1
|
Zhang Z, Chen X, Meng Y, Jiang J, Wu L, Chen T, Pan H, Jiao Z, Du L, Man C, Chen S, Wang F, Gao H, Chen Q. Up-Regulation of S100A8 and S100A9 in Pulmonary Immune Response Induced by a Mycoplasma capricolum subsp. capricolum HN-B Strain. Animals (Basel) 2024; 14:2064. [PMID: 39061526 PMCID: PMC11274312 DOI: 10.3390/ani14142064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mycoplasma capricolum subsp. capricolum (Mcc), a member of the Mycoplasma mycoides cluster, has a negative impact on the goat-breeding industry. However, little is known about the pathogenic mechanism of Mcc. This study infected mice using a previously isolated strain, Mcc HN-B. Hematoxylin and eosin staining, RNA sequencing, bioinformatic analyses, RT-qPCR, and immunohistochemistry were performed on mouse lung tissues. The results showed that 235 differentially expressed genes (DEGs) were identified. GO and KEGG enrichment analyses suggested that the DEGs were mainly associated with immune response, defensive response to bacteria, NF-kappa B signaling pathway, natural killer cell-mediated cytotoxicity, and T cell receptor signaling pathway. RT-qPCR verified the expression of Ccl5, Cd4, Cd28, Il2rb, Lck, Lat, Ptgs2, S100a8, S100a9, and Il-33. The up-regulation of S100A8 and S100A9 at the protein level was confirmed by immunohistochemistry. Moreover, RT-qPCR assays on Mcc HN-B-infected RAW264.7 cells also showed that the expression of S100a8 and S100a9 was elevated. S100A8 and S100A9 not only have diagnostic value in Mcc infection but also hold great significance in clarifying the pathogenic mechanism of Mcc. This study preliminarily elucidates the mechanism of Mcc HN-B-induced lung injury and provides a theoretical basis for further research on Mcc-host interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Hongyan Gao
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.Z.); (X.C.); (Y.M.); (J.J.); (L.W.); (T.C.); (H.P.); (Z.J.); (L.D.); (C.M.); (S.C.); (F.W.)
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.Z.); (X.C.); (Y.M.); (J.J.); (L.W.); (T.C.); (H.P.); (Z.J.); (L.D.); (C.M.); (S.C.); (F.W.)
| |
Collapse
|
2
|
Zhang T, Zhong H, Lin L, Zhang Z, Xue K, He F, Luo Y, Wang P, Zhao Z, Cong L, Pang P, Li X, Shan H, Yan Z. Core microbiome-associated proteins associated with ulcerative colitis interact with cytokines for synergistic or antagonistic effects on gut bacteria. THE ISME JOURNAL 2024; 18:wrae146. [PMID: 39073916 PMCID: PMC11360980 DOI: 10.1093/ismejo/wrae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is associated with a loss or an imbalance of host-microorganism interactions. However, such interactions at protein levels remain largely unknown. Here, we applied a depletion-assisted metaproteomics approach to obtain in-depth host-microbiome association networks of IBD, where the core host proteins shifted from those maintaining mucosal homeostasis in controls to those involved in inflammation, proteolysis, and intestinal barrier in IBD. Microbial nodes such as short-chain fatty-acid producer-related host-microbial crosstalk were lost or suppressed by inflammatory proteins in IBD. Guided by protein-protein association networks, we employed proteomics and lipidomics to investigate the effects of UC-related core proteins S100A8, S100A9, and cytokines (IL-1β, IL-6, and TNF-α) on gut bacteria. These proteins suppressed purine nucleotide biosynthesis in stool-derived in vitro communities, which was also reduced in IBD stool samples. Single species study revealed that S100A8, S100A9, and cytokines can synergistically or antagonistically alter gut bacteria intracellular and secreted proteome, with combined S100A8 and S100A9 potently inhibiting beneficial Bifidobacterium adolescentis. Furthermore, these inflammatory proteins only altered the extracellular but not intracellular proteins of Ruminococcus gnavus. Generally, S100A8 induced more significant bacterial proteome changes than S100A9, IL-1β, IL-6, and TNF-α but gut bacteria degrade significantly more S100A8 than S100A9 in the presence of both proteins. Among the investigated species, distinct lipid alterations were only observed in Bacteroides vulgatus treated with combined S100A8, S100A9, and cytokines. These results provided a valuable resource of inflammatory protein-centric host-microbial molecular interactions.
Collapse
Affiliation(s)
- Ting Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Meihua East Road, Zhuhai, Guangdong 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Meihua East Road, Zhuhai, Guangdong 519000, China
| | - Hang Zhong
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Meihua East Road, Zhuhai, Guangdong 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Meihua East Road, Zhuhai, Guangdong 519000, China
| | - Lu Lin
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Meihua East Road, Zhuhai, Guangdong 519000, China
| | - Zhiyan Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Meihua East Road, Zhuhai, Guangdong 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Meihua East Road, Zhuhai, Guangdong 519000, China
| | - Kewen Xue
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Meihua East Road, Zhuhai, Guangdong 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Meihua East Road, Zhuhai, Guangdong 519000, China
| | - Feixiang He
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Meihua East Road, Zhuhai, Guangdong 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Meihua East Road, Zhuhai, Guangdong 519000, China
| | - Yingshu Luo
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Meihua East Road, Zhuhai, Guangdong 519000, China
| | - Panpan Wang
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Meihua East Road, Zhuhai, Guangdong 519000, China
| | - Zhi Zhao
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Meihua East Road, Zhuhai, Guangdong 519000, China
| | - Li Cong
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Meihua East Road, Zhuhai, Guangdong 519000, China
| | - Pengfei Pang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Meihua East Road, Zhuhai, Guangdong 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Meihua East Road, Zhuhai, Guangdong 519000, China
| | - Xiaofeng Li
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Meihua East Road, Zhuhai, Guangdong 519000, China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Meihua East Road, Zhuhai, Guangdong 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Meihua East Road, Zhuhai, Guangdong 519000, China
| | - Zhixiang Yan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Meihua East Road, Zhuhai, Guangdong 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Meihua East Road, Zhuhai, Guangdong 519000, China
| |
Collapse
|
3
|
Sosnik A, Zlotver I, Peled E. Galactomannan- graft-poly(methyl methacrylate) nanoparticles induce an anti-inflammatory phenotype in human macrophages. J Mater Chem B 2023; 11:8471-8483. [PMID: 37587844 DOI: 10.1039/d3tb01397a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Macrophages are immune cells that can be activated into either pro-inflammatory M1 or anti-inflammatory M2 phenotypes. Attempts to modulate macrophage phenotype using drugs have been limited by targeting issues and systemic toxicity. This study investigates the effect of drug-free self-assembled hydrolyzed galactomannan-poly(methyl methacrylate) (hGM-g-PMMA) nanoparticles on the activation of the human monocyte-derived macrophage THP-1 cell line. Nanoparticles are cell compatible and are taken up by macrophages. RNA-sequencing analysis of cells exposed to NPs reveal the upregulation of seven metallothionein genes. Additionally, the secretion of pro-inflammatory and anti-inflammatory cytokines upon exposure of unpolarized macrophages and M1-like cells obtained by activation with lipopolysaccharide + interferon-γ to the NPs is reduced and increased, respectively. Finally, nanoparticle-treated macrophages promote fibroblast migration in vitro. Overall, results demonstrate that hGM-g-PMMA nanoparticles induce the release of anti-inflammatory cytokines by THP-1 macrophages, which could pave the way for their application in the therapy of different inflammatory conditions, especially by local delivery.
