1
|
Yuan Q, Verbueken D, Dinani R, Kim R, Schoger E, Morsink CD, Simkooei SA, Kemna LJM, Hjortnaes J, Kuster DWD, Boon RA, Zelarayan LC, van der Velden J, Buikema JW. Glycogen synthase kinase-3 inhibition and insulin enhance proliferation and inhibit maturation of human iPSC-derived cardiomyocytes via TCF and FOXO signaling. Stem Cell Reports 2024:102371. [PMID: 39642876 DOI: 10.1016/j.stemcr.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024] Open
Abstract
Embryonic signaling pathways exert stage-specific effects during cardiac development, yet the precise signals for proliferation or maturation remain elusive. To uncover the cues for proliferation, we performed a combinatory cell-cycle screen for insulin and glycogen synthase kinase-3 (GSK3) inhibition in spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Our analysis for proliferation, and subsequential downstream sarcomere development, gene expression analysis, and molecular interventions identified a temporal interplay between insulin/Akt/FOXO and CHIR99021/Wnt/GSK3/TCF signaling. Combined pathway activation led to proliferation of immature hiPSC-CMs with low sarcomere and mitochondria content, while, in the absence of pathway activators, cardiomyocytes rapidly exited the cell cycle and fetched higher organization of sarcomeres and mitochondria. Our data demonstrate two important pathways, which enhance proliferation and inhibit maturation, and provide molecular mechanistic understanding of these cell fate decisions in immature hiPSC-CMs.
Collapse
Affiliation(s)
- Qianliang Yuan
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Devin Verbueken
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands; Amsterdam Heart Center, Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Rafeeh Dinani
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Rosa Kim
- DZHK (German Centre for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany; Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Eric Schoger
- DZHK (German Centre for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany; Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Chloé D Morsink
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Shamim Amiri Simkooei
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Luuk J M Kemna
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands; Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jesper Hjortnaes
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands; Heart Lung Center, Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Diederik W D Kuster
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Reinier A Boon
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Laura Cecilia Zelarayan
- DZHK (German Centre for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany; Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany; Justus Liebig University, Medical Clinic I, Department of Cardiology and Angiology, Giessen, Germany
| | - Jolanda van der Velden
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - Jan W Buikema
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands; Amsterdam Heart Center, Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Woo LA, Wintruba KL, Wissmann B, Tkachenko S, Kubicka E, Farber E, Engkvist O, Barrett I, Granberg KL, Plowright AT, Wolf MJ, Brautigan DL, Bekiranov S, Wang QD, Saucerman JJ. Multi-omic analysis reveals VEGFR2, PI3K, and JNK mediate the small molecule induction of human iPSC-derived cardiomyocyte proliferation. iScience 2024; 27:110485. [PMID: 39171295 PMCID: PMC11338145 DOI: 10.1016/j.isci.2024.110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 03/27/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Mammalian hearts lose their regenerative potential shortly after birth. Stimulating the proliferation of preexisting cardiomyocytes is a potential therapeutic strategy for cardiac damage. In a previous study, we identified 30 compounds that induced the bona-fide proliferation of human iPSC-derived cardiomyocytes (hiPSC-CM). Here, we selected five active compounds with diverse targets, including ALK5 and CB1R, and performed multi-omic analyses to identify common mechanisms mediating the cell cycle progression of hiPSC-CM. Transcriptome profiling revealed the top enriched pathways for all compounds including cell cycle, DNA repair, and kinesin pathways. Functional proteomic arrays found that the compounds collectively activated multiple receptor tyrosine kinases including ErbB2, IGF1R, and VEGFR2. Network analysis integrating common transcriptomic and proteomic signatures predicted that MAPK/PI3K pathways mediated compound responses. Furthermore, VEGFR2 negatively regulated endoreplication, enabling the completion of cell division. Thus, in this study, we applied high-content imaging and molecular profiling to establish mechanisms linking pro-proliferative agents to mechanisms of cardiomyocyte cell cycling.
Collapse
Affiliation(s)
- Laura A. Woo
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Kaitlyn L. Wintruba
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Bethany Wissmann
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Svyatoslav Tkachenko
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44196, USA
| | - Ewa Kubicka
- Center for Cell Signaling, Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Emily Farber
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Ola Engkvist
- Molecular AI, Discovery Sciences, R&D, AstraZeneca, 43150 Gothenburg, MöIndal, Sweden
| | - Ian Barrett
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB40WG, England
| | - Kenneth L. Granberg
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, MöIndal, Sweden
| | - Alleyn T. Plowright
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, MöIndal, Sweden
| | - Matthew J. Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - David L. Brautigan
- Center for Cell Signaling, Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, MöIndal, Sweden
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
3
|
Correia C, Christoffersson J, Tejedor S, El-Haou S, Matadamas-Guzman M, Nair S, Dönnes P, Musa G, Rohman M, Sundqvist M, Riddle RB, Nugraha B, Bellido IS, Johansson M, Wang QD, Hidalgo A, Jennbacken K, Synnergren J, Später D. Enhancing Maturation and Translatability of Human Pluripotent Stem Cell-Derived Cardiomyocytes through a Novel Medium Containing Acetyl-CoA Carboxylase 2 Inhibitor. Cells 2024; 13:1339. [PMID: 39195229 PMCID: PMC11352932 DOI: 10.3390/cells13161339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) constitute an appealing tool for drug discovery, disease modeling, and cardiotoxicity screening. However, their physiological immaturity, resembling CMs in the late fetal stage, limits their utility. Herein, we have developed a novel, scalable cell culture medium designed to enhance the maturation of hPSC-CMs. This medium facilitates a metabolic shift towards fatty acid utilization and augments mitochondrial function by targeting Acetyl-CoA carboxylase 2 (ACC2) with a specific small molecule inhibitor. Our findings demonstrate that this maturation protocol significantly advances the metabolic, structural, molecular and functional maturity of hPSC-CMs at various stages of differentiation. Furthermore, it enables the creation of cardiac microtissues with superior structural integrity and contractile properties. Notably, hPSC-CMs cultured in this optimized maturation medium display increased accuracy in modeling a hypertrophic cardiac phenotype following acute endothelin-1 induction and show a strong correlation between in vitro and in vivo target engagement in drug screening efforts. This approach holds promise for improving the utility and translatability of hPSC-CMs in cardiac disease modeling and drug discovery.
Collapse
Affiliation(s)
- Cláudia Correia
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden (A.H.)
| | - Jonas Christoffersson
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden (A.H.)
| | - Sandra Tejedor
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden (A.H.)
- Systems Biology Research Center, School of Bioscience, University of Skövde, 54128 Skövde, Sweden
| | - Saïd El-Haou
- Mechanistic Biology and Profiling, Discovery Sciences, AstraZeneca R&D, Cambridge CB2 0AA, UK
| | - Meztli Matadamas-Guzman
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden (A.H.)
| | - Syam Nair
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden (A.H.)
| | - Pierre Dönnes
- Systems Biology Research Center, School of Bioscience, University of Skövde, 54128 Skövde, Sweden
- SciCross AB, 54135 Skövde, Sweden
| | - Gentian Musa
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden (A.H.)
| | - Mattias Rohman
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Monika Sundqvist
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden (A.H.)
| | - Rebecca B. Riddle
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden (A.H.)
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Bramasta Nugraha
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden (A.H.)
| | - Ioritz Sorzabal Bellido
- Data Sciences and Quantitative Biology, Discovery Sciences, AstraZeneca R&D, Cambridge CB2 0AA, UK
| | - Markus Johansson
- Systems Biology Research Center, School of Bioscience, University of Skövde, 54128 Skövde, Sweden
| | - Qing-Dong Wang
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden (A.H.)
| | - Alejandro Hidalgo
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden (A.H.)
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157 Huddinge, Sweden
| | - Karin Jennbacken
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden (A.H.)
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, 54128 Skövde, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Daniela Später
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden (A.H.)
