULTS The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K+/Na+ ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots might make significant contributions to the salt tolerance. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. CONCLUSIONS Zoysia salt treatment transcriptome shows the 24-h and roots may make significant contributions to the salt tolerance. The auxin signal transduction family, ABA signal transduction family, WRKY TF family and bHLH TF family may be the most important families in Zoysia salt-stress regulation.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Cong An
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Hailin Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Xiangyang Yang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Junqin Zong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jianjian Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| |
Collapse
|
27
|
Wen Z, Mei Y, Zhou J, Cui Y, Wang D, Wang NN. SAUR49 Can Positively Regulate Leaf Senescence by Suppressing SSPP in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:644-658. [PMID: 31851355 DOI: 10.1093/pcp/pcz231] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 12/12/2019] [Indexed: 05/22/2023]
Abstract
The involvement of SMALL AUXIN-UP RNA (SAUR) proteins in leaf senescence has been more and more acknowledged, but the detailed mechanisms remain unclear. In the present study, we performed yeast two-hybrid assays and identified SAUR49 as an interactor of SENESCENCE SUPPRESSED PROTEIN PHOSPHATASE (SSPP), which is a PP2C protein phosphatase that negatively regulates Arabidopsis leaf senescence by suppressing the leucine-rich repeat receptor-like protein kinase SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (SARK), as reported previously by our group. The interaction between SAUR49 and SSPP was further confirmed in planta. Functional characterization revealed that SAUR49 is a positive regulator of leaf senescence. The accumulation level of SAUR49 protein increased during natural leaf senescence in Arabidopsis. The transcript level of SAUR49 was upregulated during SARK-induced premature leaf senescence but downregulated during SSPP-mediated delayed leaf senescence. Overexpression of SAUR49 significantly accelerated both natural and dark-induced leaf senescence in Arabidopsis. More importantly, SAUR49 overexpression completely reversed SSPP-induced delayed leaf senescence. In addition, overexpression of SAUR49 reversed the decreased plasma membrane H+-ATPase activity mediated by SSPP. Taken together, the results showed that SAUR49 functions in accelerating the leaf senescence process via the activation of SARK-mediated leaf senescence signaling by suppressing SSPP. We further identified four other SSPP-interacting SAURs, SAUR30, SAUR39, SAUR41 and SAUR72, that may act redundantly with SAUR49 in regulating leaf senescence. All these observations indicated that certain members of the SAUR family may serve as an important hub that integrates various hormonal and environmental signals with senescence signals in Arabidopsis.
Collapse
Affiliation(s)
- Zewen Wen
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Mei
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Zhou
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yanjiao Cui
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ning Ning Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Wang Z, Yang L, Liu Z, Lu M, Wang M, Sun Q, Lan Y, Shi T, Wu D, Hua J. Natural variations of growth thermo-responsiveness determined by SAUR26/27/28 proteins in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 224:291-305. [PMID: 31127632 DOI: 10.1111/nph.15956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/17/2019] [Indexed: 05/22/2023]
Abstract
How diversity in growth thermo-responsiveness is generated for local adaptation is a long-standing biological question. We investigated molecular genetic basis of natural variations in thermo-responsiveness of plant architecture in Arabidopsis thaliana. We measured the extent of rosette architecture at 22°C and 28°C in a set of 69 natural accessions and determined their thermo-responsiveness of plant architecture. A genome-wide association study was performed to identify major loci for variations in thermo-responsiveness. The SAUR26 subfamily, a new subfamily of SAUR genes, was identified as a major locus for the thermo-responsive architecture variations. The expression of SAUR26/27/28 is modulated by temperature and PIF4. Extensive natural polymorphisms in these genes affect their RNA expression levels and protein activities and influence the thermo-responsiveness of plant architecture. In addition, the SAUR26 subfamily genes exhibit a high variation frequency and their variations are associated with the local temperature climate. This study reveals that the SAUR26 subfamily is a key variation for thermo-responsive architecture and suggests a preference for generating diversity for local adaptation through signaling connectors.
Collapse
Affiliation(s)
- Zhixue Wang
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Leiyun Yang
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Zhenhua Liu
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
| | - Minghui Lu
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Minghui Wang
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Qi Sun
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Yiheng Lan
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Jian Hua
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
29
|
Identification and Expression of SAUR Genes in the CAM Plant Agave. Genes (Basel) 2019; 10:genes10070555. [PMID: 31340544 PMCID: PMC6679190 DOI: 10.3390/genes10070555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 01/04/2023] Open
Abstract
Agave species are important crassulacean acid metabolism (CAM) plants and widely cultivated in tropical areas for producing tequila spirit and fiber. The hybrid H11648 of Agave ((A. amaniensis × A. angustifolia) × A. amaniensis) is the main cultivar for fiber production in Brazil, China, and African countries. Small Auxin Up-regulated RNA (SAUR) genes have broad effect on auxin signaling-regulated plant growth and development, while only few SAUR genes have been reported in Agave species. In this study, we identified 43, 60, 24, and 21 SAUR genes with full-length coding regions in A. deserti, A. tequilana, A. H11648, and A. americana, respectively. Although phylogenetic analysis revealed that rice contained a species-specific expansion pattern of SAUR gene, no similar phenomena were observed in Agave species. The in silico expression indicated that SAUR genes had a distinct expression pattern in A. H11648 compared with other Agave species; and four SAUR genes were differentially expressed during CAM diel cycle in A. americana. Additionally, an expression analysis was conducted to estimate SAUR gene expression during different leaf developmental stages, abiotic and biotic stresses in A. H11648. Together, we first characterized the SAUR genes of Agave based on previously published transcriptome datasets and emphasized the potential functions of SAUR genes in Agave's leaf development and stress responses. The identification of which further expands our understanding on auxin signaling-regulated plant growth and development in Agave species.