Collapse
Affiliation(s)
- Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City, 3200003 Haifa, Israel.
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City, 3200003 Haifa, Israel.
| | - Ella Peled
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City, 3200003 Haifa, Israel.
| |
Collapse
|
4
|
Horner E, Lord JM, Hazeldine J. The immune suppressive properties of damage associated molecular patterns in the setting of sterile traumatic injury. Front Immunol 2023; 14:1239683. [PMID: 37662933 PMCID: PMC10469493 DOI: 10.3389/fimmu.2023.1239683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Associated with the development of hospital-acquired infections, major traumatic injury results in an immediate and persistent state of systemic immunosuppression, yet the underlying mechanisms are poorly understood. Detected in the circulation in the minutes, days and weeks following injury, damage associated molecular patterns (DAMPs) are a heterogeneous collection of proteins, lipids and DNA renowned for initiating the systemic inflammatory response syndrome. Suggesting additional immunomodulatory roles in the post-trauma immune response, data are emerging implicating DAMPs as potential mediators of post-trauma immune suppression. Discussing the results of in vitro, in vivo and ex vivo studies, the purpose of this review is to summarise the emerging immune tolerising properties of cytosolic, nuclear and mitochondrial-derived DAMPs. Direct inhibition of neutrophil antimicrobial activities, the induction of endotoxin tolerance in monocytes and macrophages, and the recruitment, activation and expansion of myeloid derived suppressor cells and regulatory T cells are examples of some of the immune suppressive properties assigned to DAMPs so far. Crucially, with studies identifying the molecular mechanisms by which DAMPs promote immune suppression, therapeutic strategies that prevent and/or reverse DAMP-induced immunosuppression have been proposed. Approaches currently under consideration include the use of synthetic polymers, or the delivery of plasma proteins, to scavenge circulating DAMPs, or to treat critically-injured patients with antagonists of DAMP receptors. However, as DAMPs share signalling pathways with pathogen associated molecular patterns, and pro-inflammatory responses are essential for tissue regeneration, these approaches need to be carefully considered in order to ensure that modulating DAMP levels and/or their interaction with immune cells does not negatively impact upon anti-microbial defence and the physiological responses of tissue repair and wound healing.
Collapse
Affiliation(s)
- Emily Horner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Chen Y, Ouyang Y, Li Z, Wang X, Ma J. S100A8 and S100A9 in Cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188891. [PMID: 37001615 DOI: 10.1016/j.bbcan.2023.188891] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
S100A8 and S100A9 are Ca2+ binding proteins that belong to the S100 family. Primarily expressed in neutrophils and monocytes, S100A8 and S100A9 play critical roles in modulating various inflammatory responses and inflammation-associated diseases. Forming a common heterodimer structure S100A8/A9, S100A8 and S100A9 are widely reported to participate in multiple signaling pathways in tumor cells. Meanwhile, S100A8/A9, S100A8, and S100A9, mainly as promoters, contribute to tumor development, growth and metastasis by interfering with tumor metabolism and the microenvironment. In recent years, the potential of S100A8/A9, S100A9, and S100A8 as tumor diagnostic or prognostic biomarkers has also been demonstrated. In addition, an increasing number of potential therapies targeting S100A8/A9 and related signaling pathways have emerged. In this review, we will first expound on the characteristics of S100A8/A9, S100A9, and S100A8 in-depth, focus on their interactions with tumor cells and microenvironments, and then discuss their clinical applications as biomarkers and therapeutic targets. We also highlight current limitations and look into the future of S100A8/A9 targeted anti-cancer therapy.
Collapse
|
6
|
Limmer A, Engler A, Kattner S, Gregorius J, Pattberg KT, Schulz R, Schwab J, Roth J, Vogl T, Krawczyk A, Witzke O, Zelinskyy G, Dittmer U, Brenner T, Berger MM. Patients with SARS-CoV-2-Induced Viral Sepsis Simultaneously Show Immune Activation, Impaired Immune Function and a Procoagulatory Disease State. Vaccines (Basel) 2023; 11:vaccines11020435. [PMID: 36851312 PMCID: PMC9960366 DOI: 10.3390/vaccines11020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND It is widely accepted that SARS-CoV-2 causes a dysregulation of immune and coagulation processes. In severely affected patients, viral sepsis may result in life endangering multiple organ dysfunction. Furthermore, most therapies for COVID-19 patients target either the immune system or coagulation processes. As the exact mechanism causing SARS-CoV-2-induced morbidity and mortality was unknown, we started an in-depth analysis of immunologic and coagulation processes. METHODS 127 COVID-19 patients were treated at the University Hospital Essen, Germany, between May 2020 and February 2022. Patients were divided according to their maximum COVID-19 WHO ordinal severity score (WHO 0-10) into hospitalized patients with a non-severe course of disease (WHO 4-5, n = 52) and those with a severe course of disease (WHO 6-10, n = 75). Non-infected individuals served as healthy controls (WHO 0, n = 42). Blood was analyzed with respect to cell numbers, clotting factors, as well as pro- and anti-inflammatory mediators in plasma. As functional parameters, phagocytosis and inflammatory responses to LPS and antigen-specific stimulation were determined in monocytes, granulocytes, and T cells using flow cytometry. FINDINGS In the present study, immune and coagulation systems were analyzed simultaneously. Interestingly, many severe COVID-19 patients showed an upregulation of pro-inflammatory mediators and at the same time clear signs of immunosuppression. Furthermore, severe COVID-19 patients not only exhibited a disturbed immune system, but in addition showed a pronounced pro-coagulation phenotype with impaired fibrinolysis. Therefore, our study adds another puzzle piece to the already complex picture of COVID-19 pathology implying that therapies in COVID-19 must be individualized. CONCLUSION Despite years of research, COVID-19 has not been understood completely and still no therapies exist, fitting all requirements and phases of COVID-19 disease. This observation is highly reminiscent to sepsis. Research in sepsis has been going on for decades, while the disease is still not completely understood and therapies fitting all patients are lacking as well. In both septic and COVID-19 patients, immune activation can be accompanied by immune paralysis, complicating therapeutic intervention. Accordingly, therapies that lower immune activation may cause detrimental effects in patients, who are immune paralyzed by viral infections or sepsis. We therefore suggest individualizing therapies and to broaden the spectrum of immunological parameters analyzed before therapy. Only if the immune status of a patient is understood, can a therapeutic intervention be successful.