- Integrated Cardio Metabolic Centre (ICMC), Department of Medicine, Karolinska Institute, Blickagången 6, 14157 Huddinge, Sweden
| |
Collapse
|
4
|
Ryoo H, Kimmel H, Rondo E, Underhill GH. Advances in high throughput cell culture technologies for therapeutic screening and biological discovery applications. Bioeng Transl Med 2024; 9:e10627. [PMID: 38818120 PMCID: PMC11135158 DOI: 10.1002/btm2.10627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 06/01/2024] Open
Abstract
Cellular phenotypes and functional responses are modulated by the signals present in their microenvironment, including extracellular matrix (ECM) proteins, tissue mechanical properties, soluble signals and nutrients, and cell-cell interactions. To better recapitulate and analyze these complex signals within the framework of more physiologically relevant culture models, high throughput culture platforms can be transformative. High throughput methodologies enable scientists to extract increasingly robust and broad datasets from individual experiments, screen large numbers of conditions for potential hits, better qualify and predict responses for preclinical applications, and reduce reliance on animal studies. High throughput cell culture systems require uniformity, assay miniaturization, specific target identification, and process simplification. In this review, we detail the various techniques that researchers have used to face these challenges and explore cellular responses in a high throughput manner. We highlight several common approaches including two-dimensional multiwell microplates, microarrays, and microfluidic cell culture systems as well as unencapsulated and encapsulated three-dimensional high throughput cell culture systems, featuring multiwell microplates, micromolds, microwells, microarrays, granular hydrogels, and cell-encapsulated microgels. We also discuss current applications of these high throughput technologies, namely stem cell sourcing, drug discovery and predictive toxicology, and personalized medicine, along with emerging opportunities and future impact areas.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Hannah Kimmel
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Evi Rondo
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Gregory H. Underhill
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
5
|
Tello JA, Jiang L, Zohar Y, Restifo LL. Drosophila CASK regulates brain size and neuronal morphogenesis, providing a genetic model of postnatal microcephaly suitable for drug discovery. Neural Dev 2023; 18:6. [PMID: 37805506 PMCID: PMC10559581 DOI: 10.1186/s13064-023-00174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND CASK-related neurodevelopmental disorders are untreatable. Affected children show variable severity, with microcephaly, intellectual disability (ID), and short stature as common features. X-linked human CASK shows dosage sensitivity with haploinsufficiency in females. CASK protein has multiple domains, binding partners, and proposed functions at synapses and in the nucleus. Human and Drosophila CASK show high amino-acid-sequence similarity in all functional domains. Flies homozygous for a hypomorphic CASK mutation (∆18) have motor and cognitive deficits. A Drosophila genetic model of CASK-related disorders could have great scientific and translational value. METHODS We assessed the effects of CASK loss of function on morphological phenotypes in Drosophila using established genetic, histological, and primary neuronal culture approaches. NeuronMetrics software was used to quantify neurite-arbor morphology. Standard nonparametric statistics methods were supplemented by linear mixed effects modeling in some cases. Microfluidic devices of varied dimensions were fabricated and numerous fluid-flow parameters were used to induce oscillatory stress fields on CNS tissue. Dissociation into viable neurons and neurite outgrowth in vitro were assessed. RESULTS We demonstrated that ∆18 homozygous flies have small brains, small heads, and short bodies. When neurons from developing CASK-mutant CNS were cultured in vitro, they grew small neurite arbors with a distinctive, quantifiable "bushy" morphology that was significantly rescued by transgenic CASK+. As in humans, the bushy phenotype showed dosage-sensitive severity. To overcome the limitations of manual tissue trituration for neuronal culture, we optimized the design and operation of a microfluidic system for standardized, automated dissociation of CNS tissue into individual viable neurons. Neurons from CASK-mutant CNS dissociated in the microfluidic system recapitulate the bushy morphology. Moreover, for any given genotype, device-dissociated neurons grew larger arbors than did manually dissociated neurons. This automated dissociation method is also effective for rodent CNS. CONCLUSIONS These biological and engineering advances set the stage for drug discovery using the Drosophila model of CASK-related disorders. The bushy phenotype provides a cell-based assay for compound screening. Nearly a dozen genes encoding CASK-binding proteins or transcriptional targets also have brain-development mutant phenotypes, including ID. Hence, drugs that improve CASK phenotypes might also benefit children with disorders due to mutant CASK partners.
Collapse
Affiliation(s)
- Judith A Tello
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA
- Present address: Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Linda L Restifo
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Neurology, University of Arizona Health Sciences, 1501 N. Campbell Ave, Tucson, AZ, 85724-5023, USA.
- BIO5 Interdisciplinary Research Institute, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Cellular & Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, 85724, USA.
| |
Collapse
|
6
|
Yang H, Yang Y, Kiskin FN, Shen M, Zhang JZ. Recent advances in regulating the proliferation or maturation of human-induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2023; 14:228. [PMID: 37649113 PMCID: PMC10469435 DOI: 10.1186/s13287-023-03470-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
In the last decade, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM)-based cell therapy has drawn broad attention as a potential therapy for treating injured hearts. However, mass production of hiPSC-CMs remains challenging, limiting their translational potential in regenerative medicine. Therefore, multiple strategies including cell cycle regulators, small molecules, co-culture systems, and epigenetic modifiers have been used to improve the proliferation of hiPSC-CMs. On the other hand, the immaturity of these proliferative hiPSC-CMs could lead to lethal arrhythmias due to their limited ability to functionally couple with resident cardiomyocytes. To achieve functional maturity, numerous methods such as prolonged culture, biochemical or biophysical stimulation, in vivo transplantation, and 3D culture approaches have been employed. In this review, we summarize recent approaches used to promote hiPSC-CM proliferation, and thoroughly review recent advances in promoting hiPSC-CM maturation, which will serve as the foundation for large-scale production of mature hiPSC-CMs for future clinical applications.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Fedir N Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
7
|
Maas RGC, van den Dolder FW, Yuan Q, van der Velden J, Wu SM, Sluijter JPG, Buikema JW. Harnessing developmental cues for cardiomyocyte production. Development 2023; 150:dev201483. [PMID: 37560977 PMCID: PMC10445742 DOI: 10.1242/dev.201483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Developmental research has attempted to untangle the exact signals that control heart growth and size, with knockout studies in mice identifying pivotal roles for Wnt and Hippo signaling during embryonic and fetal heart growth. Despite this improved understanding, no clinically relevant therapies are yet available to compensate for the loss of functional adult myocardium and the absence of mature cardiomyocyte renewal that underlies cardiomyopathies of multiple origins. It remains of great interest to understand which mechanisms are responsible for the decline in proliferation in adult hearts and to elucidate new strategies for the stimulation of cardiac regeneration. Multiple signaling pathways have been identified that regulate the proliferation of cardiomyocytes in the embryonic heart and appear to be upregulated in postnatal injured hearts. In this Review, we highlight the interaction of signaling pathways in heart development and discuss how this knowledge has been translated into current technologies for cardiomyocyte production.
Collapse
Affiliation(s)
- Renee G. C. Maas
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Floor W. van den Dolder
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Qianliang Yuan
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Sean M. Wu
- Department of Medicine, Division of Cardiovascular Medicine,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joost P. G. Sluijter
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Jan W. Buikema
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
- Department of Cardiology, Amsterdam Heart Center, Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
8
|
Nano-liter perfusion microfluidic device made entirely by two-photon polymerization for dynamic cell culture with easy cell recovery. Sci Rep 2023; 13:562. [PMID: 36631601 PMCID: PMC9834384 DOI: 10.1038/s41598-023-27660-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Polydimethylsiloxane (PDMS) has been the material of choice for microfluidic applications in cell biology for many years, with recent advances encompassing nano-scaffolds and surface modifications to enhance cell-surface interactions at nano-scale. However, PDMS has not previously been amenable to applications which require complex geometries in three dimensions for cell culture device fabrication in the absence of additional components. Further, PDMS microfluidic devices have limited capacity for cell retrieval following culture without severely compromising cell health. This study presents a designed and entirely 3D-printed microfluidic chip (8.8 mm × 8.2 mm × 3.6 mm) using two-photon polymerization (2PP). The 'nest' chip is composed of ten channels that deliver sub-microliter volume flowrates (to ~ 600 nL/min per channel) to 10 individual retrievable cell sample 'cradles' that interlock with the nest to create the microfluidic device. Computational fluid dynamics modelling predicted medium flow in the device, which was accurately validated by real-time microbead tracking. Functional capability of the device was assessed, and demonstrated the capability to deliver culture medium, dyes, and biological molecules to support cell growth, staining and cell phenotype changes, respectively. Therefore, 2PP 3D-printing provides the precision needed for nanoliter fluidic devices constructed from multiple interlocking parts for cell culture application.
Collapse
|
9
|
Zhang SY, Zhao J, Ni JJ, Li H, Quan ZZ, Qing H. Application and prospects of high-throughput screening for in vitro neurogenesis. World J Stem Cells 2022; 14:393-419. [PMID: 35949394 PMCID: PMC9244953 DOI: 10.4252/wjsc.v14.i6.393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/07/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, high-throughput screening (HTS) has made great contributions to new drug discovery. HTS technology is equipped with higher throughput, minimized platforms, more automated and computerized operating systems, more efficient and sensitive detection devices, and rapid data processing systems. At the same time, in vitro neurogenesis is gradually becoming important in establishing models to investigate the mechanisms of neural disease or developmental processes. However, challenges remain in generating more mature and functional neurons with specific subtypes and in establishing robust and standardized three-dimensional (3D) in vitro models with neural cells cultured in 3D matrices or organoids representing specific brain regions. Here, we review the applications of HTS technologies on in vitro neurogenesis, especially aiming at identifying the essential genes, chemical small molecules and adaptive microenvironments that hold great prospects for generating functional neurons or more reproductive and homogeneous 3D organoids. We also discuss the developmental tendency of HTS technology, e.g., so-called next-generation screening, which utilizes 3D organoid-based screening combined with microfluidic devices to narrow the gap between in vitro models and in vivo situations both physiologically and pathologically.
Collapse
Affiliation(s)
- Shu-Yuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Zhao
- Aerospace Medical Center, Aerospace Center Hospital, Beijing 100049, China
| | - Jun-Jun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhen-Zhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
10
|
Utility of iPSC-Derived Cells for Disease Modeling, Drug Development, and Cell Therapy. Cells 2022; 11:cells11111853. [PMID: 35681550 PMCID: PMC9180434 DOI: 10.3390/cells11111853] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The advent of induced pluripotent stem cells (iPSCs) has advanced our understanding of the molecular mechanisms of human disease, drug discovery, and regenerative medicine. As such, the use of iPSCs in drug development and validation has shown a sharp increase in the past 15 years. Furthermore, many labs have been successful in reproducing many disease phenotypes, often difficult or impossible to capture, in commonly used cell lines or animal models. However, there still remain limitations such as the variability between iPSC lines as well as their maturity. Here, we aim to discuss the strategies in generating iPSC-derived cardiomyocytes and neurons for use in disease modeling, drug development and their use in cell therapy.