Collapse
|
30
|
Chai WW, Wang WY, Ma Q, Yin HJ, Hepworth SR, Wang SM. Comparative transcriptome analysis reveals unique genetic adaptations conferring salt tolerance in a xerohalophyte. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:670-683. [PMID: 31064640 DOI: 10.1071/fp18295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Most studies on salt tolerance in plants have been conducted using glycophytes like Arabidopsis thaliana (L.) Heynh., with limited resistance to salinity. The xerohalophyte Zygophyllum xanthoxylum (Bunge) Engl. is a salt-accumulating desert plant that efficiently transports Na+ into vacuoles to manage salt and exhibits increased growth under salinity conditions, suggesting a unique transcriptional response compared with glycophytes. We used transcriptome profiling by RNA-seq to compare gene expression in roots of Z. xanthoxylum and A. thaliana under 50 mM NaCl treatments. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis suggested that 50 mM NaCl was perceived as a stimulus for Z. xanthoxylum whereas a stress for A. thaliana. Exposure to 50 mM NaCl caused metabolic shifts towards gluconeogenesis to stimulate growth of Z. xanthoxylum, but triggered defensive systems in A. thaliana. Compared with A. thaliana, a vast array of ion transporter genes was induced in Z. xanthoxylum, revealing an active strategy to uptake Na+ and nutrients from the environment. An ascorbate-glutathione scavenging system for reactive oxygen species was also crucial in Z. xanthoxylum, based on high expression of key enzyme genes. Finally, key regulatory genes for the biosynthesis pathways of abscisic acid and gibberellin showed distinct expression patterns between the two species and auxin response genes were more active in Z. xanthoxylum compared with A. thaliana. Our results provide an important framework for understanding unique patterns of gene expression conferring salt resistance in Z. xanthoxylum.
Collapse
Affiliation(s)
- Wei-Wei Chai
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Wen-Ying Wang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Qing Ma
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Hong-Ju Yin
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China
| | - Shelley R Hepworth
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China; and Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, PR China; and Corresponding author.
| |
Collapse
|
31
|
Ng WL, Wu W, Zou P, Zhou R. Comparative transcriptomics sheds light on differential adaptation and species diversification between two Melastoma species and their F 1 hybrid. AOB PLANTS 2019; 11:plz019. [PMID: 31037213 PMCID: PMC6481908 DOI: 10.1093/aobpla/plz019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Variation in gene expression has been shown to promote adaptive divergence, and can lead to speciation. The plant genus Melastoma, thought to have diversified through adaptive radiation, provides an excellent model for the study of gene expressional changes during adaptive differentiation and following interspecific hybridization. In this study, we performed RNA-seq on M. candidum, M. sanguineum and their F1 hybrid, to investigate the role of gene expression in species diversification within the genus. Reference transcriptomes were assembled using combined data from both parental species, resulting in 50 519 and 48 120 transcripts for the leaf and flower petal, after removing redundancy. Differential expression analysis uncovered 3793 and 2116 differentially expressed (DE) transcripts, most of which are between M. candidum and M. sanguineum. Differential expression was observed for genes related to light responses, as well as genes that regulate the development of leaf trichomes, a trait that among others is thought to protect plants against sunlight, suggesting the differential adaptation of the species to sunlight intensity. The analysis of positively selected genes between the two species also revealed possible differential adaptation to other abiotic stresses such as drought and temperature. In the hybrid, almost all possible modes of expression were observed at the DE transcripts, although at most transcripts, the expression levels were similar to that of either parent instead of being intermediate. A small number of transgressively expressed transcripts that matched genes known to promote plant growth and adaptation to stresses in new environments were also found, possibly explaining the vigour observed in the hybrid. The findings in this study provided insights into the role of gene expression in the diversification of Melastoma, which we believe is an important example for more cross-taxa comparisons in the future.
Collapse
Affiliation(s)
- Wei Lun Ng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Wei Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peishan Zou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Shin JH, Mila I, Liu M, Rodrigues MA, Vernoux T, Pirrello J, Bouzayen M. The RIN-regulated Small Auxin-Up RNA SAUR69 is involved in the unripe-to-ripe phase transition of tomato fruit via enhancement of the sensitivity to ethylene. THE NEW PHYTOLOGIST 2019; 222:820-836. [PMID: 30511456 DOI: 10.1111/nph.15618] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/24/2018] [Indexed: 05/22/2023]
Abstract
Ethylene is the main hormone controlling climacteric fruit ripening; however, the mechanisms underlying the developmental transition leading to the initiation of the ripening process remain elusive, although the presumed role of active hormone interplay has often been postulated. To unravel the putative role of auxin in the unripe-to-ripe transition, we investigated the dynamics of auxin activity in tomato fruit and addressed the physiological significance of Sl-SAUR69, previously identified as a RIN target gene, using reverse genetics approaches. Auxin signalling undergoes dramatic decline at the onset of ripening in wild-type fruit, but not in the nonripening rin mutant. Sl-SAUR69 exhibits reduced expression in rin and its up-regulation results in premature initiation of ripening, whereas its down-regulation extends the time to ripening. Overexpression of Sl-SAUR69 reduces proton pump activity and polar auxin transport, and ectopic expression in Arabidopsis alters auxin transporter abundance, further arguing for its active role in the regulation of auxin transport. The data support a model in which Sl-SAUR69 represses auxin transport, thus generating auxin minima, which results in enhanced ethylene sensitivity. This defines a regulation loop, fed by ethylene and auxin as the main hormonal signals and by RIN and Sl-SAUR69 as modulators of the balance between the two hormones.