Collapse
Affiliation(s)
- Andreas Limmer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Department of Pediatric Cardiac Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
- Correspondence:
| | - Andrea Engler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Simone Kattner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Jonas Gregorius
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Kevin Thomas Pattberg
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Rebecca Schulz
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Jansje Schwab
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, 48149 Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, 48149 Münster, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Gennadiy Zelinskyy
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Marc Moritz Berger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
7
|
Xie S, Wang J, Tuo W, Zhuang S, Cai Q, Yao C, Han F, Zhu H, Xiang Y, Yuan C. Serum level of S100A8/A9 as a biomarker for establishing the diagnosis and severity of community-acquired pneumonia in children. Front Cell Infect Microbiol 2023; 13:1139556. [PMID: 37180431 PMCID: PMC10172663 DOI: 10.3389/fcimb.2023.1139556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Background S100A8/A9, which is a member of S100 proteins, may be involved in the pathophysiology of Community-acquired pneumonia (CAP) that seriously threatens children's health. However, circulating markers to assess the severity of pneumonia in children are yet to be explored. Therefore, we aimed to investigate the diagnostic performance of serum S100A8/A9 level in determining the severity of CAP in children. Methods In this prospective and observational study, we recruited 195 in-hospital children diagnosed with CAP. In comparison, 63 healthy children (HC) and 58 children with non-infectious pneumonia (pneumonitis) were included as control groups. Demographic and clinical data were collected. Serum S100A8/A9 levels, serum pro-calcitonin concentrations, and blood leucocyte counts were quantified. Results The serum S100A8/A9 levels in patients with CAP was 1.59 ± 1.32 ng/mL, which was approximately five and two times higher than those in healthy controls and those in children with pneumonitis, respectively. Serum S100A8/A9 was elevated parallelly with the clinical pulmonary infection score. The sensitivity, specificity, and Youden's index of S100A8/A9 ≥1.25 ng/mL for predicting the severity of CAP in children was optimal. The area under the receiver operating characteristic curve of S100A8/A9 was the highest among the indices used to evaluate severity. Conclusions S100A8/A9 may serve as a biomarker for predicting the severity of the condition in children with CAP and establishing treatment grading.
Collapse
Affiliation(s)
- Si Xie
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wang
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbin Tuo
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shihao Zhuang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qinzhen Cai
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Yao
- Health Care Department, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Han
- Department of Pediatric Respiratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmin Zhu
- Department of Neurology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongmin Zhu, ; Yun Xiang, ; Chunhui Yuan,
| | - Yun Xiang
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongmin Zhu, ; Yun Xiang, ; Chunhui Yuan,
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongmin Zhu, ; Yun Xiang, ; Chunhui Yuan,
| |
Collapse
|
8
|
S100A8 accelerates wound healing by promoting adipose stem cell proliferation and suppressing inflammation. Regen Ther 2022; 21:166-174. [PMID: 35891712 PMCID: PMC9294055 DOI: 10.1016/j.reth.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are stem cells with multidirectional differentiation potential isolated from adipose tissue. They have the same immunomodulatory effect as bone marrow mesenchymal stem cells in wound repair and immune regulation as bone marrow. The mechanism of action of ADSCs in skin wound repair has not been elucidated. S100A8 is a calcium and zinc binding protein, but its role in skin wound healing is rarely reported. We herein show that S100A8 overexpression significantly promoted ADSC proliferation and differentiation, whereas S100A8 knockdown yielded the opposite results. A skin injury model with bone exposure was created in rats by surgically removing the skin from the head and exposing the skull. The wounds were treated with S100A8-overexpressing or S100A8-knockdown ADSCs, and wound healing was monitored. The serum levels of the inflammation-related factors tumor necrosis factor-α and interleukin-6 were decreased significantly after S100A8 overexpression, while the angiogenic factor vascular endothelial growth factor and connective tissue generating factor showed the opposite trend. Histological staining revealed that granulation tissue neovascularization was more pronounced in wounds treated with S100A8-overexpressing ADSCs than that in the control group. We conclude that S100A8 promotes the proliferation of ADSCs and inhibits inflammation to improve skin wound healing.
Collapse
|
9
|
Miyashita D, Inoue R, Tsuno T, Okuyama T, Kyohara M, Nakahashi-Oda C, Nishiyama K, Fukushima S, Inada Y, Togashi Y, Shibuya A, Terauchi Y, Shirakawa J. Protective effects of S100A8 on sepsis mortality: Links to sepsis risk in obesity and diabetes. iScience 2022; 25:105662. [PMID: 36505926 PMCID: PMC9732389 DOI: 10.1016/j.isci.2022.105662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/23/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Obesity and diabetes are independent risk factors for death during sepsis. S100A8, an alarmin, is related to inflammation, obesity, and diabetes. Here, we examine the role of S100A8 in sepsis of obesity and diabetes models. Injection of S100A8 prolongs the survival of septic mice induced by lethal endotoxemia, Escherichia coli injection, or cecal ligation and puncture. S100A8 decrease the LPS-induced expression of proinflammatory cytokines in peritoneal macrophages by inhibiting TLR4-mediated signals in an autocrine manner. db/db, ob/ob, and western diet-fed mice demonstrate reduced upregulation of S100A8 induced by LPS treatment in both serum and peritoneal cells. These mice also show shorter survival after LPS injection, and S100A8 supplementation prolonged the survival. While myelomonocytic cells-specific S100A8-deficient mice (Lyz2 cre :S100A8 floxed/floxed ) exhibit shorter survival after LPS treatment, S100A8 supplementation prolonged the survival. Thus, myelomonocytic cell-derived S100A8 is crucial for protection from sepsis, and S100A8 supplementation improves sepsis, particularly in mice with obesity and diabetes.