Collapse
|
11
|
Phang RJ, Ritchie RH, Hausenloy DJ, Lees JG, Lim SY. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovasc Res 2022; 119:668-690. [PMID: 35388880 PMCID: PMC10153440 DOI: 10.1093/cvr/cvac049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with Type 2 diabetes mellitus (T2DM) frequently exhibit a distinctive cardiac phenotype known as diabetic cardiomyopathy. Cardiac complications associated with T2DM include cardiac inflammation, hypertrophy, fibrosis and diastolic dysfunction in the early stages of the disease, which can progress to systolic dysfunction and heart failure. Effective therapeutic options for diabetic cardiomyopathy are limited and often have conflicting results. The lack of effective treatments for diabetic cardiomyopathy is due in part, to our poor understanding of the disease development and progression, as well as a lack of robust and valid preclinical human models that can accurately recapitulate the pathophysiology of the human heart. In addition to cardiomyocytes, the heart contains a heterogeneous population of non-myocytes including fibroblasts, vascular cells, autonomic neurons and immune cells. These cardiac non-myocytes play important roles in cardiac homeostasis and disease, yet the effect of hyperglycaemia and hyperlipidaemia on these cell types are often overlooked in preclinical models of diabetic cardiomyopathy. The advent of human induced pluripotent stem cells provides a new paradigm in which to model diabetic cardiomyopathy as they can be differentiated into all cell types in the human heart. This review will discuss the roles of cardiac non-myocytes and their dynamic intercellular interactions in the pathogenesis of diabetic cardiomyopathy. We will also discuss the use of sodium-glucose cotransporter 2 inhibitors as a therapy for diabetic cardiomyopathy and their known impacts on non-myocytes. These developments will no doubt facilitate the discovery of novel treatment targets for preventing the onset and progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ren Jie Phang
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebecca H Ritchie
- School of Biosciences, Parkville, Victoria 3010, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Kametani Y, Tanaka S, Wada Y, Suzuki S, Umeda A, Nishinaka K, Okada Y, Maeda M, Miyagawa S, Sawa Y, Obana M, Fujio Y. Yes‐associated protein activation potentiates glycogen synthase kinase‐3 inhibitor‐induced proliferation of neonatal cardiomyocytes and iPS cell‐derived cardiomyocytes. J Cell Physiol 2022; 237:2539-2549. [PMID: 35312066 PMCID: PMC9311433 DOI: 10.1002/jcp.30724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/06/2022]
Abstract
Because mammalian cardiomyocytes largely cease to proliferate immediately after birth, the regenerative activity of the heart is limited. To date, much effort has been made to clarify the regulatory mechanism of cardiomyocyte proliferation because the amplification of cardiomyocytes could be a promising strategy for heart regenerative therapy. Recently, it was reported that the inhibition of glycogen synthase kinase (GSK)‐3 promotes the proliferation of neonatal rat cardiomyocytes (NRCMs) and human iPS cell‐derived cardiomyocytes (hiPSC‐CMs). Additionally, Yes‐associated protein (YAP) induces cardiomyocyte proliferation. The purpose of this study was to address the importance of YAP activity in cardiomyocyte proliferation induced by GSK‐3 inhibitors (GSK‐3Is) to develop a novel strategy for cardiomyocyte amplification. Immunofluorescent microscopic analysis using an anti‐Ki‐67 antibody demonstrated that the treatment of NRCMs with GSK‐3Is, such as BIO and CHIR99021, increased the ratio of proliferative cardiomyocytes. YAP was localized in the nuclei of more than 95% of cardiomyocytes, either in the presence or absence of GSK‐3Is, indicating that YAP was endogenously activated. GSK‐3Is increased the expression of β‐catenin and promoted its translocation into the nucleus without influencing YAP activity. The knockdown of YAP using siRNA or pharmacological inhibition of YAP using verteporfin or CIL56 dramatically reduced GSK‐3I‐induced cardiomyocyte proliferation without suppressing β‐catenin activation. Interestingly, the inhibition of GSK‐3 also induced the proliferation of hiPSC‐CMs under sparse culture conditions, where YAP was constitutively activated. In contrast, under dense culture conditions, in which YAP activity was suppressed, the proliferative effects of GSK‐3Is on hiPSC‐CMs were not detected. Importantly, the activation of YAP by the knockdown of α‐catenin restored the proproliferative activity of GSK‐3Is. Collectively, YAP activation potentiates the GSK‐3I‐induced proliferation of cardiomyocytes. The blockade of GSK‐3 in combination with YAP activation resulted in remarkable amplification of cardiomyocytes.
Collapse
Affiliation(s)
- Yusuke Kametani
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
| | - Shota Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
| | - Yuriko Wada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
| | - Shota Suzuki
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
| | - Ayaka Umeda
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
| | - Kosuke Nishinaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
| | - Yoshiaki Okada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
| | - Makiko Maeda
- Laboratory of Clinical Pharmacology, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
- Department of Medical Innovation, Medical Center for Translational Research Osaka University Hospital Suita City Osaka Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Graduate School of Medicine Osaka University Suita City Osaka Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Graduate School of Medicine Osaka University Suita City Osaka Japan
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI) Osaka University Suita City Osaka Japan
- Radioisotope Research Center, Institute for Radiation Sciences Osaka University Suita City Osaka Japan
- Global Center for Medical Engineering and Informatics (MEI) Osaka University Suita City Osaka Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences Osaka University Suita City Osaka Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative (OTRI) Osaka University Suita City Osaka Japan
| |
Collapse
|
13
|
Liu C, Pei M, Li Q, Zhang Y. Decellularized extracellular matrix mediates tissue construction and regeneration. Front Med 2022; 16:56-82. [PMID: 34962624 PMCID: PMC8976706 DOI: 10.1007/s11684-021-0900-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
Contributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. Containing the crucial traits of the cellular microenvironment, ECM substitutes mediate cell-matrix interactions to prompt stem-cell proliferation and differentiation for 3D organoid construction in vitro or tissue regeneration in vivo. However, these ECMs are often applied generically and have yet to be extensively developed for specific cell types in 3D cultures. Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D culture development in vitro and tissue remodeling during wound healing after implantation into the host as well. Gaining better insight into ECM derived from either tissue or cells that regulate 3D tissue reconstruction or organ regeneration helps us to select, produce, and implant the most suitable ECM and thus promote 3D organoid culture and tissue remodeling for in vivo regeneration. Overall, the decellularization methodologies and tissue/cell-derived ECM as scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D tissue culture in vitro are discussed. Moreover, current preclinical applications by which ECM components modulate the wound-healing process are reviewed.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
14
|
Yuan Q, Maas RGC, Brouwer ECJ, Pei J, Blok CS, Popovic MA, Paauw NJ, Bovenschen N, Hjortnaes J, Harakalova M, Doevendans PA, Sluijter JPG, van der Velden J, Buikema JW. Sarcomere Disassembly and Transfection Efficiency in Proliferating Human iPSC-Derived Cardiomyocytes. J Cardiovasc Dev Dis 2022; 9:jcdd9020043. [PMID: 35200697 PMCID: PMC8880351 DOI: 10.3390/jcdd9020043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Contractility of the adult heart relates to the architectural degree of sarcomeres in individual cardiomyocytes (CMs) and appears to be inversely correlated with the ability to regenerate. In this study we utilized multiple imaging techniques to follow the sequence of sarcomere disassembly during mitosis resulting in cellular or nuclear division in a source of proliferating human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We observed that both mono- and binuclear hiPSC-CMs give rise to mononuclear daughter cells or binuclear progeny. Within this source of highly proliferative hiPSC-CMs, treated with the CHIR99021 small molecule, we found that Wnt and Hippo signaling was more present when compared to metabolic matured non-proliferative hiPSC-CMs and adult human heart tissue. Furthermore, we found that CHIR99021 increased the efficiency of non-viral vector incorporation in high-proliferative hiPSC-CMs, in which fluorescent transgene expression became present after the chromosomal segregation (M phase). This study provides a tool for gene manipulation studies in hiPSC-CMs and engineered cardiac tissue. Moreover, our data illustrate that there is a complex biology behind the cellular and nuclear division of mono- and binuclear CMs, with a shared-phenomenon of sarcomere disassembly during mitosis.
Collapse
Affiliation(s)
- Qianliang Yuan
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (Q.Y.); (E.C.J.B.); (J.v.d.V.)
| | - Renee G. C. Maas
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ellen C. J. Brouwer
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (Q.Y.); (E.C.J.B.); (J.v.d.V.)
| | - Jiayi Pei
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Christian Snijders Blok
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marko A. Popovic
- Department of Molecular Cell Biology and Immunology (MCBI), Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (M.A.P.); (N.J.P.)
| | - Nanne J. Paauw
- Department of Molecular Cell Biology and Immunology (MCBI), Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (M.A.P.); (N.J.P.)
| | - Niels Bovenschen
- Bachelor Research Hub, Educational Center, University Medical Centre Utrecht, 3584 CX Utrecht, The Netherlands;
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery, Heart & Lung Center, Leiden University Medical Center, Leiden University, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Magdalena Harakalova
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Pieter A. Doevendans
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP Utrecht, The Netherlands
| | - Joost P. G. Sluijter
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Jolanda van der Velden
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (Q.Y.); (E.C.J.B.); (J.v.d.V.)
| | - Jan W. Buikema
- Amsterdam Cardiovascular Sciences, Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (Q.Y.); (E.C.J.B.); (J.v.d.V.)