Collapse
Affiliation(s)
- Jun-Hye Shin
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan, 31320, France
| | - Isabelle Mila
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan, 31320, France
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Maria Aurineide Rodrigues
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan, 31320, France
- Laboratory of Plant Physiology, Institute of Biosciences, Department of Botany, Universidade de São Paulo, São Paulo, 11461, Brazil
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS de Lyon, UCBL, Université de Lyon, Lyon, 69364, France
| | - Julien Pirrello
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan, 31320, France
| | - Mondher Bouzayen
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan, 31320, France
| |
Collapse
|
33
|
Stortenbeker N, Bemer M. The SAUR gene family: the plant's toolbox for adaptation of growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:17-27. [PMID: 30239806 DOI: 10.1093/jxb/ery332] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/14/2018] [Indexed: 05/20/2023]
Abstract
The family of small auxin up-regulated RNA (SAUR) genes is a family of auxin-responsive genes with ~60-140 members in most higher plant species. Despite the early discovery of their auxin responsiveness, their function and mode of action remained unknown for a long time. In recent years, the importance of SAUR genes in the regulation of dynamic and adaptive growth, and the molecular mechanisms by which SAUR proteins act are increasingly well understood. SAURs play a central role in auxin-induced acid growth, but can also act independently of auxin, tissue specifically regulated by various other hormone pathways and transcription factors. In this review, we summarize recent advances in the characterization of the SAUR genes in Arabidopsis and other plant species. We particularly elaborate on their capacity to fine-tune growth in response to internal and external signals, and discuss the breakthroughs in understanding the mode of action of SAURs in relation to their complex regulation.
Collapse
Affiliation(s)
- Niek Stortenbeker
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Marian Bemer
- Laboratory of Molecular Biology and Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
34
|
Carrasco-Valenzuela T, Muñoz-Espinoza C, Riveros A, Pedreschi R, Arús P, Campos-Vargas R, Meneses C. Expression QTL (eQTLs) Analyses Reveal Candidate Genes Associated With Fruit Flesh Softening Rate in Peach [ Prunus persica (L.) Batsch]. FRONTIERS IN PLANT SCIENCE 2019; 10:1581. [PMID: 31850046 PMCID: PMC6901599 DOI: 10.3389/fpls.2019.01581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/12/2019] [Indexed: 05/22/2023]
Abstract
Significant differences in softening rate have been reported between melting flesh in peach and nectarine varieties. This trait seems to be controlled by several genes. We aimed to identify candidate genes involved in fruit softening rate by integrating quantitative trait loci (QTL) and expression QTL (eQTL) analyses, comparing siblings with contrasting softening rates. We used a segregating population derived from nectarine cv. 'Venus' selfing, which was phenotyped for softening rate during three seasons. Six siblings with high (HSR) and six with low softening rate (LSR) were sequenced using RNA-Seq. A group of 5,041 differentially expressed genes was identified. Also, we found a QTL with a LOD (logarithm of odds) score of 9.7 on LG4 in all analyzed seasons. Furthermore, we detected 1,062 eQTLs, of which 133 were found co-localizing with the identified QTL. Gene Ontology (GO) analysis showed 'Response to auxin' as one the main over-represented categories. Our findings suggest over-expression of auxin biosynthetic related genes in the HSR group, which implies a higher expression and/or accumulation of auxin, thereby triggering fast softening. Conversely, the LSR phenotype might be explained by an altered auxin-homeostasis associated with low auxin levels. This work will contribute to unraveling the genetic mechanisms responsible for the softening rate in peaches and nectarines and lead to the development of molecular markers.
Collapse
Affiliation(s)
- Tomás Carrasco-Valenzuela
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Claudia Muñoz-Espinoza
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Aníbal Riveros
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Romina Pedreschi
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Pere Arús
- IRTA, Centre de Recerca en Agrigenòmica (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Reinaldo Campos-Vargas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
- *Correspondence: Claudio Meneses,
| |
Collapse
|
35
|
Raju SKK, Shao M, Sanchez R, Xu Y, Sandhu A, Graef G, Mackenzie S. An epigenetic breeding system in soybean for increased yield and stability. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1836-1847. [PMID: 29570925 PMCID: PMC6181216 DOI: 10.1111/pbi.12919] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/20/2018] [Accepted: 02/24/2018] [Indexed: 05/17/2023]
Abstract
Epigenetic variation has been associated with a wide range of adaptive phenotypes in plants, but there exist few direct means for exploiting this variation. RNAi suppression of the plant-specific gene, MutS HOMOLOG1 (MSH1), in multiple plant species produces a range of developmental changes accompanied by modulation of defence, phytohormone and abiotic stress response pathways along with methylome repatterning. This msh1-conditioned developmental reprogramming is retained independent of transgene segregation, giving rise to transgene-null 'memory' effects. An isogenic memory line crossed to wild type produces progeny families displaying increased variation in adaptive traits that respond to selection. This study investigates amenability of the MSH1 system for inducing agronomically valuable epigenetic variation in soybean. We developed MSH1 epi-populations by crossing with msh1-acquired soybean memory lines. Derived soybean epi-lines showed increase in variance for multiple yield-related traits including pods per plant, seed weight and maturity time in both glasshouse and field trials. Selected epi-F2:4 and epi-F2:5 lines showed an increase in seed yield over wild type. By epi-F2:6, we observed a return of MSH1-derived enhanced growth back to wild-type levels. Epi-populations also showed evidence of reduced epitype-by-environment (e × E) interaction, indicating higher yield stability. Transcript profiling of epi-lines identified putative signatures of enhanced growth behaviour across generations. Genes related to cell cycle, abscisic acid biosynthesis and auxin response, particularly SMALL AUXIN UP RNAs (SAURs), were differentially expressed in epi-F2:4 lines that showed increased yield when compared to epi-F2:6 . These data support the potential of MSH1-derived epigenetic variation in plant breeding for enhanced yield and yield stability.