Collapse
Affiliation(s)
- Daisuke Miyashita
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Takahiro Tsuno
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Tomoko Okuyama
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Mayu Kyohara
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Chigusa Nakahashi-Oda
- Department of Immunology, Faculty of Medicine, and R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan
| | - Kuniyuki Nishiyama
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Setsuko Fukushima
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Yutaro Inada
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Yu Togashi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, and R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama-City University, Yokohama, Japan
- Corresponding author
| |
Collapse
|
10
|
Zhou H, Lu X, Huang J, Jordan P, Ma S, Xu L, Hu F, Gui H, Zhao H, Bai Z, Redmond HP, Wang JH, Wang J. Induction of Trained Immunity Protects Neonatal Mice Against Microbial Sepsis by Boosting Both the Inflammatory Response and Antimicrobial Activity. J Inflamm Res 2022; 15:3829-3845. [PMID: 35836719 PMCID: PMC9273902 DOI: 10.2147/jir.s363995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022] Open
Abstract
Background Neonates are susceptible to a wide range of microbial infection and at a high risk to develop severe sepsis and septic shock. Emerged evidence has shown that induction of trained immunity triggers a much stronger inflammatory response in adult monocytes/macrophages, thereby conferring protection against microbial infection. Methods This study was carried out to examine whether trained immunity is inducible and exerts its protection against microbial sepsis in neonates. Results Induction of trained immunity by Bacillus Calmette-Guerin (BCG) plus bacterial lipoprotein (BLP) protected neonatal mice against cecal slurry peritonitis-induced polymicrobial sepsis, and this protection is associated with elevated circulating inflammatory cytokines, increased neutrophil recruitment, and accelerated bacterial clearance. In vitro stimulation of neonatal murine macrophages with BCG+BLP augmented both inflammatory response and antimicrobial activity. Notably, BCG+BLP stimulation resulted in epigenetic remodeling characterized by histone modifications with enhanced H3K4me3, H3K27Ac, and suppressed H3K9me3 at the promoters of the targeted inflammatory and antimicrobial genes. Critically, BCG+BLP stimulation led to a shift in cellular metabolism with increased glycolysis, which is the prerequisite for subsequent BCG+BLP-triggered epigenetic reprogramming and augmented inflammatory response and antimicrobial capacity. Conclusion These results illustrate that BCG+BLP induces trained immunity in neonates, thereby protecting against microbial infection by boosting both inflammatory and antimicrobial responses.
Collapse
Affiliation(s)
- Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiaying Lu
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland.,Department of Physiology, Gannan Medical University, Ganzhou, People's Republic of China
| | - Jie Huang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Patrick Jordan
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Shurong Ma
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Lingqi Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fangjie Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Huan Gui
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - He Zhao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhenjiang Bai
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - H Paul Redmond
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
11
|
Inflammation in the brain and periphery found in animal models of depression and its behavioral relevance. J Pharmacol Sci 2022; 148:262-266. [DOI: 10.1016/j.jphs.2021.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
|
12
|
Lloréns-Rico V, Gregory AC, Van Weyenbergh J, Jansen S, Van Buyten T, Qian J, Braz M, Menezes SM, Van Mol P, Vanderbeke L, Dooms C, Gunst J, Hermans G, Meersseman P, Wauters E, Neyts J, Lambrechts D, Wauters J, Raes J. Clinical practices underlie COVID-19 patient respiratory microbiome composition and its interactions with the host. Nat Commun 2021; 12:6243. [PMID: 34716338 PMCID: PMC8556379 DOI: 10.1038/s41467-021-26500-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Understanding the pathology of COVID-19 is a global research priority. Early evidence suggests that the respiratory microbiome may be playing a role in disease progression, yet current studies report contradictory results. Here, we examine potential confounders in COVID-19 respiratory microbiome studies by analyzing the upper (n = 58) and lower (n = 35) respiratory tract microbiome in well-phenotyped COVID-19 patients and controls combining microbiome sequencing, viral load determination, and immunoprofiling. We find that time in the intensive care unit and type of oxygen support, as well as associated treatments such as antibiotic usage, explain the most variation within the upper respiratory tract microbiome, while SARS-CoV-2 viral load has a reduced impact. Specifically, mechanical ventilation is linked to altered community structure and significant shifts in oral taxa previously associated with COVID-19. Single-cell transcriptomics of the lower respiratory tract of COVID-19 patients identifies specific oral bacteria in physical association with proinflammatory immune cells, which show higher levels of inflammatory markers. Overall, our findings suggest confounders are driving contradictory results in current COVID-19 microbiome studies and careful attention needs to be paid to ICU stay and type of oxygen support, as bacteria favored in these conditions may contribute to the inflammatory phenotypes observed in severe COVID-19 patients.
Collapse
Affiliation(s)
- Verónica Lloréns-Rico
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Ann C Gregory
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Johan Van Weyenbergh
- Laboratory for Clinical and Evolutionary Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sander Jansen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Tina Van Buyten
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Junbin Qian
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Marcos Braz
- Laboratory for Clinical and Evolutionary Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Soraya Maria Menezes
- Laboratory for Clinical and Evolutionary Virology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Pierre Van Mol
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Lore Vanderbeke
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Christophe Dooms
- Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jan Gunst
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Greet Hermans
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Philippe Meersseman
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Els Wauters
- Department of Pneumology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Joost Wauters
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium.
- Center for Microbiology, VIB, Leuven, Belgium.
| |
Collapse
|
13
|
Chatziparasidis G, Kantar A. Calprotectin: An Ignored Biomarker of Neutrophilia in Pediatric Respiratory Diseases. CHILDREN-BASEL 2021; 8:children8060428. [PMID: 34063831 PMCID: PMC8223968 DOI: 10.3390/children8060428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022]
Abstract
Calprotectin (CP) is a non-covalent heterodimer formed by the subunits S100A8 (A8) and S100A9 (A9). When neutrophils become activated, undergo disruption, or die, this abundant cytosolic neutrophil protein is released. By fervently chelating trace metal ions that are essential for bacterial development, CP plays an important role in human innate immunity. It also serves as an alarmin by controlling the inflammatory response after it is released. Extracellular concentrations of CP increase in response to infection and inflammation, and are used as a biomarker of neutrophil activation in a variety of inflammatory diseases. Although it has been almost 40 years since CP was discovered, its use in daily pediatric practice is still limited. Current evidence suggests that CP could be used as a biomarker in a variety of pediatric respiratory diseases, and could become a valuable key factor in promoting diagnostic and therapeutic capacity. The aim of this study is to re-introduce CP to the medical community and to emphasize its potential role with the hope of integrating it as a useful adjunct, in the practice of pediatric respiratory medicine.
Collapse
Affiliation(s)
| | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamaschi, University and Research Hospitals, 24046 Bergamo, Italy
- Correspondence:
| |
Collapse
|
14
|
Wirtz TH, Buendgens L, Weiskirchen R, Loosen SH, Haehnsen N, Puengel T, Abu Jhaisha S, Brozat JF, Hohlstein P, Koek G, Eisert A, Mohr R, Roderburg C, Luedde T, Trautwein C, Tacke F, Koch A. Association of Serum Calprotectin Concentrations with Mortality in Critically Ill and Septic Patients. Diagnostics (Basel) 2020; 10:E990. [PMID: 33238644 PMCID: PMC7700375 DOI: 10.3390/diagnostics10110990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Calprotectin is present in the cytosol of neutrophil granulocytes and released upon activation. Fecal calprotectin is applied in the clinical management of inflammatory bowel disease whereas serum calprotectin has been discussed as a biomarker in inflammatory disorders. However, its long-term prognostic relevance in critical illness remains unclear. Our aim was to investigate serum calprotectin concentrations as a prognostic biomarker in critically ill and septic patients. Methods: Serum calprotectin concentrations were analyzed in 165 critically ill patients (108 with sepsis, 57 without sepsis) included in our observational study. Patients were enrolled upon admission to the medical intensive care unit (ICU) of the RWTH Aachen University Hospital. Calprotectin concentrations were compared to 24 healthy controls and correlated with clinical parameters, therapeutic interventions, and survival. Results: Serum calprotectin concentrations were significantly increased in ICU patients as well as in septic patients compared to respective controls (p < 0.001 for ICU patients and p = 0.001 for septic patients). Lower calprotectin concentrations were measured in patients with comorbidities i.e., coronary artery disease. Calprotectin concentrations strongly correlated with the C-reactive protein (p < 0.001) and were closely associated to parameters of mechanical ventilation (i.a. inspiratory oxygen fraction, FiO2; p < 0.001). The overall survival was significantly impaired in septic patients with high baseline calprotectin concentrations (p = 0.036). However, patients with increasing calprotectin serum concentrations within the first week of ICU admission showed an improved overall survival (p = 0.009). Conclusions: In summary, serum calprotectin concentrations are significantly increased in critically ill patients with sepsis. High calprotectin concentrations at ICU admission predict long-term mortality risk, whereas increasing calprotectin concentrations are associated with a favorable long-term outcome.
Collapse
Affiliation(s)
- Theresa H. Wirtz
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (L.B.); (N.H.); (S.A.J.); (J.F.B.); (P.H.); (C.T.)
| | - Lukas Buendgens
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (L.B.); (N.H.); (S.A.J.); (J.F.B.); (P.H.); (C.T.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| | - Nina Haehnsen
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (L.B.); (N.H.); (S.A.J.); (J.F.B.); (P.H.); (C.T.)
| | - Tobias Puengel
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.P.); (R.M.); (C.R.); (F.T.)
| | - Samira Abu Jhaisha
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (L.B.); (N.H.); (S.A.J.); (J.F.B.); (P.H.); (C.T.)
| | - Jonathan F. Brozat
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (L.B.); (N.H.); (S.A.J.); (J.F.B.); (P.H.); (C.T.)
| | - Philipp Hohlstein
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (L.B.); (N.H.); (S.A.J.); (J.F.B.); (P.H.); (C.T.)
| | - Ger Koek
- Section of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Centre (MUMC), 6229 HX Maastricht, The Netherlands;
| | - Albrecht Eisert
- Hospital Pharmacy, RWTH-University Hospital Aachen, 52074 Aachen, Germany;
- Institute of Clinical Pharmacology, RWTH-University Hospital Aachen, 52074 Aachen, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.P.); (R.M.); (C.R.); (F.T.)
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.P.); (R.M.); (C.R.); (F.T.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (L.B.); (N.H.); (S.A.J.); (J.F.B.); (P.H.); (C.T.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.P.); (R.M.); (C.R.); (F.T.)
| | - Alexander Koch
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (L.B.); (N.H.); (S.A.J.); (J.F.B.); (P.H.); (C.T.)
| |
Collapse
|
15
|
Wu M, Chen Y, Xia H, Wang C, Tan CY, Cai X, Liu Y, Ji F, Xiong P, Liu R, Guan Y, Duan Y, Kuang D, Xu S, Cai H, Xia Q, Yang D, Wang MW, Chiu IM, Cheng C, Ahern PP, Liu L, Wang G, Surana NK, Xia T, Kasper DL. Transcriptional and proteomic insights into the host response in fatal COVID-19 cases. Proc Natl Acad Sci U S A 2020; 117:28336-28343. [PMID: 33082228 PMCID: PMC7668053 DOI: 10.1073/pnas.2018030117] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2, has resulted thus far in greater than 933,000 deaths worldwide; yet disease pathogenesis remains unclear. Clinical and immunological features of patients with COVID-19 have highlighted a potential role for changes in immune activity in regulating disease severity. However, little is known about the responses in human lung tissue, the primary site of infection. Here we show that pathways related to neutrophil activation and pulmonary fibrosis are among the major up-regulated transcriptional signatures in lung tissue obtained from patients who died of COVID-19 in Wuhan, China. Strikingly, the viral burden was low in all samples, which suggests that the patient deaths may be related to the host response rather than an active fulminant infection. Examination of the colonic transcriptome of these patients suggested that SARS-CoV-2 impacted host responses even at a site with no obvious pathogenesis. Further proteomics analysis validated our transcriptome findings and identified several key proteins, such as the SARS-CoV-2 entry-associated protease cathepsins B and L and the inflammatory response modulator S100A8/A9, that are highly expressed in fatal cases, revealing potential drug targets for COVID-19.
Collapse
Affiliation(s)
- Meng Wu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Yaobing Chen
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Han Xia
- Department of Research and Development, Hugobiotech Co., Ltd., 100000 Beijing, P. R. China
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, 710049 Xi'an, P.R. China
| | - Changli Wang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Chin Yee Tan
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
| | - Xunhui Cai
- Institute of Artificial Intelligence, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Yufeng Liu
- Institute of Artificial Intelligence, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Fenghu Ji
- Institute of Artificial Intelligence, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Peng Xiong
- Institute of Artificial Intelligence, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Ran Liu
- Department of Research and Development, Hugobiotech Co., Ltd., 100000 Beijing, P. R. China
| | - Yuanlin Guan
- Department of Research and Development, Hugobiotech Co., Ltd., 100000 Beijing, P. R. China
| | - Yaqi Duan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Sanpeng Xu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Hanghang Cai
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Qin Xia
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, P. R. China
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, P. R. China
| | - Ming-Wei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, P. R. China
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Philip P Ahern
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195
| | - Liang Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, P. R. China;
| | - Guoping Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China;
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Neeraj K Surana
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710;
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710
| | - Tian Xia
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China;
- Institute of Artificial Intelligence, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China
| | - Dennis L Kasper
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
16
|
Sreejit G, Abdel Latif A, Murphy AJ, Nagareddy PR. Emerging roles of neutrophil-borne S100A8/A9 in cardiovascular inflammation. Pharmacol Res 2020; 161:105212. [PMID: 32991974 DOI: 10.1016/j.phrs.2020.105212] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Elevated neutrophil count is associated with higher risk of major adverse cardiac events including myocardial infarction and early development of heart failure. Neutrophils contribute to cardiac damage through a number of mechanisms, including attraction of other immune cells and release of inflammatory mediators. Recently, a number of independent studies have reported a causal role for neutrophil-derived alarmins (i.e. S100A8/A9) in inducing inflammation and cardiac injury following myocardial infarction (MI). Furthermore, a positive correlation between serum S100A8/A9 levels and major adverse cardiac events (MACE) in MI patients was also observed implying that targeting neutrophils or their inflammatory cargo could be beneficial in reducing heart failure. However, contradictory to this idea, neutrophils and neutrophil-derived S100A8/A9 also seem to play a vital role in the resolution of inflammation. Thus, a better understanding of how neutrophils balance these seemingly contrasting functions would allow us to develop effective therapies that preserve the inflammation-resolving function while restricting the damage caused by inflammation. In this review, we specifically discuss the mechanisms behind neutrophil-derived S100A8/A9 in promoting inflammation and resolution in the context of MI. We also provide a perspective on how neutrophils could be potentially targeted to ameliorate cardiac inflammation and the ensuing damage.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmed Abdel Latif
- Division of Cardiovascular Medicine, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, Australia
| | - Prabhakara R Nagareddy
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
17
|
Role of Innate Immune Receptor TLR4 and its endogenous ligands in epileptogenesis. Pharmacol Res 2020; 160:105172. [PMID: 32871246 DOI: 10.1016/j.phrs.2020.105172] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/22/2022]
Abstract
Understanding the interplay between the innate immune system, neuroinflammation, and epilepsy might offer a novel perspective in the quest of exploring new treatment strategies. Due to the complex pathology underlying epileptogenesis, no disease-modifying treatment is currently available that might prevent epilepsy after a plausible epileptogenic insult despite the advances in pre-clinical and clinical research. Neuroinflammation underlies the etiopathogenesis of epilepsy and convulsive disorders with Toll-like receptor (TLR) signal transduction being highly involved. Among TLR family members, TLR4 is an innate immune system receptor and lipopolysaccharide (LPS) sensor that has been reported to contribute to epileptogenesis by regulating neuronal excitability. Herein, we discuss available evidence on the role of TLR4 and its endogenous ligands, the high mobility group box 1 (HMGB1) protein, the heat shock proteins (HSPs) and the myeloid related protein 8 (MRP8), in epileptogenesis and post-traumatic epilepsy (PTE). Moreover, we provide an account of the promising findings of TLR4 modulation/inhibition in experimental animal models with therapeutic impact on seizures.
Collapse
|
18
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
19
|
Novel pathways of self- and cross-tolerance in monocytes. Blood 2019; 134:101-103. [PMID: 31296540 DOI: 10.1182/blood.2019001532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Zhao S, Xi D, Cai J, Chen W, Xiang J, Peng N, Wang J, Jiang Y, Mei Z, Liu J. Rab20 is critical for bacterial lipoprotein tolerization-enhanced bactericidal activity in macrophages during bacterial infection. SCIENCE CHINA-LIFE SCIENCES 2019; 63:401-409. [PMID: 31152389 DOI: 10.1007/s11427-019-9527-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Bacterial cell wall component-induced tolerance represents an important protective mechanism during microbial infection. Tolerance induced by the TLR2 agonist bacterial lipoprotein (BLP) has been shown to attenuate the inflammatory response, and simultaneously to augment antimicrobial function, thereby conferring its protection against microbial sepsis. However, the underlying mechanism by which BLP tolerance augments bactericidal activity has not been fully elucidated. Here, we reported that the induction of BLP tolerance in murine macrophages upregulated the expression of Rab20, a membrane trafficking regulator, at both the mRNA and protein levels upon bacterial infection. The knockdown of Rab20 with Rab20 specific siRNA (siRab20) did not affect the phagocytosis of Escherichia coli (E. coli), but substantially impaired the intracellular killing of the ingested E. coli in BLP-tolerized macrophages. Furthermore, Rab20 was associated with GFP-E. coli containing phagosomes, and BLP tolerization resulted in the enhanced maturation of GFP-E. coli-containing phagosomes associated with Rab20 and strong lysosomal acidification. The knockdown of Rab20 substantially diminished lysosome acidification and disturbed the fusion of GFP-E. coli containing phagosomes with lysosomes in BLP-tolerized macrophages. These results demonstrate that Rab20 plays a critical role in BLP tolerization-induced augmentation of bactericidal activity via promoting phagosome maturation and the fusion of bacteria containing phagosomes with lysosomes.
Collapse
Affiliation(s)
- Shuqi Zhao
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Dalin Xi
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junwei Cai
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenting Chen
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Xiang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Na Peng
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuzhong Mei
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
21
|
Zhou H, Coveney AP, Wu M, Huang J, Blankson S, Zhao H, O'Leary DP, Bai Z, Li Y, Redmond HP, Wang JH, Wang J. Activation of Both TLR and NOD Signaling Confers Host Innate Immunity-Mediated Protection Against Microbial Infection. Front Immunol 2019; 9:3082. [PMID: 30692992 PMCID: PMC6339916 DOI: 10.3389/fimmu.2018.03082] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/13/2018] [Indexed: 12/28/2022] Open
Abstract
The detection of microbial pathogens relies on the recognition of highly conserved microbial structures by the membrane sensor Toll-like receptors (TLRs) and cytosolic sensor NOD-like receptors (NLRs). Upon detection, these sensors trigger innate immune responses to eradicate the invaded microbial pathogens. However, it is unclear whether TLR and NOD signaling are both critical for innate immunity to initiate inflammatory and antimicrobial responses against microbial infection. Here we report that activation of both TLR and NOD signaling resulted in an augmented inflammatory response and the crosstalk between TLR and NOD led to an amplified downstream NF-κB activation with increased nuclear transactivation of p65 at both TNF-α and IL-6 promoters. Furthermore, co-stimulation of macrophages with TLR and NOD agonists maximized antimicrobial activity with accelerated phagosome maturation. Importantly, administration of both TLR and NOD agonists protected mice against polymicrobial sepsis-associated lethality with increased serum levels of inflammatory cytokines and accelerated clearance of bacteria from the circulation and visceral organs. These results demonstrate that activation of both TLR and NOD signaling synergizes to induce efficient inflammatory and antimicrobial responses, thus conferring protection against microbial infection.
Collapse
Affiliation(s)
- Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Andrew P Coveney
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Ming Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jie Huang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Siobhan Blankson
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - He Zhao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - D Peter O'Leary
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Zhenjiang Bai
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yiping Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - H Paul Redmond
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
22
|
Liang X, Xiu C, Liu M, Lin C, Chen H, Bao R, Yang S, Yu J. Platelet-neutrophil interaction aggravates vascular inflammation and promotes the progression of atherosclerosis by activating the TLR4/NF-κB pathway. J Cell Biochem 2018; 120:5612-5619. [PMID: 30302814 DOI: 10.1002/jcb.27844] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/14/2018] [Indexed: 01/09/2023]
Abstract
Platelet-neutrophil interaction is well known for its role in inflammatory diseases; however, its biological role in atherosclerosis (AS) progression remains unclear. Human peripheral blood neutrophils were obtained to compare toll-like receptor 4 (TLR4), tumor necrosis factor α (TNF-α), interleukin (IL)-1β and myeloid-related proteins 8/14 (Mrp8/14) levels in 22 AS patients with those in 18 healthy controls using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Meanwhile, mouse marrow neutrophils subjected to different treatment were collected for the ELISA assay, cell apoptosis, and Western blot analysis. Normal diet or high-fat diet ApoE-/- mice with or without administration of Mrp8/14 antagonist paquinimod were used for plasma collection to measure total cholesterol, triglycerides, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol, TNF-α, IL-1β, Mrp8/14, TLR4, and nuclear factor (NF)-κB p65 levels. The results showed that Mrp8/14 and TLR4-mediated inflammatory pathway was activated in neutrophils of AS patients. In vitro experiments demonstrated that platelet-neutrophil interaction promoted the Mrp8/14 release and inhibited neutrophil apoptosis via P-selectin. Furthermore, platelet-neutrophil interaction upregulated TLR4/myeloid differentiation factor 88/NF-κB pathway. Conversely, Mrp8/14/TLR4/NF-κB interference alleviated AS progression. In conclusion, Mrp8/14/TLR4/NF-κB activated by platelet-neutrophil interaction is an important inflammatory signaling pathway for AS pathogenesis.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chunhong Xiu
- Department of Echocardiography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Minghao Liu
- Department of Cardiology, Fuwai Hospital of the Chinese Academy of Medical Sciences, Beijing, China
| | - Chaolan Lin
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hanchen Chen
- Cadre Ward, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Bao
- Department of Acupuncture, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shusen Yang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiangbo Yu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
23
|
The Innate Immune Receptors TLR2/4 Mediate Repeated Social Defeat Stress-Induced Social Avoidance through Prefrontal Microglial Activation. Neuron 2018; 99:464-479.e7. [DOI: 10.1016/j.neuron.2018.06.035] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/29/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022]
|
24
|
Vourc'h M, Roquilly A, Asehnoune K. Trauma-Induced Damage-Associated Molecular Patterns-Mediated Remote Organ Injury and Immunosuppression in the Acutely Ill Patient. Front Immunol 2018; 9:1330. [PMID: 29963048 PMCID: PMC6013556 DOI: 10.3389/fimmu.2018.01330] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/28/2018] [Indexed: 12/31/2022] Open
Abstract
Trauma is one of the leading causes of death and disability in the world. Multiple trauma or isolated traumatic brain injury are both indicative of human tissue damage. In the early phase after trauma, damage-associated molecular patterns (DAMPs) are released and give rise to sterile systemic inflammatory response syndrome (SIRS) and organ failure. Later, protracted inflammation following sepsis will favor hospital-acquired infection and will worsen patient’s outcome through immunosuppression. Throughout medical care or surgical procedures, severe trauma patients will be subjected to endogenous or exogenous DAMPs. In this review, we summarize the current knowledge regarding DAMP-mediated SIRS or immunosuppression and the clinical consequences in terms of organ failure and infections.
Collapse
Affiliation(s)
- Mickael Vourc'h
- Laboratoire UPRES EA3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2 - Nantes Biotech, Université de Nantes, Nantes, France.,Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu, University Hospital of Nantes, Nantes, France
| | - Antoine Roquilly
- Laboratoire UPRES EA3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2 - Nantes Biotech, Université de Nantes, Nantes, France.,Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu, University Hospital of Nantes, Nantes, France
| | - Karim Asehnoune
- Laboratoire UPRES EA3826 "Thérapeutiques cliniques et expérimentales des infections", IRS2 - Nantes Biotech, Université de Nantes, Nantes, France.,Intensive Care Unit, Anesthesia and Critical Care Department, Hôtel Dieu, University Hospital of Nantes, Nantes, France
| |
Collapse
|
25
|
Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J. S100A8/A9 in Inflammation. Front Immunol 2018; 9:1298. [PMID: 29942307 PMCID: PMC6004386 DOI: 10.3389/fimmu.2018.01298] [Citation(s) in RCA: 847] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
S100A8 and S100A9 (also known as MRP8 and MRP14, respectively) are Ca2+ binding proteins belonging to the S100 family. They often exist in the form of heterodimer, while homodimer exists very little because of the stability. S100A8/A9 is constitutively expressed in neutrophils and monocytes as a Ca2+ sensor, participating in cytoskeleton rearrangement and arachidonic acid metabolism. During inflammation, S100A8/A9 is released actively and exerts a critical role in modulating the inflammatory response by stimulating leukocyte recruitment and inducing cytokine secretion. S100A8/A9 serves as a candidate biomarker for diagnosis and follow-up as well as a predictive indicator of therapeutic responses to inflammation-associated diseases. As blockade of S100A8/A9 activity using small-molecule inhibitors or antibodies improves pathological conditions in murine models, the heterodimer has potential as a therapeutic target. In this review, we provide a comprehensive and detailed overview of the distribution and biological functions of S100A8/A9 and highlight its application as a diagnostic and therapeutic target in inflammation-associated diseases.
Collapse
Affiliation(s)
- Siwen Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Rui Song
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Ziyi Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaocheng Jing
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Shaoxiong Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| |
Collapse
|
26
|
Leijte GP, Custers H, Gerretsen J, Heijne A, Roth J, Vogl T, Scheffer GJ, Pickkers P, Kox M. Increased Plasma Levels of Danger-Associated Molecular Patterns Are Associated With Immune Suppression and Postoperative Infections in Patients Undergoing Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy. Front Immunol 2018; 9:663. [PMID: 29675023 PMCID: PMC5895648 DOI: 10.3389/fimmu.2018.00663] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/19/2018] [Indexed: 12/29/2022] Open
Abstract
Introduction Danger-associated molecular patterns (DAMPs) can elicit immune responses and may subsequently induce an immune-suppressed state. Previous work showed that increased plasma levels of DAMPs are associated with immune suppression and increased susceptibility toward infections in trauma patients. Like trauma, major surgical procedures, such as cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC), are also thought to cause profound DAMP release. Furthermore, the incidence of postoperative infections in these patients, ranging from 10 to 36%, is very high compared to that observed in patients undergoing other major surgical procedures. We hypothesized that the double hit of surgical trauma (CRS) in combination with HIPEC causes excessive DAMP release, which in turn contributes to the development of immune suppression. To investigate this, we assessed DAMP release in patients undergoing CRS-HIPEC, and investigated its relationship with immune suppression and postoperative infections. Methods In 20 patients undergoing CRS-HIPEC, blood was obtained at five time points: just before surgery (baseline), after CRS, after HIPEC, at ICU admission, and 1 day after surgery. Circulating levels of DAMPs [heat shock protein (HSP)70, high mobility group box (HMGB)1, S100A12, S100A8/S100A9, nuclear (n)DNA, mitochondrial (mt)DNA, lactate dehydrogenase (LDH), a marker of unscheduled cell death], and cytokines [tumor necrosis factor (TNF)α, IL-6, IL-8, IL-10, macrophage inflammatory protein (MIP)-1α, MIP-1β, and MCP-1] were measured. The extent of immune suppression was determined by measuring HLA-DR gene expression and ex vivo leukocytic cytokine production capacity. Results Plasma levels of DAMPs (maximum fold increases of HSP70: 2.1 [1.5–2.8], HMGB1: 5.9 [3.2–9.8], S100A8/S100A9: 3.6 [1.8–5.6], S100A12: 2.6 [1.8–4.3], nDNA 3.9 [1.0–10.8], LDH 1.7 [1.2–2.5]), and all measured cytokines increased profoundly following CRS-HIPEC. Evidence of immune suppression was already apparent during the procedure, illustrated by a decrease of HLA-DR expression compared with baseline (0.5-fold [0.3–0.9]) and diminished ex vivo pro-inflammatory cytokine production capacity. The increase in HMGB1 levels correlated with the decrease in HLA-DR expression (r = −0.46, p = 0.04), and peak HMGB1 concentrations were significantly higher in the five patients who went on to develop a postoperative infection (p = 0.04). Conclusion CRS-HIPEC is associated with profound DAMP release and immune suppression, and plasma HMGB1 levels are related with the occurrence of postoperative infections in these patients.
Collapse
Affiliation(s)
- Guus P Leijte
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hettie Custers
- Department of Anesthesiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jelle Gerretsen
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Amon Heijne
- Department of Anesthesiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Gert J Scheffer
- Department of Anesthesiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
27
|
Mulligan CM, Friedman JE. Maternal modifiers of the infant gut microbiota: metabolic consequences. J Endocrinol 2017; 235:R1-R12. [PMID: 28751453 PMCID: PMC5568816 DOI: 10.1530/joe-17-0303] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/20/2017] [Indexed: 12/25/2022]
Abstract
Transmission of metabolic diseases from mother to child is multifactorial and includes genetic, epigenetic and environmental influences. Evidence in rodents, humans and non-human primates support the scientific premise that exposure to maternal obesity or high-fat diet during pregnancy creates a long-lasting metabolic signature on the infant innate immune system and the juvenile microbiota, which predisposes the offspring to obesity and metabolic diseases. In neonates, gastrointestinal microbes introduced through the mother are noted for their ability to serve as direct inducers/regulators of the infant immune system. Neonates have a limited capacity to initiate an immune response. Thus, disruption of microbial colonization during the early neonatal period results in disrupted postnatal immune responses that highlight the neonatal period as a critical developmental window. Although the mechanisms are poorly understood, increasing evidence suggests that maternal obesity or poor diet influences the development and modulation of the infant liver and other end organs through direct communication via the portal system, metabolite production, alterations in gut barrier integrity and the hematopoietic immune cell axis. This review will focus on how maternal obesity and dietary intake influence the composition of the infant gut microbiota and how an imbalance or maladaptation in the microbiota, including changes in early pioneering microbes, might contribute to the programming of offspring metabolism with special emphasis on mechanisms that promote chronic inflammation in the liver. Comprehension of these pathways and mechanisms will elucidate our understanding of developmental programming and may expand the avenue of opportunities for novel therapeutics.
Collapse
Affiliation(s)
- Christopher M Mulligan
- Section of NeonatologyDepartment of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jacob E Friedman
- Section of NeonatologyDepartment of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|