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, 3584 CS Utrecht, The Netherlands; (R.G.C.M.); (J.P.); (C.S.B.); (M.H.); (P.A.D.); (J.P.G.S.)
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
15
|
Thomas D, Cunningham NJ, Shenoy S, Wu JC. Human-induced pluripotent stem cells in cardiovascular research: current approaches in cardiac differentiation, maturation strategies, and scalable production. Cardiovasc Res 2022; 118:20-36. [PMID: 33757124 PMCID: PMC8932155 DOI: 10.1093/cvr/cvab115] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Manifestations of cardiovascular diseases (CVDs) in a patient or a population differ based on inherent biological makeup, lifestyle, and exposure to environmental risk factors. These variables mean that therapeutic interventions may not provide the same benefit to every patient. In the context of CVDs, human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offer an opportunity to model CVDs in a patient-specific manner. From a pharmacological perspective, iPSC-CM models can serve as go/no-go tests to evaluate drug safety. To develop personalized therapies for early diagnosis and treatment, human-relevant disease models are essential. Hence, to implement and leverage the utility of iPSC-CMs for large-scale treatment or drug discovery, it is critical to (i) carefully evaluate the relevant limitations of iPSC-CM differentiations, (ii) establish quality standards for defining the state of cell maturity, and (iii) employ techniques that allow scalability and throughput with minimal batch-to-batch variability. In this review, we briefly describe progress made with iPSC-CMs in disease modelling and pharmacological testing, as well as current iPSC-CM maturation techniques. Finally, we discuss current platforms for large-scale manufacturing of iPSC-CMs that will enable high-throughput drug screening applications.
Collapse
Affiliation(s)
- Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | - Nathan J Cunningham
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | - Sushma Shenoy
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| |
Collapse
|
16
|
Floy ME, Dunn KK, Mateyka TD, Reichardt IM, Steinberg AB, Palecek SP. Direct coculture of human pluripotent stem cell-derived cardiac progenitor cells with epicardial cells induces cardiomyocyte proliferation and reduces sarcomere organization. J Mol Cell Cardiol 2022; 162:144-157. [PMID: 34560089 PMCID: PMC8766908 DOI: 10.1016/j.yjmcc.2021.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 01/03/2023]
Abstract
Epicardial cells (EpiCs) are necessary for myocardium formation, yet little is known about crosstalk between EpiCs and cardiomyocytes (CMs) during development and the potential impact of EpiCs on CM maturation. To investigate the effects of EpiCs on CM commitment and maturation, we differentiated human pluripotent stem cells (hPSCs) to cardiac progenitor cells (CPCs) and EpiCs, and cocultured EpiCs and CPCs for two weeks. When EpiCs were allowed to form epicardial-derived cells, we observed increased expression of cTnI in developing CMs. In the presence of the TGFβ inhibitor A83-01, EpiCs remained in the epicardial state and induced CM proliferation, increased MLC2v expression, and led to less organized sarcomeres. These effects were not observed if CPCs were treated with EpiC-conditioned medium or if CPCs were indirectly cocultured with EpiCs. Finally, single cell RNA sequencing identified that EpiC-CPC coculture had bi-directional effects on transcriptional programs in EpiCs and CMs, and biased EpiC lineages from a SFRP2-enriched population to a DLK1- or C3-enriched population. This work suggests important crosstalk between EpiCs and CMs during differentiation which can be used to influence cell fate and improve the ability to generate cardiac cells and tissues for in vitro models and development of cardiac cellular therapies.
Collapse
Affiliation(s)
- Martha E. Floy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States of America
| | - Kaitlin K. Dunn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States of America
| | - Taylor D. Mateyka
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States of America
| | - Isabella M. Reichardt
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States of America
| | - Alexandra B. Steinberg
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States of America
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States of America,Correspondence:
| |
Collapse
|
17
|
Lou L, Lopez KO, Nautiyal P, Agarwal A. Integrated Perspective of Scaffold Designing and Multiscale Mechanics in Cardiac Bioengineering. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lihua Lou
- Department of Mechanical and Materials Engineering Florida International University Miami FL 33174 USA
| | - Kazue Orikasa Lopez
- Department of Mechanical and Materials Engineering Florida International University Miami FL 33174 USA
| | - Pranjal Nautiyal
- Mechanical Engineering and Applied Mechanics University of Pennsylvania Philadelphia PA 19104 USA
| | - Arvind Agarwal
- Plasma Forming Laboratory Advanced Materials Engineering Research Institute (AMERI) Mechanical and Materials Engineering College of Engineering and Computing Florida International University Miami FL 33174 USA
| |
Collapse
|
18
|
Aranda Hernandez J, Heuer C, Bahnemann J, Szita N. Microfluidic Devices as Process Development Tools for Cellular Therapy Manufacturing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 179:101-127. [PMID: 34410457 DOI: 10.1007/10_2021_169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cellular therapies are creating a paradigm shift in the biomanufacturing industry. Particularly for autologous therapies, small-scale processing methods are better suited than the large-scale approaches that are traditionally employed in the industry. Current small-scale methods for manufacturing personalized cell therapies, however, are labour-intensive and involve a number of 'open events'. To overcome these challenges, new cell manufacturing platforms following a GMP-in-a-box concept have recently come on the market (GMP: Good Manufacturing Practice). These are closed automated systems with built-in pumps for fluid handling and sensors for in-process monitoring. At a much smaller scale, microfluidic devices exhibit many of the same features as current GMP-in-a-box systems. They are closed systems, fluids can be processed and manipulated, and sensors integrated for real-time detection of process variables. Fabricated from polymers, they can be made disposable, i.e. single-use. Furthermore, microfluidics offers exquisite spatiotemporal control over the cellular microenvironment, promising both reproducibility and control of outcomes. In this chapter, we consider the challenges in cell manufacturing, highlight recent advances of microfluidic devices for each of the main process steps, and summarize our findings on the current state of the art. As microfluidic cell culture devices have been reported for both adherent and suspension cell cultures, we report on devices for the key process steps, or unit operations, of both stem cell therapies and cell-based immunotherapies.
Collapse
Affiliation(s)
| | - Christopher Heuer
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Nicolas Szita
- Biochemical Engineering Department, University College London (UCL), London, UK.
| |
Collapse
|
19
|
Ortega C, Corredor D, Santillán M, Ger W, Noceda J, Pais-Chanfrau J, Trujillo L. Lab on a Chip: Bioreactors miniaturization for rapid optimization of biomedical processes and its impact on SARS-CoV-2 diagnosis. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lab on a Chip (LoC) as part of Microbioreactors (MBRs) constitute an emergent technology to carry out micro-bioprocesses based on microfluidics research. In this review, the usefulness of LoCs is exposed since its inception, demonstrating that it is a multidisciplinary research field, gathering different science branches to develop this technology. As a result, a beneficial point of advancement is reached, producing useful consumables for humanity. Some of the described LoCs throughout this work are also used to detect infectious diseases caused by bacteria or viruses, allowing accelerated studies on emerging or high-impact diseases, such as COVID-19. Here are also displayed with an updated panorama, different strategies to improve the use, applications in the biomedical field, and spread of these devices aimed at their availability to solve social problems.
Collapse
Affiliation(s)
- C.P. Ortega
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador
| | - D.A Corredor
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador
| | - M.E Santillán
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador
| | - W.S Ger
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador
| | - J.M Noceda
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador Grupo de Investigación de Biotecnología Industrial y Bioproductos Centro de Nanociencia y Nanotecnología – CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - J.M Pais-Chanfrau
- Grupo de Investigación de Biotecnología Industrial y Bioproductos Centro de Nanociencia y Nanotecnología – CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador FICAYA, Universidad Técnica del Norte (UTN), Ibarra, Imbabura, Ecuador
| | - L.E Trujillo
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador. Grupo de Investigación de Biotecnología Industrial y Bioproductos Centro de Nanociencia y Nanotecnología – CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| |
Collapse
|
20
|
Wnt Activation and Reduced Cell-Cell Contact Synergistically Induce Massive Expansion of Functional Human iPSC-Derived Cardiomyocytes. Cell Stem Cell 2021; 27:50-63.e5. [PMID: 32619518 DOI: 10.1016/j.stem.2020.06.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
Modulating signaling pathways including Wnt and Hippo can induce cardiomyocyte proliferation in vivo. Applying these signaling modulators to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro can expand CMs modestly (<5-fold). Here, we demonstrate massive expansion of hiPSC-CMs in vitro (i.e., 100- to 250-fold) by glycogen synthase kinase-3β (GSK-3β) inhibition using CHIR99021 and concurrent removal of cell-cell contact. We show that GSK-3β inhibition suppresses CM maturation, while contact removal prevents CMs from cell cycle exit. Remarkably, contact removal enabled 10 to 25 times greater expansion beyond GSK-3β inhibition alone. Mechanistically, persistent CM proliferation required both LEF/TCF activity and AKT phosphorylation but was independent from yes-associated protein (YAP) signaling. Engineered heart tissues from expanded hiPSC-CMs showed comparable contractility to those from unexpanded hiPSC-CMs, demonstrating uncompromised cellular functionality after expansion. In summary, we uncovered a molecular interplay that enables massive hiPSC-CM expansion for large-scale drug screening and tissue engineering applications.