Collapse
Affiliation(s)
| | - Mon‐Ray Shao
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Robersy Sanchez
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Present address:
Departments of Biology and Plant SciencePennsylvania State UniversityUniversity ParkPAUSA
| | - Ying‐Zhi Xu
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Ajay Sandhu
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Present address:
SyngentaWoodlandCAUSA
| | - George Graef
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Sally Mackenzie
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Present address:
Departments of Biology and Plant SciencePennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
36
|
He SL, Hsieh HL, Jauh GY. SMALL AUXIN UP RNA62/75 Are Required for the Translation of Transcripts Essential for Pollen Tube Growth. PLANT PHYSIOLOGY 2018; 178:626-640. [PMID: 30093526 PMCID: PMC6181030 DOI: 10.1104/pp.18.00257] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/29/2018] [Indexed: 05/21/2023]
Abstract
Successful pollen tube elongation is critical for double fertilization, but the biological functions of pollen tube genes and the regulatory machinery underlying this crucial process are largely unknown. A previous translatomic study revealed two Arabidopsis (Arabidopsis thaliana) SAUR (SMALL AUXIN UP RNA) genes, SAUR62 and SAUR75, whose expression is up-regulated by pollination. Here, we found that both SAUR62 and SAUR75 localized mainly to pollen tube nuclei. The siliques of homozygous saur62 (saur62/-), saur75 (saur75/-), and the SAUR62/75 RNA interference (RNAi) knockdown line had many aborted seeds. These lines had normal pollen viability but defective in vitro and in vivo pollen tube growth, with branching phenotypes. Immunoprecipitation with transgenic SAUR62/75-GFP flowers revealed ribosomal protein RPL12 family members as potential interacting partners, and their individual interactions were confirmed further by yeast two-hybrid and bimolecular fluorescence complementation assays. Polysome profiling showed reduced 80S ribosome abundance in homozygous saur62, saur75, ribosomal large subunit12c, and SAUR62/75 RNAi flowers, suggesting that SAUR62/75 play roles in ribosome assembly. To clarify their roles in translation, we analyzed total proteins from RNAi versus wild-type flowers by isobaric tags for relative and absolute quantitation, revealing significantly reduced expression of factors participating in pollen tube wall biogenesis and F-actin dynamics, which are critical for the elastic properties of tube elongation. Indeed, RNAi pollen tubes showed mislocalization of deesterified and esterified pectins and F-actin organization. Thus, the biological roles of SAUR62/75 and their RPL12 partners are critical in ribosomal pre-60S subunit assembly for efficient pollen tube elongation and subsequent fertilization.
Collapse
Affiliation(s)
- Siou-Luan He
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
37
|
Pholo M, Coetzee B, Maree HJ, Young PR, Lloyd JR, Kossmann J, Hills PN. Cell division and turgor mediate enhanced plant growth in Arabidopsis plants treated with the bacterial signalling molecule lumichrome. PLANTA 2018; 248:477-488. [PMID: 29777364 DOI: 10.1007/s00425-018-2916-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Transcriptomic analysis indicates that the bacterial signalling molecule lumichrome enhances plant growth through a combination of enhanced cell division and cell enlargement, and possibly enhances photosynthesis. Lumichrome (7,8 dimethylalloxazine), a novel multitrophic signal molecule produced by Sinorhizobium meliloti bacteria, has previously been shown to elicit growth promotion in different plant species (Phillips et al. in Proc Natl Acad Sci USA 96:12275-12280, https://doi.org/10.1073/pnas.96.22.12275 , 1999). However, the molecular mechanisms that underlie this plant growth promotion remain obscure. Global transcript profiling using RNA-seq suggests that lumichrome enhances growth by inducing genes impacting on turgor driven growth and mitotic cell cycle that ensures the integration of cell division and expansion of developing leaves. The abundance of XTH9 and XPA4 transcripts was attributed to improved mediation of cell-wall loosening to allow turgor-driven cell enlargement. Mitotic CYCD3.3, CYCA1.1, SP1L3, RSW7 and PDF1 transcripts were increased in lumichrome-treated Arabidopsis thaliana plants, suggesting enhanced growth was underpinned by increased cell differentiation and expansion with a consequential increase in biomass. Synergistic ethylene-auxin cross-talk was also observed through reciprocal over-expression of ACO1 and SAUR54, in which ethylene activates the auxin signalling pathway and regulates Arabidopsis growth by both stimulating auxin biosynthesis and modulating the auxin transport machinery to the leaves. Decreased transcription of jasmonate biosynthesis and responsive-related transcripts (LOX2; LOX3; LOX6; JAL34; JR1) might contribute towards suppression of the negative effects of methyl jasmonate (MeJa) such as chlorophyll loss and decreases in RuBisCO and photosynthesis. This work contributes towards a deeper understanding of how lumichrome enhances plant growth and development.
Collapse
Affiliation(s)
- Motlalepula Pholo
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Beatrix Coetzee
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
- Agricultural Research Council, Infruitec-Nietvoorbij, Institute for Deciduous Fruit, Vines and Wine, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Hans J Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
- Agricultural Research Council, Infruitec-Nietvoorbij, Institute for Deciduous Fruit, Vines and Wine, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Philip R Young
- Institute for Wine Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - James R Lloyd
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Jens Kossmann
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Paul N Hills
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
38
|
Hu W, Yan H, Luo S, Pan F, Wang Y, Xiang Y. Genome-wide analysis of poplar SAUR gene family and expression profiles under cold, polyethylene glycol and indole-3-acetic acid treatments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:50-65. [PMID: 29758473 DOI: 10.1016/j.plaphy.2018.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Small auxin-up RNA (SAUR) proteins play an important role in the regulation of plant growth and development. Here, we identified 105 SAUR genes and comprehensively analyzed them in Populus trichocarpa. Based on the phylogenetic relationships, the PtSAURs were classified into ten subfamilies. Of the 105 PtSAURs, 100 were randomly distributed along the nineteen chromosomes, while the remaining genes were located along unassigned scafoolds. These genes mainly evolved through segmental duplications. In total, 94 PtSAURs contained no introns, and each group had a similar conserved motif structure. A promoter analysis revealed various cis-elements related to growth, development and stress responses, and a synteny analysis established orthologous relationships among SAURs in Arabidopsis, rice, grape and poplar. The qRT-PCR and tissue expression analyses indicated that PtSAURs show different expression levels in various tissues in response to different treatments. PtSAUR53 was located on the nuclear and plasma membrane by conducting subcellular localization analysis. This study provides a comprehensive overview of poplar SAUR proteins and a foundation for further investigations for functional analysis of SAURs in poplar growth and development. At the same time, it will be valuable to further study the poplar SAUR genes to reveal their biological effects.
