1
|
Lippi A, Krisko A. Protein aggregation: A detrimental symptom or an adaptation mechanism? J Neurochem 2024; 168:1426-1441. [PMID: 37694504 DOI: 10.1111/jnc.15955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Protein quality control mechanisms oversee numerous aspects of protein lifetime. From the point of protein synthesis, protein homeostasis machineries take part in folding, solubilization, and/or degradation of impaired proteins. Some proteins follow an alternative path upon loss of their solubility, thus are secluded from the cytosol and form protein aggregates. Protein aggregates differ in their function and composition, rendering protein aggregation a complex phenomenon that continues to receive plenty of attention in the scientific and medical communities. Traditionally, protein aggregates have been associated with aging and a large spectrum of protein folding diseases, such as neurodegenerative diseases, type 2 diabetes, or cataract. However, a body of evidence suggests that they may act as an adaptive mechanism to overcome transient stressful conditions, serving as a sink for the removal of misfolded proteins from the cytosol or storage compartments for machineries required upon stress release. In this review, we present examples and evidence elaborating different possible roles of protein aggregation and discuss their potential roles in stress survival, aging, and disease, as well as possible anti-aggregation interventions.
Collapse
Affiliation(s)
- Alice Lippi
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Anita Krisko
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
López-Laguna H, Tsimbouri PM, Jayawarna V, Rigou I, Serna N, Voltà-Durán E, Unzueta U, Salmeron-Sanchez M, Vázquez E, Dalby MJ, Villaverde A. Hybrid Micro-/Nanoprotein Platform Provides Endocrine-like and Extracellular Matrix-like Cell Delivery of Growth Factors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32930-32944. [PMID: 38888932 PMCID: PMC11231985 DOI: 10.1021/acsami.4c01210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Protein materials are versatile tools in diverse biomedical fields. Among them, artificial secretory granules (SGs), mimicking those from the endocrine system, act as mechanically stable reservoirs for the sustained release of proteins as oligomeric functional nanoparticles. Only validated in oncology, the physicochemical properties of SGs, along with their combined drug-releasing and scaffolding abilities, make them suitable as smart topographies in regenerative medicine for the prolonged delivery of growth factors (GFs). Thus, considering the need for novel, safe, and cost-effective materials to present GFs, in this study, we aimed to biofabricate a protein platform combining both endocrine-like and extracellular matrix fibronectin-derived (ECM-FN) systems. This approach is based on the sustained delivery of a nanostructured histidine-tagged version of human fibroblast growth factor 2. The GF is presented onto polymeric surfaces, interacting with FN to spontaneously generate nanonetworks that absorb and present the GF in the solid state, to modulate mesenchymal stromal cell (MSC) behavior. The results show that SGs-based topographies trigger high rates of MSCs proliferation while preventing differentiation. While this could be useful in cell therapy manufacture demanding large numbers of unspecialized MSCs, it fully validates the hybrid platform as a convenient setup for the design of biologically active hybrid surfaces and in tissue engineering for the controlled manipulation of mammalian cell growth.
Collapse
Affiliation(s)
- Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, U.K
| | - Vineetha Jayawarna
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, U.K
| | - Ioanna Rigou
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, U.K
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| | - Ugutz Unzueta
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona 08041, Spain
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, U.K
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, U.K
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain
| |
Collapse
|
3
|
Monteiro C, Gomes MC, Bharmoria P, Freire MG, Coutinho JA, Custódio CA, Mano JF. Human Platelet Lysate-Derived Nanofibrils as Building Blocks to Produce Free-Standing Membranes for Cell Self-Aggregation. ACS NANO 2024; 18:15815-15830. [PMID: 38833572 PMCID: PMC11191744 DOI: 10.1021/acsnano.4c02790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Amyloid-like fibrils are garnering keen interest in biotechnology as supramolecular nanofunctional units to be used as biomimetic platforms to control cell behavior. Recent insights into fibril functionality have highlighted their importance in tissue structure, mechanical properties, and improved cell adhesion, emphasizing the need for scalable and high-kinetics fibril synthesis. In this study, we present the instantaneous and bulk formation of amyloid-like nanofibrils from human platelet lysate (PL) using the ionic liquid cholinium tosylate as a fibrillating agent. The instant fibrillation of PL proteins upon supramolecular protein-ionic liquid interactions was confirmed from the protein conformational transition toward cross-β-sheet-rich structures. These nanofibrils were utilized as building blocks for the formation of thin and flexible free-standing membranes via solvent casting to support cell self-aggregation. These PL-derived fibril membranes reveal a nanotopographically rough surface and high stability over 14 days under cell culture conditions. The culture of mesenchymal stem cells or tumor cells on the top of the membrane demonstrated that cells are able to adhere and self-organize in a three-dimensional (3D) spheroid-like microtissue while tightly folding the fibril membrane. Results suggest that nanofibril membrane incorporation in cell aggregates can improve cell viability and metabolic activity, recreating native tissues' organization. Altogether, these PL-derived nanofibril membranes are suitable bioactive platforms to generate 3D cell-guided microtissues, which can be explored as bottom-up strategies to faithfully emulate native tissues in a fully human microenvironment.
Collapse
Affiliation(s)
- Cátia
F. Monteiro
- CICECO − Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Maria C. Gomes
- CICECO − Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | | | - Mara G. Freire
- CICECO − Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - João A.
P. Coutinho
- CICECO − Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Catarina A. Custódio
- CICECO − Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - João F. Mano
- CICECO − Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| |
Collapse
|
4
|
Bosch-Camós L, Martínez-Torró C, López-Laguna H, Lascorz J, Argilaguet J, Villaverde A, Rodríguez F, Vázquez E. Nanoparticle-Based Secretory Granules Induce a Specific and Long-Lasting Immune Response through Prolonged Antigen Release. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:435. [PMID: 38470766 DOI: 10.3390/nano14050435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Developing prolonged antigen delivery systems that mimic long-term exposure to pathogens appears as a promising but still poorly explored approach to reach durable immunities. In this study, we have used a simple technology by which His-tagged proteins can be assembled, assisted by divalent cations, as supramolecular complexes with progressive complexity, namely protein-only nanoparticles and microparticles. Microparticles produced out of nanoparticles are biomimetics of secretory granules from the mammalian hormonal system. Upon subcutaneous administration, they slowly disintegrate, acting as an endocrine-like secretory system and rendering the building block nanoparticles progressively bioavailable. The performance of such materials, previously validated for drug delivery in oncology, has been tested here regarding the potential for time-prolonged antigen release. This has been completed by taking, as a building block, a nanostructured version of p30, a main structural immunogen from the African swine fever virus (ASFV). By challenging the system in both mice and pigs, we have observed unusually potent pro-inflammatory activity in porcine macrophages, and long-lasting humoral and cellular responses in vivo, which might overcome the need for an adjuvant. The robustness of both innate and adaptive responses tag, for the first time, these dynamic depot materials as a novel and valuable instrument with transversal applicability in immune stimulation and vaccinology.
Collapse
Affiliation(s)
- Laia Bosch-Camós
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Carlos Martínez-Torró
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Hèctor López-Laguna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jara Lascorz
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jordi Argilaguet
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Fernando Rodríguez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
5
|
Turbant F, Machiels Q, Waeytens J, Wien F, Arluison V. The Amyloid Assembly of the Bacterial Hfq Is Lipid-Driven and Lipid-Specific. Int J Mol Sci 2024; 25:1434. [PMID: 38338713 PMCID: PMC10855545 DOI: 10.3390/ijms25031434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Under specific conditions, some proteins can self-assemble into fibrillar structures called amyloids. Initially, these proteins were associated with neurodegenerative diseases in eucaryotes. Nevertheless, they have now been identified in the three domains of life. In bacteria, they are involved in diverse biological processes and are usually useful for the cell. For this reason, they are classified as "functional amyloids". In this work, we focus our analysis on a bacterial functional amyloid called Hfq. Hfq is a pleiotropic regulator that mediates several aspects of genetic expression, mainly via the use of small noncoding RNAs. Our previous work showed that Hfq amyloid-fibrils interact with membranes. This interaction influences Hfq amyloid structure formation and stability, but the specifics of the lipid on the dynamics of this process is unknown. Here, we show, using spectroscopic methods, how lipids specifically drive and modulate Hfq amyloid assembly or, conversely, its disassembly. The reported effects are discussed in light of the consequences for bacterial cell life.
Collapse
Affiliation(s)
- Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, CEA Saclay, 91191 Gif-sur-Yvette, France;
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France;
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Quentin Machiels
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, 1050 Bruxelles, Belgium; (Q.M.); (J.W.)
| | - Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, 1050 Bruxelles, Belgium; (Q.M.); (J.W.)
- Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Frank Wien
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France;
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, CEA Saclay, 91191 Gif-sur-Yvette, France;
- SDV Department, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
6
|
Ribes JM, Patel MP, Halim HA, Berretta A, Tooze SA, Klöhn PC. Prion protein conversion at two distinct cellular sites precedes fibrillisation. Nat Commun 2023; 14:8354. [PMID: 38102121 PMCID: PMC10724300 DOI: 10.1038/s41467-023-43961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
The self-templating nature of prions plays a central role in prion pathogenesis and is associated with infectivity and transmissibility. Since propagation of proteopathic seeds has now been acknowledged a principal pathogenic process in many types of dementia, more insight into the molecular mechanism of prion replication is vital to delineate specific and common disease pathways. By employing highly discriminatory anti-PrP antibodies and conversion-tolerant PrP chimera, we here report that de novo PrP conversion and formation of fibril-like PrP aggregates are distinct in mechanistic and kinetic terms. De novo PrP conversion occurs within minutes after infection at two subcellular locations, while fibril-like PrP aggregates are formed exclusively at the plasma membrane, hours after infection. Phenotypically distinct pools of abnormal PrP at perinuclear sites and the plasma membrane show differences in N-terminal processing, aggregation state and fibril formation and are linked by exocytic transport via synaptic and large-dense core vesicles.
Collapse
Affiliation(s)
- Juan Manuel Ribes
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, W1W 7FF, UK
| | - Mitali P Patel
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, W1W 7FF, UK
| | - Hazim A Halim
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, W1W 7FF, UK
| | - Antonio Berretta
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, W1W 7FF, UK
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, the Francis Crick Institute, London, NW1 1BF, UK
| | - Peter-Christian Klöhn
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, W1W 7FF, UK.
| |
Collapse
|
7
|
Serna N, López-Laguna H, Aceituno P, Rojas-Peña M, Parladé E, Voltà-Durán E, Martínez-Torró C, Sánchez JM, Di Somma A, Carratalá JV, Livieri AL, Ferrer-Miralles N, Vázquez E, Unzueta U, Roher N, Villaverde A. Efficient Delivery of Antimicrobial Peptides in an Innovative, Slow-Release Pharmacological Formulation. Pharmaceutics 2023; 15:2632. [PMID: 38004610 PMCID: PMC10674355 DOI: 10.3390/pharmaceutics15112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Both nanostructure and multivalency enhance the biological activities of antimicrobial peptides (AMPs), whose mechanism of action is cooperative. In addition, the efficacy of a particular AMP should benefit from a steady concentration at the local place of action and, therefore, from a slow release after a dynamic repository. In the context of emerging multi-resistant bacterial infections and the urgent need for novel and effective antimicrobial drugs, we tested these concepts through the engineering of four AMPs into supramolecular complexes as pharmacological entities. For that purpose, GWH1, T22, Pt5, and PaD, produced as GFP or human nidogen-based His-tagged fusion proteins, were engineered as self-assembling oligomeric nanoparticles ranging from 10 to 70 nm and further packaged into nanoparticle-leaking submicron granules. Since these materials slowly release functional nanoparticles during their time-sustained unpacking, they are suitable for use as drug depots in vivo. In this context, a particular AMP version (GWH1-NIDO-H6) was selected for in vivo validation in a zebrafish model of a complex bacterial infection. The GWH1-NIDO-H6-secreting protein granules are protective in zebrafish against infection by the multi-resistant bacterium Stenotrophomonas maltophilia, proving the potential of innovative formulations based on nanostructured and slowly released recombinant AMPs in the fight against bacterial infections.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Patricia Aceituno
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Mauricio Rojas-Peña
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Julieta M. Sánchez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), (CONICET-Universidad Nacional de Córdoba), ICTA, FCEFyN, UNC. Av. Velez Sarsfield 1611, Córdoba X 5016GCA, Argentina
| | - Angela Di Somma
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
| | - Jose Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Andrea L. Livieri
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Nerea Roher
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (N.S.); (P.A.); (M.R.-P.); (E.P.); (E.V.-D.); (C.M.-T.); (J.M.S.); (A.D.S.); (J.V.C.); (A.L.L.); (N.F.-M.); (E.V.); (N.R.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Barcelona, Spain
| |
Collapse
|
8
|
Parladé E, Sánchez JM, López-Laguna H, Unzueta U, Villaverde A, Vázquez E. Protein features instruct the secretion dynamics from metal-supported synthetic amyloids. Int J Biol Macromol 2023; 250:126164. [PMID: 37549767 DOI: 10.1016/j.ijbiomac.2023.126164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Hexahistidine-tagged proteins can be clustered by divalent cations into self-containing, dynamic protein depots at the microscale, which under physiological conditions leak functional protein. While such protein granules show promise in clinics as time-sustained drug delivery systems, little is known about how the nature of their components, that is, the protein and the particular cation used as cross-linker, impact on the disintegration of the material and on its secretory performance. By using four model proteins and four different cation formulations to control aggregation, we have here determined a moderate influence of the used cation and a potent impact of some protein properties on the release kinetics and on the final fraction of releasable protein. In particular, the electrostatic charge at the amino terminus and the instability and hydropathicity indexes determine the disintegration profile of the depot. These data offer clues for the fabrication of efficient and fully exploitable secretory granules that being biocompatible and chemically homogenous allow their tailored use as drug delivery platforms in biological systems.
Collapse
Affiliation(s)
- Eloi Parladé
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Julieta M Sánchez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departamento de Química, Cátedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba 5016, Argentina; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Hèctor López-Laguna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08025 Barcelona, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
9
|
Hymer WC, Kraemer WJ. Resistance exercise stress: theoretical mechanisms for growth hormone processing and release from the anterior pituitary somatotroph. Eur J Appl Physiol 2023; 123:1867-1878. [PMID: 37421488 DOI: 10.1007/s00421-023-05263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
Heavy resistance exercise (HRE) is the most effective method for inducing muscular hypertrophy and stimulating anabolic hormones, including growth hormone, into the blood. In this review, we explore possible mechanisms within the GH secretory pathway of the pituitary somatotroph, which are likely to modulate the flow of hormone synthesis and packaging as it is processed prior to exocytosis. Special emphasis is placed on the secretory granule and its possible role as a signaling hub. We also review data that summarize how HRE affects the quality and quantity of the secreted hormone. Finally, these pathway mechanisms are considered in the context of heterogeneity of the somatotroph population in the anterior pituitary.
Collapse
Affiliation(s)
- Wesley C Hymer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43802, USA.
- Department of Kinesiology, University of Connecticut, Storrs, CT, USA.
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.
| |
Collapse
|
10
|
Álamo P, Parladé E, Favaro MTP, Gallardo A, Mendoza R, Ferreira LC, Roher N, Mangues R, Villaverde A, Vázquez E. Probing the Biosafety of Implantable Artificial Secretory Granules for the Sustained Release of Bioactive Proteins. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39167-39175. [PMID: 37614001 PMCID: PMC10450642 DOI: 10.1021/acsami.3c08643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Among bio-inspired protein materials, secretory protein microparticles are of clinical interest as self-contained, slow protein delivery platforms that mimic secretory granules of the human endocrine system, in which the protein is both the drug and the scaffold. Upon subcutaneous injection, their progressive disintegration results in the sustained release of the building block polypeptides, which reach the bloodstream for systemic distribution and subsequent biological effects. Such entities are easily fabricated in vitro by Zn-assisted cross-molecular coordination of histidine residues. Using cationic Zn for the assembly of selected pure protein species and in the absence of any heterologous holding material, these granules are expected to be nontoxic and therefore adequate for different clinical uses. However, such presumed biosafety has not been so far confirmed and the potential protein dosage threshold not probed yet. By selecting the receptor binding domain (RBD) from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein as a model protein and using a mouse lab model, we have explored the toxicity of RBD-made secretory granules at increasing doses up to ∼100 mg/kg of animal weight. By monitoring body weight and biochemical blood markers and through the histological scrutiny of main tissues and organs, we have not observed systemic toxicity. Otherwise, the bioavailability of the material was demonstrated by the induction of specific antibody responses. The presented data confirm the intrinsic biosafety of artificial secretory granules made by recombinant proteins and prompt their further clinical development as self-contained and dynamic protein reservoirs.
Collapse
Affiliation(s)
- Patricia Álamo
- Institut
d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Josep
Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN,
ISCIII), Universitat Autònoma de
Barcelona, 08193 Bellaterra, Spain
| | - Eloi Parladé
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN,
ISCIII), Universitat Autònoma de
Barcelona, 08193 Bellaterra, Spain
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marianna T. P. Favaro
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, 08193 Bellaterra, Spain
- Instituto
de Ciências Biomédicas, Universidade
de São Paulo, São
Paulo 05508-000, Brazil
| | - Alberto Gallardo
- Institut
d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Department
of Pathology, Hospital de la Santa Creu
i Sant Pau, 08025 Barcelona, Spain
| | - Rosa Mendoza
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN,
ISCIII), Universitat Autònoma de
Barcelona, 08193 Bellaterra, Spain
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Luís C.
S. Ferreira
- Instituto
de Ciências Biomédicas, Universidade
de São Paulo, São
Paulo 05508-000, Brazil
| | - Nerea Roher
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN,
ISCIII), Universitat Autònoma de
Barcelona, 08193 Bellaterra, Spain
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department
of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ramón Mangues
- Institut
d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Josep
Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN,
ISCIII), Universitat Autònoma de
Barcelona, 08193 Bellaterra, Spain
| | - Antonio Villaverde
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN,
ISCIII), Universitat Autònoma de
Barcelona, 08193 Bellaterra, Spain
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Esther Vázquez
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN,
ISCIII), Universitat Autònoma de
Barcelona, 08193 Bellaterra, Spain
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
11
|
Kamrani S, Yaghmaei P, Nikkhah M, Hosseinkhani S. Spectroscopic analysis of recombinant human growth hormone in the presence of sucrose and trehalose. Biotechnol Appl Biochem 2023; 70:1543-1553. [PMID: 36807340 DOI: 10.1002/bab.2452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
Recombinant human growth hormone (rhGH) is a therapeutic protein, associated with various human diseases, such as growth hormone deficiency. One of the interesting issues in the formulation of therapeutic proteins is excipients like disaccharides. In the current study, we try to compare the effect of sucrose and trehalose on the structure of rhGH in the liquid state at 25°C and 55°C. We use spectroscopic techniques including intrinsic and extrinsic fluorescence, Fourier-transform infrared (FTIR), circular dichroism (CD), dynamic light scattering (DLS), and time-resolved fluorescence. FTIR shows a slight change in the secondary structure of rhGH in presence of the sugars as sucrose is more effective than trehalose. Fluorescence investigations also confirm the enhancements of folding of rhGH and fluorescein isothiocyanate (FITC)-rhGH in presence of sucrose (1.5-fold more than trehalose). Also, we studied sucrose's effect on the rete of aggregation of rhGH using spectroscopy of Congo red, and fluorescence imaging of thioflavin T (ThT)-treated samples. It can be suggested that sucrose facilitates the amyloid formation of rhGH during 20 days of incubation at 37°C. This study will help to understand the growth hormone structural behavior in the liquid state in the presence of sucrose and trehalose in vitro.
Collapse
Affiliation(s)
- Solmaz Kamrani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Corchero JL, Favaro MTP, Márquez-Martínez M, Lascorz J, Martínez-Torró C, Sánchez JM, López-Laguna H, de Souza Ferreira LC, Vázquez E, Ferrer-Miralles N, Villaverde A, Parladé E. Recombinant Proteins for Assembling as Nano- and Micro-Scale Materials for Drug Delivery: A Host Comparative Overview. Pharmaceutics 2023; 15:pharmaceutics15041197. [PMID: 37111682 PMCID: PMC10144854 DOI: 10.3390/pharmaceutics15041197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
By following simple protein engineering steps, recombinant proteins with promising applications in the field of drug delivery can be assembled in the form of functional materials of increasing complexity, either as nanoparticles or nanoparticle-leaking secretory microparticles. Among the suitable strategies for protein assembly, the use of histidine-rich tags in combination with coordinating divalent cations allows the construction of both categories of material out of pure polypeptide samples. Such molecular crosslinking results in chemically homogeneous protein particles with a defined composition, a fact that offers soft regulatory routes towards clinical applications for nanostructured protein-only drugs or for protein-based drug vehicles. Successes in the fabrication and final performance of these materials are expected, irrespective of the protein source. However, this fact has not yet been fully explored and confirmed. By taking the antigenic RBD domain of the SARS-CoV-2 spike glycoprotein as a model building block, we investigated the production of nanoparticles and secretory microparticles out of the versions of recombinant RBD produced by bacteria (Escherichia coli), insect cells (Sf9), and two different mammalian cell lines (namely HEK 293F and Expi293F). Although both functional nanoparticles and secretory microparticles were effectively generated in all cases, the technological and biological idiosyncrasy of each type of cell factory impacted the biophysical properties of the products. Therefore, the selection of a protein biofabrication platform is not irrelevant but instead is a significant factor in the upstream pipeline of protein assembly into supramolecular, complex, and functional materials.
Collapse
Affiliation(s)
- José Luis Corchero
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marianna T P Favaro
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Merce Márquez-Martínez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jara Lascorz
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Carlos Martínez-Torró
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Julieta M Sánchez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departamento de Química, Cátedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, Córdoba 5016, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Hèctor López-Laguna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Neus Ferrer-Miralles
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eloi Parladé
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
13
|
Application of Amyloid-Based Hybrid Membranes in Drug Delivery. Polymers (Basel) 2023; 15:polym15061444. [PMID: 36987222 PMCID: PMC10052896 DOI: 10.3390/polym15061444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023] Open
Abstract
The properties of amyloid fibrils, e.g., unique structural characteristics and superior biocompatibility, make them a promising vehicle for drug delivery. Here, carboxymethyl cellulose (CMC) and whey protein isolate amyloid fibril (WPI-AF) were used to synthesize amyloid-based hybrid membranes as vehicles for the delivery of cationic and hydrophobic drugs (e.g., methylene blue (MB) and riboflavin (RF)). The CMC/WPI-AF membranes were synthesized via chemical crosslinking coupled with phase inversion. The zeta potential and scanning electron microscopy results revealed a negative charge and a pleated surface microstructure with a high content of WPI-AF. FTIR analysis showed that the CMC and WPI-AF were cross-linked via glutaraldehyde and the interacting forces between membrane and MB or RF was found to be electrostatic interaction and hydrogen bonding, respectively. Next, the in vitro drug release from membranes was monitored using UV-vis spectrophotometry. Additionally, two empirical models were used to analyze the drug release data and relevant rate constant and parameters were determined accordingly. Moreover, our results indicated that in vitro drug release rates depended on the drug–matrix interactions and transport mechanism, which could be controlled by altering the WPI-AF content in membrane. This research provides an excellent example of utilizing two-dimensional amyloid-based materials for drug delivery.
Collapse
|
14
|
Ismail M, Kanapathipillai M. Amyloid-like RIP1/RIP3 RHIM Fragments' Characterization and Application as a Drug Depot. Molecules 2023; 28:1480. [PMID: 36771145 PMCID: PMC9918910 DOI: 10.3390/molecules28031480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Amyloid aggregates play a major role in diseases as well as in normal physiological function. Receptor-interacting protein kinases 1 and 3 (RIP1/RIP3) aggregates complexes in cellular necroptosis is one example of protein aggregation in normal cellular function. Although recently there have been several studies on full kinase proteins aggregation, the aggregation potential of small peptide sequences of RIP1/RIP3, the physicochemical properties, and the potential in biomedical applications have not been explored. Hence, in this paper, we study the aggregation propensity of peptides consisting of four and twelve amino acid sequences in the RHIM region of RIP1/RIP3 proteins that are known to drive the beta-sheet formation and the subsequent aggregation. The aggregation kinetics, physicochemical characterization, mechanosensitive properties, cellular effects, and potential as a cancer drug depot have been investigated. The results show that the number and concentration of amino acids play a role in amyloid-like aggregates' properties. Further, the aggregates when formulated with cisplatin-induced significant lung cancer cell toxicity compared to an equal amount of cisplatin with and without ultrasound. The study would serve as a platform for further investigation on RIP1/RIP3 peptide and protein aggregates, their role in multiple cellular functions and diseases, and their potential as drug depots.
Collapse
|
15
|
Lai YR, Lai JT, Wang SSS, Kuo YC, Lin TH. Silver nanoparticle-deposited whey protein isolate amyloid fibrils as catalysts for the reduction of methylene blue. Int J Biol Macromol 2022; 213:1098-1114. [PMID: 35688277 DOI: 10.1016/j.ijbiomac.2022.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/05/2022]
Abstract
The unique structural characteristics and superior biocompatibility make the protein nanofibers promising immobilization platforms/substrates for catalysts/enzymes. Metal nanoparticles have been employed as the catalysts in industries due to their excellent catalytic activity and stability, whereas their high surface energy leads to nanoparticle aggregation, thereby hampering their catalytic performance. Here, amyloid fibril (AF) derived from whey protein isolate (WPI) was chosen as the support of silver nanoparticles (AgNP) and utilized for the catalytic reduction of methylene blue (MB). The one-dimensional amyloid-based hybrid materials (AgNP/WPI-AF) were first synthesized via chemical or photochemical route. The characterization of AgNP/WPI-AF by UV-vis spectrophotometry and electron microscopy revealed that the sizes of AgNP on WPI-AF's surface ranged from 2 to 30 nm. Next, the catalytic performances of AgNP/WPI-AF prepared by various routes for MB degradation were investigated. Additionally, the kinetic data were analyzed using two different models and the apparent rate constants and thermodynamic parameters were further determined accordingly. Moreover, the reusability of AgNP/WPI-AF was assessed by monitoring the percentage removal of MB over consecutive filtering cycles. Our results indicated that Langmuir-Hinshelwood-type mechanism better described the catalytic MB reduction using AgNP/WPI-AF. This work provides a nice example of application of nanoparticle-amyloid fibril composite materials for catalysis.
Collapse
Affiliation(s)
- You-Ren Lai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jinn-Tsyy Lai
- Food Industry Research and Development Institute, Hsinchu 300, Taiwan; HeySong Corporation, 178, Zhongyuan Rd., Zhongli Dist., Taoyuan City 320021, Taiwan
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan; Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chia-Yi 62102, Taiwan.
| | - Ta-Hsien Lin
- Laboratory of Nuclear Magnetic Resonance, Medical Research Department, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
16
|
Lauth LM, Voigt B, Bhatia T, Machner L, Balbach J, Ott M. Heparin promotes rapid fibrillation of the basic Parathyroid Hormone at physiological pH. FEBS Lett 2022; 596:2928-2939. [PMID: 35903816 DOI: 10.1002/1873-3468.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 11/06/2022]
Abstract
In acidic secretory granules of mammalian cells, peptide hormones including the parathyroid hormone (PTH) are presumably stored in the form of functional amyloid fibrils. Mature PTH, however, is considerably positively charged in acidic environments, a condition known to impede unassisted self-aggregation into fibrils. Here, we studied the role of the polyanion heparin on promoting fibril formation of PTH. Employing ITC, CD spectroscopy, NMR, SAXS and fluorescence-based assays we could demonstrate that heparin binds PTH with submicromolar affinity and facilitates its conversion into fibrillar seeds, enabling rapid formation of amyloid fibrils under acidic conditions. In absence of heparin, PTH remained in a soluble monomeric state. We suspect that heparin-like surfaces are required in vivo to convert PTH efficiently into fibrillar deposits.
Collapse
Affiliation(s)
- Luca M Lauth
- Department of Biochemistry and Biotechnology, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Bruno Voigt
- Department of Biophysics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Twinkle Bhatia
- Department of Biochemistry and Biotechnology, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Lisa Machner
- Department of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jochen Balbach
- Department of Biophysics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Maria Ott
- Department of Biochemistry and Biotechnology, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| |
Collapse
|
17
|
Chen D, Wang X, Huang T, Jia J. Sleep and Late-Onset Alzheimer's Disease: Shared Genetic Risk Factors, Drug Targets, Molecular Mechanisms, and Causal Effects. Front Genet 2022; 13:794202. [PMID: 35656316 PMCID: PMC9152224 DOI: 10.3389/fgene.2022.794202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/23/2022] [Indexed: 12/30/2022] Open
Abstract
Late-onset Alzheimer's disease (AD) is associated with sleep-related phenotypes (SRPs). The fact that whether they share a common genetic etiology remains largely unknown. We explored the shared genetics and causality between AD and SRPs by using high-definition likelihood (HDL), cross-phenotype association study (CPASSOC), transcriptome-wide association study (TWAS), and bidirectional Mendelian randomization (MR) in summary-level data for AD (N = 455,258) and summary-level data for seven SRPs (sample size ranges from 359,916 to 1,331,010). AD shared a strong genetic basis with insomnia (r g = 0.20; p = 9.70 × 10-5), snoring (r g = 0.13; p = 2.45 × 10-3), and sleep duration (r g = -0.11; p = 1.18 × 10-3). The CPASSOC identifies 31 independent loci shared between AD and SRPs, including four novel shared loci. Functional analysis and the TWAS showed shared genes were enriched in liver, brain, breast, and heart tissues and highlighted the regulatory roles of immunological disorders, very-low-density lipoprotein particle clearance, triglyceride-rich lipoprotein particle clearance, chylomicron remnant clearance, and positive regulation of T-cell-mediated cytotoxicity pathways. Protein-protein interaction analysis identified three potential drug target genes (APOE, MARK4, and HLA-DRA) that interacted with known FDA-approved drug target genes. The CPASSOC and TWAS demonstrated three regions 11p11.2, 6p22.3, and 16p11.2 may account for the shared basis between AD and sleep duration or snoring. MR showed insomnia had a causal effect on AD (ORIVW = 1.02, P IVW = 6.7 × 10-6), and multivariate MR suggested a potential role of sleep duration and major depression in this association. Our findings provide strong evidence of shared genetics and causation between AD and sleep abnormalities and advance our understanding of the genetic overlap between them. Identifying shared drug targets and molecular pathways can be beneficial for treating AD and sleep disorders more efficiently.
Collapse
Affiliation(s)
- Dongze Chen
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xinpei Wang
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China.,Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing, China
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China.,Center for Statistical Science, Peking University, Beijing, China
| |
Collapse
|
18
|
Abstract
Amyloids are organized suprastructural polypeptide arrangements. The prevalence of amyloid-related processes of pathophysiological relevance has been linked to aging-related degenerative diseases. Besides the role of genetic polymorphisms on the relative risk of amyloid diseases, the contributions of nongenetic ontogenic cluster of factors remain elusive. In recent decades, mounting evidences have been suggesting the role of essential micronutrients, in particular transition metals, in the regulation of amyloidogenic processes, both directly (such as binding to amyloid proteins) or indirectly (such as regulating regulatory partners, processing enzymes, and membrane transporters). The features of transition metals as regulatory cofactors of amyloid proteins and the consequences of metal dyshomeostasis in triggering amyloidogenic processes, as well as the evidences showing amelioration of symptoms by dietary supplementation, suggest an exaptative role of metals in regulating amyloid pathways. The self- and cross-talk replicative nature of these amyloid processes along with their systemic distribution support the concept of their metastatic nature. The role of amyloidosis as nutrient sensors would act as intra- and transgenerational epigenetic metabolic programming factors determining health span and life span, viability, which could participate as an evolutive selective pressure.
Collapse
Affiliation(s)
- Luís Maurício T R Lima
- Laboratory for Pharmaceutical Biotechnology - pbiotech, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory for Macromolecules (LAMAC-DIMAV), National Institute of Metrology, Quality and Technology - INMETRO, Duque de Caxias, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tháyna Sisnande
- Laboratory for Pharmaceutical Biotechnology - pbiotech, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Sánchez JM, Carratalá JV, Serna N, Unzueta U, Nolan V, Sánchez-Chardi A, Voltà-Durán E, López-Laguna H, Ferrer-Miralles N, Villaverde A, Vazquez E. The Poly-Histidine Tag H6 Mediates Structural and Functional Properties of Disintegrating, Protein-Releasing Inclusion Bodies. Pharmaceutics 2022; 14:pharmaceutics14030602. [PMID: 35335976 PMCID: PMC8955739 DOI: 10.3390/pharmaceutics14030602] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
The coordination between histidine-rich peptides and divalent cations supports the formation of nano- and micro-scale protein biomaterials, including toxic and non-toxic functional amyloids, which can be adapted as drug delivery systems. Among them, inclusion bodies (IBs) formed in recombinant bacteria have shown promise as protein depots for time-sustained protein release. We have demonstrated here that the hexahistidine (H6) tag, fused to recombinant proteins, impacts both on the formation of bacterial IBs and on the conformation of the IB-forming protein, which shows a higher content of cross-beta intermolecular interactions in H6-tagged versions. Additionally, the addition of EDTA during the spontaneous disintegration of isolated IBs largely affects the protein leakage rate, again protein release being stimulated in His-tagged materials. This event depends on the number of His residues but irrespective of the location of the tag in the protein, as it occurs in either C-tagged or N-tagged proteins. The architectonic role of H6 in the formation of bacterial IBs, probably through coordination with divalent cations, offers an easy approach to manipulate protein leakage and to tailor the applicability of this material as a secretory amyloidal depot in different biomedical interfaces. In addition, the findings also offer a model to finely investigate, in a simple set-up, the mechanics of protein release from functional secretory amyloids.