Collapse
|
21
|
James EC, Tomaskovic-Crook E, Crook JM. Bioengineering Clinically Relevant Cardiomyocytes and Cardiac Tissues from Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms22063005. [PMID: 33809429 PMCID: PMC8001925 DOI: 10.3390/ijms22063005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The regenerative capacity of cardiomyocytes is insufficient to functionally recover damaged tissue, and as such, ischaemic heart disease forms the largest proportion of cardiovascular associated deaths. Human-induced pluripotent stem cells (hiPSCs) have enormous potential for developing patient specific cardiomyocytes for modelling heart disease, patient-based cardiac toxicity testing and potentially replacement therapy. However, traditional protocols for hiPSC-derived cardiomyocytes yield mixed populations of atrial, ventricular and nodal-like cells with immature cardiac properties. New insights gleaned from embryonic heart development have progressed the precise production of subtype-specific hiPSC-derived cardiomyocytes; however, their physiological immaturity severely limits their utility as model systems and their use for drug screening and cell therapy. The long-entrenched challenges in this field are being addressed by innovative bioengingeering technologies that incorporate biophysical, biochemical and more recently biomimetic electrical cues, with the latter having the potential to be used to both direct hiPSC differentiation and augment maturation and the function of derived cardiomyocytes and cardiac tissues by mimicking endogenous electric fields.
Collapse
Affiliation(s)
- Emma Claire James
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
| | - Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Correspondence: (E.T.-C.); (J.M.C.)
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Department of Surgery, St Vincent’s Hospital, The University of Melbourne, Fitzroy 3065, Australia
- Correspondence: (E.T.-C.); (J.M.C.)
| |
Collapse
|
22
|
Leone M, Engel FB. Isolation, Culture, and Live-Cell Imaging of Primary Rat Cardiomyocytes. Methods Mol Biol 2021; 2158:109-124. [PMID: 32857369 DOI: 10.1007/978-1-0716-0668-1_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The heart is a complex organ consisting of a variety of different cardiomyocytes (ventricular vs. atrial, left vs. right ventricular, working vs. nodal) as well as other cell types, including endothelial cells and vascular smooth muscle cells. Pericytes, neurons, and immune cells are less abundant, yet still important. Whereas cardiomyocytes account for around 75% of the heart volume, 50-70% of the cells in the heart are non-myocytes. This complexity of the heart underlines the difficulties in interpreting data obtained in vivo. In the field of cardiac regeneration, it remains unclear whether it is possible to induce a significant number of cardiomyocytes to proliferate and whether the often-observed improvement in cardiac function after experimental therapies is due to the induction of cardiomyocyte proliferation. Therefore, the reductionist approach inherent to cultures of isolated cells continues to be of great importance, even though it is important to study heart disease in vivo due to interactions of the different cell types. Cultured cardiomyocytes allow for easy manipulation of cell behavior (e.g., cell division) and its analysis (e.g., live-cell imaging). In addition, isolated cells in culture are a valuable tool for pharmacological and toxicological studies. This chapter offers a practical guide to isolate and culture primary neonatal and adult rat cardiomyocytes and a detailed protocol for live-cell imaging of embryonic and neonatal cardiomyocytes.
Collapse
Affiliation(s)
- Marina Leone
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany. .,Muscle Research Center Erlangen (MURCE), Erlangen, Germany.
| |
Collapse
|
23
|
Gurner KH, Truong TT, Harvey AJ, Gardner DK. A combination of growth factors and cytokines alter preimplantation mouse embryo development, foetal development and gene expression profiles. Mol Hum Reprod 2020; 26:953-970. [DOI: 10.1093/molehr/gaaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Abstract
Within the maternal tract, the preimplantation embryo is exposed to an array of growth factors (GFs) and cytokines, most of which are absent from culture media used in clinical IVF. Whilst the addition of individual GFs and cytokines to embryo culture media can improve preimplantation mouse embryo development, there is a lack of evidence on the combined synergistic effects of GFs and cytokines on embryo development and further foetal growth. Therefore, in this study, the effect of a combined group of GFs and cytokines on mouse preimplantation embryo development and subsequent foetal development and gene expression profiles was investigated. Supplementation of embryo culture media with an optimised combination of GFs and cytokines (0.05 ng/ml vascular endothelial GF, 1 ng/ml platelet-derived GF, 0.13 ng/ml insulin-like GF 1, 0.026 ng/ml insulin-like GF 2 and 1 ng/ml granulocyte colony-stimulating factor) had no effect on embryo morphokinetics but significantly increased trophectoderm cell number (P = 0.0002) and total cell number (P = 0.024). Treatment with this combination of GFs and cytokines also significantly increased blastocyst outgrowth area (P < 0.05) and, following embryo transfer, increased foetal weight (P = 0.027), crown-rump length (P = 0.017) and overall morphological development (P = 0.027). RNA-seq analysis of in vitro derived foetuses identified concurrent alterations to the transcriptional profiles of liver and placental tissues compared with those developed in vivo, with greater changes observed in the GF and cytokine treated group. Together these data highlight the importance of balancing the actions of such factors for the regulation of normal development and emphasise the need for further studies investigating this prior to clinical implementation.
Collapse
Affiliation(s)
- Kathryn H Gurner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Thi T Truong
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Melbourne IVF, East Melbourne, VIC 3002, Australia
| |
Collapse
|
24
|
A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Rev Rep 2020; 17:748-776. [PMID: 33098306 DOI: 10.1007/s12015-020-10061-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The induced pluripotent stem cells (iPSCs) are derived from somatic cells by using reprogramming factors such as Oct4, Sox2, Klf4, and c-Myc (OSKM) or Oct4, Sox2, Nanog and Lin28 (OSNL). They resemble embryonic stem cells (ESCs) and have the ability to differentiate into cell lineage of all three germ-layer, including cardiomyocytes (CMs). The CMs can be generated from iPSCs by inducing embryoid bodies (EBs) formation and treatment with activin A, bone morphogenic protein 4 (BMP4), and inhibitors of Wnt signaling. However, these iPSC-derived CMs are a heterogeneous population of cells and require purification and maturation to mimic the in vivo CMs. The matured CMs can be used for various therapeutic purposes in regenerative medicine by cardiomyoplasty or through the development of tissue-engineered cardiac patches. In recent years, significant advancements have been made in the isolation of iPSC and their differentiation, purification, and maturation into clinically usable CMs. Newer small molecules have also been identified to substitute the reprogramming factors for iPSC generation as well as for direct differentiation of somatic cells into CMs without an intermediary pluripotent state. This review provides a concise update on the generation of iPSC-derived CMs and their application in personalized cardiac regenerative medicine. It also discusses the current limitations and challenges in the application of iPSC-derived CMs. Graphical abstract.
Collapse
|
25
|
Schmid C, Wohnhaas CT, Hildebrandt T, Baum P, Rast G. Characterization of iCell cardiomyocytes using single-cell RNA-sequencing methods. J Pharmacol Toxicol Methods 2020; 106:106915. [PMID: 32871229 DOI: 10.1016/j.vascn.2020.106915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are being evaluated for their use in pharmacological and toxicological testing, particularly for electrophysiological side effects. However, little is known about the composition of the commercially available iCell cardiomyocyte (Fuijifilm Cellular Dynamics) cultures and the transcriptomic phenotype of individual cells. METHODS We characterized iCell cardiomyocytes (assumed to be a mixture of nodal-, atrial-, and ventricular-like cardiomyocytes together with potential residual non-myocytes) using bulk RNA-sequencing, followed by investigation of cellular heterogeneity using two different single-cell RNA-sequencing platforms. RESULTS Bulk RNA-sequencing identified key cardiac markers (TNNT2, MYL7) as well as fibroblast associated genes (P4HB, VIM), and cardiac ion channels in the iCell cardiomyocyte culture. High-resolution single cell RNA-sequencing demonstrated that both, cardiac and fibroblast-related genes were co-expressed throughout the cell population. This approach resolved two cell clusters within iCell cardiomyocytes. Interestingly, these clusters could not be associated with known cardiac subtypes. However, transcripts of ion channels potentially useful as functional markers for cardiac subtypes were below the detection limits of the single-cell approaches used. Instead, one cluster (10.8% of the cells) is defined by co-expression of cardiac and cell cycle-related genes (e.g. TOP2A). Incorporation of bromodeoxyuridine further confirmed the capability of iCell cardiomyocytes to enter cell cycle. DISCUSSION The co-expression of cardiac related genes with cell cycle or fibroblast related genes may be interpreted either as aberrant or as an immature feature. However, this excludes the presence of a non-cardiomyocyte sub-population and indicates that some cardiomyocytes themselves enter cell cycle.