Collapse
Affiliation(s)
- Wenfang Hu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Biomass Improvement and Conversion, Anhui Agriculture University, Hefei, 230036, China.
| | - Shuangshuang Luo
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Feng Pan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yue Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Biomass Improvement and Conversion, Anhui Agriculture University, Hefei, 230036, China.
| |
Collapse
|
39
|
Prediction of auxin response elements based on data fusion in Arabidopsis thaliana. Mol Biol Rep 2018; 45:763-772. [PMID: 29936576 DOI: 10.1007/s11033-018-4216-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/14/2018] [Indexed: 01/05/2023]
Abstract
The plant hormone "auxin" is a key regulator of plant development and environmental responses. Many genes in Arabidopsis thaliana are known to be up-regulated in response to auxin. Auxin response factors activate or repress the expression of genes by binding at their promoter regions within auxin response elements (AuxRE) that are key regulatory cis-acting motives. Therefore, the identification of auxin-response elements is among the most important issues to understand the auxin regulation mechanisms. Thus, searching the TGTCTC motif is an unreliable method to identify AuxRE because many AuxRE variants may also be functional. In the present study, we perform an In-silico prediction of AuxREs in promoters of primary auxin responsive genes. We exploit microarray data of auxin response in Arabidopsis thaliana seedlings, in order to provide biological annotation to AuxRE. We apply a data fusion method based on the combined use of evidence theory and fuzzy sets to scan upstream sequences of response genes.
Collapse
|
40
|
Wei C, Zhu L, Wen J, Yi B, Ma C, Tu J, Shen J, Fu T. Morphological, transcriptomics and biochemical characterization of new dwarf mutant of Brassica napus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:97-113. [PMID: 29576090 DOI: 10.1016/j.plantsci.2018.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 05/08/2023]
Abstract
Plant height is a key trait of plant architecture, and is responsible for both yield and lodging resistance in Brassica napus. A dwarf mutant line (bnaC.dwf) was obtained by chemical mutagenesis of an inbred line T6. However, the molecular mechanisms and changed biological processes of the dwarf mutant remain to be determined. In this study, a comparative transcriptome analysis between bnaC.dwf and T6 plants was performed to identify genome-wide differentially expressed genes (DEGs) and possible biological processes that may explain the phenotype variations in bnaC.dwf. As a result of this analysis, 60,134,746-60,301,384 clean reads were aligned to 60,074 genes in the B. napus genome, and accounted for 60.03% of the annotated genes. In total, 819 differentially expressed genes were used for GO (Gene Ontology) term and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses with a FDR (false discovery rate) criterion of <0.001, |log2Ratio| ≥ 1. We focused on plant hormone signal transduction pathways, plant-pathogen interaction pathway, protein phosphorylation and degradation pathways and sugar metabolism pathways. Taken together, the decrease in local auxin (IAA) levels, the variation in BnTCH4, BnKAN1, BnERF109, COI1-JAZ9-MYC2, auxin response genes (BnGH3.11, BnSAUR78, and AUX/IAA19), and ABA (abscisic acid) signaling genes (BnADP5, BnSnRK2.1, BnABF3.1) partially accounted for variations of cell proliferation in internodes, shoot and root apical meristem maintenance, abiotic and biotic stress resistance, and pre-harvest sprouting. As a comprehensive consequence of the cross-talk between plant hormones, sugar metabolism, plant-pathogen interactions and protein metabolism, bnaC.dwf presents distinct phenotypes from T6. These results will be helpful for shedding light on molecular mechanisms in the dwarf mutant, and give insight into further molecular breeding of semi-dwarf B. napus.
Collapse
Affiliation(s)
- Chao Wei
- Tingdong Fu National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Lixia Zhu
- Tingdong Fu National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jing Wen
- Tingdong Fu National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Bin Yi
- Tingdong Fu National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Chaozhi Ma
- Tingdong Fu National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jinxing Tu
- Tingdong Fu National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jinxiong Shen
- Tingdong Fu National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Tingdong Fu
- Tingdong Fu National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
41
|
Guo Y, Jiang Q, Hu Z, Sun X, Fan S, Zhang H. Function of the auxin-responsive gene TaSAUR75 under salt and drought stress. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.08.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
Zhang W, Li Z, Fang H, Zhang M, Duan L. Analysis of the genetic basis of plant height-related traits in response to ethylene by QTL mapping in maize (Zea mays L.). PLoS One 2018; 13:e0193072. [PMID: 29466465 PMCID: PMC5821358 DOI: 10.1371/journal.pone.0193072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/04/2018] [Indexed: 02/06/2023] Open
Abstract
Ethylene (ET) is critical importance in the growth, development, and stress responses of plants. Plant hormonal stress responses have been extensively studied, however, the role of ET in plant growth, especially plant height (PH) remains unclear. Understanding the genetic control for PH in response to ET will provide insights into the regulation of maize development. To clarify the genetic basis of PH-related traits of maize in response to ET, we mapped QTLs for PH, ear height (EH), and internode length above the uppermost ear (ILAU) in two recombinant inbred line (RIL) populations of Zea mays after ET treatment and in an untreated control (CK) group. Sixty QTLs for the three traits were identified. Twenty-two QTLs were simultaneously detected under both ET treatment and untreated control, and five QTLs were detected at two geographic locations under ET treatment only. Individual QTL can be explained 3.87-17.71% of the phenotypic variance. One QTL (q2PH9-1, q1PH9, q1EH9/q1ILAU9-1, q2ILAU9, and q2EH9) for the measured traits (PH, EH, ILAU) was consistent across both populations. Two QTLs (q2PH2-5, q2ILAU2-2, q1PH2-2, and q1ILAU2-2; q1PH8-1, q1EH8-1, q2PH8-1) were identified for up to two traits in both locations and populations under both ET treatment and untreated control. These consistent and stable regions are important QTLs of potential hot spots for PH, ear height (EH), and internode length above the uppermost ear (ILAU) response to ET in maize; therefore, QTL fine-mapping and putative candidate genes validation should enable the cloning of PH, EH, and ILAU related genes to ET response. These results will be valuable for further fine-mapping and quantitative trait nucleotides (QTNs) determination, and elucidate the underlying molecular mechanisms of ET responses in maize.
Collapse
Affiliation(s)
- Weiqiang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Zhi Li
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Hui Fang
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Haidian District, Beijing, China
| |
Collapse
|
43
|
Niu J, Bi Q, Deng S, Chen H, Yu H, Wang L, Lin S. Identification of AUXIN RESPONSE FACTOR gene family from Prunus sibirica and its expression analysis during mesocarp and kernel development. BMC PLANT BIOLOGY 2018; 18:21. [PMID: 29368590 PMCID: PMC5784662 DOI: 10.1186/s12870-017-1220-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/20/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND Auxin response factors (ARFs) in auxin signaling pathway are an important component that can regulate the transcription of auxin-responsive genes involved in almost all aspects of plant growth and development. To our knowledge, the comprehensive and systematic characterization of ARF genes has never been reported in Prunus sibirica, a novel woody biodiesel feedstock in China. RESULTS In this study, we identified 14 PsARF genes with a perfect open reading frame (ORF) in P. sibirica by using its previous transcriptomic data. Conserved motif analysis showed that all identified PsARF proteins had typical DNA-binding and ARF domain, but 5 members (PsARF3, 8 10, 16 and 17) lacked the dimerization domain. Phylogenetic analysis of the ARF proteins generated from various plant species indicated that ARFs could be categorized into 4 major groups (Class I, II, III and IV), in which all identified ARFs from P. sibirica showed a closest relationship with those from P. mume. Comparison of the expression profiles of 14 PsARF genes in different developmental stages of Siberian apricot mesocarp (SAM) and kernel (SAK) reflected distinct temporal or spatial expression patterns for PsARF genes. Additionally, based on the expressed data from fruit and seed development of multiple plant species, we identified 1514 ARF-correlated genes using weighted gene co-expression network analysis (WGCNA). And the major portion of ARF-correlated gene was characterized to be involved in protein, nucleic acid and carbohydrate metabolic, transport and regulatory processes. CONCLUSIONS In summary, we systematically and comprehensively analyzed the structure, expression pattern and co-expression network of ARF gene family in P. sibirica. All our findings provide theoretical foundation for the PsARF gene family and will pave the way for elucidating the precise role of PsARF genes in SAM and SAK development.
Collapse
Affiliation(s)
- Jun Niu
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228 China
| | - Quanxin Bi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Shuya Deng
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228 China
| | - Huiping Chen
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228 China
| | - Haiyan Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Libing Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Shanzhi Lin
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 10083 China
| |
Collapse
|
44
|
Kathare PK, Dharmasiri S, Dharmasiri N. SAUR53 regulates organ elongation and apical hook development in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2018; 13:e1514896. [PMID: 30260266 PMCID: PMC6204813 DOI: 10.1080/15592324.2018.1514896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
SAUR53 is a member of SAUR (Small Auxin-Up RNA) gene family of primary auxin responsive genes. In Arabidopsis, SAUR gene family is represented by 81 genes including two pseudogenes; however, the functions of most of these genes are not fully characterized yet. In the present study, we show that SAUR53 expresses throughout the plant and localizes to both plasma membrane and the nucleus. Unlike most other SAUR genes, expression of SAUR53 is not induced in response to auxin. Ectopic expression of SAUR53 results in the elongation of cells and organs, and also interferes with normal apical hook development by accelerating the hook maintenance phase. Moreover, root growth of SAUR53 overexpression seedlings is significantly insensitive to IAA and 2,4-D, while showing wild-type sensitivity to NAA, suggesting that elevated level of SAUR53 may interfere with normal auxin transport. Collectively, this study indicates that while SAUR53 positively regulates cell and organ elongation, it probably negatively regulates auxin transport in Arabidopsis.
Collapse
Affiliation(s)
- Praveen Kumar Kathare
- Department of Biology, Texas State University, San Marcos, TX, USA
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | | | - Nihal Dharmasiri
- Department of Biology, Texas State University, San Marcos, TX, USA
- CONTACT Nihal Dharmasiri ;
| |
Collapse
|
45
|
Li Z, Zhang X, Zhao Y, Li Y, Zhang G, Peng Z, Zhang J. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:86-99. [PMID: 28499064 PMCID: PMC5785362 DOI: 10.1111/pbi.12751] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/25/2017] [Accepted: 04/21/2017] [Indexed: 05/21/2023]
Abstract
Maize is a globally important food, feed crop and raw material for the food and energy industry. Plant architecture optimization plays important roles in maize yield improvement. PIN-FORMED (PIN) proteins are important for regulating auxin spatiotemporal asymmetric distribution in multiple plant developmental processes. In this study, ZmPIN1a overexpression in maize increased the number of lateral roots and inhibited their elongation, forming a developed root system with longer seminal roots and denser lateral roots. ZmPIN1a overexpression reduced plant height, internode length and ear height. This modification of the maize phenotype increased the yield under high-density cultivation conditions, and the developed root system improved plant resistance to drought, lodging and a low-phosphate environment. IAA concentration, transport capacity determination and application of external IAA indicated that ZmPIN1a overexpression led to increased IAA transport from shoot to root. The increase in auxin in the root enabled the plant to allocate more carbohydrates to the roots, enhanced the growth of the root and improved plant resistance to environmental stress. These findings demonstrate that maize plant architecture can be improved by root breeding to create an ideal phenotype for further yield increases.
Collapse
Affiliation(s)
- Zhaoxia Li
- School of Life ScienceShandong UniversityJinanShandongChina
| | - Xinrui Zhang
- School of Life ScienceShandong UniversityJinanShandongChina
| | - Yajie Zhao
- School of Life ScienceShandong UniversityJinanShandongChina
| | - Yujie Li
- School of Life ScienceShandong UniversityJinanShandongChina
| | | | - Zhenghua Peng
- School of Life ScienceShandong UniversityJinanShandongChina
| | - Juren Zhang
- School of Life ScienceShandong UniversityJinanShandongChina
| |
Collapse
|
46
|
Li L, Cheng Z, Ma Y, Bai Q, Li X, Cao Z, Wu Z, Gao J. The association of hormone signalling genes, transcription and changes in shoot anatomy during moso bamboo growth. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:72-85. [PMID: 28499069 PMCID: PMC5785349 DOI: 10.1111/pbi.12750] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 05/13/2023]
Abstract
Moso bamboo is a large, woody bamboo with the highest ecological, economic and cultural value of all the bamboo types and accounts for up to 70% of the total area of bamboo grown. However, the spatiotemporal variation role of moso bamboo shoot during growth period is still unclear. We found that the bamboo shoot growth can be divided into three distinct periods, including winter growth, early growth and late growth based on gene expression and anatomy. In the early growth period, lateral buds germinated from the top of the bamboo joint in the shoot tip. Intercalary meristems grew vigorously during the winter growth period and early growth period, but in the late growth period, mitosis in the intercalary meristems decreased. The expression of cell cycle-associated genes and the quantity of differentially expressed genes were higher in early growth than those in late growth, appearing to be influenced by hormonal concentrations. Gene expression analysis indicates that hormone signalling genes play key roles in shoot growth, while auxin signalling genes play a central role. In situ hybridization analyses illustrate how auxin signalling genes regulate apical dominance, meristem maintenance and lateral bud development. Our study provides a vivid picture of the dynamic changes in anatomy and gene expression during shoot growth in moso bamboo, and how hormone signalling-associated genes participate in moso bamboo shoot growth.
Collapse
Affiliation(s)
- Long Li
- International Center for Bamboo and RattanKey Laboratory of Bamboo and Rattan Science and TechnologyState Forestry AdministrationBeijingChina
| | - Zhanchao Cheng
- International Center for Bamboo and RattanKey Laboratory of Bamboo and Rattan Science and TechnologyState Forestry AdministrationBeijingChina
| | - Yanjun Ma
- International Center for Bamboo and RattanKey Laboratory of Bamboo and Rattan Science and TechnologyState Forestry AdministrationBeijingChina
| | - Qingsong Bai
- International Center for Bamboo and RattanKey Laboratory of Bamboo and Rattan Science and TechnologyState Forestry AdministrationBeijingChina
| | - Xiangyu Li
- International Center for Bamboo and RattanKey Laboratory of Bamboo and Rattan Science and TechnologyState Forestry AdministrationBeijingChina
| | - Zhihua Cao
- Anhui Academy of ForestryHefeiAnhui ProvinceChina
| | - Zhongneng Wu
- Anhui Academy of ForestryHefeiAnhui ProvinceChina
| | - Jian Gao
- International Center for Bamboo and RattanKey Laboratory of Bamboo and Rattan Science and TechnologyState Forestry AdministrationBeijingChina
| |
Collapse
|
47
|
van Mourik H, van Dijk ADJ, Stortenbeker N, Angenent GC, Bemer M. Divergent regulation of Arabidopsis SAUR genes: a focus on the SAUR10-clade. BMC PLANT BIOLOGY 2017; 17:245. [PMID: 29258424 PMCID: PMC5735953 DOI: 10.1186/s12870-017-1210-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/08/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Small Auxin-Upregulated RNA (SAUR) genes encode growth regulators that induce cell elongation. Arabidopsis contains more than 70 SAUR genes, of which the growth-promoting function has been unveiled in seedlings, while their role in other tissues remained largely unknown. Here, we focus on the regulatory regions of Arabidopsis SAUR genes, to predict the processes in which they play a role, and understand the dynamics of plant growth. RESULTS In this study, we characterized in detail the entire SAUR10-clade: SAUR8, SAUR9, SAUR10, SAUR12, SAUR16, SAUR50, SAUR51 and SAUR54. Overexpression analysis revealed that the different proteins fulfil similar functions, while the SAUR expression patterns were highly diverse, showing expression throughout plant development in a variety of tissues. In addition, the response to application of different hormones largely varied between the different genes. These tissue-specific and hormone-specific responses could be linked to transcription factor binding sites using in silico analyses. These analyses also supported the existence of two groups of SAURs in Arabidopsis: Class I genes can be induced by combinatorial action of ARF-BZR-PIF transcription factors, while Class II genes are not regulated by auxin. CONCLUSIONS SAUR10-clade genes generally induce cell-elongation, but exhibit diverse expression patterns and responses to hormones. Our experimental and in silico analyses suggest that transcription factors involved in plant development determine the tissue specific expression of the different SAUR genes, whereas the amplitude of this expression can often be controlled by hormone response transcription factors. This allows the plant to fine tune growth in a variety of tissues in response to internal and external signals.
Collapse
Affiliation(s)
- Hilda van Mourik
- Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Aalt D. J. van Dijk
- Bioinformatics group, Biometris, and Business Unit Bioscience, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Niek Stortenbeker
- Microbial Physiology Group, MPI for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany
| | - Gerco C. Angenent
- Laboratory of Molecular Biology and Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Marian Bemer
- Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
48
|
Li X, Liu G, Geng Y, Wu M, Pei W, Zhai H, Zang X, Li X, Zhang J, Yu S, Yu J. A genome-wide analysis of the small auxin-up RNA (SAUR) gene family in cotton. BMC Genomics 2017; 18:815. [PMID: 29061116 PMCID: PMC5654091 DOI: 10.1186/s12864-017-4224-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/17/2017] [Indexed: 11/10/2022] Open
Abstract
Background Small auxin-up RNA (SAUR) gene family is the largest family of early auxin response genes in higher plants, which have been implicated in the regulation of multiple biological processes. However, no comprehensive analysis of SAUR genes has been reported in cotton (Gossypium spp.). Results In the study, we identified 145, 97, 214, and 176 SAUR homologous genes in the sequenced genomes of G. raimondii, G. arboreum, G. hirsutum, and G. barbadense, respectively. A phylogenetic analysis revealed that the SAUR genes can be classified into 10 groups. A further analysis of chromosomal locations and gene duplications showed that tandem duplication and segmental duplication events contributed to the expansion of the SAUR gene family in cotton. An exon-intron organization and motif analysis revealed the conservation of SAUR-specific domains, and the auxin responsive elements existed in most of the upstream sequences. The expression levels of 16 GhSAUR genes in response to an exogenous application of IAA were determined by a quantitative RT-PCR analysis. The genome-wide RNA-seq data and qRT-PCR analysis of selected SAUR genes in developing fibers revealed their differential expressions. The physical mapping showed that 20 SAUR genes were co-localized with fiber length quantitative trait locus (QTL) hotspots. Single nucleotide polymorphisms (SNPs) were detected for 12 of these 20 genes between G. hirsutum and G. barbadense, but no SNPs were identified between two backcross inbred lines with differing fiber lengths derived from a cross between the two cultivated tetraploids. Conclusions This study provides an important piece of genomic information for the SAUR genes in cotton and lays a solid foundation for elucidating the functions of SAUR genes in auxin signaling pathways to regulate cotton growth. Electronic supplementary material The online version of this article (10.1186/s12864-017-4224-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xihua Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China.,College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Guoyuan Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Yanhui Geng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Honghong Zhai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Xinshan Zang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Xingli Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, 88003, USA.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China. .,College of Agronomy, Northwest A&F University, Yangling, 712100, China.
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, China.
| |
Collapse
|
49
|
Bemer M, van Mourik H, Muiño JM, Ferrándiz C, Kaufmann K, Angenent GC. FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3391-3403. [PMID: 28586421 PMCID: PMC5853401 DOI: 10.1093/jxb/erx184] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/16/2017] [Indexed: 05/03/2023]
Abstract
MADS-domain transcription factors are well known for their roles in plant development and regulate sets of downstream genes that have been uncovered by high-throughput analyses. A considerable number of these targets are predicted to function in hormone responses or responses to environmental stimuli, suggesting that there is a close link between developmental and environmental regulators of plant growth and development. Here, we show that the Arabidopsis MADS-domain factor FRUITFULL (FUL) executes several functions in addition to its noted role in fruit development. Among the direct targets of FUL, we identified SMALL AUXIN UPREGULATED RNA 10 (SAUR10), a growth regulator that is highly induced by a combination of auxin and brassinosteroids and in response to reduced R:FR light. Interestingly, we discovered that SAUR10 is repressed by FUL in stems and inflorescence branches. SAUR10 is specifically expressed at the abaxial side of these branches and this localized activity is influenced by hormones, light conditions and by FUL, which has an effect on branch angle. Furthermore, we identified a number of other genes involved in hormone pathways and light signalling as direct targets of FUL in the stem, demonstrating a connection between developmentally and environmentally regulated growth programs.
Collapse
Affiliation(s)
- Marian Bemer
- Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg, PB Wageningen, The Netherlands
- Correspondence:
| | - Hilda van Mourik
- Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg, PB Wageningen, The Netherlands
| | - Jose M Muiño
- Department of Biology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP),Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC). Ciudad Politécnica de la Innovación (CPI), Ed. 8E C/ Ingeniero Fausto Elio s/n, Valencia, Spain
| | - Kerstin Kaufmann
- Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Gerco C Angenent
- Laboratory of Molecular Biology and Business Unit Bioscience, Wageningen University & Research, PB Wageningen, The Netherlands
| |
Collapse
|
50
|
Zhang H, Sonnewald U. Differences and commonalities of plant responses to single and combined stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:839-855. [PMID: 28370754 DOI: 10.1111/tpj.13557] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 05/21/2023]
Abstract
In natural or agricultural environments, plants are constantly exposed to a wide range of biotic and abiotic stresses. Given the forecasted global climate changes, plants will cope with heat waves, drought periods and pathogens at the same time or consecutively. Heat and drought cause opposing physiological responses, while pathogens may or may not profit from climate changes depending on their lifestyle. Several studies have been conducted to find stress-specific signatures or stress-independent commonalities. Previously this has been done by comparing different single stress treatments. This approach has been proven difficult since most studies, comparing single and combined stress conditions, have come to the conclusion that each stress treatment results in specific transcriptional changes. Although transcriptional changes at the level of individual genes are highly variable and stress-specific, central metabolic and signaling responses seem to be common, often leading to an overall reduced plant growth. Understanding how specific transcriptional changes are linked to stress adaptations and identifying central hubs controlling this interaction will be the challenge for the coming years. In this review, we will summarize current knowledge on plant responses to different individual and combined stresses and try to find a common thread potentially underlying these responses. We will begin with a brief summary of known physiological, metabolic, transcriptional and hormonal responses to individual stresses, elucidate potential commonalities and conflicts and finally we will describe results obtained during combined stress experiments. Here we will concentrate on simultaneous application of stress conditions but we will also touch consequences of sequential stress treatments.
Collapse
Affiliation(s)
- Haina Zhang
- Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Uwe Sonnewald
- Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstrasse 5, 91058, Erlangen, Germany
| |
Collapse
|