1
|
Kovalev DS, Amidei A, Akinbo-Jacobs OI, Linley J, Crandall T, Endsley L, Grippo AJ. Protective effects of exercise on responses to combined social and environmental stress in prairie voles. Ann N Y Acad Sci 2025; 1543:102-116. [PMID: 39565719 PMCID: PMC11779585 DOI: 10.1111/nyas.15264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The combination of social and environmental stressors significantly influences psychological and physical health in males and females, and contributes to both depression and cardiovascular diseases. Animal models support these findings. Voluntary exercise may protect against some forms of stress; however, the protective effects of exercise against social stressors require further investigation. This study evaluated the influence of exercise on the impact of combined social and environmental stressors in socially monogamous prairie voles. Following a period of social isolation plus additional chronic environmental stress, prairie voles were either allowed access to a running wheel in a larger cage for 2 weeks or remained in sedentary conditions. A behavioral stress task was conducted prior to and following exercise or sedentary conditions. Heart rate (HR) and HR variability were evaluated after exercise or sedentary conditions. Group-based analyses indicated that exercise prevented elevated resting HR and promoted autonomic control of the heart. Exercise was also effective against social and environmental stress-induced forced swim test immobility. Some minor sex differences in behavior were observed in response to exercise intensity. This research informs our understanding of the protective influence of physical exercise against social and environmental stressors in male and female humans.
Collapse
Affiliation(s)
- Dmitry S. Kovalev
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Alex Amidei
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | | | - Jessica Linley
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | - Teva Crandall
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | - Linnea Endsley
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | - Angela J. Grippo
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| |
Collapse
|
2
|
Rodrigues RS, Moreira JB, Mateus JM, Barateiro A, Paulo SL, Vaz SH, Lourenço DM, Ribeiro FF, Soares R, Loureiro-Campos E, Bielefeld P, Sebastião AM, Fernandes A, Pinto L, Fitzsimons CP, Xapelli S. Cannabinoid type 2 receptor inhibition enhances the antidepressant and proneurogenic effects of physical exercise after chronic stress. Transl Psychiatry 2024; 14:170. [PMID: 38555299 PMCID: PMC10981758 DOI: 10.1038/s41398-024-02877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
Chronic stress is a major risk factor for neuropsychiatric conditions such as depression. Adult hippocampal neurogenesis (AHN) has emerged as a promising target to counteract stress-related disorders given the ability of newborn neurons to facilitate endogenous plasticity. Recent data sheds light on the interaction between cannabinoids and neurotrophic factors underlying the regulation of AHN, with important effects on cognitive plasticity and emotional flexibility. Since physical exercise (PE) is known to enhance neurotrophic factor levels, we hypothesised that PE could engage with cannabinoids to influence AHN and that this would result in beneficial effects under stressful conditions. We therefore investigated the actions of modulating cannabinoid type 2 receptors (CB2R), which are devoid of psychotropic effects, in combination with PE in chronically stressed animals. We found that CB2R inhibition, but not CB2R activation, in combination with PE significantly ameliorated stress-evoked emotional changes and cognitive deficits. Importantly, this combined strategy critically shaped stress-induced changes in AHN dynamics, leading to a significant increase in the rates of cell proliferation and differentiation of newborn neurons, overall reduction in neuroinflammation, and increased hippocampal levels of BDNF. Together, these results show that CB2Rs are crucial regulators of the beneficial effects of PE in countering the effects of chronic stress. Our work emphasises the importance of understanding the mechanisms behind the actions of cannabinoids and PE and provides a framework for future therapeutic strategies to treat stress-related disorders that capitalise on lifestyle interventions complemented with endocannabinoid pharmacomodulation.
Collapse
Affiliation(s)
- R S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Université de Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - J B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - J M Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A Barateiro
- Central Nervous System, blood and peripheral inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - S L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - S H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - D M Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - F F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - R Soares
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - E Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - P Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - A M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A Fernandes
- Central Nervous System, blood and peripheral inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - L Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - C P Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - S Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
3
|
Perez EC, Gehm KH, Lobo VG, Olvera M, Leasure JL. Adulthood effects of developmental exercise in rats. Dev Psychobiol 2024; 66:e22444. [PMID: 38131238 DOI: 10.1002/dev.22444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/11/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Exercise is known to promote efficient function of stress circuitry. The developing brain is malleable and thus exercise during adolescence could potentially exert lasting beneficial effects on the stress response that would be detectable in adulthood. The current study determined whether adolescent wheel running was associated with reduced stress response in adulthood, 6 weeks after cessation of exercise. Male and female adolescent rats voluntarily ran for 6 weeks and then were sedentary for 6 weeks prior to 10 days of chronic restraint stress in adulthood. Fecal corticosterone levels were measured during stress, and escape from the restraint tube was assessed on the final day as a proxy for depressive-like behavior. Anxiety-like behavior was measured 24 h later with the elevated plus maze and locomotor behaviors with the open field. Brain and body measurements were taken immediately following behavioral testing. Developmental exercise and adulthood stress both exerted independent effects on physiological and behavioral outcomes in adulthood. Exercise history increased the odds ratio of escape from restraint stress in males, but did not influence other stress-induced behaviors. In summary, exercise early in life exerted lasting effects, but did not substantially alter the adulthood response to restraint stress.
Collapse
Affiliation(s)
- Emma C Perez
- Department of Psychology, University of Houston, Houston, Texas, USA
| | - Kevin H Gehm
- Department of Psychology, University of Houston, Houston, Texas, USA
| | - Valeria Gaume Lobo
- Department of Biology & Biochemistry, University of Houston, Houston, Texas, USA
| | - Marcelle Olvera
- Department of Psychology, University of Houston, Houston, Texas, USA
| | - J Leigh Leasure
- Department of Psychology, University of Houston, Houston, Texas, USA
- Department of Biology & Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
4
|
Bridgeland-Stephens L, Thorpe SKS, Chappell J. Potential resilience treatments for orangutans ( Pongo spp.): Lessons from a scoping review of interventions in humans and other animals. Anim Welf 2023; 32:e77. [PMID: 38487448 PMCID: PMC10937215 DOI: 10.1017/awf.2023.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 03/17/2024]
Abstract
Wild orangutans (Pongo spp.) rescued from human-wildlife conflict must be adequately rehabilitated before being returned to the wild. It is essential that released orangutans are able to cope with stressful challenges such as food scarcity, navigating unfamiliar environments, and regaining independence from human support. Although practical skills are taught to orangutans in rehabilitation centres, post-release survival rates are low. Psychological resilience, or the ability to 'bounce back' from stress, may be a key missing piece of the puzzle. However, there is very little knowledge about species-appropriate interventions which could help captive orangutans increase resilience to stress. This scoping review summarises and critically analyses existing human and non-human animal resilience literature and provides suggestions for the development of interventions for orangutans in rehabilitation. Three scientific databases were searched in 2021 and 2023, resulting in 63 human studies and 266 non-human animal studies. The first section brings together human resilience interventions, identifying common themes and assessing the applicability of human interventions to orangutans in rehabilitation. The second section groups animal interventions into categories of direct stress, separation stress, environmental conditions, social stress, and exercise. In each category, interventions are critically analysed to evaluate their potential for orangutans in rehabilitation. The results show that mild and manageable forms of intervention have the greatest potential benefit with the least amount of risk. The study concludes by emphasising the need for further investigation and experimentation, to develop appropriate interventions and measure their effect on the post-release survival rate of orangutans.
Collapse
Affiliation(s)
| | | | - Jackie Chappell
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Grzelak N, Krutki P, Bączyk M, Kaczmarek D, Mrówczyński W. Influence of altered serum and muscle concentrations of BDNF on electrophysiological properties of spinal motoneurons in wild-type and BDNF-knockout rats. Sci Rep 2023; 13:4571. [PMID: 36941445 PMCID: PMC10027728 DOI: 10.1038/s41598-023-31703-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
The purpose of this study was to determine whether altered serum and/or muscle concentrations of brain-derived neurotrophic factor (BDNF) can modify the electrophysiological properties of spinal motoneurons (MNs). This study was conducted in wild-type and Bdnf heterozygous knockout rats (HET, SD-BDNF). Rats were divided into four groups: control, knockout, control trained, and knockout trained. The latter two groups underwent moderate-intensity endurance training to increase BDNF levels in serum and/or hindlimb muscles. BDNF and other neurotrophic factors (NFs), including glial cell-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3), nerve growth factor (NGF), and neurotrophin-4 (NT-4) were assessed in serum and three hindlimb muscles: the tibialis anterior (TA), medial gastrocnemius (MG), and soleus (Sol). The concentrations of tropomyosin kinase receptor B (Trk-B), interleukin-15 (IL-15), and myoglobin (MYO/MB) were also evaluated in these muscles. The electrophysiological properties of lumbar MNs were studied in vivo using whole-cell current-clamp recordings. Bdnf knockout rats had reduced levels of all studied NFs in serum but not in hindlimb muscles. Interestingly, decreased serum NF levels did not influence the electrophysiological properties of spinal MNs. Additionally, endurance training did not change the serum concentrations of any of the NFs tested but significantly increased BDNF and GDNF levels in the TA and MG muscles in both trained groups. Furthermore, the excitability of fast MNs was reduced in both groups of trained rats. Thus, changes in muscle (but not serum) concentrations of BDNF and GDNF may be critical factors that modify the excitability of spinal MNs after intense physical activity.
Collapse
Affiliation(s)
- Norbert Grzelak
- Department of Neurobiology, Poznań University of Physical Education, 27/39 Królowej Jadwigi St., 61-871, Poznań, Poland
| | - Piotr Krutki
- Department of Neurobiology, Poznań University of Physical Education, 27/39 Królowej Jadwigi St., 61-871, Poznań, Poland
| | - Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, 27/39 Królowej Jadwigi St., 61-871, Poznań, Poland
| | - Dominik Kaczmarek
- Department of Physiology and Biochemistry, Poznań University of Physical Education, Poznań, Poland
| | - Włodzimierz Mrówczyński
- Department of Neurobiology, Poznań University of Physical Education, 27/39 Królowej Jadwigi St., 61-871, Poznań, Poland.
| |
Collapse
|
6
|
Landin JD, Chandler LJ. Adolescent alcohol exposure alters threat avoidance in adulthood. Front Behav Neurosci 2023; 16:1098343. [PMID: 36761697 PMCID: PMC9905129 DOI: 10.3389/fnbeh.2022.1098343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/26/2022] [Indexed: 01/26/2023] Open
Abstract
Adolescent binge-like alcohol exposure impairs cognitive function and decision making in adulthood and may be associated with dysfunction of threat avoidance, a critical mechanism of survival which relies upon executive function. The present study investigated the impact of binge-like alcohol exposure during adolescence on active avoidance in adulthood. Male and female rats were subjected to adolescent intermittent ethanol (AIE) exposure by vapor inhalation and then tested in adulthood using a platform-mediated avoidance task. After training to press a lever to receive a sucrose reward, the rats were conditioned to a tone that co-terminated with a foot-shock. A motivational conflict was introduced by the presence of an escape platform that isolated the rat from the shock, but also prevented access to the sucrose reward while the rat was on the platform. During the task training phase, both male and female rats exhibited progressive increases in active avoidance (platform escape) in response to the conditioned tone, whereas innate fear behavior (freezing) remained relatively constant over training days. A history of AIE exposure did not impact either active avoidance or freezing behavior during task acquisition. On the test day following platform acquisition training, female rats exhibited higher levels of both active avoidance and freezing compared to male rats, while AIE-exposed male but not female rats exhibited significantly greater levels of active avoidance compared to controls. In contrast, neither male nor female AIE-exposed rats exhibited alterations in freezing compared to controls. Following 5 days of extinction training, female rats continued to display higher levels of active avoidance and freezing during tone presentation compared to males. Male AIE-exposed rats also had higher levels of both active avoidance and freezing compared to the male control rats. Together, the results demonstrate that female rats exhibit elevated levels of active avoidance and freezing compared to males and further reveal a sex-specific impact of AIE on threat responding in adulthood.
Collapse
|
7
|
Ruiz-Iglesias P, Massot-Cladera M, Pérez-Cano FJ, Castell M. Influence of Diets Enriched with Flavonoids (Cocoa and Hesperidin) on the Systemic Immunity of Intensively Trained and Exhausted Rats. Biomolecules 2022; 12:1893. [PMID: 36551321 PMCID: PMC9775336 DOI: 10.3390/biom12121893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to establish the influence of flavonoid-enriched diets on the immune alterations induced by an intensive training and a final exhaustion test in rats. A flavanol-enriched diet (with 10% cocoa, C10 diet) and a flavanol and flavanone-enriched diet (C10 plus 0.5% hesperidin, CH diet) were used. Lewis rats were fed either a standard diet, C10 diet or CH diet while they were submitted to an intensive running training on a treadmill. After 6 weeks, samples were obtained 24 h after performing a regular training (T groups) and after carrying out a final exhaustion test (TE groups). The C10 diet attenuated the increase in plasma cortisol induced by exhaustion, while both the C10 and the CH diets prevented the alterations in the spleen Th cell proportion. The experimental diets also induced an increase in serum immunoglobulin concentration and an enhancement of spleen natural killer cytotoxicity, which may be beneficial in situations with a weakened immunity. Most of the effects observed in the CH groups seem to be due to the cocoa content. Overall, a dietary intervention with flavonoids enhances immune function, partially attenuating the alterations in systemic immunity induced by intensive training or exhausting exercise.
Collapse
Affiliation(s)
- Patricia Ruiz-Iglesias
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Restricted cafeteria feeding and treadmill exercise improved body composition, metabolic profile and exploratory behavior in obese male rats. Sci Rep 2022; 12:19545. [PMID: 36379981 PMCID: PMC9666649 DOI: 10.1038/s41598-022-23464-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate, in male Long-Evans rats, whether a restricted-cafeteria diet (CAFR), based on a 30% calorie restriction vs continuous ad libitum cafeteria (CAF) fed animals, administered alone or in combination with moderate treadmill exercise (12 m/min, 35 min, 5 days/week for 8 weeks), was able to ameliorate obesity and the associated risk factors induced by CAF feeding for 18 weeks and to examine the changes in circadian locomotor activity, hypothalamic-pituitary-adrenal (HPA) axis functionality, and stress response elicited by this dietary pattern. In addition to the expected increase in body weight and adiposity, and the development of metabolic dysregulations compatible with Metabolic Syndrome, CAF intake resulted in a sedentary profile assessed by the home-cage activity test, reduced baseline HPA axis activity through decreased corticosterone levels, and boosted exploratory behavior. Both CAFR alone and in combination with exercise reduced abdominal adiposity and hypercholesterolemia compared to CAF. Exercise increased baseline locomotor activity in the home-cage in all dietary groups, boosted exploratory behavior in STD and CAF, partially decreased anxiety-like behavior in CAF and CAFR, but did not affect HPA axis-related parameters.
Collapse
|
9
|
Ruiz-Iglesias P, Massot-Cladera M, Rodríguez-Lagunas MJ, Franch À, Camps-Bossacoma M, Castell M, Pérez-Cano FJ. A Cocoa Diet Can Partially Attenuate the Alterations in Microbiota and Mucosal Immunity Induced by a Single Session of Intensive Exercise in Rats. Front Nutr 2022; 9:861533. [PMID: 35479747 PMCID: PMC9036086 DOI: 10.3389/fnut.2022.861533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Following intensive sports events, a higher rate of upper respiratory tract infections and the appearance of gastrointestinal symptomatology have been reported. We aimed to evaluate the effect of a cocoa-enriched diet on the cecal microbiota and mucosal immune system of rats submitted to high-intensity acute exercise, as well as to elucidate the involvement of cocoa fiber in such effects. Methods Wistar rats were fed either a standard diet, a diet containing 10% cocoa providing 5% fiber and a diet containing only 5% cocoa fiber. After 25 days, half of the rats of each diet performed an exhaustion running test. Sixteen hours later, samples were obtained to assess, among others, the cecal microbiota and short chain fatty acids (SCFAs) composition, mesenteric lymph nodes (MLNs) and Peyer’s patches (PPs) lymphocyte composition, and immunoglobulin (Ig) content in salivary glands. Results The intake of cocoa, partially due to its fiber content, improved the SCFA production, prevented some changes in PPs and in MLNs lymphocyte composition and also decreased the production of proinflammatory cytokines. Cocoa diet, contrary to cocoa fiber, did not prevent the lower salivary IgM induced by exercise. Conclusion A cocoa dietary intake can partially attenuate the alterations in microbiota and mucosal immunity induced by a single session of intensive exercise.
Collapse
Affiliation(s)
- Patricia Ruiz-Iglesias
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| | - Maria J. Rodríguez-Lagunas
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| | - Àngels Franch
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| | - Mariona Camps-Bossacoma
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Margarida Castell,
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| |
Collapse
|
10
|
Ruiz-Iglesias P, Massot-Cladera M, Rodríguez-Lagunas MJ, Franch À, Camps-Bossacoma M, Pérez-Cano FJ, Castell M. Protective Effect of a Cocoa-Enriched Diet on Oxidative Stress Induced by Intensive Acute Exercise in Rats. Antioxidants (Basel) 2022; 11:antiox11040753. [PMID: 35453438 PMCID: PMC9028332 DOI: 10.3390/antiox11040753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Intensive acute exercise can induce oxidative stress, leading to muscle damage and immune function impairment. Cocoa diet could prevent this oxidative stress and its consequences on immunity. Our aim was to assess the effect of a cocoa-enriched diet on the reactive oxygen species (ROS) production by peritoneal macrophages, blood immunoglobulin (Ig) levels, leukocyte counts, and the physical performance of rats submitted to an intensive acute exercise, as well as to elucidate the involvement of cocoa fiber in such effects. For this purpose, Wistar rats were fed either a standard diet, i.e., a diet containing 10% cocoa (C10), or a diet containing 5% cocoa fiber (CF) for 25 days. Then, half of the rats of each diet ran on a treadmill until exhaustion, and 16 h later, the samples were obtained. Both C10 and CF diets significantly prevented the increase in ROS production. However, neither the cocoa diet or the cocoa fiber-enriched diet prevented the decrease in serum IgG induced by acute exercise. Therefore, although the cocoa-enriched diet was able to prevent the excessive oxidative stress induced by intensive exercise, this was not enough to avoid the immune function impairment due to exercise.
Collapse
Affiliation(s)
- Patricia Ruiz-Iglesias
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Maria J. Rodríguez-Lagunas
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Àngels Franch
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Mariona Camps-Bossacoma
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
- Correspondence: (F.J.P.-C.); (M.C.); Tel.: +34-93-402-45-05 (F.J.P.-C. & M.C.)
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.J.P.-C.); (M.C.); Tel.: +34-93-402-45-05 (F.J.P.-C. & M.C.)
| |
Collapse
|
11
|
Prior short-term exercise prevents behavioral and biochemical abnormalities induced by single prolonged stress in a rat model of posttraumatic stress disorder. Behav Brain Res 2022; 428:113864. [DOI: 10.1016/j.bbr.2022.113864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 11/21/2022]
|
12
|
Chronic Effect of a Cafeteria Diet and Intensity of Resistance Training on the Circulating Lysophospholipidome in Young Rats. Metabolites 2021; 11:metabo11080471. [PMID: 34436412 PMCID: PMC8398762 DOI: 10.3390/metabo11080471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/02/2022] Open
Abstract
The daily practice of physical exercise and a balanced diet are recommended to prevent metabolic syndrome (MetS). As MetS is a multifactorial disorder associated with the development of serious diseases, the advancement of comprehensive biomarkers could aid in an accurate diagnosis. In this regard, it is known that gut microbiota is altered in MetS, and especially, lipid metabolites species are highly modified, thus emerging as potential biomarkers. In preliminary studies, we observed that alterations in serum lysoglycerophospholipids (Lyso-PLs) were shared between animals with diet-induced MetS and those performing resistance exercises assiduously. Therefore, our objective was the targeted determination of the lysophospholipidome in young rats fed a standard (ST) or a cafeteria diet (CAF) and submitted to different training intensities to evaluate its potential as a biomarker of a detrimental lifestyle. Targeted metabolomics focused on lysophosphatidylcholines (Lyso-PCs) and lysophosphatidylethanolamines (Lyso-PEs) and multivariate statistics were used to achieve an integral understanding. Chronic intake of CAF altered the serological levels of both lipid subclasses. Twenty-two Lyso-PLs were significantly altered by CAF, from which we selected Lyso-PCs (14:0), (17:1) and (20:2) and Lyso-PEs (18:2) and (18:3) as they were enough to achieve an optimal prediction. The main effect of physical training was decreased Lyso-PEs levels with disparities among training intensities for each diet. We concluded that an examination of the lysophospholipidome reveals the general state of the metabolome in young female rats, especially due to intake of an MetS-inducing diet, thus highlighting the importance of this family of compounds in lipid disorders.
Collapse
|
13
|
Lalanza JF, Snoeren EMS. The cafeteria diet: A standardized protocol and its effects on behavior. Neurosci Biobehav Rev 2020; 122:92-119. [PMID: 33309818 DOI: 10.1016/j.neubiorev.2020.11.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Obesity is a major health risk, with junk food consumption playing a central role in weight gain, because of its high palatability and high-energy nutrients. The Cafeteria (CAF) diet model for animal experiments consists of the same tasty but unhealthy food products that people eat (e.g. hot dogs and muffins), and considers variety, novelty and secondary food features, such as smell and texture. This model, therefore, mimics human eating patterns better than other models. In this paper, we systematically review studies that have used a CAF diet in behavioral experiments and propose a standardized CAF diet protocol. The proposed diet is ad libitum and voluntary; combines different textures, nutrients and tastes, including salty and sweet products; and it is rotated and varied. Our summary of the behavioral effects of CAF diet show that it alters meal patterns, reduces the hedonic value of other rewards, and tends to reduce stress and spatial memory. So far, no clear effects of CAF diet were found on locomotor activity, impulsivity, coping and social behavior.
Collapse
Affiliation(s)
- Jaume F Lalanza
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Eelke M S Snoeren
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway; Regional Health Authority of North Norway, Norway.
| |
Collapse
|
14
|
Alterations in the mucosal immune system by a chronic exhausting exercise in Wistar rats. Sci Rep 2020; 10:17950. [PMID: 33087757 PMCID: PMC7578053 DOI: 10.1038/s41598-020-74837-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Exhausting exercise can disturb immune and gastrointestinal functions. Nevertheless, the impact of it on mucosal-associated lymphoid tissue has not been studied in depth. Here, we aim to establish the effects of an intensive training and exhausting exercise on the mucosal immunity of rats and to approach the mechanisms involved. Rats were submitted to a high-intensity training consisting of running in a treadmill 5 days per week for 5 weeks, involving 2 weekly exhaustion tests. At the end, samples were obtained before (T), immediately after (TE) and 24 h after (TE24) an additional final exhaustion test. The training programme reduced the salivary production of immunoglobulin A, impaired the tight junction proteins’ gene expression and modified the mesenteric lymph node lymphocyte composition and function, increasing the ratio between Tαβ+ and B lymphocytes, reducing their proliferation capacity and enhancing their interferon-γ secretion. As a consequence of the final exhaustion test, the caecal IgA content increased, while it impaired the gut zonula occludens expression and enhanced the interleukin-2 and interferon-γ secretion. Our results indicate that intensive training for 5 weeks followed or not by an additional exhaustion disrupts the mucosal-associated lymphoid tissue and the intestinal epithelial barrier integrity in rats.
Collapse
|
15
|
Fernández-Teruel A, Tobeña A. Revisiting the role of anxiety in the initial acquisition of two-way active avoidance: pharmacological, behavioural and neuroanatomical convergence. Neurosci Biobehav Rev 2020; 118:739-758. [PMID: 32916193 DOI: 10.1016/j.neubiorev.2020.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/10/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
Abstract
Two-way active avoidance (TWAA) acquisition constitutes a particular case of approach -avoidance conflict for laboratory rodents. The present article reviews behavioural, psychopharmacological and neuroanatomical evidence accumulated along more than fifty years that provides strong support to the contention that anxiety is critical in the transition from CS (conditioned stimulus)-induced freezing to escape/avoidance responses during the initial stages of TWAA acquisition. Thus, anxiolytic drugs of different types accelerate avoidance acquisition, anxiogenic drugs impair it, and avoidance during these initial acquisition stages is negatively associated with other typical measures of anxiety. In addition behavioural and developmental treatments that reduce or increase anxiety/stress respectively facilitate or impair TWAA acquisition. Finally, evidence for the regulation of TWAA acquisition by septo-hippocampal and amygdala-related mechanisms is discussed. Collectively, the reviewed evidence gives support to the initial acquisition of TWAA as a paradigm with considerable predictive and (in particular) construct validity as an approach-avoidance conflict-based rodent anxiety model.
Collapse
Affiliation(s)
- Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain.
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
16
|
Bettio LEB, Thacker JS, Rodgers SP, Brocardo PS, Christie BR, Gil-Mohapel J. Interplay between hormones and exercise on hippocampal plasticity across the lifespan. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165821. [PMID: 32376385 DOI: 10.1016/j.bbadis.2020.165821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/19/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
Abstract
The hippocampus is a brain structure known to play a central role in cognitive function (namely learning and memory) as well as mood regulation and affective behaviors due in part to its ability to undergo structural and functional changes in response to intrinsic and extrinsic stimuli. While structural changes are achieved through modulation of hippocampal neurogenesis as well as alterations in dendritic morphology and spine remodeling, functional (i.e., synaptic) changes can be noted through the strengthening (i.e., long-term potentiation) or weakening (i.e., long-term depression) of the synapses. While age, hormone homeostasis, and levels of physical activity are some of the factors known to module these forms of hippocampal plasticity, the exact mechanisms through which these factors interact with each other at a given moment in time are not completely understood. It is well known that hormonal levels vary throughout the lifespan of an individual and it is also known that physical exercise can impact hormonal homeostasis. Thus, it is reasonable to speculate that hormone modulation might be one of the various mechanisms through which physical exercise differently impacts hippocampal plasticity throughout distinct periods of an individual's life. The present review summarizes the potential relationship between physical exercise and different types of hormones (namely sex, metabolic, and stress hormones) and how this relationship may mediate the effects of physical activity during three distinct life periods, adolescence, adulthood, and senescence. Overall, the vast majority of studies support a beneficial role of exercise in maintaining hippocampal hormonal levels and consequently, hippocampal plasticity, cognition, and mood regulation.
Collapse
Affiliation(s)
- Luis E B Bettio
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
| | - Jonathan S Thacker
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
| | - Shaefali P Rodgers
- Developmental, Cognitive & Behavioral Neuroscience Program, Department of Psychology, Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, TX, USA
| | - Patricia S Brocardo
- Department of Morphological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Brian R Christie
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC, Canada.
| |
Collapse
|
17
|
Fallon IP, Tanner MK, Greenwood BN, Baratta MV. Sex differences in resilience: Experiential factors and their mechanisms. Eur J Neurosci 2020; 52:2530-2547. [PMID: 31800125 PMCID: PMC7269860 DOI: 10.1111/ejn.14639] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Adverse life events can lead to stable changes in brain structure and function and are considered primary sources of risk for post-traumatic stress disorder, depression and other neuropsychiatric disorders. However, most individuals do not develop these conditions following exposure to traumatic experiences, and research efforts have identified a number of experiential factors associated with an individual's ability to withstand, adapt to and facilitate recovery from adversity. While multiple animal models of stress resilience exist, so that the detailed biological mechanisms can be explored, studies have been disproportionately conducted in male subjects even though the prevalence and presentation of stress-linked disorders differ between sexes. This review focuses on (a) the mechanisms by which experiential factors (behavioral control over a stressor, exercise) reduce the impact of adverse events as studied in males; (b) whether other manipulations (ketamine) that buffer against stress-induced sequelae engage the same circuit features; and (c) whether these processes operate similarly in females. We argue that investigation of experiential factors that produce resistance/resilience rather than vulnerability to adversity will generate a unique set of biological mechanisms that potentially underlie sex differences in mood disorders.
Collapse
Affiliation(s)
- Isabella P. Fallon
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Margaret K. Tanner
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, 80217, USA
| | | | - Michael V. Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA
| |
Collapse
|
18
|
Brenes JC, Fornaguera J, Sequeira-Cordero A. Environmental Enrichment and Physical Exercise Attenuate the Depressive-Like Effects Induced by Social Isolation Stress in Rats. Front Pharmacol 2020; 11:804. [PMID: 32547399 PMCID: PMC7272682 DOI: 10.3389/fphar.2020.00804] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
We assessed the antidepressant-like effects of environmental enrichment (EE) and physical exercise (PE) compared with the selective serotonin reuptake inhibitor fluoxetine against the depression-related neurobehavioral alterations induced by postweaning social isolation (SI) in rats. After 1 month of SI, rats were submitted to PE (treadmill), EE, or fluoxetine (10 mg/kg), which were compared with naïve SI and group-housed rats. After 1 month, behavior was analyzed in the open field (OFT), the sucrose preference (SPT), and the forced swimming (FST) tests. Afterward, the hippocampal serotonin contents, its metabolite, and turnover were measured. SI induced a depression-related phenotype characterized by a marginal bodyweight gain, anxiety, anhedonia, behavioral despair, and alterations of serotonin metabolism. EE produced the widest and largest antidepressive-like effect, followed by PE and fluoxetine, which were almost equivalent. The treatments, however, affected differentially the neurobehavioral domains investigated. EE exerted its largest effect on anhedonia and was the only treatment inducing anxiolytic-like effects. Fluoxetine, in contrast, produced its largest effect on serotonin metabolism, followed by its anti-behavioral despair action. PE was a middle-ground treatment with broader behavioral outcomes than fluoxetine, but ineffective to reverse the serotonergic alterations induced by SI. The most responsive test to the treatments was the FST, followed closely by the SPT. Although OFT locomotion and body weight varied considerably between groups, they were barely responsive to PE and fluoxetine. From a translational standpoint, our data suggest that exercise and recreational activities may have broader health benefits than antidepressants to overcome confinement and the consequences of chronic stress.
Collapse
Affiliation(s)
- Juan C Brenes
- Institute for Psychological Research, University of Costa Rica, San José, Costa Rica.,Neuroscience Research Center, University of Costa Rica, San José, Costa Rica
| | - Jaime Fornaguera
- Neuroscience Research Center, University of Costa Rica, San José, Costa Rica.,Biochemistry Department, School of Medicine, University of Costa Rica, San José, Costa Rica
| | - Andrey Sequeira-Cordero
- Neuroscience Research Center, University of Costa Rica, San José, Costa Rica.,Institute of Health Research, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
19
|
Alterations in the innate immune system due to exhausting exercise in intensively trained rats. Sci Rep 2020; 10:967. [PMID: 31969634 PMCID: PMC6976645 DOI: 10.1038/s41598-020-57783-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023] Open
Abstract
It is known that intensive physical activity alters the immune system's functionality. However, the influence of the intensity and duration of exercise needs to be studied in more depth. We aimed to establish the changes in the innate immune response induced by two programmes of intensive training in rats compared to sedentary rats. A short training programme included 2 weeks of intensive training, ending with an exhaustion test (short training with exhaustion, S-TE). A second training programme comprised 5-week training including two exhaustion tests and three trainings per week. In this case, immune status was assessed before (T), immediately after (TE) and 24 h after (TE24) an additional final exhaustion test. Biomarkers such as phagocytic activity, macrophage cytokine and reactive oxygen species (ROS) production, and natural killer (NK) cell activity were quantified. S-TE was not enough to induce changes in the assessed innate immunity biomarkers. However, the second training was accompanied by a decrease in the phagocytic activity, changes in the pattern of cytokine secretion and ROS production by macrophages and reduced NK cell proportion but increased NK cytotoxic activity. In conclusion, a 5-week intense training programme, but not a shorter training, induced alterations in the innate immune system functionality.
Collapse
|
20
|
Estruel-Amades S, Ruiz-Iglesias P, Périz M, Franch À, Pérez-Cano FJ, Camps-Bossacoma M, Castell M. Changes in Lymphocyte Composition and Functionality After Intensive Training and Exhausting Exercise in Rats. Front Physiol 2019; 10:1491. [PMID: 31920698 PMCID: PMC6928120 DOI: 10.3389/fphys.2019.01491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Exhausting exercise can have a deleterious effect on the immune system. Nevertheless, the impact of exercise intensity on lymphocyte composition and functionality remains uncertain. The aim of this study was to establish the influence of intensive training on lymphoid tissues (blood, thymus, and spleen) in Wistar rats. Two intensive training programs were performed: a short program, running twice a day for 2 weeks and ending with a final exhaustion test (S-TE group), and a longer program, including two exhaustion tests plus three runs per week for 5 weeks. After this last training program, samples were obtained 24 h after a regular training session (T group), immediately after an additional exhaustion test (TE group) and 24 h later (TE24 group). The composition of lymphocytes in the blood, thymus, and spleen, the function of spleen cells and serum immunoglobulins were determined. In the blood, only the TE group modified lymphocyte proportions. Mature thymocytes' proportions decreased in tissues obtained just after exhaustion. There was a lower percentage of spleen NK and NKT cells after the longer training program. In these rats, the T group showed a reduced lymphoproliferative activity, but it was enhanced immediately after the final exhaustion. Cytokine secretion was modified after the longer training (T group), which decreased IFN-γ and IL-10 secretion but increased that of IL-6. Higher serum IgG concentrations after the longer training program were detected. In conclusion, the intensive training for 5 weeks changed the lymphocyte distribution among primary and secondary lymphoid tissues and modified their function.
Collapse
Affiliation(s)
- Sheila Estruel-Amades
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Patricia Ruiz-Iglesias
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Marta Périz
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Àngels Franch
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Mariona Camps-Bossacoma
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Zhang QH, Hao JW, Li GL, Ji XJ, Zhou M, Yao YM. Long-lasting neurobehavioral alterations in burn-injured mice resembling post-traumatic stress disorder in humans. Exp Neurol 2019; 323:113084. [PMID: 31697945 DOI: 10.1016/j.expneurol.2019.113084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 03/09/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To establish an animal model for posttraumatic stress disorder in burn-injured patients. METHODS Thermal-injured mice with 15% total body surface area were subjected to a series of neurobehavioral tests at 1 and 3 months postburn. Brains were collected for analysis of key molecules expression, spleens for T cell function analysis, and blood for biochemistry and hormones detection. RESULTS Comparison with sham mice, burn mice showed extremely high locomotion in homecage, open field, and forced swimming tests, indicating a hyper-arousal state. Burn mice exhibited improved spatial memory in Morris Water Maze test and heightened context fear memory in context fear conditioning, suggesting re-experiencing behavior. Although burn mice showed pronounced passive avoidance in the step-through test, their active avoidance capability in response to the conditional stimulus in the shuttle box test was relatively deteriorated. Likewise, the retention of cue-feared memory was impaired in fear conditioning test. The above negative alterations in mood were recapitulated in open-field test, in which the burn mice displayed an anxiety-like behavior with less time spent in the center. However, no sign of depression was found in the forced swimming and sucrose preference tests. The negative mood of burn mice was reinforced by a deficit in sociality and preference for social novelty in social interaction test. These neurobehavioral alterations were associated with an increased expression of brain-derived neurotrophic factor along with a remarkable microgliosis and a moderate astrocytosis in the brain of burn vs. sham mice. Moreover, a prominent Th2 switch and consequent increased nuclear NF-κB translocation were seen in the splenic T cells from burn relative to sham mice. CONCLUSIONS We conclude that even mild burn injury could lead to long-lasting cognitive and effective alterations in mice. These findings shed light on the interactions among neuropsychology, neurobiology, and immunology throughout the recovery period of burn injury.
Collapse
Affiliation(s)
- Qing-Hong Zhang
- Trauma Research Center, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, PR China.
| | - Ji-Wei Hao
- Trauma Research Center, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, PR China
| | - Guang-Lei Li
- Trauma Research Center, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, PR China
| | - Xiao-Jing Ji
- Trauma Research Center, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, PR China; Department of Emergency, First Hospital Affiliated to Wenzhou Medical College, Wenzhou, Zhejiang 325000, PR China
| | - Min Zhou
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, PR China
| |
Collapse
|
22
|
Perez EC, Bravo DR, Rodgers SP, Khan AR, Leasure JL. Shaping the adult brain with exercise during development: Emerging evidence and knowledge gaps. Int J Dev Neurosci 2019; 78:147-155. [PMID: 31229526 PMCID: PMC6824985 DOI: 10.1016/j.ijdevneu.2019.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Exercise is known to produce a myriad of positive effects on the brain, including increased glia, neurons, blood vessels, white matter and dendritic complexity. Such effects are associated with enhanced cognition and stress resilience in humans and animal models. As such, exercise represents a positive experience with tremendous potential to influence brain development and shape an adult brain capable of responding to life's challenges. Although substantial evidence attests to the benefits of exercise for cognition in children and adolescents, the vast majority of existing studies examine acute effects. Nonetheless, there is emerging evidence indicating that exercise during development has positive cognitive and neural effects that last to adulthood. There is, therefore, a compelling need for studies designed to determine the extent to which plasticity driven by developmental exercise translates into enhanced brain health and function in adulthood and the underlying mechanisms. Such studies are particularly important given that modern Western society is increasingly characterized by sedentary behavior, and we know little about how this impacts the brain's developmental trajectory. This review synthesizes current literature and outlines significant knowledge gaps that must be filled in order to elucidate what exercise (or lack of exercise) during development contributes to the health and function of the adult brain.
Collapse
Affiliation(s)
- Emma C Perez
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, United States
| | - Diana R Bravo
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, United States
| | - Shaefali P Rodgers
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, United States
| | - Ali R Khan
- Department of Biology & Biochemistry, University of Houston, Houston, TX, 77204-5022, United States
| | - J Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, United States
- Department of Biology & Biochemistry, University of Houston, Houston, TX, 77204-5022, United States
| |
Collapse
|
23
|
Zhang J, Tang C, Liao W, Zhu M, Liu M, Sun N. The antiapoptotic and antioxidative stress effects of Zhisanzhen in the Alzheimer's disease model rat. Neuroreport 2019; 30:628-636. [PMID: 31095002 DOI: 10.1097/wnr.0000000000001243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Zhisanzhen, a type of acupuncture method, has been commonly used in the treatment of various neurodegenerative disorders in clinics in China. The aim of this study was to confirm the effect of Zhisanzhen on Alzheimer's disease and the associated mechanism. We used D-galactose and Aβ1-40 injections to establish a rat model of AD. Rats were divided into four groups: normal group, AD group, AD+manual acupuncture (control) group, and AD+manual acupuncture (Zhisanzhen) group. Zhisanzhen was used to treat the AD model rats. We found that Zhisanzhen improved behavioral performance, reduced oxidative stress, increased the neurotransmitter acetylcholine concentration, reduced apoptosis in hippocampal neurons, and down-regulated the expression of apoptosis-related genes and proteins. Compared with those in the AD group, these parameters were clearly different in the Zhisanzhen control group (P<0.05). These results suggest that Zhisanzhen can markedly enhance learning and memory and reverse the symptoms of Alzheimer's disease in AD model rats, which may be related to the role of Zhisanzhen in increasing chAT and Ache activity, decreasing oxidative stress and inhibiting neuronal apoptosis.Video abstract: http://links.lww.com/WNR/A517.
Collapse
Affiliation(s)
- Jianguo Zhang
- RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning
| | - Chunzhi Tang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Traditional Chinese Medicine
| | - Wenyan Liao
- College of Traditional Chinese Medicine, Macau University of Science and Technology, Macau
| | - Mingmin Zhu
- Traditional Chinese Medical College of Jinan University, Guangzhou
| | - Ming Liu
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Shenzhen
| | - Ningning Sun
- Jiaozuo Hospital of Traditional Chinese Medicine, Henan, China
| |
Collapse
|
24
|
Dahlin E, Andersson M, Thorén A, Hanse E, Seth H. Effects of physical exercise and stress on hippocampal CA1 and dentate gyrus synaptic transmission and long-term potentiation in adolescent and adult Wistar rats. Neuroscience 2019; 408:22-30. [PMID: 30926550 DOI: 10.1016/j.neuroscience.2019.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
It is commonly recognized that physical exercise positively affects several CNS regions and improves cognitive abilities. For example, exercise is associated with an increase in neurogenesis and facilitation of long-term potentiation in the hippocampus. Conversely, animal models for depression are associated with a decrease in neurogenesis and a reduction of long-term potentiation in the hippocampus. Although exercise could be a viable option in the treatment of some forms of depression, the mechanisms responsible for such improvements have not been elucidated. In this study, we examine hippocampal function using electrophysiological field recordings in CA1 and dentate gyrus to study baseline synaptic transmission and long-term potentiation in adolescent and adult rats prenatally exposed to the glucocorticoid dexamethasone. One group of animals was allowed to run voluntarily for 10 or 21 days using an exercise wheel before the experiments, and the control group was prevented from running (i.e. the exercise wheel was locked). In adult saline-exposed animals, exercise was associated with increased long-term potentiation in the dentate gyrus. Unexpectedly, in dexamethasone-exposed animals, dentate gyrus long-term potentiation was facilitated, whereas long-term potentiation in CA1 was unaffected by prenatal dexamethasone or by 10 or 21 days of voluntary running. Irrespective of age, prenatal dexamethasone and running had limited effects on synaptic transmission and presynaptic release in CA1 and dentate gyrus. In summary, running facilitates dentate gyrus long-term potentiation in adult animals that resembles the effects of prenatal dexamethasone.
Collapse
Affiliation(s)
- Emelie Dahlin
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Mats Andersson
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Albin Thorén
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Eric Hanse
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Seth
- Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
25
|
Joksimovic J, Selakovic D, Jovicic N, Mitrovic S, Mihailovic V, Katanic J, Milovanovic D, Rosic G. Exercise Attenuates Anabolic Steroids-Induced Anxiety via Hippocampal NPY and MC4 Receptor in Rats. Front Neurosci 2019; 13:172. [PMID: 30863280 PMCID: PMC6399386 DOI: 10.3389/fnins.2019.00172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
The aim of our study was to evaluate the effects of chronic administration of nandrolone-decanoate (ND) or testosterone-enanthate (TE) in supraphysiological doses and a prolonged swimming protocol, alone and in combination with ND or TE, on anxiety-like behavior in rats. We investigated the immunohistochemical alterations of the hippocampal neuropeptide Y (NPY) and melanocortin 4 receptor (MC4R) neurons, as a possible underlying mechanism in a modulation of anxiety-like behavior in rats. Both applied anabolic androgenic steroids (AASs) induced anxiogenic effect accompanied with decreased serum and hippocampal NPY. The exercise-induced anxiolytic effect was associated with increased hippocampal NPY expression. ND and TE increased the number of MC4R, while the swimming protocol was followed by the reduction of MC4R in the CA1 region of the hippocampus. However, NPY/MC4R ratio in hippocampus was lowered by AASs and elevated by exercise in all hippocampal regions. An augmentation of this ratio strongly and positively correlated to increased time in open arms of elevated plus maze, in the context that indicates anxiolytic effect. Our findings support the conclusion that alterations in both hippocampal NPY and MC4R expression are involved in anxiety level changes in rats, while their quantitative relationship (NPY/MC4R ratio) is even more valuable in the estimation of anxiety regulation than individual alterations for both NPY and MC4R expression in the hippocampus.
Collapse
Affiliation(s)
- Jovana Joksimovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Mihailovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Katanic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Dragan Milovanovic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
26
|
Wang WT, Hao CH, Zhang SX, Zhang XH, Guo F, Sun SY, Zhang R, Zhao ZY, Tang LD. Neuroprotective effect of Sanqi Tongshuan Tablets on sequelae post-stroke in rats. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2018.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
27
|
Leem YH, Chang H. Arc/Arg3.1 protein expression in dorsal hippocampal CA1, a candidate event as a biomarker for the effects of exercise on chronic stress-evoked behavioral abnormalities. J Exerc Nutrition Biochem 2017; 21:45-51. [PMID: 29370673 PMCID: PMC5772070 DOI: 10.20463/jenb.2017.0033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/16/2017] [Indexed: 12/19/2022] Open
Abstract
[Purpose] Chronic stress is a risk factor for behavioral deficits, including impaired memory processing and depression. Exercise is well known to have beneficial impacts on brain health. [Methods] Mice were forced to treadmill running (4-week) during chronic restraint stress (6h/21d), and then behavioral tests were conducted by Novel object recognition, forced swimming test: FST, sociality test: SI. Dissected brain was stained with anti-calbindin-d28k and anti-Arc antibodies. Also, mice were treated with CX546 intraperitoneally during chronic restraint stress, and behavioral tests were assessed using Morris water maze, FST, and SI. Dissected brain was stained with anti-Arc antibody. [Results] The current study demonstrated that chronic stress-induced impairment of memory consolidation and depression-like behaviors, along with the changes in calbindin-d28k and Arc protein levels in the hippocampal CA1 area, were attenuated by regular treadmill running. Further, prolonged ampakine treatment prevented chronic stress-evoked behavioral abnormalities and nuclear Arc levels in hippocampal CA1 neurons. Nuclear localization of Arc protein in hippocampal CA1 neurons, but not total levels, was correlated with behavioral outcome in chronically stressed mice in response to a regular exercise regimen. [Conclusion] These results suggest that nuclear levels of Arc are strongly associated with behavioral changes, and highlight the role of exercise acting through an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR)-mediated mechanisms in a chronic stress-induced maladaptive condition.
Collapse
|
28
|
Abdulai-Saiku S, Hegde A, Vyas A, Mitra R. Effects of stress or infection on rat behavior show robust reversals due to environmental disturbance. F1000Res 2017; 6:2097. [PMID: 29416851 PMCID: PMC5782406 DOI: 10.12688/f1000research.13171.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2017] [Indexed: 12/16/2022] Open
Abstract
Background: The behavior of animals is intricately linked to the environment; a relationship that is often studied in laboratory conditions by using environmental perturbations to study biological mechanisms underlying the behavioral change. Methods: This study pertains to two such well-studied and well-replicated perturbations, i.e., stress-induced anxiogenesis and Toxoplasmagondii -induced loss of innate fear. Here, we demonstrate that behavioral outcomes of these experimental manipulations are contingent upon the ambient quality of the wider environment where animal facilities are situated. Results: During late 2014 and early 2015, a building construction project started adjacent to our animal facility. During this phase, we observed that maternal separation stress caused anxiolysis, rather than historically observed anxiogenesis, in laboratory rats. We also found that Toxoplasma gondii infection caused an increase, rather than historically observed decrease, in innate aversion to predator odors in rats. Conclusion: These observations suggest that effects of stress and Toxoplasma gondii are dependent on variables in the environment that often go unreported in the published literature.
Collapse
Affiliation(s)
- Samira Abdulai-Saiku
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Akshaya Hegde
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
29
|
Abdulai-Saiku S, Hegde A, Vyas A, Mitra R. Effects of stress or infection on rat behavior show robust reversals due to environmental disturbance. F1000Res 2017; 6:2097. [PMID: 29416851 PMCID: PMC5782406 DOI: 10.12688/f1000research.13171.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2017] [Indexed: 12/13/2022] Open
Abstract
Background: The behavior of animals is intricately linked to the environment; a relationship that is often studied in laboratory conditions by using environmental perturbations to study biological mechanisms underlying the behavioral change. Methods: This study pertains to two such well-studied and well-replicated perturbations, i.e., stress-induced anxiogenesis and Toxoplasma-induced loss of innate fear. Here, we demonstrate that behavioral outcomes of these experimental manipulations are contingent upon the ambient quality of the wider environment where animal facilities are situated. Results: During late 2014 and early 2015, a building construction project started adjacent to our animal facility. During this phase, we observed that maternal separation stress caused anxiolysis, rather than historically observed anxiogenesis, in laboratory rats. We also found that Toxoplasma infection caused an increase, rather than historically observed decrease, in innate aversion to predator odors in rats. Conclusion: These observations suggest that effects of stress and Toxoplasma are dependent on variables in the environment that often go unreported in the published literature.
Collapse
Affiliation(s)
- Samira Abdulai-Saiku
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Akshaya Hegde
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
30
|
Behaviour, stress and welfare of Sprague Dawley rats ( Rattus norvegicus ) on diet board feeding for 24 months. Appl Anim Behav Sci 2017. [DOI: 10.1016/j.applanim.2017.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Watanasriyakul WT, Wardwell J, McNeal N, Schultz R, Woodbury M, Dagner A, Cox M, Grippo AJ. Voluntary physical exercise protects against behavioral and endocrine reactivity to social and environmental stressors in the prairie vole. Soc Neurosci 2017; 13:602-615. [PMID: 28786739 DOI: 10.1080/17470919.2017.1365761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Physical activity can combat detrimental effects of stress. The current study examined the potential protective effects of exercise against a combination of social isolation and chronic mild stress (CMS) in a prairie vole model. Female voles were isolated for 4 weeks, with the addition of CMS during the final 2 weeks. Half of the voles were allowed access to a running wheel during this final 2 weeks, while the other half remained sedentary. Animals underwent behavioral tests to assess depressive- and anxiety-behaviors. In a subset of animals, plasma was collected 10 minutes after behavioral testing for corticosterone analysis. In a separate subset, brains were collected 2 hours after behavioral testing for cFos analysis in the paraventricular nucleus (PVN). Voles in the exercise group displayed significantly lower depressive- and anxiety-behaviors, and displayed significantly lower corticosterone levels, compared to animals in the sedentary group. There was no difference in PVN cFos activity between groups. Interestingly, animals that moderately exercised displayed lower levels of depressive-behavior and attenuated corticosterone reactivity compared to animals in the low and high activity subgroups. These findings suggest that physical activity can protect against a combination of social and environmental stressors.
Collapse
Affiliation(s)
| | - Joshua Wardwell
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Neal McNeal
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Rachel Schultz
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Matthew Woodbury
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Ashley Dagner
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Miranda Cox
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Angela J Grippo
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| |
Collapse
|
32
|
Suárez-García S, del Bas JM, Caimari A, Escorihuela RM, Arola L, Suárez M. Impact of a cafeteria diet and daily physical training on the rat serum metabolome. PLoS One 2017; 12:e0171970. [PMID: 28192465 PMCID: PMC5305073 DOI: 10.1371/journal.pone.0171970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/27/2017] [Indexed: 12/18/2022] Open
Abstract
Regular physical activity and healthy dietary patterns are commonly recommended for the prevention and treatment of metabolic syndrome (MetS), which is diagnosed at an alarmingly increasing rate, especially among adolescents. Nevertheless, little is known regarding the relevance of physical exercise on the modulation of the metabolome in healthy people and those with MetS. We have previously shown that treadmill exercise ameliorated different symptoms of MetS. The aim of this study was to investigate the impact of a MetS-inducing diet and different intensities of aerobic training on the overall serum metabolome of adolescent rats. For 8 weeks, young rats were fed either standard chow (ST) or cafeteria diet (CAF) and were subjected to a daily program of training on a treadmill at different speeds. Non-targeted metabolomics was used to identify changes in circulating metabolites, and a combination of multivariate analysis techniques was implemented to achieve a holistic understanding of the metabolome. Among all the identified circulating metabolites influenced by CAF, lysophosphatidylcholines were the most represented family. Serum sphingolipids, bile acids, acylcarnitines, unsaturated fatty acids and vitamin E and A derivatives also changed significantly in CAF-fed rats. These findings suggest that an enduring systemic inflammatory state is induced by CAF. The impact of physical training on the metabolome was less striking than the impact of diet and mainly altered circulating bile acids and glycerophospholipids. Furthermore, the serum levels of monocyte chemoattractant protein-1 were increased in CAF-fed rats, and C-reactive protein was decreased in trained groups. The leptin/adiponectin ratio, a useful marker of MetS, was increased in CAF groups, but decreased in proportion to training intensity. Multivariate analysis revealed that ST-fed animals were more susceptible to exercise-induced changes in metabolites than animals with MetS, in which moderate-intensity seems more effective than high-intensity training. Our results indicate that CAF has a strong negative impact on the metabolome of animals that is difficult to reverse by daily exercise.
Collapse
Affiliation(s)
- Susana Suárez-García
- Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep M. del Bas
- Technological Unit of Nutrition and Health, EURECAT-Technological Center of Catalonia, Reus, Spain
| | - Antoni Caimari
- Technological Unit of Nutrition and Health, EURECAT-Technological Center of Catalonia, Reus, Spain
| | - Rosa M. Escorihuela
- Institut de Neurociències, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lluís Arola
- Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Technological Unit of Nutrition and Health, EURECAT-Technological Center of Catalonia, Reus, Spain
| | - Manuel Suárez
- Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
33
|
Bi MJ, Sun XN, Zou Y, Ding XY, Liu B, Zhang YH, Guo DD, Li Q. N-Butylphthalide Improves Cognitive Function in Rats after Carbon Monoxide Poisoning. Front Pharmacol 2017; 8:64. [PMID: 28232802 PMCID: PMC5298996 DOI: 10.3389/fphar.2017.00064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Cognitive impairment is the most common neurologic sequelae after carbon monoxide (CO) poisoning, and the previous investigations have demonstrated that N-Butylphthalide (NBP) could exert a broad spectrum of neuroprotective properties. The current study aimed to investigate the effect of NBP on cognitive dysfunction in rats after acute severe CO poisoning. Rats were randomly divided into a normal control group, a CO poisoning group and a CO+NBP group. The animal model of CO poisoning was established by exposure to CO in a chamber, and then all rats received hyperbaric oxygen therapy once daily, while rats in CO+NBP group were administered orally NBP (6 mg/ 100g) by gavage twice a day additionally. The results indicated that CO poisoning could induce cognitive impairment. The ultrastructure of hippocampus was seriously damaged under transmission electron microscopy, and the expressions of calpain 1 and CaMK II proteins were significantly elevated after CO exposure according to the analysis of immunofluorescence staining and western blot. NBP treatment could evidently improve cognitive function, and maintain ultrastructure integrity of hippocampus. The expression levels of both calpain 1 and CaMK II proteins in CO+NBP group were considerably lower than that of CO poisoning group (P < 0.05). Taken together, this study highlights the molecular mechanism of cognitive dysfunction in rats after CO exposure via the upregulation of both calpain 1 and CaMK II proteins. The administration of NBP could balance the expressions of calpain 1 and CaMK II proteins and improve cognitive function through maintaining ultrastructural integrity of hippocampus, and thus may play a neuroprotective role in brain tissue in rats with CO poisoning.
Collapse
Affiliation(s)
- Ming-Jun Bi
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, China; Emergency Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, China
| | - Xian-Ni Sun
- Emergency Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai, China
| | - Yong Zou
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai, China
| | - Xiao-Yu Ding
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, China; Department of Integration of Chinese and Western Clinical Medicine, Qingdao University Medical CollegeQingdao, China
| | - Bin Liu
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine Jinan, China
| | - Yue-Heng Zhang
- Department of Clinical Medicine, Binzhou Medical University Yantai, China
| | - Da-Dong Guo
- Eye Institute, Shandong University of Traditional Chinese Medicine Jinan, China
| | - Qin Li
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai, China
| |
Collapse
|
34
|
Cigarroa I, Lalanza JF, Caimari A, del Bas JM, Capdevila L, Arola L, Escorihuela RM. Treadmill Intervention Attenuates the Cafeteria Diet-Induced Impairment of Stress-Coping Strategies in Young Adult Female Rats. PLoS One 2016; 11:e0153687. [PMID: 27099927 PMCID: PMC4839746 DOI: 10.1371/journal.pone.0153687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/03/2016] [Indexed: 12/12/2022] Open
Abstract
The current prevalence of diet-induced overweight and obesity in adolescents and adults is continuously growing. Although the detrimental biochemical and metabolic consequences of obesity are widely studied, its impact on stress-coping behavior and its interaction with specific exercise doses (in terms of intensity, duration and frequency) need further investigation. To this aim, we fed adolescent rats either an obesogenic diet (cafeteria diet, CAF) or standard chow (ST). Each group was subdivided into four subgroups according to the type of treadmill intervention as follows: a sedentary group receiving no manipulation; a control group exposed to a stationary treadmill; a low-intensity treadmill group trained at 12 m/min; and a higher intensity treadmill group trained at 17 m/min. Both the diet and treadmill interventions started at weaning and lasted for 8 weeks. Subjects were tested for anxiety-like behavior in the open field test and for coping strategies in the two-way active avoidance paradigm at week 7 and were sacrificed at week 8 for biometric and metabolic characterization. CAF feeding increased the weight gain, relative retroperitoneal white adipose tissue (RWAT %), and plasma levels of glucose, insulin, triglycerides and leptin and decreased the insulin sensitivity. Treadmill intervention partially reversed the RWAT% and triglyceride alterations; at higher intensity, it decreased the leptin levels of CAF-fed animals. CAF feeding decreased the motor activity and impaired the performance in a two-way active avoidance assessment. Treadmill intervention reduced defecation in the shuttle box, suggesting diminished anxiety. CAF feeding combined with treadmill training at 17 m/min increased the time spent in the center of the open field and more importantly, partially reversed the two-way active avoidance deficit. In conclusion, this study demonstrates that at doses that decreased anxiety-like behavior, treadmill exercise partially improved the coping strategy in terms of active avoidance behavior in the CAF-fed animals. This effect was not observed at lower doses of treadmill training.
Collapse
Affiliation(s)
- Igor Cigarroa
- Institut de Neurociències, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain
- Carrera de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Los Ángeles, región del Bio-Bio, Chile
| | - Jaume F. Lalanza
- Institut de Neurociències, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Caimari
- Grup de Recerca en Nutrició i Salut (GRNS). Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, CEICS, Reus, Spain
| | - Josep M. del Bas
- Grup de Recerca en Nutrició i Salut (GRNS). Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, CEICS, Reus, Spain
| | - Lluís Capdevila
- Laboratori de Psicologia de l’Esport, Departament de Psicologia Bàsica, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lluís Arola
- Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, CEICS, Reus, Spain
| | - Rosa M. Escorihuela
- Institut de Neurociències, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|