Collapse
Affiliation(s)
- Christina Schmid
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach, Germany; Department of Chemistry, Food Chemistry and Toxicology, University of Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany.
| | - Christian T Wohnhaas
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach, Germany; Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Tobias Hildebrandt
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach, Germany
| | - Patrick Baum
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach, Germany.
| | - Georg Rast
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach, Germany.
| |
Collapse
|
26
|
Muckom R, Bao X, Tran E, Chen E, Murugappan A, Dordick JS, Clark DS, Schaffer DV. High-throughput 3D screening for differentiation of hPSC-derived cell therapy candidates. SCIENCE ADVANCES 2020; 6:eaaz1457. [PMID: 32821815 PMCID: PMC7413735 DOI: 10.1126/sciadv.aaz1457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 06/25/2020] [Indexed: 05/12/2023]
Abstract
The emergence of several cell therapy candidates in the clinic is an encouraging sign for human diseases/disorders that currently have no effective treatment; however, scalable production of these cell therapies has become a bottleneck. To overcome this barrier, three-dimensional (3D) cell culture strategies have been considered for enhanced cell production. Here, we demonstrate a high-throughput 3D culture platform used to systematically screen 1200 culture conditions with varying doses, durations, dynamics, and combinations of signaling cues to derive oligodendrocyte progenitor cells and midbrain dopaminergic neurons from human pluripotent stem cells (hPSCs). Statistical models of the robust dataset reveal previously unidentified patterns about cell competence to Wnt, retinoic acid, and sonic hedgehog signals, and their interactions, which may offer insights into the combinatorial roles these signals play in human central nervous system development. These insights can be harnessed to optimize production of hPSC-derived cell replacement therapies for a range of neurological indications.
Collapse
Affiliation(s)
- Riya Muckom
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Xiaoping Bao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Eric Tran
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Evelyn Chen
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Abirami Murugappan
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jonathan S. Dordick
- Department of Chemical and Biomolecular Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Douglas S. Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Corresponding author. (D.S.C.); (D.V.S.)
| | - David V. Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Corresponding author. (D.S.C.); (D.V.S.)
| |
Collapse
|
27
|
Choi SW, Cho YW, Kim JG, Kim YJ, Kim E, Chung HM, Kang SW. Effect of Cell Labeling on the Function of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Int J Stem Cells 2020; 13:287-294. [PMID: 32323512 PMCID: PMC7378900 DOI: 10.15283/ijsc19138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 11/09/2022] Open
Abstract
Cell labeling technologies are required to monitor the fate of transplanted cells in vivo and to select target cells for the observation of certain changes in vitro. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been transplanted for the treatment of heart injuries or used in vitro for preclinical cardiac safety assessments. Cardiomyocyte (CM) labeling has been used in these processes to facilitate target cell monitoring. However, the functional effect of the labeling agent on hiPSC-CMs has not been studied. Therefore, we investigated the effects of labeling agents on CM cellular functions. 3'-Dioctadecyloxacarbocyanine perchlorate (DiO), quantum dots (QDs), and a DNA plasmid expressing EGFP using Lipo2K were used to label hiPSC-CMs. We conclude that the hiPSC-CM labeling with DiO and QDs does not induce arrhythmogenic effects but rather improves the mRNA expression of cardiac ion channels and Ca2+ influx by L-type Ca2+ channels. Thus, DiO and QD labeling agents may be useful tools to monitor transplanted CMs, and further in vivo influences of the labeling agents should be investigated in the future.
Collapse
Affiliation(s)
- Seong Woo Choi
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Woo Cho
- Department of Pharmacy, Chungbuk National University College of Pharmacy, Cheongju, Korea.,Division of Drug Evaluation, NDDC, Oseong Medical Innovation Foundation, Cheongju, Korea
| | - Jae Gon Kim
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon, Korea
| | - Yong-Jin Kim
- R&D Unit, Amorepacific Corporation, Yongin, Korea
| | - Eunmi Kim
- R&D Unit, Amorepacific Corporation, Yongin, Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Sun-Woong Kang
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
28
|
Fan C, Oduk Y, Zhao M, Lou X, Tang Y, Pretorius D, Valarmathi MT, Walcott GP, Yang J, Menasche P, Krishnamurthy P, Zhu W, Zhang J. Myocardial protection by nanomaterials formulated with CHIR99021 and FGF1. JCI Insight 2020; 5:132796. [PMID: 32453715 DOI: 10.1172/jci.insight.132796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
The mortality of patients suffering from acute myocardial infarction is linearly related to the infarct size. As regeneration of cardiomyocytes from cardiac progenitor cells is minimal in the mammalian adult heart, we have explored a new therapeutic approach, which leverages the capacity of nanomaterials to release chemicals over time to promote myocardial protection and infarct size reduction. Initial screening identified 2 chemicals, FGF1 and CHIR99021 (a Wnt1 agonist/GSK-3β antagonist), which synergistically enhance cardiomyocyte cell cycle in vitro. Poly-lactic-co-glycolic acid nanoparticles (NPs) formulated with CHIR99021 and FGF1 (CHIR + FGF1-NPs) provided an effective slow-release system for up to 4 weeks. Intramyocardial injection of CHIR + FGF1-NPs enabled myocardial protection via reducing infarct size by 20%-30% in mouse or pig models of postinfarction left ventricular (LV) remodeling. This LV structural improvement was accompanied by preservation of cardiac contractile function. Further investigation revealed that CHIR + FGF1-NPs resulted in a reduction of cardiomyocyte apoptosis and increase of angiogenesis. Thus, using a combination of chemicals and an NP-based prolonged-release system that works synergistically, this study demonstrates a potentially novel therapy for LV infarct size reduction in hearts with acute myocardial infarction.
Collapse
Affiliation(s)
- Chengming Fan
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yasin Oduk
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Meng Zhao
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xi Lou
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yawen Tang
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mani T Valarmathi
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregory P Walcott
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jinfu Yang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Philippe Menasche
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Cardiovascular Surgery, Université de Paris, PARCC, INSERM, F-75015 Paris, France
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wuqiang Zhu
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
29
|
Fan C, Tang Y, Zhao M, Lou X, Pretorius D, Menasche P, Zhu W, Zhang J. CHIR99021 and fibroblast growth factor 1 enhance the regenerative potency of human cardiac muscle patch after myocardial infarction in mice. J Mol Cell Cardiol 2020; 141:1-10. [PMID: 32169551 DOI: 10.1016/j.yjmcc.2020.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/01/2020] [Accepted: 03/08/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND We have shown that genetic overexpression of cell cycle proteins can increase the proliferation of transplanted cardiomyocytes derived from human induced-pluripotent stem cells (hiPSC-CMs) in animal models of myocardial infarction (MI). Here, we introduce a new, non-genetic approach to promote hiPSC-CM cell cycle activity and proliferation in transplanted human cardiomyocyte patches (hCMPs). METHODS Mice were randomly distributed into 5 experimental groups (n = 10 per group). One group underwent Sham surgery, and the other 4 groups underwent MI induction surgery followed by treatment with hCMPs composed of hiPSC-CMs and nanoparticles that contained CHIR99021 and FGF1 (the NPCF-hCMP group), with hCMPs composed of hiPSC-CMs and empty nanoparticles (the NPE-hCMP group); with patches containing the CHIR99021/FGF-loaded nanoparticles but lacking hiPSC-CMs (the NPCF-Patch group), or patches lacking both the nanoparticles and cells (the E-Patch group). Cell cycle activity was evaluated via Ki67 and Aurora B expression, bromodeoxyuridine incorporation, and phosphorylated histone 3 levels (immunofluorescence); engraftment via human cardiac troponin T or human nuclear antigen expression (immunofluorescence) and bioluminescence imaging; cardiac function via echocardiography; infarct size and wall thickness via histology; angiogenesis via isolectin B4 expression (immunofluorescence); and apoptosis via TUNEL and caspace 3 expression (immunofluorescence). RESULTS Combined CHIR99021- and FGF1-treatment significantly increased hiPSC-CM cell cycle activity both in cultured cells (by 4- to 6-fold) and in transplanted hCMPs, and compared to treatment with NPE-hCMPs, NPCF-hCMP transplantation increased hiPSC-CM engraftment by ~4-fold and was associated with significantly better measurements of cardiac function, infarct size, wall thickness, angiogenesis, and hiPSC-CM apoptosis four weeks after MI induction. CONCLUSIONS Nanoparticle-mediated CHIR99021 and FGF1 delivery promotes hiPSC-CM cell cycle activity and proliferation, as well as the engraftment and regenerative potency of transplanted hCMPs, in a mouse MI model.
Collapse
Affiliation(s)
- Chengming Fan
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cardiovascular Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yawen Tang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Meng Zhao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xi Lou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Philippe Menasche
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cardiovascular Surgery, INSERM U 970, University Sorbonne Paris Cité, France
| | - Wuqiang Zhu
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
30
|
Glass NR, Takasako M, Er PX, Titmarsh DM, Hidalgo A, Wolvetang EJ, Little MH, Cooper-White JJ. Multivariate patterning of human pluripotent cells under perfusion reveals critical roles of induced paracrine factors in kidney organoid development. SCIENCE ADVANCES 2020; 6:eaaw2746. [PMID: 31934619 PMCID: PMC6949035 DOI: 10.1126/sciadv.aaw2746] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Creating complex multicellular kidney organoids from pluripotent stem cells shows great promise. Further improvements in differentiation outcomes, patterning, and maturation of specific cell types are, however, intrinsically limited by standard tissue culture approaches. We describe a novel full factorial microbioreactor array-based methodology to achieve rapid interrogation and optimization of this complex multicellular differentiation process in a facile manner. We successfully recapitulate early kidney tissue patterning events, exploring more than 1000 unique conditions in an unbiased and quantitative manner, and define new media combinations that achieve near-pure renal cell type specification. Single-cell resolution identification of distinct renal cell types within multilayered kidney organoids, coupled with multivariate analysis, defined the definitive roles of Wnt, fibroblast growth factor, and bone morphogenetic protein signaling in their specification, exposed retinoic acid as a minimal effector of nephron patterning, and highlighted critical contributions of induced paracrine factors on cell specification and patterning.
Collapse
Affiliation(s)
- Nick R. Glass
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Minoru Takasako
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Australia
- Murdoch Children’s Research Institute, Flemington Rd., Parkville, VIC 3052, Australia
| | - Pei Xuan Er
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Australia
- Murdoch Children’s Research Institute, Flemington Rd., Parkville, VIC 3052, Australia
| | - Drew M. Titmarsh
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Alejandro Hidalgo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Ernst J. Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
- UQ Centre in Stem Cell and Regenerative Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Melissa H. Little
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Australia
- Murdoch Children’s Research Institute, Flemington Rd., Parkville, VIC 3052, Australia
- Department of Pediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Justin J. Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
- UQ Centre in Stem Cell and Regenerative Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
- Biomedical Manufacturing, Manufacturing Flagship, CSIRO, Clayton, VIC 3169, Australia
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
31
|
Kim JA, Hong S, Rhee WJ. Microfluidic three-dimensional cell culture of stem cells for high-throughput analysis. World J Stem Cells 2019; 11:803-816. [PMID: 31693013 PMCID: PMC6828593 DOI: 10.4252/wjsc.v11.i10.803] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research, the applicability of stem cells for preclinical screening in the drug discovery process is still challenging due to difficulties in controlling the stem cell microenvironment and the limited availability of high-throughput systems. Recently, researchers have been actively developing and evaluating three-dimensional (3D) cell culture-based platforms using microfluidic technologies, such as organ-on-a-chip and organoid-on-a-chip platforms, and they have achieved promising breakthroughs in stem cell engineering. In this review, we start with a comprehensive discussion on the importance of microfluidic 3D cell culture techniques in stem cell research and their technical strategies in the field of drug discovery. In a subsequent section, we discuss microfluidic 3D cell culture techniques for high-throughput analysis for use in stem cell research. In addition, some potential and practical applications of organ-on-a-chip or organoid-on-a-chip platforms using stem cells as drug screening and disease models are highlighted.
Collapse
Affiliation(s)
- Jeong Ah Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea
| | - Soohyun Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, South Korea
- Program in Biomicro System Technology, Korea University, Seoul 02841, South Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon 22012, South Korea
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, South Korea
| |
Collapse
|
32
|
Cardiomyocytes from CCND2-overexpressing human induced-pluripotent stem cells repopulate the myocardial scar in mice: A 6-month study. J Mol Cell Cardiol 2019; 137:25-33. [PMID: 31629738 DOI: 10.1016/j.yjmcc.2019.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cardiomyocytes that have been differentiated from CCND2-overexpressing human induced-pluripotent stem cells (hiPSC-CCND2OE CMs) can proliferate when transplanted into mouse hearts after myocardial infarction (MI). However, it is unknown whether remuscularization can replace the thin LV scar and if the large muscle graft can electrophysiologically synchronize to the recipient myocardium. Our objectives are to evaluate the structural and functional potential of hiPSC-CCND2OE CMs in replacing the LV thin scar. METHODS NOD/SCID mice were treated with hiPSC-CCND2OE CMs (i.e., the CCND2OE group), hiPSC-CCND2WT CMs (the CCND2WT group), or an equal volume of PBS immediately after experimentally-induced myocardial infarction. The treatments were administered to one site in the infarcted zone (IZ), two sites in the border zone (BZ), and a fourth group of animals underwent Sham surgery. RESULTS Six months later, engrafted cells occupied >50% of the scarred region in CCND2OE animals, and exceeded the number of engrafted cells in CCND2WT animals by ~8-fold. Engrafted cells were also more common in the IZ than in the BZ for both cell-treatment groups. Measurements of cardiac function, infarct size, wall thickness, and cardiomyocyte hypertrophy were significantly improved in CCND2OE animals compared to animals from the CCND2WT or PBS-treatment groups. Measurements in the CCND2WT and PBS groups were similar, and markers for cell cycle activation and proliferation were significantly higher in hiPSC-CCND2OE CMs than in hiPSC-CCND2WT CMs. Optical mapping of action potential propagation indicated that the engrafted hiPSC-CCND2OE CMs were electrically coupled to each other and to the cells of the native myocardium. No evidence of tumor formation was observed in any animals. CONCLUSIONS Six months after the transplantation, CCND2-overexpressing hiPSC-CMs proliferated and replaced >50% of the myocardial scar tissue. The large graft hiPSC-CCND2OE CMs also electrically integrated with the host myocardium, which was accompanied by a significant improvement in LV function.
Collapse
|
33
|
Sridharan B, Hubbs C, Llamosas N, Kilinc M, Singhera FU, Willems E, Piper DR, Scampavia L, Rumbaugh G, Spicer TP. A Simple Procedure for Creating Scalable Phenotypic Screening Assays in Human Neurons. Sci Rep 2019; 9:9000. [PMID: 31227747 PMCID: PMC6588600 DOI: 10.1038/s41598-019-45265-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023] Open
Abstract
Neurons created from human induced pluripotent stem cells (hiPSCs) provide the capability of identifying biological mechanisms that underlie brain disorders. IPSC-derived human neurons, or iNs, hold promise for advancing precision medicine through drug screening, though it remains unclear to what extent iNs can support early-stage drug discovery efforts in industrial-scale screening centers. Despite several reported approaches to generate iNs from iPSCs, each suffer from technological limitations that challenge their scalability and reproducibility, both requirements for successful screening assays. We addressed these challenges by initially removing the roadblocks related to scaling of iNs for high throughput screening (HTS)-ready assays. We accomplished this by simplifying the production and plating of iNs and adapting them to a freezer-ready format. We then tested the performance of freezer-ready iNs in an HTS-amenable phenotypic assay that measured neurite outgrowth. This assay successfully identified small molecule inhibitors of neurite outgrowth. Importantly, we provide evidence that this scalable iN-based assay was both robust and highly reproducible across different laboratories. These streamlined approaches are compatible with any iPSC line that can produce iNs. Thus, our findings indicate that current methods for producing iPSCs are appropriate for large-scale drug-discovery campaigns (i.e. >10e5 compounds) that read out simple neuronal phenotypes. However, due to the inherent limitations of currently available iN differentiation protocols, technological advances are required to achieve similar scalability for screens that require more complex phenotypes related to neuronal function.
Collapse
Affiliation(s)
- BanuPriya Sridharan
- The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Research, Jupiter, Florida, 33458, USA
| | - Christopher Hubbs
- Department of Neuroscience, Scripps Research, Jupiter, Florida, 33458, USA
| | - Nerea Llamosas
- Department of Neuroscience, Scripps Research, Jupiter, Florida, 33458, USA
| | - Murat Kilinc
- Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida, 33458, USA
| | - Fakhar U Singhera
- The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Research, Jupiter, Florida, 33458, USA
| | - Erik Willems
- Cell Biology, Thermo Fisher Scientific, Carlsbad, California, 92008, USA
| | - David R Piper
- Cell Biology, Thermo Fisher Scientific, Carlsbad, California, 92008, USA
| | - Louis Scampavia
- The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Research, Jupiter, Florida, 33458, USA
| | - Gavin Rumbaugh
- The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Research, Jupiter, Florida, 33458, USA.
- Department of Neuroscience, Scripps Research, Jupiter, Florida, 33458, USA.
- Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida, 33458, USA.
| | - Timothy P Spicer
- The Scripps Research Molecular Screening Center, Department of Molecular Medicine, Scripps Research, Jupiter, Florida, 33458, USA.
| |
Collapse
|
34
|
Friese A, Ursu A, Hochheimer A, Schöler HR, Waldmann H, Bruder JM. The Convergence of Stem Cell Technologies and Phenotypic Drug Discovery. Cell Chem Biol 2019; 26:1050-1066. [PMID: 31231030 DOI: 10.1016/j.chembiol.2019.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 04/04/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
Recent advances in induced pluripotent stem cell technologies and phenotypic screening shape the future of bioactive small-molecule discovery. In this review we analyze the impact of small-molecule phenotypic screens on drug discovery as well as on the investigation of human development and disease biology. We further examine the role of 3D spheroid/organoid structures, microfluidic systems, and miniaturized on-a-chip systems for future discovery strategies. In highlighting representative examples, we analyze how recent achievements can translate into future therapies. Finally, we discuss remaining challenges that need to be overcome for the adaptation of the next generation of screening approaches.
Collapse
Affiliation(s)
- Alexandra Friese
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Andrei Ursu
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany; Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Andreas Hochheimer
- ISAR Bioscience GmbH, Institute for Stem Cell & Applied Regenerative Medicine Research, 82152 Planegg, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Medical Faculty, University of Münster, Domagkstrasse 3, 48149 Münster, Germany.
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
| | - Jan M Bruder
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.
| |
Collapse
|
35
|
Affiliation(s)
- June-Wha Rhee
- From the Stanford Cardiovascular Institute (J.-W.R., J.C.W.), Division of Cardiovascular Medicine, Department of Medicine (J.-W.R., J.C.W.), and Department of Radiology (J.C.W.), Stanford University School of Medicine, CA
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (J.-W.R., J.C.W.), Division of Cardiovascular Medicine, Department of Medicine (J.-W.R., J.C.W.), and Department of Radiology (J.C.W.), Stanford University School of Medicine, CA.
| |
Collapse
|
36
|
Drug Screening in Human PSC-Cardiac Organoids Identifies Pro-proliferative Compounds Acting via the Mevalonate Pathway. Cell Stem Cell 2019; 24:895-907.e6. [PMID: 30930147 DOI: 10.1016/j.stem.2019.03.009] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/05/2018] [Accepted: 03/07/2019] [Indexed: 12/28/2022]
Abstract
We have previously developed a high-throughput bioengineered human cardiac organoid (hCO) platform, which provides functional contractile tissue with biological properties similar to native heart tissue, including mature, cell-cycle-arrested cardiomyocytes. In this study, we perform functional screening of 105 small molecules with pro-regenerative potential. Our findings reveal surprising discordance between our hCO system and traditional 2D assays. In addition, functional analyses uncovered detrimental effects of many hit compounds. Two pro-proliferative small molecules without detrimental impacts on cardiac function were identified. High-throughput proteomics in hCO revealed synergistic activation of the mevalonate pathway and a cell-cycle network by the pro-proliferative compounds. Cell-cycle reentry in hCO and in vivo required the mevalonate pathway as inhibition of the mevalonate pathway with a statin attenuated pro-proliferative effects. This study highlights the utility of human cardiac organoids for pro-regenerative drug development, including identification of underlying biological mechanisms and minimization of adverse side effects.
Collapse
|
37
|
Mills RJ, Hudson JE. Bioengineering adult human heart tissue: How close are we? APL Bioeng 2019; 3:010901. [PMID: 31069330 PMCID: PMC6481734 DOI: 10.1063/1.5070106] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) have extensive applications in fundamental biology, regenerative medicine, disease modelling, and drug discovery/toxicology. Whilst large numbers of cardiomyocytes can be generated from hPSCs, extensive characterization has revealed that they have immature cardiac properties. This has raised potential concerns over their usefulness for many applications and has led to the pursuit of driving maturation of hPSC-cardiomyocytes. Currently, the best approach for driving maturity is the use of tissue engineering to generate highly functional three-dimensional heart tissue. Although we have made significant progress in this area, we have still not generated heart tissue that fully recapitulates all the properties of an adult heart. Deciphering the processes driving cardiomyocyte maturation will be instrumental in uncovering the mechanisms that govern optimal heart function and identifying new therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| |
Collapse
|
38
|
Woo LA, Tkachenko S, Ding M, Plowright AT, Engkvist O, Andersson H, Drowley L, Barrett I, Firth M, Akerblad P, Wolf MJ, Bekiranov S, Brautigan DL, Wang QD, Saucerman JJ. High-content phenotypic assay for proliferation of human iPSC-derived cardiomyocytes identifies L-type calcium channels as targets. J Mol Cell Cardiol 2019; 127:204-214. [PMID: 30597148 PMCID: PMC6524138 DOI: 10.1016/j.yjmcc.2018.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 01/06/2023]
Abstract
Over 5 million people in the United States suffer from heart failure, due to the limited ability to regenerate functional cardiac tissue. One potential therapeutic strategy is to enhance proliferation of resident cardiomyocytes. However, phenotypic screening for therapeutic agents is challenged by the limited ability of conventional markers to discriminate between cardiomyocyte proliferation and endoreplication (e.g. polyploidy and multinucleation). Here, we developed a novel assay that combines automated live-cell microscopy and image processing algorithms to discriminate between proliferation and endoreplication by quantifying changes in the number of nuclei, changes in the number of cells, binucleation, and nuclear DNA content. We applied this assay to further prioritize hits from a primary screen for DNA synthesis, identifying 30 compounds that enhance proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Among the most active compounds from the phenotypic screen are clinically approved L-type calcium channel blockers from multiple chemical classes whose activities were confirmed across different sources of human induced pluripotent stem cell-derived cardiomyocytes. Identification of compounds that stimulate human cardiomyocyte proliferation may provide new therapeutic strategies for heart failure.
Collapse
Affiliation(s)
- Laura A Woo
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, USA
| | - Svyatoslav Tkachenko
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, USA
| | - Mei Ding
- Discovery Sciences, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Alleyn T Plowright
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Ola Engkvist
- Discovery Sciences, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Henrik Andersson
- Discovery Sciences, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Lauren Drowley
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Ian Barrett
- Discovery Sciences, IMED Biotech Unit, AstraZeneca Cambridge, UK
| | - Mike Firth
- Discovery Sciences, IMED Biotech Unit, AstraZeneca Cambridge, UK
| | - Peter Akerblad
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Matthew J Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, USA
| | - David L Brautigan
- Center for Cell Signaling, Department of Microbiology, Immunology & Cancer Biology, University of Virginia, USA
| | - Qing-Dong Wang
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca Gothenburg, Sweden
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, USA.
| |
Collapse
|
39
|
Muckom R, McFarland S, Yang C, Perea B, Gentes M, Murugappan A, Tran E, Dordick JS, Clark DS, Schaffer DV. High-throughput combinatorial screening reveals interactions between signaling molecules that regulate adult neural stem cell fate. Biotechnol Bioeng 2019; 116:193-205. [PMID: 30102775 PMCID: PMC6289657 DOI: 10.1002/bit.26815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022]
Abstract
Advancing our knowledge of how neural stem cell (NSC) behavior in the adult hippocampus is regulated has implications for elucidating basic mechanisms of learning and memory as well as for neurodegenerative disease therapy. To date, numerous biochemical cues from the endogenous hippocampal NSC niche have been identified as modulators of NSC quiescence, proliferation, and differentiation; however, the complex repertoire of signaling factors within stem cell niches raises the question of how cues act in combination with one another to influence NSC physiology. To help overcome experimental bottlenecks in studying this question, we adapted a high-throughput microculture system, with over 500 distinct microenvironments, to conduct a systematic combinatorial screen of key signaling cues and collect high-content phenotype data on endpoint NSC populations. This novel application of the platform consumed only 0.2% of reagent volumes used in conventional 96-well plates, and resulted in the discovery of numerous statistically significant interactions among key endogenous signals. Antagonistic relationships between fibroblast growth factor 2, transforming growth factor β (TGF-β), and Wnt-3a were found to impact NSC proliferation and differentiation, whereas a synergistic relationship between Wnt-3a and Ephrin-B2 on neuronal differentiation and maturation was found. Furthermore, TGF-β and bone morphogenetic protein 4 combined with Wnt-3a and Ephrin-B2 resulted in a coordinated effect on neuronal differentiation and maturation. Overall, this study offers candidates for further elucidation of significant mechanisms guiding NSC fate choice and contributes strategies for enhancing control over stem cell-based therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Riya Muckom
- Department of Chemical and Biomolecular Engineering, UC Berkeley, CA 94720
| | | | - Chun Yang
- Department of Chemical and Biomolecular Engineering, UC Berkeley, CA 94720
| | - Brian Perea
- Department of Chemical and Biomolecular Engineering, UC Berkeley, CA 94720
| | - Megan Gentes
- Department of Chemical and Biomolecular Engineering, UC Berkeley, CA 94720
| | - Abirami Murugappan
- Department of Chemical and Biomolecular Engineering, UC Berkeley, CA 94720
| | - Eric Tran
- Department of Chemical and Biomolecular Engineering, UC Berkeley, CA 94720
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Douglas S. Clark
- Department of Chemical and Biomolecular Engineering, UC Berkeley, CA 94720
| | - David V. Schaffer
- Department of Chemical and Biomolecular Engineering, UC Berkeley, CA 94720
- Department of Bioengineering, UC Berkeley, CA 94720
| |
Collapse
|
40
|
Morrison JL, Berry MJ, Botting KJ, Darby JRT, Frasch MG, Gatford KL, Giussani DA, Gray CL, Harding R, Herrera EA, Kemp MW, Lock MC, McMillen IC, Moss TJ, Musk GC, Oliver MH, Regnault TRH, Roberts CT, Soo JY, Tellam RL. Improving pregnancy outcomes in humans through studies in sheep. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1123-R1153. [PMID: 30325659 DOI: 10.1152/ajpregu.00391.2017] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experimental studies that are relevant to human pregnancy rely on the selection of appropriate animal models as an important element in experimental design. Consideration of the strengths and weaknesses of any animal model of human disease is fundamental to effective and meaningful translation of preclinical research. Studies in sheep have made significant contributions to our understanding of the normal and abnormal development of the fetus. As a model of human pregnancy, studies in sheep have enabled scientists and clinicians to answer questions about the etiology and treatment of poor maternal, placental, and fetal health and to provide an evidence base for translation of interventions to the clinic. The aim of this review is to highlight the advances in perinatal human medicine that have been achieved following translation of research using the pregnant sheep and fetus.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago , Wellington , New Zealand
| | - Kimberley J Botting
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington , Seattle, Washington
| | - Kathryn L Gatford
- Robinson Research Institute and Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Dino A Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Clint L Gray
- Department of Paediatrics and Child Health, University of Otago , Wellington , New Zealand
| | - Richard Harding
- Department of Anatomy and Developmental Biology, Monash University , Clayton, Victoria , Australia
| | - Emilio A Herrera
- Pathophysiology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile , Santiago , Chile
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, University of Western Australia , Perth, Western Australia , Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Timothy J Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University , Clayton, Victoria , