1
|
Chen T, Teng S, Yang H, Zhao Y, Zhang J, Liu J, Zhou W, Liu Y, Cheng G. The investigation on an ethnic medicinal plant of Elsholtiza bodinieri Vaniot: Chemical constituents, acute, 28-day subacute and 90-day subchronic toxicity evaluation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118635. [PMID: 39074518 DOI: 10.1016/j.jep.2024.118635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
ETHNOPHARMACOLOGICAL SIGNIFICANCE Elsholtiza bodinieri Vaniot, belonging to the family Lamiaceae, has important medicinal value in Yunnan province of China. Traditionally, its aerial parts have been used as an ethnomedicine to treat diaphoresis, headache, fever, cough, pharyngitis, dyspepsia, and hepatitis. However, the safety assessment of E. bodinieri is still unexplored. AIM OF THE STUDY This study aimed to investigate the phytochemical constituents of the hot water extract from E. bodinieri (HEEB) and evaluate the 14-day acute, 28-day subacute and 90-day subchronic toxicity by oral administration in Sprague-Dawley (SD) rats. MATERIALS AND METHODS The chemical constituents of HEEB were analyzed by UHPLC-ESI-HRMS/MS. Firstly, SD rats were chosen for a single oral administration of the maximum dose of 5000 mg/kg to evaluate toxicity. Subsequently, consecutive 28-day subacute and 90-day subchronic toxicity assessments of HEEB were conducted on Sprague-Dawley (SD) rats through repeated doses of 2500, 1250, 625, and 312.5 mg/kg for the former, and 1500, 1000, and 500 mg/kg for the latter. For toxicity evaluation, hematology and serum biochemical indicators were determined, and major organs of the rats were collected to calculate organ coefficients. Additionally, hematoxylin-eosin (H&E) staining was performed on the collected tissues to assess histopathological changes induced by repeated oral administration of HEEB. RESULTS A total of 23 compounds were identified by UHPLC-ESI-HRMS/MS analysis. Acute toxicity assessment revealed that oral administration of HEEB did not induce mortality and unnormal behavior changes in female rats over a 14-day period, suggesting that the approximate lethal dose (ALD) was higher than 5000 mg/kg. In consecutive 28-day and 90-day toxicity evaluations, HEEB doses of 2500 mg/kg and 1500 mg/kg resulted in hepatic and kidney tissue damage in both female and male rats, which was verified by the increased levels of AST, ALT, BUN, Na+, and Cl-. CONCLUSIONS After the acute, 28-day subacute and 90-day subchronic toxicity evaluation, the No Observed Adverse Effect Level (NOAEL) was determined as 1000 mg/kg/day. These findings not only provided a safety information for its medicinal and edible application, but also promoted the further comprehensive development of this plant.
Collapse
Affiliation(s)
- Taiming Chen
- College of Food Science and Engineering, Kunming University of Science and Technology, Yunnan, 650504, China
| | - Sifan Teng
- College of Food Science and Engineering, Kunming University of Science and Technology, Yunnan, 650504, China
| | - Hailin Yang
- Application Technology of Biological Control for Tobacco Diseases and Insect Pests Engineering Research Center of China Tobacco, Yunnan Tobacco Company, Yuxi Branch, Yuxi, 653100, Yunnan, China
| | - Yunli Zhao
- Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, 650201, China
| | - Jiaxiong Zhang
- College of Food Science and Engineering, Kunming University of Science and Technology, Yunnan, 650504, China
| | - Jueting Liu
- Application Technology of Biological Control for Tobacco Diseases and Insect Pests Engineering Research Center of China Tobacco, Yunnan Tobacco Company, Yuxi Branch, Yuxi, 653100, Yunnan, China
| | - Wenbing Zhou
- Application Technology of Biological Control for Tobacco Diseases and Insect Pests Engineering Research Center of China Tobacco, Yunnan Tobacco Company, Yuxi Branch, Yuxi, 653100, Yunnan, China.
| | - Yaping Liu
- College of Food Science and Engineering, Kunming University of Science and Technology, Yunnan, 650504, China.
| | - Guiguang Cheng
- College of Food Science and Engineering, Kunming University of Science and Technology, Yunnan, 650504, China.
| |
Collapse
|
2
|
Mohammadpour Z, Heshmati E, Heilbronn LK, Hendrie GA, Brooker PG, Page AJ. The effect of post-oral bitter compound interventions on the postprandial glycemia response: A systematic review and meta-analysis of randomised controlled trials. Clin Nutr 2024; 43:31-45. [PMID: 39317085 DOI: 10.1016/j.clnu.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND & AIMS The post-oral sensing of bitter compounds by a family of bitter taste receptors (TAS2Rs) is suggested to regulate postprandial glycemia in humans. However, reports are inconsistent. This systematic review used meta-analysis to synthesise the impact of bitter compound interventions on the postprandial glycaemic response in humans. METHODS Electronic databases (Medline, PubMed, and Web of Science) were systematically searched from inception to April 2024 to identify randomised controlled trials reporting the effect of interventions utilising post-oral bitter compounds vs. placebo on postprandial plasma glucose levels at t = 2 h (2 h-PPG), and area under the curve (AUC) of glucose, insulin, and c-peptide. The random-effect and subgroup analysis were performed to calculate pooled weighted mean differences (WMD), overall and by predefined criteria. RESULTS Forty-six studies (within 34 articles) were identified; 29 and 17 studies described chronic and acute interventions, respectively. The chronic interventions reduced 2 h-PPG (n = 21, WMD = -0.35 mmol/L, 95%CIs = -0.58, -0.11) but not AUC for glucose or insulin. Subgroup analysis showed the former was particularly evident in individuals with impaired glycemia, interventions longer than three months, or quinine family administration. The acute interventions did not improve the postprandial glycemia response, but subgroup analysis revealed a decrease in AUC-glucose after quinine family administration (n = 4 WMD = -90.40 (nmol × time/L), 95%CIs = -132.70, -48.10). CONCLUSION Chronic bitter compound interventions, particularly those from the quinine family, may have therapeutic potential in those with glycemia dysregulation. Acute intervention of the quinine family may also improve postprandial glucose. Given the very low quality of the evidence, further investigations with more rigorous methods are still required.
Collapse
Affiliation(s)
- Zinat Mohammadpour
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia; College of Medicine and Dentistry, James Cook University, Cairns, QLD 4878, Australia
| | - Elaheh Heshmati
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes and Gut Health, Lifelong Health Theme, SAHMRI, SA 5000, Australia
| | - Leonie K Heilbronn
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes and Gut Health, Lifelong Health Theme, SAHMRI, SA 5000, Australia
| | - Gilly A Hendrie
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide 5000, Australia
| | - Paige G Brooker
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide 5000, Australia
| | - Amanda J Page
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes and Gut Health, Lifelong Health Theme, SAHMRI, SA 5000, Australia.
| |
Collapse
|
3
|
Tzakri T, Senekowitsch S, Wildgrube T, Sarwinska D, Krause J, Schick P, Grimm M, Engeli S, Weitschies W. Impact of advanced age on the gastric emptying of water under fasted and fed state conditions. Eur J Pharm Sci 2024; 201:106853. [PMID: 39033883 DOI: 10.1016/j.ejps.2024.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Although older people are the main users of oral medications, few studies are reported on the influence of advanced age on gastric emptying rate of non-caloric liquids. This study aimed at evaluating the gastric emptying of 240 ml water in healthy older and young adults in fasted and fed state conditions using the established method of salivary caffeine kinetics. The gastric emptying of water was evaluated in 12 healthy older volunteers (mean age: 73 ± 6 years) and 12 healthy younger volunteers (mean age: 25 ± 2 years) with the ingestion of a rapid disintegrating tablet containing 20 mg of 13C3-caffeine. The gastric emptying of water was assessed indirectly by calculating the AUC ratios of salivary caffeine concentrations in specific time segments. Comparison of the AUC ratios showed no statistically significant difference between young and older volunteers in both fasted and fed state conditions (p > 0.05). Advanced age itself seems to have no relevant effect on gastric emptying of water in either fasted or fed state conditions and the phenomenon of Magenstrasse appears to follow a similar pattern in healthy older adults as in healthy younger adults.
Collapse
Affiliation(s)
- Theodora Tzakri
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Stefan Senekowitsch
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Toni Wildgrube
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Dorota Sarwinska
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Julius Krause
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Philipp Schick
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Michael Grimm
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Stefan Engeli
- Institute of Pharmacology, Department of Clinical Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany.
| |
Collapse
|
4
|
Wang Q, Farhadipour M, Thijs T, Ruilova Sosoranga E, Van der Schueren B, Ceulemans LJ, Deleus E, Lannoo M, Tack J, Depoortere I. Bitter-tasting drugs tune GDF15 and GLP-1 expression via bitter taste or motilin receptors in the intestine of patients with obesity. Mol Metab 2024; 88:102002. [PMID: 39111389 PMCID: PMC11380393 DOI: 10.1016/j.molmet.2024.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
OBJECTIVE Growth differentiation factor 15 (GDF15), a stress related cytokine, was recently identified as a novel satiety signal acting via the GFRAL receptor located in the hindbrain. Bitter compounds are known to induce satiety via the release of glucagon-like peptide 1 (GLP-1) through activation of bitter taste receptors (TAS2Rs, 25 subtypes) on enteroendocrine cells in the gut. This study aimed to investigate whether and how bitter compounds induce a stress response in intestinal epithelial cells to affect GDF15 expression in patients with obesity, thereby facilitating satiety signaling from the gut. METHODS The acute effect of oral intake of the bitter-containing medication Plaquenil (hydroxychloroquine sulfate) on plasma GDF15 levels was evaluated in a placebo-controlled, double-blind, randomized, two-visit crossover study in healthy volunteers. Primary crypts isolated from the jejunal mucosa from patients with obesity were stimulated with vehicle or bitter compounds, and the effect on GDF15 expression was evaluated using RT-qPCR or ELISA. Immunofluorescence colocalization studies were performed between GDF15, epithelial cell type markers and TAS2Rs. The role of TAS2Rs was tested by 1) pretreatment with a TAS2R antagonist, GIV3727; 2) determining TAS2R4/43 polymorphisms that affect taste sensitivity to TAS2R4/43 agonists. RESULTS Acute intake of hydroxychloroquine sulfate increased GDF15 plasma levels, which correlated with reduced hunger scores and plasma ghrelin levels in healthy volunteers. This effect was mimicked in primary jejunal cultures from patients with obesity. GDF15 was expressed in enteroendocrine and goblet cells with higher expression levels in patients with obesity. Various bitter-tasting compounds (medicinal, plant extracts, bacterial) either increased or decreased GDF15 expression, with some also affecting GLP-1. The effect was mediated by specific intestinal TAS2R subtypes and the unfolded protein response pathway. The bitter-induced effect on GDF15/GLP-1 expression was influenced by the existence of TAS2R4 amino acid polymorphisms and TAS2R43 deletion polymorphisms that may predict patient's therapeutic responsiveness. However, the effect of the bitter-tasting antibiotic azithromycin on GDF15 release was mediated via the motilin receptor, possibly explaining some of its aversive side effects. CONCLUSIONS Bitter chemosensory and pharmacological receptors regulate the release of GDF15 from human gut epithelial cells and represent potential targets for modulating metabolic disorders or cachexia.
Collapse
Affiliation(s)
- Qian Wang
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Mona Farhadipour
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Theo Thijs
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | | | - Bart Van der Schueren
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium; Laboratory of Clinical and Experimental Endocrinology, University of Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Leuven Intestinal Failure and Transplantation (LIFT) Center, University Hospitals Leuven, Leuven, Belgium
| | - Ellen Deleus
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Matthias Lannoo
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Inge Depoortere
- Gut Peptide Research Lab, Translational Research for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Trius-Soler M, Moreno JJ. Bitter taste receptors: Key target to understand the effects of polyphenols on glucose and body weight homeostasis. Pathophysiological and pharmacological implications. Biochem Pharmacol 2024; 228:116192. [PMID: 38583811 DOI: 10.1016/j.bcp.2024.116192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Experimental and clinical research has reported beneficial effects of polyphenol intake on high prevalent diseases such as type 2 diabetes and obesity. These phytochemicals are ligands of taste 2 receptors (T2Rs) that have been recently located in a variety of organs and extra-oral tissues. Therefore, the interaction between polyphenol and T2Rs in brain structures can play a direct effect on appetite/satiety regulation and food intake. T2Rs are also expressed along the digestive tract, and their interaction with polyphenols can induce the release of gastrointestinal hormones (e.g., ghrelin, GLP-1, CCK) influencing appetite, gastrointestinal functionally, and glycemia control. Intestinal microbiota can also influence on network effects of polyphenols-T2Rs interaction and vice versa, impacting innate immune responses and consequently on gut functionally. Furthermore, polyphenols binding to T2Rs present important effects on adipose tissue metabolism. Interestingly, T2R polymorphism could, at least partially, explain the inter-individual variability of the effects of polyphenols on glucose and body weight homeostasis. Together, these factors can contribute to understand the beneficial effects of polyphenol-rich diets but also might aid in identifying new pharmacological pathway targets for the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Marta Trius-Soler
- Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juan José Moreno
- Department of Nutrition, Food Science and Gastronomy, XIA, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute for Nutrition and Food Safety Research, University of Barcelona, Barcelona, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Pallante L, Cannariato M, Androutsos L, Zizzi EA, Bompotas A, Hada X, Grasso G, Kalogeras A, Mavroudi S, Di Benedetto G, Theofilatos K, Deriu MA. VirtuousPocketome: a computational tool for screening protein-ligand complexes to identify similar binding sites. Sci Rep 2024; 14:6296. [PMID: 38491261 PMCID: PMC10943019 DOI: 10.1038/s41598-024-56893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Protein residues within binding pockets play a critical role in determining the range of ligands that can interact with a protein, influencing its structure and function. Identifying structural similarities in proteins offers valuable insights into their function and activation mechanisms, aiding in predicting protein-ligand interactions, anticipating off-target effects, and facilitating the development of therapeutic agents. Numerous computational methods assessing global or local similarity in protein cavities have emerged, but their utilization is impeded by complexity, impractical automation for amino acid pattern searches, and an inability to evaluate the dynamics of scrutinized protein-ligand systems. Here, we present a general, automatic and unbiased computational pipeline, named VirtuousPocketome, aimed at screening huge databases of proteins for similar binding pockets starting from an interested protein-ligand complex. We demonstrate the pipeline's potential by exploring a recently-solved human bitter taste receptor, i.e. the TAS2R46, complexed with strychnine. We pinpointed 145 proteins sharing similar binding sites compared to the analysed bitter taste receptor and the enrichment analysis highlighted the related biological processes, molecular functions and cellular components. This work represents the foundation for future studies aimed at understanding the effective role of tastants outside the gustatory system: this could pave the way towards the rationalization of the diet as a supplement to standard pharmacological treatments and the design of novel tastants-inspired compounds to target other proteins involved in specific diseases or disorders. The proposed pipeline is publicly accessible, can be applied to any protein-ligand complex, and could be expanded to screen any database of protein structures.
Collapse
Affiliation(s)
- Lorenzo Pallante
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, PolitoBIOMedLab, 10129, Torino, Italy
| | - Marco Cannariato
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, PolitoBIOMedLab, 10129, Torino, Italy
| | | | - Eric A Zizzi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, PolitoBIOMedLab, 10129, Torino, Italy
| | - Agorakis Bompotas
- Industrial Systems Institute, Athena Research Center, 265 04, Patras, Greece
| | - Xhesika Hada
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, PolitoBIOMedLab, 10129, Torino, Italy
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence IDSIA USI-SUPSI, 6962, Lugano-Viganello, Switzerland
| | | | - Seferina Mavroudi
- Department of Nursing, School of Health Rehabilitation Sciences, University of Patras, 265 04, Patras, Greece
| | | | | | - Marco A Deriu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, PolitoBIOMedLab, 10129, Torino, Italy.
| |
Collapse
|
7
|
Schiano E, Iannuzzo F, Stornaiuolo M, Guerra F, Tenore GC, Novellino E. Gengricin ®: A Nutraceutical Formulation for Appetite Control and Therapeutic Weight Management in Adults Who Are Overweight/Obese. Int J Mol Sci 2024; 25:2596. [PMID: 38473841 DOI: 10.3390/ijms25052596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
In the field of nutritional science and metabolic disorders, there is a growing interest in natural bitter compounds capable of interacting with bitter taste receptors (TAS2Rs) useful for obesity management and satiety control. This study aimed to evaluate the effect of a nutraceutical formulation containing a combination of molecules appropriately designed to simultaneously target and stimulate these receptors. Specifically, the effect on CCK release exerted by a multi-component nutraceutical formulation (Cinchona bark, Chicory, and Gentian roots in a 1:1:1 ratio, named Gengricin®) was investigated in a CaCo-2 cell line, in comparison with Cinchona alone. In addition, these nutraceutical formulations were tested through a 3-month randomized controlled trial (RCT) conducted in subjects who were overweight-obese following a hypocaloric diet. Interestingly, the Gengricin® group exhibited a significant greater weight loss and improvement in body composition than the Placebo and Cinchona groups, indicating its effectiveness in promoting weight regulation. Additionally, the Gengricin® group reported higher satiety levels and a significant increase in serum CCK levels, suggesting a physiological basis for the observed effects on appetite control. Overall, these findings highlight the potential of natural nutraceutical strategies based on the combination of bitter compounds in modulating gut hormone release for effective appetite control and weight management.
Collapse
Affiliation(s)
- Elisabetta Schiano
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy
| | - Fortuna Iannuzzo
- Department of Pharmacy, University of Chieti-Pescara G. D'Annunzio, 66100 Chieti, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Naples, Italy
| | - Fabrizia Guerra
- NGN Healthcare-New Generation Nutraceuticals s.r.l., Torrette Via Nazionale 207, 83013 Mercogliano, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Naples, Italy
| | - Ettore Novellino
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
8
|
Chiurazzi M, De Conno B, Di Lauro M, Guida B, Nasti G, Schiano E, Stornaiuolo M, Tenore GC, Colantuoni A, Novellino E. The Effects of a Cinchona Supplementation on Satiety, Weight Loss and Body Composition in a Population of Overweight/Obese Adults: A Controlled Randomized Study. Nutrients 2023; 15:5033. [PMID: 38140292 PMCID: PMC10745730 DOI: 10.3390/nu15245033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity is a risk factor for several diseases present worldwide. Currently, dietary changes and physical activity are considered the most effective treatment to reduce obesity and its associated comorbidities. To promote weight loss, hypocaloric diets can be supported by nutraceuticals. The aim of this study was to evaluate the effects of a hypocaloric diet associated with Cinchona succirubra supplementation on satiety, body weight and body composition in obese subjects. Fifty-nine overweight/obese adults, were recruited, randomized into two groups and treated for 2 months. The first group (32 adults) was treated with a hypocaloric diet plus cinchona supplementation (the T-group); the second one (27 adults) was treated with a hypocaloric diet plus a placebo supplementation (the P-group). Anthropometric-measurements as well as bioimpedance analysis, a Zung test and biochemical parameters were evaluated at baseline and after 60 days. T-group adults showed significant improvement in nutritional status and body composition compared to those at the baseline and in the P-group. Moreover, T-group adults did not show a reduction in Cholecystokinin serum levels compared to those of P-group adults. In conclusion, our data demonstrate that a hypocaloric diet associated with cinchona supplementation is effective in inducing more significant weight loss and the re-establishment of metabolic parameters than those obtained with a hypocaloric diet.
Collapse
Affiliation(s)
- Martina Chiurazzi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
- Department of Medical Oncology, AO “A. Cardarelli”, 80131 Naples, Italy
| | - Barbara De Conno
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
- Department of Pharmacy, University of Napoli “Federico II”, 80131 Naples, Italy; (M.S.); (G.C.T.)
| | - Mariastella Di Lauro
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
| | - Bruna Guida
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
| | - Gilda Nasti
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
| | - Elisabetta Schiano
- Inventia Biotech Centro Ricerche Alimentari Healthcare, 81120 Caserta, Italy; (E.S.); (E.N.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Napoli “Federico II”, 80131 Naples, Italy; (M.S.); (G.C.T.)
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Napoli “Federico II”, 80131 Naples, Italy; (M.S.); (G.C.T.)
| | - Antonio Colantuoni
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.C.); (M.D.L.); (B.G.); (G.N.); (A.C.)
| | - Ettore Novellino
- Inventia Biotech Centro Ricerche Alimentari Healthcare, 81120 Caserta, Italy; (E.S.); (E.N.)
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
9
|
Ruilova Sosoranga E, Verbeure W, Geysen H, Thijs T, Matthys C, Depoortere I, Tack J. The Acute Effect of Hydroxychloroquine Sulfate on Hunger, the Plasma Concentration of Orexigenic Peptides and Hedonic Food Intake: A Pilot Study. Nutrients 2023; 15:4264. [PMID: 37836548 PMCID: PMC10574275 DOI: 10.3390/nu15194264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The direct infusion of bitter solutions in the gastrointestinal tract can reduce the secretion of orexigenic hormones and influence appetite and food intake. We aimed to explore whether oral ingestion of the bitter tastant hydroxychloroquine sulfate can exert similar effects. Ten lean adult women were included in this double-blind, randomized, two-visit, crossover study. After an overnight fast, each volunteer received film-coated tablets containing 400 mg of hydroxychloroquine sulfate (Plaquenil®) or placebo. Plasma-ghrelin, -motilin, -insulin and blood-glucose concentrations were determined every 10 min before and 30 min after feeding; appetite was scored every 10 min. Hunger scores were investigated with a special interest 50-60 min after the ingestion of hydroxychloroquine sulfate, right before a rewarding chocolate milkshake was offered to drink ad libitum. Compared with the placebo, hydroxychloroquine sulfate tended to reduce hunger at the time of interest (p = 0.10). No effect was found upon subsequent milkshake intake. Motilin plasma concentrations were unaltered, but acyl-ghrelin plasma concentrations decreased after the ingestion of hydroxychloroquine sulfate (t = 40-50; p < 0.05). These data suggest that the oral intake of hydroxychloroquine sulfate tablets reduces subjective hunger via a ghrelin-dependent mechanism but does not affect motilin release, hedonic food intake or insulin levels in healthy women.
Collapse
Affiliation(s)
- Emily Ruilova Sosoranga
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, 3000 Leuven, Belgium (I.D.)
| | - Wout Verbeure
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, 3000 Leuven, Belgium (I.D.)
| | - Hannelore Geysen
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, 3000 Leuven, Belgium (I.D.)
| | - Theo Thijs
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, 3000 Leuven, Belgium (I.D.)
| | - Christophe Matthys
- Clinical and Experimental Endocrinology, KU Leuven, 3000 Leuven, Belgium;
- Department of Endocrinology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, 3000 Leuven, Belgium (I.D.)
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, 3000 Leuven, Belgium (I.D.)
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Caremoli F, Huynh J, Lagishetty V, Markovic D, Braun J, Dong TS, Jacobs JP, Sternini C. Microbiota-Dependent Upregulation of Bitter Taste Receptor Subtypes in the Mouse Large Intestine in High-Fat Diet-Induced Obesity. Nutrients 2023; 15:4145. [PMID: 37836428 PMCID: PMC10574285 DOI: 10.3390/nu15194145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Bitter taste receptors (Tas2rs in mice) detect bitterness, a warning signal for toxins and poisons, and are expressed in enteroendocrine cells. We tested the hypothesis that Tas2r138 and Tas2r116 mRNAs are modulated by microbiota alterations induced by a long-term high-fat diet (HFD) and antibiotics (ABX) (ampicillin and neomycin) administered in drinking water. Cecum and colon specimens and luminal contents were collected from C57BL/6 female and male mice for qRT-PCR and microbial luminal 16S sequencing. HFD with/without ABX significantly increased body weight and fat mass at 4, 6, and 8 weeks. Tas2r138 and Tas2r116 mRNAs were significantly increased in mice fed HFD for 8 weeks vs. normal diet, and this increase was prevented by ABX. There was a distinct microbiota separation in each experimental group and significant changes in the composition and diversity of microbiome in mice fed a HFD with/without ABX. Tas2r mRNA expression in HFD was associated with several genera, particularly with Akkermansia, a Gram-negative mucus-resident bacterium. These studies indicate that luminal bacterial composition is affected by sex, diet, and ABX and support a microbial dependent upregulation of Tas2rs in HFD-induced obesity, suggesting an adaptive host response to specific diet-induced dysbiosis.
Collapse
Affiliation(s)
- Filippo Caremoli
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Jennifer Huynh
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Venu Lagishetty
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Daniela Markovic
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Jonathan Braun
- Inflammatory Bowel and Immunobiology Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Tien S. Dong
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Jonathan P. Jacobs
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Catia Sternini
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Rezaie P, Bitarafan V, Rose BD, Lange K, Mohammadpour Z, Rehfeld JF, Horowitz M, Feinle-Bisset C. Effects of Quinine on the Glycaemic Response to, and Gastric Emptying of, a Mixed-Nutrient Drink in Females and Males. Nutrients 2023; 15:3584. [PMID: 37630774 PMCID: PMC10459881 DOI: 10.3390/nu15163584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Intraduodenal quinine, in the dose of 600 mg, stimulates glucagon-like peptide-1 (GLP-1), cholecystokinin and insulin; slows gastric emptying (GE); and lowers post-meal glucose in men. Oral sensitivity to bitter substances may be greater in women than men. We, accordingly, evaluated the dose-related effects of quinine on GE, and the glycaemic responses to, a mixed-nutrient drink in females, and compared the effects of the higher dose with those in males. A total of 13 female and 13 male healthy volunteers received quinine-hydrochloride (600 mg ('QHCl-600') or 300 mg ('QHCl-300', females only) or control ('C'), intraduodenally (10 mL bolus) 30 min before a drink (500 kcal, 74 g carbohydrates). Plasma glucose, insulin, C-peptide, GLP-1, glucose-dependent insulinotropic polypeptide (GIP) and cholecystokinin were measured at baseline, for 30 min after quinine alone, and then for 2 h post-drink. GE was measured by 13C-acetate breath-test. QHCl-600 alone stimulated insulin, C-peptide and GLP-1 secretion compared to C. Post-drink, QHCl-600 reduced plasma glucose, stimulated C-peptide and GLP-1, and increased the C-peptide/glucose ratio and oral disposition index, while cholecystokinin and GIP were less, in females and males. QHCl-600 also slowed GE compared to C in males and compared to QHCl-300 in females (p < 0.05). QHCl-300 reduced post-meal glucose concentrations and increased the C-peptide/glucose ratio, compared to C (p < 0.05). Magnitudes of glucose lowering and increase in C-peptide/glucose ratio by QHCl-600 were greater in females than males (p < 0.05). We conclude that quinine modulates glucoregulatory functions, associated with glucose lowering in healthy males and females. However, glucose lowering appears to be greater in females than males, without apparent differential effects on GI functions.
Collapse
Affiliation(s)
- Peyman Rezaie
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Vida Bitarafan
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Braden David Rose
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA 5005, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Kylie Lange
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Zinat Mohammadpour
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jens Frederik Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Michael Horowitz
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA 5005, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5005, Australia
| | - Christine Feinle-Bisset
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
12
|
Bitarafan V, Fitzgerald PCE, Poppitt SD, Ingram JR, Feinle-Bisset C. Effects of intraduodenal or intragastric administration of a bitter hop extract (Humulus lupulus L.), on upper gut motility, gut hormone secretion and energy intake in healthy-weight men. Appetite 2023; 184:106490. [PMID: 36781111 DOI: 10.1016/j.appet.2023.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Gastrointestinal functions, particularly pyloric motility and the gut hormones, cholecystokinin and peptide YY, contribute to the regulation of acute energy intake. Bitter tastants modulate these functions, but may, in higher doses, induce GI symptoms. The aim of this study was to evaluate the effects of both dose and delivery location of a bitter hop extract (BHE) on antropyloroduodenal pressures, plasma cholecystokinin and peptide YY, appetite perceptions, gastrointestinal symptoms and energy intake in healthy-weight men. The study consisted of two consecutive parts, with part A including n = 15, and part B n = 11, healthy, lean men (BMI 22.6 ± 1.1 kg/m2, aged 25 ± 3 years). In randomised, double-blind fashion, participants received in part A, BHE in doses of either 100 mg ("ID-BHE-100") or 250 mg ("ID-BHE-250"), or vehicle (canola oil; "ID-control") intraduodenally, or in part B, 250 mg BHE ("IG-BHE-250") or vehicle ("IG-control") intragastrically. Antropyloroduodenal pressures, hormones, appetite and symptoms were measured for 180 min, energy intake from a standardised buffet-meal was quantified subsequently. ID-BHE-250, but not ID-BHE-100, had modest, and transient, effects to stimulate pyloric pressures during the first 90 min (P < 0.05), and peptide YY from t = 60 min (P < 0.05), but did not affect antral or duodenal pressures, cholecystokinin, appetite, gastrointestinal symptoms or energy intake. IG-BHE-250 had no detectable effects. In conclusion, BHE, when administered intraduodenally, in the selected higher dose, modestly affected some appetite-related gastrointestinal functions, but had no detectable effects when given in the lower dose or intragastrically. Thus, BHE, at none of the doses or routes of administration tested, has appetite- or energy intake-suppressant effects.
Collapse
Affiliation(s)
- Vida Bitarafan
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Penelope C E Fitzgerald
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - John R Ingram
- New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Christine Feinle-Bisset
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
13
|
Talmon M, Pollastro F, Fresu LG. The Complex Journey of the Calcium Regulation Downstream of TAS2R Activation. Cells 2022; 11:cells11223638. [PMID: 36429066 PMCID: PMC9688576 DOI: 10.3390/cells11223638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Bitter taste receptors (TAS2Rs) have recently arisen as a potential drug target for asthma due to their localization in airway cells. These receptors are expressed in all cell types of the respiratory system comprising epithelial, smooth muscle and immune cells; however, the expression pattern of the subtypes is different in each cell type and, accordingly, so is their role, for example, anti-inflammatory or bronchodilator. The most challenging aspect in studying TAS2Rs has been the identification of the downstream signaling cascades. Indeed, TAS2R activation leads to canonical IP3-dependent calcium release from the ER, but, alongside, there are other mechanisms that differ according to the histological localization. In this review, we summarize the current knowledge on the cytosolic calcium modulation downstream of TAS2R activation in the epithelial, smooth muscle and immune cells of the airway system.
Collapse
Affiliation(s)
- Maria Talmon
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Correspondence: (M.T.); (L.G.F.); Tel.: +39-0321-660589 (M.T.); +39-0321-660687 (L.G.F.)
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy
| | - Luigia Grazia Fresu
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Correspondence: (M.T.); (L.G.F.); Tel.: +39-0321-660589 (M.T.); +39-0321-660687 (L.G.F.)
| |
Collapse
|
14
|
Kobayashi D, Watarai T, Ozawa M, Kanda Y, Saika F, Kiguchi N, Takeuchi A, Ikawa M, Matsuzaki S, Katakai T. Tas2R signaling enhances mouse neutrophil migration via a ROCK-dependent pathway. Front Immunol 2022; 13:973880. [PMID: 36059440 PMCID: PMC9436316 DOI: 10.3389/fimmu.2022.973880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Type-2 bitter taste receptors (Tas2Rs) are a large family of G protein-coupled receptors that are expressed in the oral cavity and serve to detect substances with bitter tastes in foods and medicines. Recent evidence suggests that Tas2Rs are also expressed extraorally, including in immune cells. However, the role of Tas2Rs in immune cells remains controversial. Here, we demonstrate that Tas2R126, Tas2R135, and Tas2R143 are expressed in mouse neutrophils, but not in other immune cells such as macrophages or T and B lymphocytes. Treatment of bone marrow-derived neutrophils from wild-type mice with the Tas2R126/143 agonists arbutin and d-salicin led to enhanced C-X-C motif chemokine ligand 2 (CXCL2)-stimulated migration in vitro, but this response was not observed in neutrophils from Tas2r126/135/143-deficient mice. Enhancement of CXCL2-stimulated migration by Tas2R agonists was accompanied by increased phosphorylation of myosin light chain 2 (MLC2) and was blocked by pretreatment of neutrophils with inhibitors of Rho-associated coiled-coil-containing protein kinase (ROCK), but not by inhibitors of the small GTPase RhoA. Taken together, these results demonstrate that mouse neutrophils express functional Tas2R126/143 and suggest a role for Tas2R126/143–ROCK–MLC2-dependent signaling in the regulation of neutrophil migration.
Collapse
Affiliation(s)
- Daichi Kobayashi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Daichi Kobayashi, ; ; Tomoya Katakai,
| | - Tomoya Watarai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Madoka Ozawa
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuhiro Kanda
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Arata Takeuchi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
- Department of Radiological Sciences, Faculty of Medical Science Technology, Morinomiya University of Medical Sciences, Osaka, Japan
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Suita, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- *Correspondence: Daichi Kobayashi, ; ; Tomoya Katakai,
| |
Collapse
|
15
|
Kang W, Wang Y, Li J, Xie W, Zhao D, Wu L, Wang H, Xie S. TAS2R supports odontoblastic differentiation of human dental pulp stem cells in the inflammatory microenvironment. Stem Cell Res Ther 2022; 13:374. [PMID: 35902880 PMCID: PMC9331142 DOI: 10.1186/s13287-022-03057-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Inflammatory microenvironment promotes odontoblastic differentiation in human dental pulp stem cells (hDPSCs), but the regulatory mechanisms remain unclear. In this study, we aimed to explore the role of TAS2R in odontoblastic differentiation of hDPSCs in the inflammatory microenvironment. Methods Microarray analysis was performed to explore the differential mRNA profiles in inflammatory and healthy pulp tissues from the patients. hDPSCs isolated from the healthy pulp tissues were stimulated by LPS, TNFα and IL-6, respectively, to verify the effect of TAS2R. The expression markers related to odontoblastic differentiation of hDPSCs were observed by qPCR and chemical staining methods. TAS2R10 was overexpressed or silenced to observe the effect on odontoblastic differentiation of hDPSCs under LPS stimulation. The G protein and intracellular Ca2+ were detected, respectively, by qPCR and Fluo-4AM Ca2+ fluorescent probe. Results The expression of TAS2R was significantly upregulated in the inflammatory pulp tissues. In vitro, 5 subtypes of TAS2R mRNA expressions including TAS2R10, TAS2R14, TAS2R19, TAS2R30 and TAS2R31 in hDPSCs increased under the stimulation of LPS, TNFα or IL-6. In odontoblastic differentiation medium, we found LPS, TNFα or IL-6 stimulation promoted odontoblastic differentiation of hDPSCs. TAS2R10 overexpression in hDPSCs significantly increased the expression markers related to odontoblastic differentiation, whereas TAS2R10 silencing revealed the opposite effect. Furthermore, G protein was activated, and at the same time, intracellular Ca2+ enhanced when TAS2R10 was overexpressed, but decreased when TAS2R10 was silenced. Conclusions This study demonstrated that TAS2R was found to be expressed in hDPSCs, and TAS2R promoted odontoblastic differentiation of hDPSCs by mediating the increase in intracellular Ca2+ via the G protein-coupled receptors (GPCR) conventional signaling pathway in inflammatory microenvironment, which may be a potential target for the development of effective conservative treatments for dental pulp repair.
Collapse
Affiliation(s)
- Wen Kang
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yiwen Wang
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jiaying Li
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Weige Xie
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Dan Zhao
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Li Wu
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Sijing Xie
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
16
|
Margulis E, Slavutsky Y, Lang T, Behrens M, Benjamini Y, Niv MY. BitterMatch: recommendation systems for matching molecules with bitter taste receptors. J Cheminform 2022; 14:45. [PMID: 35799226 PMCID: PMC9261901 DOI: 10.1186/s13321-022-00612-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022] Open
Abstract
Bitterness is an aversive cue elicited by thousands of chemically diverse compounds. Bitter taste may prevent consumption of foods and jeopardize drug compliance. The G protein-coupled receptors for bitter taste, TAS2Rs, have species-dependent number of subtypes and varying expression levels in extraoral tissues. Molecular recognition by TAS2R subtypes is physiologically important, and presents a challenging case study for ligand-receptor matchmaking. Inspired by hybrid recommendation systems, we developed a new set of similarity features, and created the BitterMatch algorithm that predicts associations of ligands to receptors with ~ 80% precision at ~ 50% recall. Associations for several compounds were tested in-vitro, resulting in 80% precision and 42% recall. The encouraging performance was achieved by including receptor properties and integrating experimentally determined ligand-receptor associations with chemical ligand-to-ligand similarities. BitterMatch can predict off-targets for bitter drugs, identify novel ligands and guide flavor design. The novel features capture information regarding the molecules and their receptors, which could inform various chemoinformatic tasks. Inclusion of neighbor-informed similarities improves as experimental data mounts, and provides a generalizable framework for molecule-biotarget matching.
Collapse
Affiliation(s)
- Eitan Margulis
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuli Slavutsky
- Department of Statistics and Data Science, Faculty of Social Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatjana Lang
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Yuval Benjamini
- Department of Statistics and Data Science, Faculty of Social Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
17
|
Rezaie P, Bitarafan V, Rose BD, Lange K, Rehfeld JF, Horowitz M, Feinle-Bisset C. Quinine Effects on Gut and Pancreatic Hormones and Antropyloroduodenal Pressures in Humans-Role of Delivery Site and Sex. J Clin Endocrinol Metab 2022; 107:e2870-e2881. [PMID: 35325161 PMCID: PMC9250303 DOI: 10.1210/clinem/dgac182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 02/07/2023]
Abstract
CONTEXT The bitter substance quinine modulates the release of a number of gut and gluco-regulatory hormones and upper gut motility. As the density of bitter receptors may be higher in the duodenum than the stomach, direct delivery to the duodenum may be more potent in stimulating these functions. The gastrointestinal responses to bitter compounds may also be modified by sex. BACKGROUND We have characterized the effects of intragastric (IG) versus intraduodenal (ID) administration of quinine hydrochloride (QHCl) on gut and pancreatic hormones and antropyloroduodenal pressures in healthy men and women. METHODS 14 men (26 ± 2 years, BMI: 22.2 ± 0.5 kg/m2) and 14 women (28 ± 2 years, BMI: 22.5 ± 0.5 kg/m2) received 600 mg QHCl on 2 separate occasions, IG or ID as a 10-mL bolus, in randomized, double-blind fashion. Plasma ghrelin, cholecystokinin, peptide YY, glucagon-like peptide-1 (GLP-1), insulin, glucagon, and glucose concentrations and antropyloroduodenal pressures were measured at baseline and for 120 minutes following QHCl. RESULTS Suppression of ghrelin (P = 0.006), stimulation of cholecystokinin (P = 0.030), peptide YY (P = 0.017), GLP-1 (P = 0.034), insulin (P = 0.024), glucagon (P = 0.030), and pyloric pressures (P = 0.050), and lowering of glucose (P = 0.001) were greater after ID-QHCl than IG-QHCl. Insulin stimulation (P = 0.021) and glucose reduction (P = 0.001) were greater in females than males, while no sex-associated effects were found for cholecystokinin, peptide YY, GLP-1, glucagon, or pyloric pressures. CONCLUSION ID quinine has greater effects on plasma gut and pancreatic hormones and pyloric pressures than IG quinine in healthy subjects, consistent with the concept that stimulation of small intestinal bitter receptors is critical to these responses. Both insulin stimulation and glucose lowering were sex-dependent.
Collapse
Affiliation(s)
- Peyman Rezaie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
| | - Vida Bitarafan
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
| | - Braden D Rose
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
| | - Kylie Lange
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide SA 5005, Australia
| | - Christine Feinle-Bisset
- Correspondence: Prof Christine Feinle-Bisset, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Corner of North Tce and George St, Adelaide SA 5005, Australia.
| |
Collapse
|
18
|
Czigle S, Bittner Fialová S, Tóth J, Mučaji P, Nagy M. Treatment of Gastrointestinal Disorders-Plants and Potential Mechanisms of Action of Their Constituents. Molecules 2022; 27:2881. [PMID: 35566230 PMCID: PMC9105531 DOI: 10.3390/molecules27092881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The worldwide prevalence of gastrointestinal diseases is about 40%, with standard pharmacotherapy being long-lasting and economically challenging. Of the dozens of diseases listed by the Rome IV Foundation criteria, for five of them (heartburn, dyspepsia, nausea and vomiting disorder, constipation, and diarrhoea), treatment with herbals is an official alternative, legislatively supported by the European Medicines Agency (EMA). However, for most plants, the Directive does not require a description of the mechanisms of action, which should be related to the therapeutic effect of the European plant in question. This review article, therefore, summarizes the basic pharmacological knowledge of synthetic drugs used in selected functional gastrointestinal disorders (FGIDs) and correlates them with the constituents of medicinal plants. Therefore, the information presented here is intended as a starting point to support the claim that both empirical folk medicine and current and decades-old treatments with official herbal remedies have a rational basis in modern pharmacology.
Collapse
Affiliation(s)
- Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (S.B.F.); (J.T.); (P.M.); (M.N.)
| | | | | | | | | | | |
Collapse
|
19
|
Behrens M, Lang T. Extra-Oral Taste Receptors-Function, Disease, and Perspectives. Front Nutr 2022; 9:881177. [PMID: 35445064 PMCID: PMC9014832 DOI: 10.3389/fnut.2022.881177] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Taste perception is crucial for the critical evaluation of food constituents in human and other vertebrates. The five basic taste qualities salty, sour, sweet, umami (in humans mainly the taste of L-glutamic acid) and bitter provide important information on the energy content, the concentration of electrolytes and the presence of potentially harmful components in food items. Detection of the various taste stimuli is facilitated by specialized receptor proteins that are expressed in taste buds distributed on the tongue and the oral cavity. Whereas, salty and sour receptors represent ion channels, the receptors for sweet, umami and bitter belong to the G protein-coupled receptor superfamily. In particular, the G protein-coupled taste receptors have been located in a growing number of tissues outside the oral cavity, where they mediate important processes. This article will provide a brief introduction into the human taste perception, the corresponding receptive molecules and their signal transduction. Then, we will focus on taste receptors in the gastrointestinal tract, which participate in a variety of processes including the regulation of metabolic functions, hunger/satiety regulation as well as in digestion and pathogen defense reactions. These important non-gustatory functions suggest that complex selective forces have contributed to shape taste receptors during evolution.
Collapse
Affiliation(s)
- Maik Behrens
- Leibniz Institute of Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Tatjana Lang
- Leibniz Institute of Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
20
|
Zhao A, Jeffery EH, Miller MJ. Is Bitterness Only a Taste? The Expanding Area of Health Benefits of Brassica Vegetables and Potential for Bitter Taste Receptors to Support Health Benefits. Nutrients 2022; 14:nu14071434. [PMID: 35406047 PMCID: PMC9002472 DOI: 10.3390/nu14071434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022] Open
Abstract
The list of known health benefits from inclusion of brassica vegetables in the diet is long and growing. Once limited to cancer prevention, a role for brassica in prevention of oxidative stress and anti-inflammation has aided in our understanding that brassica provide far broader benefits. These include prevention and treatment of chronic diseases of aging such as diabetes, neurological deterioration, and heart disease. Although animal and cell culture studies are consistent, clinical studies often show too great a variation to confirm these benefits in humans. In this review, we discuss causes of variation in clinical studies, focusing on the impact of the wide variation across humans in commensal bacterial composition, which potentially result in variations in microbial metabolism of glucosinolates. In addition, as research into host-microbiome interactions develops, a role for bitter-tasting receptors, termed T2Rs, in the gastrointestinal tract and their role in entero-endocrine hormone regulation is developing. Here, we summarize the growing literature on mechanisms of health benefits by brassica-derived isothiocyanates and the potential for extra-oral T2Rs as a novel mechanism that may in part describe the variability in response to brassica among free-living humans, not seen in research animal and cell culture studies.
Collapse
Affiliation(s)
- Anqi Zhao
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Elizabeth H. Jeffery
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA;
| | - Michael J. Miller
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA;
- Correspondence:
| |
Collapse
|
21
|
Walker EG, Lo KR, Pahl MC, Shin HS, Lang C, Wohlers MW, Poppitt SD, Sutton KH, Ingram JR. An extract of hops (Humulus lupulus L.) modulates gut peptide hormone secretion and reduces energy intake in healthy-weight men: a randomized, crossover clinical trial. Am J Clin Nutr 2022; 115:925-940. [PMID: 35102364 DOI: 10.1093/ajcn/nqab418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Gastrointestinal enteroendocrine cells express chemosensory bitter taste receptors that may play an important role in regulating energy intake (EI) and gut function. OBJECTIVES To determine the effect of a bitter hop extract (Humulus lupulus L.) on acute EI, appetite, and hormonal responses. METHODS Nineteen healthy-weight men completed a randomized 3-treatment, double-blind, crossover study with a 1-wk washout between treatments. Treatments comprised either placebo or 500 mg of hop extract administered in delayed-release capsules (duodenal) at 11:00 h or quick-release capsules (gastric) at 11:30 h. Ad libitum EI was recorded at the lunch (12:00 h) and afternoon snack (14:00 h), with blood samples taken and subjective ratings of appetite, gastrointestinal (GI) discomfort, vitality, meal palatability, and mood assessed throughout the day. RESULTS Total ad libitum EI was reduced following both the gastric (4473 kJ; 95% CI: 3811, 5134; P = 0.006) and duodenal (4439 kJ; 95% CI: 3777, 5102; P = 0.004) hop treatments compared with the placebo (5383 kJ; 95% CI: 4722, 6045). Gastric and duodenal treatments stimulated prelunch ghrelin secretion and postprandial cholecystokinin, glucagon-like peptide 1, and peptide YY responses compared with placebo. In contrast, postprandial insulin, glucose-dependent insulinotropic peptide, and pancreatic polypeptide responses were reduced in gastric and duodenal treatments without affecting glycemia. In addition, gastric and duodenal treatments produced small but significant increases in subjective measures of GI discomfort (e.g., nausea, bloating, abdominal discomfort) with mild to severe adverse GI symptoms reported in the gastric treatment only. However, no significant treatment effects were observed for any subjective measures of appetite or meal palatability. CONCLUSIONS Both gastric and duodenal delivery of a hop extract modulates the release of hormones involved in appetite and glycemic regulation, providing a potential "bitter brake" on EI in healthy-weight men.
Collapse
Affiliation(s)
- Edward G Walker
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Kim R Lo
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Malcolm C Pahl
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Hyun S Shin
- Human Nutrition Unit; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Claudia Lang
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Mark W Wohlers
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Sally D Poppitt
- Human Nutrition Unit; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kevin H Sutton
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - John R Ingram
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
22
|
Livneh Y, Andermann ML. Cellular activity in insular cortex across seconds to hours: Sensations and predictions of bodily states. Neuron 2021; 109:3576-3593. [PMID: 34582784 PMCID: PMC8602715 DOI: 10.1016/j.neuron.2021.08.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 02/09/2023]
Abstract
Our wellness relies on continuous interactions between our brain and body: different organs relay their current state to the brain and are regulated, in turn, by descending visceromotor commands from our brain and by actions such as eating, drinking, thermotaxis, and predator escape. Human neuroimaging and theoretical studies suggest a key role for predictive processing by insular cortex in guiding these efforts to maintain bodily homeostasis. Here, we review recent studies recording and manipulating cellular activity in rodent insular cortex at timescales from seconds to hours. We argue that consideration of these findings in the context of predictive processing of future bodily states may reconcile several apparent discrepancies and offer a unifying, heuristic model for guiding future work.
Collapse
Affiliation(s)
- Yoav Livneh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
23
|
Martens K, Steelant B, Bullens DMA. Taste Receptors: The Gatekeepers of the Airway Epithelium. Cells 2021; 10:cells10112889. [PMID: 34831117 PMCID: PMC8616034 DOI: 10.3390/cells10112889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Taste receptors are well known for their role in the sensation of taste. Surprisingly, the expression and involvement of taste receptors in chemosensory processes outside the tongue have been recently identified in many organs including the airways. Currently, a clear understanding of the airway-specific function of these receptors and the endogenous activating/inhibitory ligands is lagging. The focus of this review is on recent physiological and clinical data describing the taste receptors in the airways and their activation by secreted bacterial compounds. Taste receptors in the airways are potentially involved in three different immune pathways (i.e., the production of nitric oxide and antimicrobial peptides secretion, modulation of ciliary beat frequency, and bronchial smooth muscle cell relaxation). Moreover, genetic polymorphisms in these receptors may alter the patients’ susceptibility to certain types of respiratory infections as well as to differential outcomes in patients with chronic inflammatory airway diseases such as chronic rhinosinusitis and asthma. A better understanding of the function of taste receptors in the airways may lead to the development of a novel class of therapeutic molecules that can stimulate airway mucosal immune responses and could treat patients with chronic airway diseases.
Collapse
Affiliation(s)
- Katleen Martens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
- Department of Bioscience Engineering, University of Antwerp, 2020 Antwerp, Belgium
| | - Brecht Steelant
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
| | - Dominique M. A. Bullens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
- Clinical Division of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
24
|
Abstract
Bitter taste-sensing type 2 receptors (TAS2Rs or T2Rs), belonging to the subgroup of family A G-protein coupled receptors (GPCRs), are of crucial importance in the perception of bitterness. Although in the first instance, TAS2Rs were considered to be exclusively distributed in the apical microvilli of taste bud cells, numerous studies have detected these sensory receptor proteins in several extra-oral tissues, such as in pancreatic or ovarian tissues, as well as in their corresponding malignancies. Critical points of extra-oral TAS2Rs biology, such as their structure, roles, signaling transduction pathways, extensive mutational polymorphism, and molecular evolution, have been currently broadly studied. The TAS2R cascade, for instance, has been recently considered to be a pivotal modulator of a number of (patho)physiological processes, including adipogenesis or carcinogenesis. The latest advances in taste receptor biology further raise the possibility of utilizing TAS2Rs as a therapeutic target or as an informative index to predict treatment responses in various disorders. Thus, the focus of this review is to provide an update on the expression and molecular basis of TAS2Rs functions in distinct extra-oral tissues in health and disease. We shall also discuss the therapeutic potential of novel TAS2Rs targets, which are appealing due to their ligand selectivity, expression pattern, or pharmacological profiles.
Collapse
Affiliation(s)
- Kamila Tuzim
- Department of Clinical Pathomorphology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland.
| | - Agnieszka Korolczuk
- Department of Clinical Pathomorphology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| |
Collapse
|
25
|
Sterneder S, Stoeger V, Dugulin CA, Liszt KI, Di Pizio A, Korntheuer K, Dunkel A, Eder R, Ley JP, Somoza V. Astringent Gallic Acid in Red Wine Regulates Mechanisms of Gastric Acid Secretion via Activation of Bitter Taste Sensing Receptor TAS2R4. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10550-10561. [PMID: 34460245 DOI: 10.1021/acs.jafc.1c03061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Red wine is rich in phenolic compounds, which chiefly determine its characteristic taste. One of its major phenolic acid constituents for which an astringency, yet no clear contribution to bitter taste has been reported, is gallic acid (GA). In previous studies, we have demonstrated bitter-tasting constituents to regulate cellular proton secretion (PS) as a key mechanism of gastric acid secretion via activation of bitter taste sensing receptors (TAS2Rs). Here, we hypothesized a contributing role of GA to the red wine-stimulated effect on PS in human gastric tumor cells (HGT-1 cells). Sensory analyses revealed that 10 μM GA as the lowest concentration tested more bitter than tap water, with increasing bitter ratings up to 1000 μM. In HGT-1 cells, the concentration of 10 μM GA evoked the most pronounced effect on PS secretion, either when added to cells as in-water solution or when spiked to a red wine matrix. GA-spiking of Zweigelt and Blaufränkisch red wine samples up to a concentration of 10 μM resulted in an equally stimulated PS, whereas the non-GA-spiked wine samples demonstrated contrary effects on PS, indicating a functional role of GA on PS. Involvement of TAS2R4 in the GA-induced PS was verified by means of an HGT-1 homozygote CRISPR-Cas9 TAS2R4 knockout approach. Moreover, gene expression analyses revealed GA to increase TAS2R4. These results demonstrate a functional role of TAS2R4 in GA-evoked PS as a key mechanism of gastric acid secretion aiding digestion. Moreover, our data provide mechanistic insights, which will help to produce stomach-friendly red wines.
Collapse
Affiliation(s)
- Sonja Sterneder
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), Vienna 1090, Austria
| | - Verena Stoeger
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), Vienna 1090, Austria
| | - Celina Angela Dugulin
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), Vienna 1090, Austria
| | - Kathrin Ingrid Liszt
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), Vienna 1090, Austria
| | - Antonella Di Pizio
- Leibniz-Institute of Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Karin Korntheuer
- Federal College and Research Institute for Viticulture and Pomology, Klosterneuburg 3400, Austria
| | - Andreas Dunkel
- Leibniz-Institute of Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Reinhard Eder
- Federal College and Research Institute for Viticulture and Pomology, Klosterneuburg 3400, Austria
| | - Jakob Peter Ley
- Research & Technology Flavors Division, Symrise AG, 37603 Holzminden, Germany
| | - Veronika Somoza
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14 (UZA II), Vienna 1090, Austria
- Leibniz-Institute of Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
- Nutritional Systems Biology, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
26
|
Verbeure W, Deloose E, Tóth J, Rehfeld JF, Van Oudenhove L, Depoortere I, Tack J. The endocrine effects of bitter tastant administration in the gastrointestinal system: intragastric versus intraduodenal administration. Am J Physiol Endocrinol Metab 2021; 321:E1-E10. [PMID: 34029163 DOI: 10.1152/ajpendo.00636.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bitter tastants are recently introduced as potential hunger-suppressive compounds, the so-called "Bitter pill." However, the literature about bitter administration lacks consistency in methods and findings. We want to test whether hunger ratings and hormone plasma levels are affected by: 1) the site of administration: intragastrically (IG) or intraduodenally (ID), 2) the bitter tastant itself, quinine hydrochloride (QHCl) or denatonium benzoate (DB), and 3) the timing of infusion. Therefore, 14 healthy, female volunteers participated in a randomized, placebo-controlled six-visit crossover study. After an overnight fast, DB (1 µmol/kg), QHCl (10 µmol/kg), or placebo were given IG or ID via a nasogastric feeding tube. Blood samples were taken 10 min before administration and every 10 min after administration for a period of 2 h. Hunger was rated at the same time points on a visual analogue scale. ID bitter administration did not affect hunger sensations, motilin, or acyl-ghrelin release compared with its placebo infusion. IG QHCl infusion tended to suppress hunger increase, especially between 50 and 70 min after infusion, simultaneously with reduced motilin values. Here, acyl-ghrelin was not affected. IG DB did not affect hunger or motilin, however acyl-ghrelin levels were reduced 50-70 minutes after infusion. Plasma values of glucagon-like peptide 1 and cholecystokinin were too low to be properly detected or to have any physiological relevance. In conclusion, bitter tastants should be infused into the stomach to reduce hunger sensations and orexigenic gut peptides. QHCl has the best potential to reduce hunger sensations, and it should be infused 60 min before food intake.NEW & NOTEWORTHY Bitter tastants are a potential new weight-loss treatment. This is a noninvasive, easy approach, which should be received with considerable enthusiasm by the public. However, literature about bitter administration lacks consistency in methods and findings. We summarize how the compound should be given based on: the site of administration, the best bitter compound to use, and at what timing in respect to the meal. This paper is therefore a fundamental step to continue research toward the further development of the "bitter pill."
Collapse
Affiliation(s)
- Wout Verbeure
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Eveline Deloose
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Joran Tóth
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lukas Van Oudenhove
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Rose BD, Bitarafan V, Rezaie P, Fitzgerald PCE, Horowitz M, Feinle-Bisset C. Comparative Effects of Intragastric and Intraduodenal Administration of Quinine on the Plasma Glucose Response to a Mixed-Nutrient Drink in Healthy Men: Relations with Glucoregulatory Hormones and Gastric Emptying. J Nutr 2021; 151:1453-1461. [PMID: 33704459 DOI: 10.1093/jn/nxab020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In preclinical studies, bitter compounds, including quinine, stimulate secretion of glucoregulatory hormones [e.g., glucagon-like peptide-1 (GLP-1)] and slow gastric emptying, both key determinants of postprandial glycemia. A greater density of bitter-taste receptors has been reported in the duodenum than the stomach. Thus, intraduodenal (ID) delivery may be more effective in stimulating GI functions to lower postprandial glucose. OBJECTIVE We compared effects of intragastric (IG) and ID quinine [as quinine hydrochloride (QHCl)] administration on the plasma glucose response to a mixed-nutrient drink and relations with gastric emptying, plasma C-peptide (reflecting insulin secretion), and GLP-1. METHODS Fourteen healthy men [mean ± SD age: 25 ± 3 y; BMI (in kg/m2): 22.5 ± 0.5] received, on 4 separate occasions, in double-blind, randomly assigned order, 600 mg QHCl or control, IG or ID, 60 min (IG conditions) or 30 min (IG conditions) before a mixed-nutrient drink. Plasma glucose (primary outcome) and hormones were measured before, and for 2 h following, the drink. Gastric emptying of the drink was measured using a 13C-acetate breath test. Data were analyzed using repeated-measures 2-way ANOVAs (factors: treatment and route of administration) to evaluate effects of QHCl alone and 3-way ANOVAs (factors: treatment, route-of-administration, and time) for responses to the drink. RESULTS After QHCl alone, there were effects of treatment, but not route of administration, on C-peptide, GLP-1, and glucose (P < 0.05); QHCl stimulated C-peptide and GLP-1 and lowered glucose concentrations (IG control: 4.5 ± 0.1; IG-QHCl: 3.9 ± 0.1; ID-control: 4.6 ± 0.1; ID-QHCl: 4.2 ± 0.1 mmol/L) compared with control. Postdrink, there were treatment × time interactions for glucose, C-peptide, and gastric emptying, and a treatment effect for GLP-1 (all P < 0.05), but no route-of-administration effects. QHCl stimulated C-peptide and GLP-1, slowed gastric emptying, and reduced glucose (IG control: 7.2 ± 0.3; IG-QHCl: 6.2 ± 0.3; ID-control: 7.2 ± 0.3; ID-QHCl: 6.4 ± 0.4 mmol/L) compared with control. CONCLUSIONS In healthy men, IG and ID quinine administration similarly lowered plasma glucose, increased plasma insulin and GLP-1, and slowed gastric emptying. These findings have potential implications for lowering blood glucose in type 2 diabetes. This study was registered as a clinical trial with the Australian New Zealand Clinical Trials at www.anzctr.org.au as ACTRN12619001269123.
Collapse
Affiliation(s)
- Braden D Rose
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Vida Bitarafan
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Peyman Rezaie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Penelope C E Fitzgerald
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| |
Collapse
|
28
|
Wang Y, Wu H, Chen P, Su W, Peng W, Li P. Fertility and early embryonic development toxicity assessment of naringin in Sprague-Dawley rats. Regul Toxicol Pharmacol 2021; 123:104938. [PMID: 33933549 DOI: 10.1016/j.yrtph.2021.104938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 12/25/2022]
Abstract
Naringin is a dihydroflavonoid abundantly existed in grapefruit and related citrus species. The double directional adjusting function of estrogenic and anti-estrogenic activities of naringin and its aglycone naringenin has raised concern about possible risks of unwanted interference with endocrine regulation. Herein we assessed the safety of naringin on fertility and early embryonic development toxicity in Sprague-Dawley rats. Twenty-two male and 22 female rats per group were orally given naringin at 0, 50, 250, and 1250 mg/kg/day. Male rats were administered beginning 9 weeks prior to mating and continued until necropsy. Dosing to female began 2 weeks before mating and continued until gestation day 7. There were no obvious effects of naringin on physical signs, animal behavior, and survival rate, although female and male rats from 1250 mg/kg group had lower body weight and tended to have less food consumption. Importantly, no treatment-related effects of naringin were found in relation to fertility and early embryonic development. Under these experimental conditions, it was concluded that the no-observed-adverse-effect levels (NOAEL) of naringin were at least 1250 mg/kg/day for fertility and early embryonic development in rats.
Collapse
Affiliation(s)
- Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Pan Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Wei Peng
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
29
|
Rezaie P, Bitarafan V, Horowitz M, Feinle-Bisset C. Effects of Bitter Substances on GI Function, Energy Intake and Glycaemia-Do Preclinical Findings Translate to Outcomes in Humans? Nutrients 2021; 13:1317. [PMID: 33923589 PMCID: PMC8072924 DOI: 10.3390/nu13041317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Bitter substances are contained in many plants, are often toxic and can be present in spoiled food. Thus, the capacity to detect bitter taste has classically been viewed to have evolved primarily to signal the presence of toxins and thereby avoid their consumption. The recognition, based on preclinical studies (i.e., studies in cell cultures or experimental animals), that bitter substances may have potent effects to stimulate the secretion of gastrointestinal (GI) hormones and modulate gut motility, via activation of bitter taste receptors located in the GI tract, reduce food intake and lower postprandial blood glucose, has sparked considerable interest in their potential use in the management or prevention of obesity and/or type 2 diabetes. However, it remains to be established whether findings from preclinical studies can be translated to health outcomes, including weight loss and improved long-term glycaemic control. This review examines information relating to the effects of bitter substances on the secretion of key gut hormones, gastric motility, food intake and blood glucose in preclinical studies, as well as the evidence from clinical studies, as to whether findings from animal studies translate to humans. Finally, the evidence that bitter substances have the capacity to reduce body weight and/or improve glycaemic control in obesity and/or type 2 diabetes, and potentially represent a novel strategy for the management, or prevention, of obesity and type 2 diabetes, is explored.
Collapse
Affiliation(s)
| | | | | | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5005, Australia; (P.R.); (V.B.); (M.H.)
| |
Collapse
|
30
|
Harmon CP, Deng D, Breslin PA. Bitter Taste Receptors (T2Rs) are Sentinels that Coordinate Metabolic and Immunological Defense Responses. CURRENT OPINION IN PHYSIOLOGY 2021; 20:70-76. [PMID: 33738371 PMCID: PMC7963268 DOI: 10.1016/j.cophys.2021.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In addition to being responsible for bitter taste, type 2 taste receptors (T2Rs) regulate endocrine, behavioral, and immunological responses. T2R agonists include indicators of incoming threats to metabolic homeostasis, pathogens, and irritants. This review will provide an overview of T2R-regulated processes throughout the body that function defensively. We propose a broader definition of T2Rs as chemosensory sentinels that monitor toxic, metabolic, and infectious threats and initiate defensive responses.
Collapse
Affiliation(s)
- Caroline P. Harmon
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Daiyong Deng
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Paul A.S. Breslin
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Puri S, Lee Y. Salt Sensation and Regulation. Metabolites 2021; 11:metabo11030175. [PMID: 33802977 PMCID: PMC8002656 DOI: 10.3390/metabo11030175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 12/02/2022] Open
Abstract
Taste sensation and regulation are highly conserved in insects and mammals. Research conducted over recent decades has yielded major advances in our understanding of the molecular mechanisms underlying the taste sensors for a variety of taste sensations and the processes underlying regulation of ingestion depending on our internal state. Salt (NaCl) is an essential ingested nutrient. The regulation of internal sodium concentrations for physiological processes, including neuronal activity, fluid volume, acid–base balance, and muscle contraction, are extremely important issues in animal health. Both mammals and flies detect low and high NaCl concentrations as attractive and aversive tastants, respectively. These attractive or aversive behaviors can be modulated by the internal nutrient state. However, the differential encoding of the tastes underlying low and high salt concentrations in the brain remain unclear. In this review, we discuss the current view of taste sensation and modulation in the brain with an emphasis on recent advances in this field. This work presents new questions that include but are not limited to, “How do the fly’s neuronal circuits process this complex salt code?” and “Why do high concentrations of salt induce a negative valence only when the need for salt is low?” A better understanding of regulation of salt homeostasis could improve our understanding of why our brains enjoy salty food so much.
Collapse
Affiliation(s)
- Sonali Puri
- Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Korea;
| | - Youngseok Lee
- Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Korea;
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea
- Correspondence: ; Tel.: +82-2-910-5734
| |
Collapse
|
32
|
Welcome MO, Mastorakis NE. The taste of neuroinflammation: Molecular mechanisms linking taste sensing to neuroinflammatory responses. Pharmacol Res 2021; 167:105557. [PMID: 33737243 DOI: 10.1016/j.phrs.2021.105557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Evidence indicates a critical role of neuroinflammatory response as an underlying pathophysiological process in several central nervous system disorders, including neurodegenerative diseases. However, the molecular mechanisms that trigger neuroinflammatory processes are not fully known. The discovery of bitter taste receptors in regions other than the oral cavity substantially increased research interests on their functional roles in extra-oral tissues. It is now widely accepted that bitter taste receptors, for instance, in the respiratory, intestinal, reproductive and urinary tracts, are crucial not only for sensing poisonous substances, but also, act as immune sentinels, mobilizing defense mechanisms against pathogenic aggression. The relatively recent discovery of bitter taste receptors in the brain has intensified research investigation on the functional implication of cerebral bitter taste receptor expression. Very recent data suggest that responses of bitter taste receptors to neurotoxins and microbial molecules, under normal condition, are necessary to prevent neuroinflammatory reactions. Furthermore, emerging data have revealed that downregulation of key components of the taste receptor signaling cascade leads to increased oxidative stress and inflammasome signaling in neurons that ultimately culminate in neuroinflammation. Nevertheless, the mechanisms that link taste receptor mediated surveillance of the extracellular milieu to neuroinflammatory responses are not completely understood. This review integrates new data on the molecular mechanisms that link bitter taste receptor sensing to neuroinflammatory responses. The role of bitter taste receptor-mediated sensing of toxigenic substances in brain disorders is also discussed. The therapeutic significance of targeting these receptors for potential treatment of neurodegenerative diseases is also highlighted.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria.
| | | |
Collapse
|
33
|
Turner A, Veysey M, Keely S, Scarlett CJ, Lucock M, Beckett EL. Genetic Variation in the Bitter Receptors Responsible for Epicatechin Detection Are Associated with BMI in an Elderly Cohort. Nutrients 2021; 13:nu13020571. [PMID: 33572225 PMCID: PMC7914776 DOI: 10.3390/nu13020571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 11/16/2022] Open
Abstract
Globally, more than one-third of adults are overweight. Overweight and obesity are complex and multifaceted conditions, associated with an increased risk of chronic illness and early mortality. While there are known risk factors, these alone do not fully explain the varying outcomes between individuals. Recently, taste receptors have been proposed to have a role in the risk for obesity. These receptors are expressed throughout the gastrointestinal tract. In this system, they may be involved in modulating dietary intake and metabolic processes. The taste 2 family of receptors (T2Rs) detects bitter compounds. Receptors T2R4 and T2R5 detect (-)-epicatechin (epicatechin), an antioxidant polyphenol, which may have protective effects against obesity. However, the potential role for taste receptors in this association has not been explored. This study assessed whether polymorphisms in TAS2R4 (rs2233998 and rs2234001) and TAS2R5 (rs2227264) were associated with body mass index (BMI). Genotyping (Taqman qPCR assays) was performed on DNA extracted from blood samples (n = 563) from an elderly cohort. Homozygosity for the minor allele of all polymorphisms was significantly associated with a lower BMI in males. The TAS2R4-rs2233998 CC genotype, the TAS2R4-rs2234001 CC genotype and the TAS2R5-rs2227264 TT genotype were associated with lower BMI (2.1, 2.1 and 2.2 units; p = 0.002, 0.003 and 0.001, respectively). Epicatechin intake was not associated with BMI and genotype was not associated with epicatechin intake. This suggests that the association between TAS2R genotype and elevated BMI risk occurs through altered extra-oral responses and not directly via altered epicatechin intake.
Collapse
Affiliation(s)
- Alexandria Turner
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah 2258, Australia; (C.J.S.); (M.L.); (E.L.B.)
- Correspondence: ; Tel.: +(02)-4348-4158
| | - Martin Veysey
- School of Medicine and Public Health, University of Newcastle, Ourimbah 2258, Australia;
- Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia;
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Christopher J. Scarlett
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah 2258, Australia; (C.J.S.); (M.L.); (E.L.B.)
| | - Mark Lucock
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah 2258, Australia; (C.J.S.); (M.L.); (E.L.B.)
| | - Emma L. Beckett
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah 2258, Australia; (C.J.S.); (M.L.); (E.L.B.)
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| |
Collapse
|
34
|
Effects of gastrointestinal delivery of non-caloric tastants on energy intake: a systematic review and meta-analysis. Eur J Nutr 2021; 60:2923-2947. [PMID: 33559026 PMCID: PMC8354866 DOI: 10.1007/s00394-021-02485-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Purpose Taste receptors are expressed throughout the gastrointestinal tract. The activation of post-oral taste receptors using tastants could provide a non-invasive treatment option in combating the obesity epidemic. The aim of this review was to examine the effect of post-oral delivery of non-caloric tastants on eating behavior reflected by primary outcome energy intake and secondary outcomes GI symptoms and perceptions and potential underlying mechanisms. This review was conducted according to the PRISMA guidelines for systematic reviews. Methods A systematic literature search of the Cochrane, PubMed, Embase, and Medline databases was performed. This systematic review and meta-analysis was registered in the PROSPERO database on 26 February 2020 (ID: CRD42020171182). Two researchers independently screened 11,912 articles and extracted information from 19 articles. If at least two studies investigated the effect of the same taste compound on primary outcome energy intake, a meta-analysis was performed to determine pooled effect sizes. Results Nineteen papers including healthy volunteers were included. In the 19 papers analyzed, effects of various tastants were investigated in healthy volunteers. Most extensively investigated were bitter tastants. The meta-analysis of effects of bitter tastants showed a significant reduction in energy intake of 54.62 kcal (95% CI − 78.54 to − 30.69, p = 0.0014). Conclusions Bitter stimuli are most potent to influence eating behavior. Energy intake decreased after post-oral delivery of bitter tastants. This highlights the potential of a preventive role of bitter tastants in battling the obesity epidemic. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02485-4.
Collapse
|
35
|
Medapati MR, Bhagirath AY, Singh N, Chelikani P. Pharmacology of T2R Mediated Host-Microbe Interactions. Handb Exp Pharmacol 2021; 275:177-202. [PMID: 33580389 DOI: 10.1007/164_2021_435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bitter taste receptors (T2Rs) belong to the G protein-coupled receptor superfamily. Humans express 25 T2Rs that are known to detect several bitter compounds including bacterial quorum sensing molecules (QSM). Primarily found to be key receptors for bitter sensation T2Rs are known to play an important role in mediating innate immune responses in oral and extraoral tissues. Several studies have led to identification of Gram-negative and Gram-positive bacterial QSMs as agonists for T2Rs in airway epithelial cells and immune cells. However, the pharmacological characterization for many of the QSM-T2R interactions remains poorly defined. In this chapter, we discuss the extraoral roles including localization of T2Rs in extracellular vesicles, molecular pharmacology of QSM-T2R interactions, role of T2Rs in mediating innate immune responses, and some of the challenges in understanding T2R pharmacology.
Collapse
Affiliation(s)
- Manoj Reddy Medapati
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Anjali Y Bhagirath
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Nisha Singh
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada.
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
36
|
Grau-Bové C, Miguéns-Gómez A, González-Quilen C, Fernández-López JA, Remesar X, Torres-Fuentes C, Ávila-Román J, Rodríguez-Gallego E, Beltrán-Debón R, Blay MT, Terra X, Ardévol A, Pinent M. Modulation of Food Intake by Differential TAS2R Stimulation in Rat. Nutrients 2020; 12:E3784. [PMID: 33321802 PMCID: PMC7762996 DOI: 10.3390/nu12123784] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic surgery modulates the enterohormone profile, which leads, among other effects, to changes in food intake. Bitter taste receptors (TAS2Rs) have been identified in the gastrointestinal tract and specific stimulation of these has been linked to the control of ghrelin secretion. We hypothesize that optimal stimulation of TAS2Rs could help to modulate enteroendocrine secretions and thus regulate food intake. To determine this, we have assayed the response to specific agonists for hTAS2R5, hTAS2R14 and hTAS2R39 on enteroendocrine secretions from intestinal segments and food intake in rats. We found that hTAS2R5 agonists stimulate glucagon-like peptide 1 (GLP-1) and cholecystokinin (CCK), and reduce food intake. hTAS2R14 agonists induce GLP1, while hTASR39 agonists tend to increase peptide YY (PYY) but fail to reduce food intake. The effect of simultaneously activating several receptors is heterogeneous depending on the relative affinity of the agonists for each receptor. Although detailed mechanisms are not clear, bitter compounds can stimulate differentially enteroendocrine secretions that modulate food intake in rats.
Collapse
Grants
- AGL2017-83477-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- R2B2018/03 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya
- Martí Franqués Universitat Rovira i Virgili
- FI Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya
- Beatriu de Pinós Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya
- Serra Hunter Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya
Collapse
Affiliation(s)
- Carme Grau-Bové
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Alba Miguéns-Gómez
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Carlos González-Quilen
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - José-Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (J.-A.F.-L.); (X.R.)
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (J.-A.F.-L.); (X.R.)
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Cristina Torres-Fuentes
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.T.-F.); (J.Á.-R.)
| | - Javier Ávila-Román
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.T.-F.); (J.Á.-R.)
| | - Esther Rodríguez-Gallego
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Raúl Beltrán-Debón
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - M Teresa Blay
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Ximena Terra
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Anna Ardévol
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Montserrat Pinent
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| |
Collapse
|
37
|
Yu HZ, Fu MH, Ji XP, E-Ni RG. Progress in research of gastrointestinal motility regulation. Shijie Huaren Xiaohua Zazhi 2020; 28:1183-1191. [DOI: 10.11569/wcjd.v28.i23.1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal motility is an important part of the physiological function of the digestive tract, and its dysfunction is one of the key factors that cause different gastrointestinal motility disorders. These diseases seriously affect patients' normal life. With the development of scientific research and technology, well-designed research studies have been conducted on the regulatory mechanisms of gastrointestinal motility, which mainly include the regulation of gastrointestinal hormones, intestinal microflora, neurotransmitters, brain-gut peptides, interstitial cells of Cajal, and gastrointestinal electrical activities. In addition, current studies have proved that bitter taste receptors have certain regulatory effects on gastrointestinal motility. This paper primarily discusses the relevant pathways controlling gastrointestinal motility.
Collapse
Affiliation(s)
- Hong-Zhen Yu
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Ming-Hai Fu
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Xiao-Ping Ji
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Rong-Gui E-Ni
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| |
Collapse
|
38
|
Taylor AJ, Beauchamp JD, Briand L, Heer M, Hummel T, Margot C, McGrane S, Pieters S, Pittia P, Spence C. Factors affecting flavor perception in space: Does the spacecraft environment influence food intake by astronauts? Compr Rev Food Sci Food Saf 2020; 19:3439-3475. [PMID: 33337044 DOI: 10.1111/1541-4337.12633] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
Abstract
The intention to send a crewed mission to Mars involves a huge amount of planning to ensure a safe and successful mission. Providing adequate amounts of food for the crew is a major task, but 20 years of feeding astronauts on the International Space Station (ISS) have resulted in a good knowledge base. A crucial observation from the ISS is that astronauts typically consume only 80% of their daily calorie requirements when in space. This is despite daily exercise regimes that keep energy usage at very similar levels to those found on Earth. This calorie deficit seems to have little effect on astronauts who spend up to 12 months on the ISS, but given that a mission to Mars would take 30 to 36 months to complete, there is concern that a calorie deficit over this period may lead to adverse effects in crew members. The key question is why astronauts undereat when they have a supply of food designed to fully deliver their nutritional needs. This review focuses on evidence from astronauts that foods taste different in space, compared to on Earth. The underlying hypothesis is that conditions in space may change the perceived flavor of the food, and this flavor change may, in turn, lead to underconsumption by astronauts. The key areas investigated in this review for their potential impact on food intake are the effects of food shelf life, physiological changes, noise, air and water quality on the perception of food flavor, as well as the link between food flavor and food intake.
Collapse
Affiliation(s)
| | - Jonathan D Beauchamp
- Department of Sensory Analytics, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Martina Heer
- International University of Applied Sciences, Bad Honnef, Germany
| | - Thomas Hummel
- Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany
| | | | - Scott McGrane
- Waltham Petcare Science Institute, Waltham on the Wolds, UK
| | - Serge Pieters
- Haute Ecole Léonard de Vinci, Institut Paul Lambin, Brussels, Belgium
| | - Paola Pittia
- Faculty of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, Teramo, Italy
| | - Charles Spence
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Yuan G, Jing Y, Wang T, Fernandes VS, Xin W. The bitter taste receptor agonist-induced negative chronotropic effects on the Langendorff-perfused isolated rat hearts. Eur J Pharmacol 2020; 876:173063. [DOI: 10.1016/j.ejphar.2020.173063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/29/2020] [Accepted: 03/10/2020] [Indexed: 11/27/2022]
|
40
|
Livovsky DM, Pribic T, Azpiroz F. Food, Eating, and the Gastrointestinal Tract. Nutrients 2020; 12:nu12040986. [PMID: 32252402 PMCID: PMC7231022 DOI: 10.3390/nu12040986] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Food ingestion induces a metered response of the digestive system. Initially, the upper digestive system reacts to process and extract meal substrates. Later, meal residues not absorbed in the small bowel, pass into the colon and activate the metabolism of resident microbiota. Food consumption also induces sensations that arise before ingestion (e.g., anticipatory reward), during ingestion (e.g., gustation), and most importantly, after the meal (i.e., the postprandial experience). The postprandial experience involves homeostatic sensations (satiety, fullness) with a hedonic dimension (digestive well-being, mood). The factors that determine the postprandial experience are poorly understood, despite their potential role in personalized diets and healthy eating habits. Current data suggest that the characteristics of the meal (amount, palatability, composition), the activity of the digestive system (suited processing), and the receptivity of the eater (influenced by multiple conditioning factors) may be important in this context.
Collapse
Affiliation(s)
- Dan M Livovsky
- Digestive Diseases Institute, Shaare Zedek Medical Center, Hebrew University of Jerusalem, 9103102 Jerusalem, Israel;
| | - Teorora Pribic
- Digestive System Research Unit, University Hospital Vall d’Hebron, Passeig de la Vall d’Hebron 119, 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Fernando Azpiroz
- Digestive System Research Unit, University Hospital Vall d’Hebron, Passeig de la Vall d’Hebron 119, 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Correspondence: ; Tel.: +34-93-274-6222; Fax: +34-93-489-4456
| |
Collapse
|
41
|
Wang Q, Liszt KI, Depoortere I. Extra-oral bitter taste receptors: New targets against obesity? Peptides 2020; 127:170284. [PMID: 32092303 DOI: 10.1016/j.peptides.2020.170284] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
Taste perception on the tongue is essential to help us to identify nutritious or potential toxic food substances. Emerging evidence has demonstrated the expression and function of bitter taste receptors (TAS2Rs) in a wide range of extra-oral tissues. In particular, TAS2Rs in gastrointestinal enteroendocrine cells control the secretion of appetite regulating gut hormones and influence hunger and food intake. Furthermore, these effects may be reinforced by the presence of TAS2Rs on intestinal smooth muscle cells, adipocytes and the brain. This review summarises how activation of extra-oral TAS2Rs can influence appetite and body weight control and how obesity impacts the expression and function of TAS2Rs. Region-selective targeting of bitter taste receptors may be promising targets for the treatment of obesity.
Collapse
Affiliation(s)
- Qiaoling Wang
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Kathrin I Liszt
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium.
| |
Collapse
|
42
|
Liu M, Qian W, Subramaniyam S, Liu S, Xin W. Denatonium enhanced the tone of denuded rat aorta via bitter taste receptor and phosphodiesterase activation. Eur J Pharmacol 2020; 872:172951. [PMID: 32006560 DOI: 10.1016/j.ejphar.2020.172951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 11/27/2022]
Abstract
Bitter taste receptors (Tas2rs) initiate a bitter taste signaling involving the activation of taste-specific G protein gustducin and phosphodiesterases (PDEs); it leads to the decrease of cytosolic level of cyclic adenosine monophosphate (cAMP) in taste cells. Recent studies have identified the expression of Tas2rs in a variety of non-lingual tissues including vascular smooth muscle (VSM), pulmonary smooth muscle and airway smooth muscle. The current study aims to determine the expression of Tas2rs and gustducin in rat aortic smooth muscle tissue and to investigate the effect of Tas2rs agonist denatonium on the tone of isolated denuded aorta rings. Here we reported the expression of six subtypes of Tas2r mRNA and the taste receptor-associated G proteins in endothelium-denuded aorta. Immunostaining experiments showed that the protein of gustducin expressed in vascular smooth muscle cells (VSMCs). Furthermore, denatonium increased the tone of freshly isolated denuded aorta rings in a concentration-dependent manner, and the potentiation effect of denatonium was blocked by a Tas2rs antagonist adenosine 5'-monophosphate (5'-AMP), by the cAMP-hydrolyzing PDE inhibitors, and by a cAMP-synthesizing enzyme activator forskolin, respectively. The blockade of Gβγ signaling did not have a negative impact on the denatonium-induced tonic contractions. These findings suggested that the functional Tas2rs and gustducin are expressed in rat aortic smooth muscle and that denatonium might increase the smooth muscle tone through a Tas2rs signaling pathway involving the activation of PDEs.
Collapse
Affiliation(s)
- Minchi Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Wenjun Qian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | | | - Shuang Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Wenkuan Xin
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, China; College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
43
|
Crowe MS, Wang H, Blakeney BA, Mahavadi S, Singh K, Murthy KS, Grider JR. Expression and function of umami receptors T1R1/T1R3 in gastric smooth muscle. Neurogastroenterol Motil 2020; 32:e13737. [PMID: 31721379 PMCID: PMC7008388 DOI: 10.1111/nmo.13737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/19/2019] [Accepted: 09/16/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND l-amino acids, such as monosodium glutamate (MSG), activate the umami receptor T1R1/T1R3. We previously showed increased peristalsis in response to activation of T1R1/T1R3 by MSG in mouse colon. However, the expression and function of these receptors in the different regions of the stomach are not clear. METHODS Mouse gastric smooth muscle cells (SMCs) were isolated and cultured in Dulbecco's Modified Eagle Medium. Expression of T1R1 and T1R3 was measured by RT-PCR and Western blot. The effect of MSG with and without inosine monophosphate (IMP, an allosteric activator of T1R1/T1R3) on acetylcholine (ACh)-induced contraction was measured in muscle strips and isolated SMCs by scanning micrometry. The effect of MSG with or without IMP on activation of G proteins and ACh-induced Ca2+ release was measured in SMCs. KEY RESULTS Monosodium glutamate inhibited ACh-induced contractions in muscle strips from both antrum and fundus and the effect of MSG was augmented by IMP; the effects were concentration-dependent and not affected by the nitric oxide synthase inhibitor, L-NNA, or tetrodotoxin suggesting a direct effect on SMCs. In isolated gastric SMCs, T1R1 and T1R3 transcripts and protein were identified. Addition of MSG with or without IMP inhibited ACh-induced Ca2+ release and muscle contraction; the effect on contraction was blocked by pertussis toxin suggesting activation of Gαi proteins. MSG in the presence of IMP selectively activated Gαi2 . CONCLUSIONS AND INFERENCES Umami receptors (T1R1/T1R3) are present on SMCs of the stomach, and activation of these receptors induces muscle relaxation by decreasing [Ca2+ ]i via Gαi2 .
Collapse
Affiliation(s)
- Molly S. Crowe
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - Hongxia Wang
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - Bryan A. Blakeney
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - Sunila Mahavadi
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - Kulpreet Singh
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - Karnam S. Murthy
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| | - John R. Grider
- Department of Physiology and Biophysics VCU Program in Enteric Neuromuscular Sciences Virginia Commonwealth University Richmond VA USA
| |
Collapse
|
44
|
Bitarafan V, Fitzgerald PCE, Little TJ, Meyerhof W, Jones KL, Wu T, Horowitz M, Feinle-Bisset C. Intragastric administration of the bitter tastant quinine lowers the glycemic response to a nutrient drink without slowing gastric emptying in healthy men. Am J Physiol Regul Integr Comp Physiol 2020; 318:R263-R273. [PMID: 31774306 DOI: 10.1152/ajpregu.00294.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The rate of gastric emptying and the release of gastrointestinal (GI) hormones are major determinants of postprandial blood-glucose concentrations and energy intake. Preclinical studies suggest that activation of GI bitter-taste receptors potently stimulates GI hormones, including glucagon-like peptide-1 (GLP-1), and thus may reduce postprandial glucose and energy intake. We evaluated the effects of intragastric quinine on the glycemic response to, and the gastric emptying of, a mixed-nutrient drink and the effects on subsequent energy intake in healthy men. The study consisted of 2 parts: part A included 15 lean men, and part B included 12 lean men (aged 26 ± 2 yr). In each part, participants received, on 3 separate occasions, in double-blind, randomized fashion, intragastric quinine (275 or 600 mg) or control, 30 min before a mixed-nutrient drink (part A) or before a buffet meal (part B). In part A, plasma glucose, insulin, glucagon, and GLP-1 concentrations were measured at baseline, after quinine alone, and for 2 h following the drink. Gastric emptying of the drink was also measured. In part B, energy intake at the buffet meal was quantified. Quinine in 600 mg (Q600) and 275 mg (Q275) doses alone stimulated insulin modestly (P < 0.05). After the drink, Q600 and Q275 reduced plasma glucose and stimulated insulin (P < 0.05), Q275 stimulated GLP-1 (P < 0.05), and Q600 tended to stimulate GLP-1 (P = 0.066) and glucagon (P = 0.073) compared with control. Quinine did not affect gastric emptying of the drink or energy intake. In conclusion, in healthy men, intragastric quinine reduces postprandial blood glucose and stimulates insulin and GLP-1 but does not slow gastric emptying or reduce energy intake under our experimental conditions.
Collapse
Affiliation(s)
- Vida Bitarafan
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, SA, Australia
| | - Penelope C E Fitzgerald
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, SA, Australia
| | - Tanya J Little
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, SA, Australia
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, SA, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, SA, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, SA, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, SA, Australia
| |
Collapse
|
45
|
Zagorchev P, Petkov GV, Gagov HS. Bitter Taste Receptors as Regulators of Abdominal Muscles Contraction. Physiol Res 2019; 68:991-995. [PMID: 31647294 DOI: 10.33549/physiolres.934156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bitter taste receptors (TAS2R) are expressed in many non-sensor tissues including skeletal muscles but their function remains unexplored. The aim of this study is to investigate the role of TAS2R in rat abdominal skeletal muscles contractions using denatonium, a TAS2R agonist. Low concentration of denatonium (0.01 mmol/l) caused a significant decrease of amplitudes of the electrical field stimulation (EFS)-induced contractions in abdominal skeletal muscles preparations in vitro. This inhibitory effect was significantly reduced when the preparations were pre-incubated with gentamicin (0.02 mmol/l) used as a non-specific inhibitor of IP3 formation or with BaCl(2) (0.03 mmol/l) applied to block the inward-rectifier potassium current. All experiments were performed in the presence of pipecuronium in order to block the nerve stimulation of the contractions. The data obtained suggest that denatonium decreases the force of rat abdominal muscles contractions mainly via activation of TAS2R, phosphatidylinositol 4,5-biphosphate and its downstream signal metabolites.
Collapse
Affiliation(s)
- P Zagorchev
- Faculty of Biology, Sofia University, Sofia, Bulgaria.
| | | | | |
Collapse
|
46
|
Abstract
Olfactory and taste receptors are expressed primarily in the nasal olfactory epithelium and gustatory taste bud cells, where they transmit real-time sensory signals to the brain. However, they are also expressed in multiple extra-nasal and extra-oral tissues, being implicated in diverse biological processes including sperm chemotaxis, muscle regeneration, bronchoconstriction and bronchodilatation, inflammation, appetite regulation and energy metabolism. Elucidation of the physiological roles of these ectopic receptors is revealing potential therapeutic and diagnostic applications in conditions including wounds, hair loss, asthma, obesity and cancers. This Review outlines current understanding of the diverse functions of ectopic olfactory and taste receptors and assesses their potential to be therapeutically exploited.
Collapse
|
47
|
The senses of the choroid plexus. Prog Neurobiol 2019; 182:101680. [DOI: 10.1016/j.pneurobio.2019.101680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
|
48
|
Roura E, Depoortere I, Navarro M. Review: Chemosensing of nutrients and non-nutrients in the human and porcine gastrointestinal tract. Animal 2019; 13:2714-2726. [PMID: 31387651 DOI: 10.1017/s1751731119001794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal tract (GIT) is an interface between the external and internal milieus that requires continuous monitoring for nutrients or pathogens and toxic chemicals. The study of the physiological/molecular mechanisms, mediating the responses to the monitoring of the GIT contents, has been referred to as chemosensory science. While most of the progress in this area of research has been obtained in laboratory rodents and humans, significant steps forward have also been reported in pigs. The objective of this review was to update the current knowledge on nutrient chemosensing in pigs in light of recent advances in humans and laboratory rodents. A second objective relates to informing the existence of nutrient sensors with their functionality, particularly linked to the gut peptides relevant to the onset/offset of appetite. Several cell types of the intestinal epithelium such as Paneth, goblet, tuft and enteroendocrine cells (EECs) contain subsets of chemosensory receptors also found on the tongue as part of the taste system. In particular, EECs show specific co-expression patterns between nutrient sensors and/or transceptors (transport proteins with sensing functions) and anorexigenic hormones such as cholecystokinin (CCK), peptide tyrosine tyrosine (PYY) or glucagon-like peptide-1 (GLP-1), amongst others. In addition, the administration of bitter compounds has an inhibitory effect on GIT motility and on appetite through GLP-1-, CCK-, ghrelin- and PYY-labelled EECs in the human small intestine and colon. Furthermore, the mammalian chemosensory system is the target of some bacterial metabolites. Recent studies on the human microbiome have discovered that commensal bacteria have developed strategies to stimulate chemosensory receptors and trigger host cellular functions. Finally, the study of gene polymorphisms related to nutrient sensors explains differences in food choices, food intake and appetite between individuals.
Collapse
Affiliation(s)
- E Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia
| | - I Depoortere
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Belgium
| | - M Navarro
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
49
|
A model for the peak-interval task based on neural oscillation-delimited states. Behav Processes 2019; 168:103941. [PMID: 31550668 DOI: 10.1016/j.beproc.2019.103941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 11/24/2022]
Abstract
Specific mechanisms underlying how the brain keeps track of time are largely unknown. Several existing computational models of timing reproduce behavioral results obtained with experimental psychophysical tasks, but only a few tackle the underlying biological mechanisms, such as the synchronized neural activity that occurs throughout brain areas. In this paper, we introduce a model for the peak-interval task based on neuronal network properties. We consider that Local Field Potential (LFP) oscillation cycles specify a sequence of states, represented as neuronal ensembles. Repeated presentation of time intervals during training reinforces the connections of specific ensembles to downstream networks - sets of neurons connected to the sequence of states. Later, during the peak-interval procedure, these downstream networks are reactivated by previously experienced neuronal ensembles, triggering behavioral responses at the learned time intervals. The model reproduces experimental response patterns from individual rats in the peak-interval procedure, satisfying relevant properties such as the Weber law. Finally, we provide a biological interpretation of the parameters of the model.
Collapse
|
50
|
Denatonium Benzoate-Induces Oxidative Stress in the Heart and Kidney of Chinese Fast Yellow Chickens by Regulating Apoptosis, Autophagy, Antioxidative Activities and Bitter Taste Receptor Gene Expressions. Animals (Basel) 2019; 9:ani9090701. [PMID: 31546822 PMCID: PMC6770773 DOI: 10.3390/ani9090701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Denatonium benzoate is a strong bitter taste receptor agonist, extensively used for its activation of different cell pathways. Taste signals have been associated to food recognition and avoidance, and bitter taste provokes an aversive reaction and is assumed to protect chickens from consuming poisons and harmful toxic substances. The results of the study revealed that dietary supplementation with medium and high doses of denatonium benzoate damaged the epithelial cells of the heart and kidneys by inducing apoptosis and autophagy and reduced the growth of chickens, respectively. However, mRNA expressions of bitter taste receptors, downstream signaling effector genes, apoptosis-, autophagy- and antioxidant-related genes were higher on day 7, while these expressions were subsequently decreased on day-28 in the heart and kidney of Chinese Fast Yellow chickens in a dose-response manner. Abstract The sense of taste which tells us which prospective foods are nutritious, poisonous and harmful is essential for the life of the organisms. Denatonium benzoate (DB) is a bitter taste agonist known for its activation of bitter taste receptors in different cells. The aim of the current study was to investigate the mRNA expressions of bitter taste, downstream signaling effectors, apoptosis-, autophagy- and antioxidant-related genes and effector signaling pathways in the heart/kidney of chickens after DB dietary exposure. We randomly assigned 240, 1-day-old Chinese Fast Yellow chicks into four groups with five replicates of 12 chicks and studied them for 28 consecutive days. The dietary treatments consisted of basal diet and feed containing DB (5, 20 and 100 mg/kg). The results revealed that dietary DB impaired (p < 0.05) the growth performance of the chickens. Haemotoxylin and eosin staining and TUNEL assays confirmed that medium and high doses of DB damaged the epithelial cells of heart/kidney and induced apoptosis and autophagy. Remarkably, the results of RT-PCR and qRT-PCR indicated that different doses of DB gradually increased (p < 0.05) mRNA expressions of bitter taste, signaling effectors, apoptosis-, autophagy- and antioxidant- related genes on day 7 in a dose-response manner, while, these expressions were decreased (p < 0.05) subsequently by day-28 but exceptional higher (P < 0.05) expressions were observed in the high-dose DB groups of chickens. In conclusion, DB exerts adverse effects on the heart/kidney of chickens in a dose-response manner via damaging the epithelium of the heart/kidney by inducing apoptosis, autophagy associated with bitter taste and effector gene expressions. Correlation analyses for apoptosis/autophagy showed agonistic relationships. Our data provide a novel perspective for understanding the interaction of bitter taste, apoptosis, autophagy and antioxidative genes with bitter taste strong activators in the heart/kidney of chicken. These insights might help the feed industries and pave the way toward innovative directions in chicken husbandry.
Collapse
|