Collapse
Affiliation(s)
- Julieta María Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET-Universidad Nacional de Córdoba, ICTA & Cátedra de Química Biológica, Departamento de Química, FCEFyN, UNC. Av. Velez Sarsfield 1611, Córdoba X 5016GCA, Argentina;
| | - José Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, 08025 Barcelona, Spain
| | - Verónica Nolan
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET-Universidad Nacional de Córdoba, ICTA & Cátedra de Química Biológica, Departamento de Química, FCEFyN, UNC. Av. Velez Sarsfield 1611, Córdoba X 5016GCA, Argentina;
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: (A.V.); (E.V.)
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: (A.V.); (E.V.)
| |
Collapse
|
20
|
Chatterjee D, Jacob RS, Ray S, Navalkar A, Singh N, Sengupta S, Gadhe L, Kadu P, Datta D, Paul A, Arunima S, Mehra S, Pindi C, Kumar S, Singru P, Senapati S, Maji SK. Co-aggregation and secondary nucleation in the life cycle of human prolactin/galanin functional amyloids. eLife 2022; 11:73835. [PMID: 35257659 PMCID: PMC8993219 DOI: 10.7554/elife.73835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Synergistic-aggregation and cross-seeding by two different proteins/peptides in the amyloid aggregation are well evident in various neurological disorders including Alzheimer’s disease. Here, we show co-storage of human Prolactin (PRL), which is associated with lactation in mammals, and neuropeptide galanin (GAL) as functional amyloids in secretory granules (SGs) of the female rat. Using a wide variety of biophysical studies, we show that irrespective of the difference in sequence and structure, both hormones facilitate their synergic aggregation to amyloid fibrils. Although each hormone possesses homotypic seeding ability, a unidirectional cross-seeding of GAL aggregation by PRL seeds and the inability of cross seeding by mixed fibrils suggest tight regulation of functional amyloid formation by these hormones for their efficient storage in SGs. Further, the faster release of functional hormones from mixed fibrils compared to the corresponding individual amyloid, suggests a novel mechanism of heterologous amyloid formation in functional amyloids of SGs in the pituitary. The formation of plaques of proteins called ‘amyloids’ in the brain is one of the hallmark characteristics of both Alzheimer’s and Parkinson’s disease, but amyloids can form in many tissues and organs, often disrupting normal activity. A lot of the research into amyloids has focused on their role in disease, but it turns out that amyloids can also appear in healthy tissues. For example, some protein hormones form amyloids that act as storage depots, helping cells to release the hormone when it is needed. Normally, amyloids are made mostly of a single type of protein or protein fragment associated with a particular disease like Alzheimer's. Often, this type of amyloid promotes plaque formation in other proteins, which aggravates other diseases (for example, the amyloids that form in Alzheimer’s can lead to Parkinson’s disease or type II diabetes getting worse).The plaques start growing from small amyloid fragments called seeds. In mixed amyloids – amyloids made of two types of proteins – seeds made of one protein can trigger the formation of amyloids of the other protein. This raises the question, is this true for hormones? The body often releases more than one hormone at a time from the same tissue; for example, the pituitary gland releases prolactin and galanin simultaneously. However, these hormones have completely different structures, so whether they can form a mixed amyloid is unclear. To answer this question, Chatterjee et al. first determined that, within the pituitary gland of female rats, prolactin and galanin could be found together in the same cells, forming mixed amyloids. To understand out how this happens, Chatterjee et al. tried seeding new amyloids using either prolactin or galanin. This revealed that only prolactin seeds were able to trigger the formation of galanin amyloids. Chatterjee et al. also found that the mixed amyloids could release the hormones faster than amyloids made from either protein alone. Together, these results suggest that the collaboration between these two proteins may help maintain hormone balance in the body. Problems with hormone storage and release lead to various human diseases, including prolactinoma. Understanding amyloid storage depots could reveal new ways to control hormone levels. Further research could also help to explain more about well-studied diseases linked to amyloids, like Alzheimer's.
Collapse
Affiliation(s)
- Debdeep Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Reeba S Jacob
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Soumik Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Namrata Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shinjinee Sengupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Debalina Datta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ajoy Paul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sakunthala Arunima
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Chinmai Pindi
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Santosh Kumar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Praful Singru
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Sanjib Senapati
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
21
|
Hassan MN, Nabi F, Khan AN, Hussain M, Siddiqui WA, Uversky VN, Khan RH. The amyloid state of proteins: A boon or bane? Int J Biol Macromol 2022; 200:593-617. [PMID: 35074333 DOI: 10.1016/j.ijbiomac.2022.01.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/05/2022]
Abstract
Proteins and their aggregation is significant field of research due to their association with various conformational maladies including well-known neurodegenerative diseases like Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases. Amyloids despite being given negative role for decades are also believed to play a functional role in bacteria to humans. In this review, we discuss both facets of amyloid. We have shed light on AD, which is one of the most common age-related neurodegenerative disease caused by accumulation of Aβ fibrils as extracellular senile plagues. We also discuss PD caused by the aggregation and deposition of α-synuclein in form of Lewy bodies and neurites. Other amyloid-associated diseases such as HD and amyotrophic lateral sclerosis (ALS) are also discussed. We have also reviewed functional amyloids that have various biological roles in both prokaryotes and eukaryotes that includes formation of biofilm and cell attachment in bacteria to hormone storage in humans, We discuss in detail the role of Curli fibrils' in biofilm formation, chaplins in cell attachment to peptide hormones, and Pre-Melansomal Protein (PMEL) roles. The disease-related and functional amyloids are compared with regard to their structural integrity, variation in regulation, and speed of forming aggregates and elucidate how amyloids have turned from foe to friend.
Collapse
Affiliation(s)
- Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Murtaza Hussain
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Waseem A Siddiqui
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 10 Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy 11 of Sciences", Pushchino, Moscow Region 142290, Russia; Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College 13 of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
22
|
Vang J, Pustovalova Y, Korzhnev DM, Gorbatyuk O, Keeler C, Hodsdon ME, Hoch JC. Architecture of the Two Metal Binding Sites in Prolactin. Biophys J 2022; 121:1312-1321. [PMID: 35192840 PMCID: PMC9034190 DOI: 10.1016/j.bpj.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/14/2021] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Abstract
Metal binding by members of the growth hormone (GH) family of hematopoietic cytokines has been a subject of considerable interest. However, beyond appreciation of its role in reversible packing of GH proteins in secretory granules, the molecular mechanisms of metal binding and granule formation remain poorly understood. Here, we investigate metal binding by a GH family member prolactin (PRL) using paramagnetic metal titration and chelation experiments. Cu2+-mediated paramagnetic relaxation enhancement measurements identified two partial metal-binding sites on the opposite faces of PRL composed of residues H30/H180 and E93/H97, respectively. Coordination of metal ions by these two sites causes formation of inter-molecular bridges between the PRL protomers and enables formation of reversible higher aggregates. These findings in vitro suggest a model for reversible packaging of PRL in secretory granules. The proposed mechanism of metal-promoted PRL aggregation lends insight and support to the previously suggested role of metal coordination in secretory granule formation by GH proteins.
Collapse
Affiliation(s)
- Janus Vang
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut
| | - Yulia Pustovalova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut
| | - Oksana Gorbatyuk
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut
| | - Camille Keeler
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut
| | - Michael E Hodsdon
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut
| | - Jeffrey C Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut.
| |
Collapse
|
23
|
Serna N, Falgàs A, García-León A, Unzueta U, Núñez Y, Sánchez-Chardi A, Martínez-Torró C, Mangues R, Vazquez E, Casanova I, Villaverde A. Time-Prolonged Release of Tumor-Targeted Protein-MMAE Nanoconjugates from Implantable Hybrid Materials. Pharmaceutics 2022; 14:pharmaceutics14010192. [PMID: 35057088 PMCID: PMC8777625 DOI: 10.3390/pharmaceutics14010192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
The sustained release of small, tumor-targeted cytotoxic drugs is an unmet need in cancer therapies, which usually rely on punctual administration regimens of non-targeted drugs. Here, we have developed a novel concept of protein–drug nanoconjugates, which are packaged as slow-releasing chemically hybrid depots and sustain a prolonged secretion of the therapeutic agent. For this, we covalently attached hydrophobic molecules (including the antitumoral drug Monomethyl Auristatin E) to a protein targeting a tumoral cell surface marker abundant in several human neoplasias, namely the cytokine receptor CXCR4. By this, a controlled aggregation of the complex is achieved, resulting in mechanically stable protein–drug microparticles. These materials, which are mimetics of bacterial inclusion bodies and of mammalian secretory granules, allow the slow leakage of fully functional conjugates at the nanoscale, both in vitro and in vivo. Upon subcutaneous administration in a mouse model of human CXCR4+ lymphoma, the protein–drug depots release nanoconjugates for at least 10 days, which accumulate in the tumor with a potent antitumoral effect. The modification of scaffold cell-targeted proteins by hydrophobic drug conjugation is then shown as a novel transversal platform for the design of slow releasing protein–drug depots, with potential application in a broad spectrum of clinical settings.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (N.S.); (C.M.-T.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
| | - Aïda Falgàs
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Josep Carreras Research Institute, Badalona, 08916 Barcelona, Spain
| | - Annabel García-León
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Josep Carreras Research Institute, Badalona, 08916 Barcelona, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Josep Carreras Research Institute, Badalona, 08916 Barcelona, Spain
| | - Yáiza Núñez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Josep Carreras Research Institute, Badalona, 08916 Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (N.S.); (C.M.-T.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Josep Carreras Research Institute, Badalona, 08916 Barcelona, Spain
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (N.S.); (C.M.-T.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- Josep Carreras Research Institute, Badalona, 08916 Barcelona, Spain
- Correspondence: (I.C.); (A.V.)
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (N.S.); (C.M.-T.); (E.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain; (A.F.); (A.G.-L.); (Y.N.); (R.M.)
- Correspondence: (I.C.); (A.V.)
| |
Collapse
|
24
|
Álamo P, Parladé E, López-Laguna H, Voltà-Durán E, Unzueta U, Vazquez E, Mangues R, Villaverde A. Ion-dependent slow protein release from in vivo disintegrating micro-granules. Drug Deliv 2021; 28:2383-2391. [PMID: 34747685 PMCID: PMC8584089 DOI: 10.1080/10717544.2021.1998249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Through the controlled addition of divalent cations, polyhistidine-tagged proteins can be clustered in form of chemically pure and mechanically stable micron-scale particles. Under physiological conditions, these materials act as self-disintegrating protein depots for the progressive release of the forming polypeptide, with potential applications in protein drug delivery, diagnosis, or theragnosis. Here we have explored the in vivo disintegration pattern of a set of such depots, upon subcutaneous administration in mice. These microparticles were fabricated with cationic forms of either Zn, Ca, Mg, or Mn, which abound in the mammalian body. By using a CXCR4-targeted fluorescent protein as a reporter building block we categorized those cations regarding their ability to persist in the administration site and to sustain a slow release of functional protein. Ca2+ and specially Zn2+ have been observed as particularly good promoters of time-prolonged protein leakage. The released polypeptides result is available for selective molecular interactions, such as specific fluorescent labeling of tumor tissues, in which the protein reaches nearly steady levels.
Collapse
Affiliation(s)
- Patricia Álamo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Eloi Parladé
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Hèctor López-Laguna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eric Voltà-Durán
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ugutz Unzueta
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ramon Mangues
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC Campus Sant Pau), Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
25
|
López-Laguna H, Sánchez JM, Carratalá JV, Rojas-Peña M, Sánchez-García L, Parladé E, Sánchez-Chardi A, Voltà-Durán E, Serna N, Cano-Garrido O, Flores S, Ferrer-Miralles N, Nolan V, de Marco A, Roher N, Unzueta U, Vazquez E, Villaverde A. Biofabrication of functional protein nanoparticles through simple His-tag engineering. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:12341-12354. [PMID: 34603855 PMCID: PMC8483566 DOI: 10.1021/acssuschemeng.1c04256] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Indexed: 05/03/2023]
Abstract
We have developed a simple, robust, and fully transversal approach for the a-la-carte fabrication of functional multimeric nanoparticles with potential biomedical applications, validated here by a set of diverse and unrelated polypeptides. The proposed concept is based on the controlled coordination between Zn2+ ions and His residues in His-tagged proteins. This approach results in a spontaneous and reproducible protein assembly as nanoscale oligomers that keep the original functionalities of the protein building blocks. The assembly of these materials is not linked to particular polypeptide features, and it is based on an environmentally friendly and sustainable approach. The resulting nanoparticles, with dimensions ranging between 10 and 15 nm, are regular in size, are architecturally stable, are fully functional, and serve as intermediates in a more complex assembly process, resulting in the formation of microscale protein materials. Since most of the recombinant proteins produced by biochemical and biotechnological industries and intended for biomedical research are His-tagged, the green biofabrication procedure proposed here can be straightforwardly applied to a huge spectrum of protein species for their conversion into their respective nanostructured formats.
Collapse
Affiliation(s)
- Hèctor López-Laguna
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Julieta M. Sánchez
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Universidad
Nacional de Córdoba, Facultad de
Ciencias Exactas, Físicas y Naturales, ICTA and Departamento
de Química, Cátedra de Química
Biológica, Av. Vélez Sársfield
1611, Córdoba 5016, Argentina
- CONICET-Universidad
Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas
(IIByT), Av. Velez Sarsfield
1611, Córdoba, 5016, Argentina
| | - José Vicente Carratalá
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Mauricio Rojas-Peña
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Laura Sánchez-García
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Eloi Parladé
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Alejandro Sánchez-Chardi
- Servei de
Microscòpia, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat
de Biologia, Universitat de Barcelona, Av. Diagonal 643, Barcelona 08028, Spain
| | - Eric Voltà-Durán
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Naroa Serna
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Olivia Cano-Garrido
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Sandra Flores
- Universidad
Nacional de Córdoba, Facultad de
Ciencias Exactas, Físicas y Naturales, ICTA and Departamento
de Química, Cátedra de Química
Biológica, Av. Vélez Sársfield
1611, Córdoba 5016, Argentina
- CONICET-Universidad
Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas
(IIByT), Av. Velez Sarsfield
1611, Córdoba, 5016, Argentina
| | - Neus Ferrer-Miralles
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Verónica Nolan
- Universidad
Nacional de Córdoba, Facultad de
Ciencias Exactas, Físicas y Naturales, ICTA and Departamento
de Química, Cátedra de Química
Biológica, Av. Vélez Sársfield
1611, Córdoba 5016, Argentina
- CONICET-Universidad
Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas
(IIByT), Av. Velez Sarsfield
1611, Córdoba, 5016, Argentina
| | - Ario de Marco
- Laboratory
for Environmental and Life Sciences, University
of Nova Gorica, Nova Gorica 5000, Slovenia
| | - Nerea Roher
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
- Departament
de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Ugutz Unzueta
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
- Biomedical
Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, Barcelona 08025, Spain
| | - Esther Vazquez
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Antonio Villaverde
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| |
Collapse
|
26
|
Hatfield DL, Kraemer WJ, Volek JS, Nindl BC, Caldwell LK, Vingren JL, Newton RU, Häkkinen K, Lee EC, Maresh CM, Hymer WC. Hormonal stress responses of growth hormone and insulin-like growth factor-I in highly resistance trained women and men. Growth Horm IGF Res 2021; 59:101407. [PMID: 34118743 DOI: 10.1016/j.ghir.2021.101407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to examine the responses of growth hormone (GH) and insulin-like growth factor-I (IGFI) to intense heavy resistance exercise in highly trained men and women to determine what sex-dependent responses may exist. Subjects were highly resistance trained men (N = 8, Mean ± SD; age, yrs., 21 ± 1, height, cm, 175.3 ± 6.7, body mass, kg, 87.0 ± 18.5, % body fat, 15.2 ± 5.4, squat X body mass, 2.1 ± 0.4; and women (N = 7; Mean ± SD, age, yrs. 24 ± 5, height, cm 164.6 ± 6.7, body mass, kg 76.4 ± 8.8, % body fat, 26.9 ± 5.3, squat X body mass, 1.7 ± 0.6). An acute resistance exercise test protocol (ARET) consisted of 6 sets of 10 repetitions at 80% of the 1 RM with 2 min rest between sets was used as the stressor. Blood samples were obtained pre-exercise, after 3 sets, and then immediately after exercise (IP), 5, 15, 30, and 70 min post-exercise for determination of blood lactate (HLa), and plasma glucose, insulin, cortisol, and GH. Determination of plasma concentrations of IGFI, IGF binding proteins 1, 2, and 3 along with molecular weight isoform factions were determined at pre, IP and 70 min. GH significantly (P ≤ 0.05) increased at all time points with resting concentrations significantly higher in women. Significant increases were observed for HLa, glucose, insulin, and cortisol with exercise and into recovery with no sex-dependent observations. Women showed IGF-I values that were higher than men at all times points with both seeing exercise increases. IGFBP-1 and 2 showed increase with exercise with no sex-dependent differences. IGFBP-3 concentrations were higher in women at all-time points with no exercise induced changes. Both women and men saw an exercise induced increase with significantly higher values in GH in only the mid-range (30-60 kD) isoform. Only women saw an exercise induced increase with significantly higher values for IGF fractions only in the mid-range (30-60 kD) isoform, which were significantly greater than the men at the IP and 70 min post-exercise time points. In conclusion, the salient findings of this investigation were that in highly resistance trained men and women, sexual dimorphisms exist but appear different from our prior work in untrained men and women and appear to support a sexual dimorphism related to compensatory aspects in women for anabolic mediating mechanisms in cellular interactions.
Collapse
Affiliation(s)
- Disa L Hatfield
- Human Performance Laboratory, Department of Kinesiology, University of Rhode Island Kingston, RI 02881, USA
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Jeff S Volek
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Bradley C Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lydia K Caldwell
- Applied Physiology Laboratory, University of North Texas, Denton, TX, USA
| | - Jakob L Vingren
- Applied Physiology Laboratory, University of North Texas, Denton, TX, USA
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Keijo Häkkinen
- Neuromuscular Research Center, Biology of Physical Activity, University of Jyväskylä, Finland
| | - Elaine C Lee
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
| | - Carl M Maresh
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Wesley C Hymer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
27
|
Caputo M, Pigni S, Agosti E, Daffara T, Ferrero A, Filigheddu N, Prodam F. Regulation of GH and GH Signaling by Nutrients. Cells 2021; 10:1376. [PMID: 34199514 PMCID: PMC8227158 DOI: 10.3390/cells10061376] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Growth hormone (GH) and insulin-like growth factor-1 (IGF-I) are pleiotropic hormones with important roles in lifespan. They promote growth, anabolic actions, and body maintenance, and in conditions of energy deprivation, favor catabolic feedback mechanisms switching from carbohydrate oxidation to lipolysis, with the aim to preserve protein storages and survival. IGF-I/insulin signaling was also the first one identified in the regulation of lifespan in relation to the nutrient-sensing. Indeed, nutrients are crucial modifiers of the GH/IGF-I axis, and these hormones also regulate the complex orchestration of utilization of nutrients in cell and tissues. The aim of this review is to summarize current knowledge on the reciprocal feedback among the GH/IGF-I axis, macro and micronutrients, and dietary regimens, including caloric restriction. Expanding the depth of information on this topic could open perspectives in nutrition management, prevention, and treatment of GH/IGF-I deficiency or excess during life.
Collapse
Affiliation(s)
- Marina Caputo
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Stella Pigni
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Emanuela Agosti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Tommaso Daffara
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Alice Ferrero
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Nicoletta Filigheddu
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Flavia Prodam
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
28
|
The less conserved metal-binding site in human CRISP1 remains sensitive to zinc ions to permit protein oligomerization. Sci Rep 2021; 11:5498. [PMID: 33750840 PMCID: PMC7943821 DOI: 10.1038/s41598-021-84926-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/18/2021] [Indexed: 12/30/2022] Open
Abstract
Cysteine-rich secretory proteins (CRISPs) are a subgroup of the CRISP, antigen 5 and PR-1 (CAP) superfamily that is characterized by the presence of a conserved CAP domain. Two conserved histidines in the CAP domain are proposed to function as a Zn2+-binding site with unknown function. Human CRISP1 is, however, one of the few family members that lack one of these characteristic histidine residues. The Zn2+-dependent oligomerization properties of human CRISP1 were investigated using a maltose-binding protein (MBP)-tagging approach in combination with low expression levels in XL-1 Blue bacteria. Moderate yields of soluble recombinant MBP-tagged human CRISP1 (MBP-CRISP1) and the MBP-tagged CAP domain of CRISP1 (MBP-CRISP1ΔC) were obtained. Zn2+ specifically induced oligomerization of both MBP-CRISP1 and MBP-CRISP1ΔC in vitro. The conserved His142 in the CAP domain was essential for this Zn2+ dependent oligomerization process, confirming a role of the CAP metal-binding site in the interaction with Zn2+. Furthermore, MBP-CRISP1 and MBP-CRISP1ΔC oligomers dissociated into monomers upon Zn2+ removal by EDTA. Condensation of proteins is characteristic for maturing sperm in the epididymis and this process was previously found to be Zn2+-dependent. The Zn2+-induced oligomerization of human recombinant CRISP1 may shed novel insights into the formation of functional protein complexes involved in mammalian fertilization.
Collapse
|
29
|
Pratt EP, Anson KJ, Tapper JK, Simpson DM, Palmer AE. Systematic Comparison of Vesicular Targeting Signals Leads to the Development of Genetically Encoded Vesicular Fluorescent Zn 2+ and pH Sensors. ACS Sens 2020; 5:3879-3891. [PMID: 33305939 DOI: 10.1021/acssensors.0c01231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetically encoded fluorescent sensors have been widely used to illuminate secretory vesicle dynamics and the vesicular lumen, including Zn2+ and pH, in living cells. However, vesicular sensors have a tendency to mislocalize and are susceptible to the acidic intraluminal pH. In this study, we performed a systematic comparison of five different vesicular proteins to target the fluorescent protein mCherry and a Zn2+ Förster resonance energy transfer (FRET) sensor to secretory vesicles. We found that motifs derived from vesicular cargo proteins, including chromogranin A (CgA), target vesicular puncta with greater efficacy than transmembrane proteins. To characterize vesicular Zn2+ levels, we developed CgA-Zn2+ FRET sensor fusions with existing sensors ZapCY1 and eCALWY-4 and characterized subcellular localization and the influence of pH on sensor performance. We simultaneously monitored Zn2+ and pH in individual secretory vesicles by leveraging the acceptor fluorescent protein as a pH sensor and found that pH influenced FRET measurements in situ. While unable to characterize vesicular Zn2+ at the single-vesicle level, we were able to monitor Zn2+ dynamics in populations of vesicles and detected high vesicular Zn2+ in MIN6 cells compared to lower levels in the prostate cancer cell line LnCaP. The combination of CgA-ZapCY1 and CgA-eCALWY-4 allows for measurement of Zn2+ from pM to nM ranges.
Collapse
Affiliation(s)
- Evan P.S. Pratt
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| | - Kelsie J. Anson
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| | - Justin K. Tapper
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| | - David M. Simpson
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| | - Amy E. Palmer
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| |
Collapse
|
30
|
Serna N, Cano-Garrido O, Sánchez JM, Sánchez-Chardi A, Sánchez-García L, López-Laguna H, Fernández E, Vázquez E, Villaverde A. Release of functional fibroblast growth factor-2 from artificial inclusion bodies. J Control Release 2020; 327:61-69. [DOI: 10.1016/j.jconrel.2020.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/21/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
|
31
|
Pignataro MF, Herrera MG, Dodero VI. Evaluation of Peptide/Protein Self-Assembly and Aggregation by Spectroscopic Methods. Molecules 2020; 25:E4854. [PMID: 33096797 PMCID: PMC7587993 DOI: 10.3390/molecules25204854] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
The self-assembly of proteins is an essential process for a variety of cellular functions including cell respiration, mobility and division. On the other hand, protein or peptide misfolding and aggregation is related to the development of Parkinson's disease and Alzheimer's disease, among other aggregopathies. As a consequence, significant research efforts are directed towards the understanding of this process. In this review, we are focused on the use of UV-Visible Absorption Spectroscopy, Fluorescence Spectroscopy and Circular Dichroism to evaluate the self-organization of proteins and peptides in solution. These spectroscopic techniques are commonly available in most chemistry and biochemistry research laboratories, and together they are a powerful approach for initial as well as routine evaluation of protein and peptide self-assembly and aggregation under different environmental stimulus. Furthermore, these spectroscopic techniques are even suitable for studying complex systems like those in the food industry or pharmaceutical formulations, providing an overall idea of the folding, self-assembly, and aggregation processes, which is challenging to obtain with high-resolution methods. Here, we compiled and discussed selected examples, together with our results and those that helped us better to understand the process of protein and peptide aggregation. We put particular emphasis on the basic description of the methods as well as on the experimental considerations needed to obtain meaningful information, to help those who are just getting into this exciting area of research. Moreover, this review is particularly useful to those out of the field who would like to improve reproducibility in their cellular and biomedical experiments, especially while working with peptide and protein systems as an external stimulus. Our final aim is to show the power of these low-resolution techniques to improve our understanding of the self-assembly of peptides and proteins and translate this fundamental knowledge in biomedical research or food applications.
Collapse
Affiliation(s)
- María Florencia Pignataro
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
| | - María Georgina Herrera
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Verónica Isabel Dodero
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
32
|
Kocyła A, Tran JB, Krężel A. Galvanization of Protein-Protein Interactions in a Dynamic Zinc Interactome. Trends Biochem Sci 2020; 46:64-79. [PMID: 32958327 DOI: 10.1016/j.tibs.2020.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
The presence of Zn2+ at protein-protein interfaces modulates complex function, stability, and introduces structural flexibility/complexity, chemical selectivity, and reversibility driven in a Zn2+-dependent manner. Recent studies have demonstrated that dynamically changing Zn2+ affects numerous cellular processes, including protein-protein communication and protein complex assembly. How Zn2+-involved protein-protein interactions (ZPPIs) are formed and dissociate and how their stability and reactivity are driven in a zinc interactome remain poorly understood, mostly due to experimental obstacles. Here, we review recent research advances on the role of Zn2+ in the formation of interprotein sites, their architecture, function, and stability. Moreover, we underline the importance of zinc networks in intersystemic communication and highlight bioinformatic and experimental challenges required for the identification and investigation of ZPPIs.
Collapse
Affiliation(s)
- Anna Kocyła
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Józef Ba Tran
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| |
Collapse
|
33
|
Sheng J, Olrichs NK, Gadella BM, Kaloyanova DV, Helms JB. Regulation of Functional Protein Aggregation by Multiple Factors: Implications for the Amyloidogenic Behavior of the CAP Superfamily Proteins. Int J Mol Sci 2020; 21:E6530. [PMID: 32906672 PMCID: PMC7554809 DOI: 10.3390/ijms21186530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
The idea that amyloid fibrils and other types of protein aggregates are toxic for cells has been challenged by the discovery of a variety of functional aggregates. However, an identification of crucial differences between pathological and functional aggregation remains to be explored. Functional protein aggregation is often reversible by nature in order to respond properly to changing physiological conditions of the cell. In addition, increasing evidence indicates that fast fibril growth is a feature of functional amyloids, providing protection against the long-term existence of potentially toxic oligomeric intermediates. It is becoming clear that functional protein aggregation is a complexly organized process that can be mediated by a multitude of biomolecular factors. In this overview, we discuss the roles of diverse biomolecules, such as lipids/membranes, glycosaminoglycans, nucleic acids and metal ions, in regulating functional protein aggregation. Our studies on the protein GAPR-1 revealed that several of these factors influence the amyloidogenic properties of this protein. These observations suggest that GAPR-1, as well as the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related proteins group 1 (CAP) superfamily of proteins that it belongs to, require the assembly into an amyloid state to exert several of their functions. A better understanding of functional aggregate formation may also help in the prevention and treatment of amyloid-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - J. Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.S.); (N.K.O.); (B.M.G.); (D.V.K.)
| |
Collapse
|
34
|
López-Laguna H, Sánchez J, Unzueta U, Mangues R, Vázquez E, Villaverde A. Divalent Cations: A Molecular Glue for Protein Materials. Trends Biochem Sci 2020; 45:992-1003. [PMID: 32891514 DOI: 10.1016/j.tibs.2020.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Among inorganic materials, divalent cations modulate thousands of physiological processes that support life. Their roles in protein assembly and aggregation are less known, although they are progressively being brought to light. We review the structural roles of divalent cations here, as well as the novel protein materials that are under development, in which they are used as glue-like agents. More specifically, we discuss how mechanically stable nanoparticles, fibers, matrices, and hydrogels are generated through their coordination with histidine-rich proteins. We also describe how the rational use of divalent cations combined with simple protein engineering offers unexpected and very simple biochemical approaches to biomaterial design that might address unmet clinical needs in precision medicine.
Collapse
Affiliation(s)
- Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Julieta Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET-Universidad Nacional de Córdoba), ICTA & Cátedra de Química Biológica, Departamento de Química, FCEFyN, X 5016GCA, Córdoba, Argentina
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Josep Carreras Research Institute, 08041 Barcelona, Spain.
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Josep Carreras Research Institute, 08041 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
35
|
Functional Mammalian Amyloids and Amyloid-Like Proteins. Life (Basel) 2020; 10:life10090156. [PMID: 32825636 PMCID: PMC7555005 DOI: 10.3390/life10090156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloids are highly ordered fibrous cross-β protein aggregates that are notorious primarily because of association with a variety of incurable human and animal diseases (termed amyloidoses), including Alzheimer’s disease (AD), Parkinson’s disease (PD), type 2 diabetes (T2D), and prion diseases. Some amyloid-associated diseases, in particular T2D and AD, are widespread and affect hundreds of millions of people all over the world. However, recently it has become evident that many amyloids, termed “functional amyloids,” are involved in various activities that are beneficial to organisms. Functional amyloids were discovered in diverse taxa, ranging from bacteria to mammals. These amyloids are involved in vital biological functions such as long-term memory, storage of peptide hormones and scaffolding melanin polymerization in animals, substrate attachment, and biofilm formation in bacteria and fungi, etc. Thus, amyloids undoubtedly are playing important roles in biological and pathological processes. This review is focused on functional amyloids in mammals and summarizes approaches used for identifying new potentially amyloidogenic proteins and domains.
Collapse
|
36
|
Amyloid-like aggregation of provasopressin. VITAMINS AND HORMONES 2020. [PMID: 32138954 DOI: 10.1016/bs.vh.2019.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The antidiuretic hormone vasopressin is synthesized as a longer precursor protein. After folding in the endoplasmic reticulum (ER), provasopressin is transported through the secretory pathway, forms secretory granules in the trans-Golgi network (TGN), is processed, and finally secreted into the circulation. Mutations in provasopressin cause autosomal dominant diabetes insipidus. They prevent native protein folding and cause fibrillar, amyloid-like aggregation in the ER, which eventually results in cell death. Secretory granules of peptide hormones were proposed to constitute functional amyloids and thus might be the cause of amyloid formation of misfolded mutant protein in the ER. Indeed, the same two segments in the precursor-vasopressin and a C-terminal glycopeptide-were found to be responsible for pathological aggregation in the ER and physiological aggregation in granule formation in the TGN. Furthermore, even wild-type provasopressin tends to aggregate in the ER, but is controlled by ER-associated degradation. When essential components thereof, Sel1L or Hrd1, were inactivated, wild-type provasopressin accumulated as fibrillar aggregates in vasopressinergic neurons in mice, causing diabetes insipidus. Evolution of amyloidogenic sequences for granule formation thus made provasopressin dependent on ER quality control mechanisms. These principles may similarly apply to other peptide hormones.
Collapse
|
37
|
Tayeb-Fligelman E, Salinas N, Tabachnikov O, Landau M. Staphylococcus aureus PSMα3 Cross-α Fibril Polymorphism and Determinants of Cytotoxicity. Structure 2020; 28:301-313.e6. [DOI: 10.1016/j.str.2019.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/15/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
|
38
|
Hymer WC, Kennett MJ, Maji SK, Gosselink KL, McCall GE, Grindeland RE, Post EM, Kraemer WJ. Bioactive growth hormone in humans: Controversies, complexities and concepts. Growth Horm IGF Res 2020; 50:9-22. [PMID: 31809882 DOI: 10.1016/j.ghir.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/07/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To revisit a finding, first described in 1978, which documented existence of a pituitary growth factor that escaped detection by immunoassay, but which was active in the established rat tibia GH bioassay. METHODS We present a narrative review of the evolution of growth hormone complexity, and its bio-detectability, from a historical perspective. RESULTS In humans under the age of 60, physical training (i.e. aerobic endurance and resistance training) are stressors which preferentially stimulate release of bioactive GH (bGH) into the blood. Neuroanatomical studies indicate a) that nerve fibers directly innervate the human anterior pituitary and b) that hind limb muscle afferents, in both humans and rats, also modulate plasma bGH. In the pituitary gland itself, molecular variants of GH, somatotroph heterogeneity and cell plasticity all appear to play a role in regulation of this growth factor. CONCLUSION This review considers more recent findings on this often forgotten/neglected subject. Comparison testing of a) human plasma samples, b) sub-populations of separated rat pituitary somatotrophs or c) purified human pituitary peptides by GH bioassay vs immunoassay consistently yield conflicting results.
Collapse
Affiliation(s)
- Wesley C Hymer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Mary J Kennett
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 4000076, India
| | - Kristin L Gosselink
- Department of Physiology and Pathology, Burrell College of Osteopathic Medicine, Las Cruces, NM 88001, United States of America
| | - Gary E McCall
- Department of Exercise Science Exercise and Neuroscience Program, University of Puget Sound, Tacoma, WA 98416, United States of America
| | - Richard E Grindeland
- Life Science Division, NASA-Ames Research Center, Moffett Field, CA 94035, United States of America
| | - Emily M Post
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43210, United States of America
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH, 43210, United States of America.
| |
Collapse
|
39
|
Sánchez JM, López‐Laguna H, Álamo P, Serna N, Sánchez‐Chardi A, Nolan V, Cano‐Garrido O, Casanova I, Unzueta U, Vazquez E, Mangues R, Villaverde A. Artificial Inclusion Bodies for Clinical Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902420. [PMID: 32042562 PMCID: PMC7001620 DOI: 10.1002/advs.201902420] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Indexed: 05/05/2023]
Abstract
Bacterial inclusion bodies (IBs) are mechanically stable protein particles in the microscale, which behave as robust, slow-protein-releasing amyloids. Upon exposure to cultured cells or upon subcutaneous or intratumor injection, these protein materials secrete functional IB polypeptides, functionally mimicking the endocrine release of peptide hormones from secretory amyloid granules. Being appealing as delivery systems for prolonged protein drug release, the development of IBs toward clinical applications is, however, severely constrained by their bacterial origin and by the undefined and protein-to-protein, batch-to-batch variable composition. In this context, the de novo fabrication of artificial IBs (ArtIBs) by simple, cell-free physicochemical methods, using pure components at defined amounts is proposed here. By this, the resulting functional protein microparticles are intriguing, chemically defined biomimetic materials that replicate relevant functionalities of natural IBs, including mammalian cell penetration and local or remote release of functional ArtIB-forming protein. In default of severe regulatory issues, the concept of ArtIBs is proposed as a novel exploitable category of biomaterials for biotechnological and biomedical applications, resulting from simple fabrication and envisaging soft developmental routes to clinics.
Collapse
Affiliation(s)
- Julieta M. Sánchez
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET‐Universidad Nacional de Córdoba)ICTA & Cátedra de Química BiológicaDepartamento de QuímicaFCEFyN, UNC. Av. Velez Sarsfield 1611X 5016GCACórdobaArgentina
| | - Hèctor López‐Laguna
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)28029MadridSpain
| | - Patricia Álamo
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)28029MadridSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau) and Josep Carreras Research InstituteHospital de la Santa Creu i Sant Pau08041BarcelonaSpain
| | - Naroa Serna
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)28029MadridSpain
| | | | - Verónica Nolan
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET‐Universidad Nacional de Córdoba)ICTA & Cátedra de Química BiológicaDepartamento de QuímicaFCEFyN, UNC. Av. Velez Sarsfield 1611X 5016GCACórdobaArgentina
| | - Olivia Cano‐Garrido
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- Present address:
Nanoligent SLEdifici EurekaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| | - Isolda Casanova
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)28029MadridSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau) and Josep Carreras Research InstituteHospital de la Santa Creu i Sant Pau08041BarcelonaSpain
| | - Ugutz Unzueta
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)28029MadridSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau) and Josep Carreras Research InstituteHospital de la Santa Creu i Sant Pau08041BarcelonaSpain
| | - Esther Vazquez
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)28029MadridSpain
| | - Ramon Mangues
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)28029MadridSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau) and Josep Carreras Research InstituteHospital de la Santa Creu i Sant Pau08041BarcelonaSpain
| | - Antonio Villaverde
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)28029MadridSpain
| |
Collapse
|
40
|
Céspedes MV, Cano-Garrido O, Álamo P, Sala R, Gallardo A, Serna N, Falgàs A, Voltà-Durán E, Casanova I, Sánchez-Chardi A, López-Laguna H, Sánchez-García L, Sánchez JM, Unzueta U, Vázquez E, Mangues R, Villaverde A. Engineering Secretory Amyloids for Remote and Highly Selective Destruction of Metastatic Foci. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907348. [PMID: 31879981 DOI: 10.1002/adma.201907348] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/28/2019] [Indexed: 05/05/2023]
Abstract
Functional amyloids produced in bacteria as nanoscale inclusion bodies are intriguing but poorly explored protein materials with wide therapeutic potential. Since they release functional polypeptides under physiological conditions, these materials can be potentially tailored as mimetic of secretory granules for slow systemic delivery of smart protein drugs. To explore this possibility, bacterial inclusion bodies formed by a self-assembled, tumor-targeted Pseudomonas exotoxin (PE24) are administered subcutaneously in mouse models of human metastatic colorectal cancer, for sustained secretion of tumor-targeted therapeutic nanoparticles. These proteins are functionalized with a peptidic ligand of CXCR4, a chemokine receptor overexpressed in metastatic cancer stem cells that confers high selective cytotoxicity in vitro and in vivo. In the mouse models of human colorectal cancer, time-deferred anticancer activity is detected after the subcutaneous deposition of 500 µg of PE24-based amyloids, which promotes a dramatic arrest of tumor growth in the absence of side toxicity. In addition, long-term prevention of lymphatic, hematogenous, and peritoneal metastases is achieved. These results reveal the biomedical potential and versatility of bacterial inclusion bodies as novel tunable secretory materials usable in delivery, and they also instruct how therapeutic proteins, even with high functional and structural complexity, can be packaged in this convenient format.
Collapse
Affiliation(s)
- María Virtudes Céspedes
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Olivia Cano-Garrido
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Nanoligent SL, Edifici EUREKA, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Patricia Álamo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Rita Sala
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Alberto Gallardo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Naroa Serna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Aïda Falgàs
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Eric Voltà-Durán
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | | | - Hèctor López-Laguna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Laura Sánchez-García
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Julieta M Sánchez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET-Universidad Nacional de Córdoba), ICTA & Cátedra de Química Biológica, Departamento de Química, FCEFyN, UNC, Av. Velez Sarsfield 1611, X 5016GCA, Córdoba, Argentina
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
41
|
Kraemer WJ, Ratamess NA, Hymer WC, Nindl BC, Fragala MS. Growth Hormone(s), Testosterone, Insulin-Like Growth Factors, and Cortisol: Roles and Integration for Cellular Development and Growth With Exercise. Front Endocrinol (Lausanne) 2020; 11:33. [PMID: 32158429 PMCID: PMC7052063 DOI: 10.3389/fendo.2020.00033] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Hormones are largely responsible for the integrated communication of several physiological systems responsible for modulating cellular growth and development. Although the specific hormonal influence must be considered within the context of the entire endocrine system and its relationship with other physiological systems, three key hormones are considered the "anabolic giants" in cellular growth and repair: testosterone, the growth hormone superfamily, and the insulin-like growth factor (IGF) superfamily. In addition to these anabolic hormones, glucocorticoids, mainly cortisol must also be considered because of their profound opposing influence on human skeletal muscle anabolism in many instances. This review presents emerging research on: (1) Testosterone signaling pathways, responses, and adaptations to resistance training; (2) Growth hormone: presents new complexity with exercise stress; (3) Current perspectives on IGF-I and physiological adaptations and complexity these hormones as related to training; and (4) Glucocorticoid roles in integrated communication for anabolic/catabolic signaling. Specifically, the review describes (1) Testosterone as the primary anabolic hormone, with an anabolic influence largely dictated primarily by genomic and possible non-genomic signaling, satellite cell activation, interaction with other anabolic signaling pathways, upregulation or downregulation of the androgen receptor, and potential roles in co-activators and transcriptional activity; (2) Differential influences of growth hormones depending on the "type" of the hormone being assayed and the magnitude of the physiological stress; (3) The exquisite regulation of IGF-1 by a family of binding proteins (IGFBPs 1-6), which can either stimulate or inhibit biological action depending on binding; and (4) Circadian patterning and newly discovered variants of glucocorticoid isoforms largely dictating glucocorticoid sensitivity and catabolic, muscle sparing, or pathological influence. The downstream integrated anabolic and catabolic mechanisms of these hormones not only affect the ability of skeletal muscle to generate force; they also have implications for pharmaceutical treatments, aging, and prevalent chronic conditions such as metabolic syndrome, insulin resistance, and hypertension. Thus, advances in our understanding of hormones that impact anabolic: catabolic processes have relevance for athletes and the general population, alike.
Collapse
Affiliation(s)
- William J. Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
- *Correspondence: William J. Kraemer
| | - Nicholas A. Ratamess
- Department of Health and Exercise Science, The College of New Jersey, Ewing, NJ, United States
| | - Wesley C. Hymer
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Bradley C. Nindl
- Department of Sports Medicine, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | | |
Collapse
|
42
|
Jayawardena BM, Jones MR, Hong Y, Jones CE. Copper ions trigger disassembly of neurokinin B functional amyloid and inhibit de novo assembly. J Struct Biol 2019; 208:107394. [DOI: 10.1016/j.jsb.2019.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/23/2019] [Accepted: 09/23/2019] [Indexed: 01/24/2023]
|
43
|
Sheng J, Olrichs NK, Geerts WJ, Kaloyanova DV, Helms JB. Metal ions and redox balance regulate distinct amyloid-like aggregation pathways of GAPR-1. Sci Rep 2019; 9:15048. [PMID: 31636315 PMCID: PMC6803662 DOI: 10.1038/s41598-019-51232-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
Members of the CAP superfamily (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-Related 1 proteins) are characterized by the presence of a structurally conserved CAP domain. The common structure-function relationship of this domain is still poorly understood. In this study, we unravel specific molecular mechanisms modulating the quaternary structure of the mammalian CAP protein GAPR-1 (Golgi-Associated plant Pathogenesis-Related protein 1). Copper ions are shown to induce a distinct amyloid-like aggregation pathway of GAPR-1 in the presence of heparin. This involves an immediate shift from native multimers to monomers which are prone to form amyloid-like fibrils. The Cu2+-induced aggregation pathway is independent of a conserved metal-binding site and involves the formation of disulfide bonds during the nucleation process. The elongation process occurs independently of the presence of Cu2+ ions, and amyloid-like aggregation can proceed under oxidative conditions. In contrast, the Zn2+-dependent aggregation pathway was found to be independent of cysteines and was reversible upon removal of Zn2+ ions. Together, our results provide insight into the regulation of the quaternary structure of GAPR-1 by metal ions and redox homeostasis with potential implications for regulatory mechanisms of other CAP proteins.
Collapse
Affiliation(s)
- Jie Sheng
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nick K Olrichs
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Willie J Geerts
- Biomolecular Imaging, Bijvoet Center, Utrecht University, Utrecht, The Netherlands
| | - Dora V Kaloyanova
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
44
|
Zinc binding regulates amyloid-like aggregation of GAPR-1. Biosci Rep 2019; 39:BSR20182345. [PMID: 30700571 PMCID: PMC6900432 DOI: 10.1042/bsr20182345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Members of the CAP superfamily (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins) are characterized by the presence of a CAP domain that is defined by four sequence motifs and a highly conserved tertiary structure. A common structure–function relationship for this domain is hitherto unknown. A characteristic of several CAP proteins is their formation of amyloid-like structures in the presence of lipids. Here we investigate the structural modulation of Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1) by known interactors of the CAP domain, preceding amyloid-like aggregation. Using isothermal titration calorimetry (ITC), we demonstrate that GAPR-1 binds zinc ions. Zn2+ binding causes a slight but significant conformational change as revealed by CD, tryptophan fluorescence, and trypsin digestion. The Zn2+-induced conformational change was required for the formation of GAPR-1 oligomers and amyloid-like assemblies in the presence of heparin, as shown by ThT fluorescence and TEM. Molecular dynamics simulations show binding of Zn2+ to His54 and His103. Mutation of these two highly conserved residues resulted in strongly diminished amyloid-like aggregation. Finally, we show that proteins from the cysteine-rich secretory protein (CRISP) subfamily are also able to form ThT-positive structures in vitro in a heparin- and Zn2+-dependent manner, suggesting that oligomerization regulated by metal ions could be a common structural property of the CAP domain.
Collapse
|
45
|
de Marco A, Ferrer-Miralles N, Garcia-Fruitós E, Mitraki A, Peternel S, Rinas U, Trujillo-Roldán MA, Valdez-Cruz NA, Vázquez E, Villaverde A. Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiol Rev 2019; 43:53-72. [PMID: 30357330 DOI: 10.1093/femsre/fuy038] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the structure, functionalities and biology of functional amyloids is an issue of emerging interest. Inclusion bodies, namely protein clusters formed in recombinant bacteria during protein production processes, have emerged as unanticipated, highly tunable models for the scrutiny of the physiology and architecture of functional amyloids. Based on an amyloidal skeleton combined with varying amounts of native or native-like protein forms, bacterial inclusion bodies exhibit an unusual arrangement that confers mechanical stability, biological activity and conditional protein release, being thus exploitable as versatile biomaterials. The applicability of inclusion bodies in biotechnology as enriched sources of protein and reusable catalysts, and in biomedicine as biocompatible topographies, nanopills or mimetics of endocrine secretory granules has been largely validated. Beyond these uses, the dissection of how recombinant bacteria manage the aggregation of functional protein species into structures of highly variable complexity offers insights about unsuspected connections between protein quality (conformational status compatible with functionality) and cell physiology.
Collapse
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 70013 Heraklion, Crete, Greece.,Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | | | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry and Life Science, 30167 Hannover, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
46
|
Stevenson MJ, Uyeda KS, Harder NHO, Heffern MC. Metal-dependent hormone function: the emerging interdisciplinary field of metalloendocrinology. Metallomics 2019; 11:85-110. [PMID: 30270362 PMCID: PMC10249669 DOI: 10.1039/c8mt00221e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
For over 100 years, there has been an incredible amount of knowledge amassed concerning hormones in the endocrine system and their central role in human health. Hormones represent a diverse group of biomolecules that are released by glands, communicate signals to their target tissue, and are regulated by feedback loops to maintain organism health. Many disease states, such as diabetes and reproductive disorders, stem from misregulation or dysfunction of hormones. Increasing research is illuminating the intricate roles of metal ions in the endocrine system where they may act advantageously in concert with hormones or deleteriously catalyze hormone-associated disease states. As the critical role of metal ions in the endocrine system becomes more apparent, it is increasingly important to untangle the complex mechanisms underlying the connections between inorganic biochemistry and hormone function to understand and control endocrinological phenomena. This tutorial review harmonizes the interdisciplinary fields of endocrinology and inorganic chemistry in the newly-termed field of "metalloendocrinology". We describe examples linking metals to both normal and aberrant hormone function with a focus on highlighting insight to molecular mechanisms. Hormone activities related to both essential metal micronutrients, such as copper, iron, zinc, and calcium, and disruptive nonessential metals, such as lead and cadmium are discussed.
Collapse
Affiliation(s)
- Michael J Stevenson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
47
|
Protein Nanofibrils as Storage Forms of Peptide Drugs and Hormones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:265-290. [PMID: 31713202 DOI: 10.1007/978-981-13-9791-2_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloids are highly organized cross β-sheet protein nanofibrils that are associated with both diseases and functions. Thermodynamically amyloids are stable structures as they represent the lowest free energy state that proteins can attain. However, recent studies suggest that amyloid fibrils can be dissociated by a change in environmental parameters such as pH and ionic strength. This reversibility of amyloids can not only be associated with disease, but function as well. In disease-associated amyloids, fibrils can act as reservoirs of cytotoxic oligomers. Recently, in higher organisms such as mammals, hormones were found to be stored in amyloid-like state, where these were reported to act as a reservoir of functional monomers. These hormone amyloids can dissociate to monomers upon release from the secretory granules, and subsequently bind to their respective receptors and perform their functions. In this book chapter, we describe in detail how these protein nanofibrils represent the densest possible peptide packing and are suitable for long-term storage. Thus, mimicking the feature of amyloids to release functional monomers, it is possible to formulate amyloid-based peptide/protein drugs, which can be used for sustained release.
Collapse
|
48
|
Zepeda-Cervantes J, Vaca L. Induction of adaptive immune response by self-aggregating peptides. Expert Rev Vaccines 2018; 17:723-738. [PMID: 30074424 DOI: 10.1080/14760584.2018.1507742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Recently, subunit vaccines are replacing some of the traditional vaccines because they offer a higher margin of safety. However, generally subunit vaccines have low antigenicity. Adjuvants are used in vaccine formulations to increase their immunogenicity, but current research suggests that adjuvants could induce serious side effects in susceptible individuals; therefore, the improvement of antigens and adjuvants is important. AREAS COVERED Here we reviewed some self-aggregating peptides (SAPs) used as antigen delivery systems. SAPs are based on a short sequence of amino acids, which have self-aggregating properties, inducing self-interaction among peptide molecules by means of non-covalent interactions to generate nanoparticles (NPs). EXPERT COMMENTARY SAPs increase the immunogenicity of fused/conjugated antigens because they can interact with antigen-presenting cells and induce adaptive immunity based on both humoral and cellular responses. As an example, we report an antigen delivery system based on SAPs forming NPs. These NPs are synthesized using a recombinant baculovirus. We fused the green fluorescent protein to the first 110 amino acids of polyhedrin protein from Autographa californica nucleopolyhedrovirus, which has self-aggregating properties. We showed that these NPs prompt high antibody levels without inducing inflammation, similarly to some SAPs reported here.
Collapse
Affiliation(s)
- Jesus Zepeda-Cervantes
- a Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX , Coyoacán , Mexico
| | - Luis Vaca
- a Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX , Coyoacán , Mexico
| |
Collapse
|
49
|
Zn 2+-triggered self-assembly of Gonadorelin [6-D-Phe] to produce nanostructures and fibrils. Sci Rep 2018; 8:11280. [PMID: 30050082 PMCID: PMC6062538 DOI: 10.1038/s41598-018-29529-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/12/2018] [Indexed: 12/23/2022] Open
Abstract
A synthetic derivative, GnRH [6-D-Phe], stable against enzymatic degradation, self-assembles and forms nanostructures and fibrils upon a pH shift in the presence of different concentrations of Zn2+in vitro. Attenuated Total Reflection Fourier Transform Infrared spectroscopy (ATR–FTIR) revealed the existence of higher order assembly of Zn2+: GnRH [6-D-Phe]. Nuclear Magnetic Resonance spectroscopy (NMR) indicated a weak interaction between Zn2+ and GnRH [6-D-Phe]. Atomic Force Microscopy (AFM) showed the existence of GnRH [6-D-Phe] oligomers and fibrils. Molecular Dynamic (MD) simulation of the 10:1 Zn2+: GnRH [6-D-Phe] explored the interaction and dimerization processes. In contrast to already existing short peptide fibrils, GnRH [6-D-Phe] nanostructures and fibrils form in a Tris-buffered pH environment in a controlled manner through a temperature reduction and a pH shift. The lyophilized Zn2+: GnRH [6-D-Phe] assembly was tested as a platform for the sustained delivery of GnRH [6-D-Phe] and incorporated into two different oil vehicle matrices. The in vitro release was slow and continuous over 14 days and not influenced by the oil matrix.
Collapse
|
50
|
Tufail S, Sherwani MA, Shoaib S, Azmi S, Owais M, Islam N. Ovalbumin self-assembles into amyloid nanosheets that elicit immune responses and facilitate sustained drug release. J Biol Chem 2018; 293:11310-11324. [PMID: 29853634 PMCID: PMC6065171 DOI: 10.1074/jbc.ra118.002550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/14/2018] [Indexed: 11/06/2022] Open
Abstract
Amyloids are associated with many neurodegenerative diseases, motivating investigations into their structure and function. Although not linked to a specific disease, albumins have been reported to form many structural aggregates. We were interested in investigating host immune responses to amyloid fibrils assembled from the model protein ovalbumin. Surprisingly, upon subjecting ovalbumin to standard denaturing conditions, we encountered giant protein nanosheets harboring amyloid-like features and hypothesized that these nanosheets might have potential in clinical or therapeutic applications. We found that the nanosheets, without the administration of any additional adjuvant, evoked a strong antibody response in mice that was higher than that observed for native ovalbumin. This suggests that amyloid nanosheets have a self-adjuvanting property. The nanosheet-induced immune response was helper T cell 2 (Th2) biased and negligibly inflammatory. While testing whether the nanosheets might form depots for the sustained release of precursor proteins, we did observe release of ovalbumin that mimicked the conformation of native protein. Moreover, the nanosheets could load the anticancer drug doxorubicin and release it in a slow and sustained manner. Taken together, our results suggest that amyloid nanosheets should be further investigated as either an antigen delivery vehicle or a multifunctional antigen and drug co-delivery system, with potential applications in simultaneous immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Saba Tufail
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India; Biochemistry Section, Women's College, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
| | - Mohd Asif Sherwani
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Sarfuddin Azmi
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Najmul Islam
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
| |
Collapse
|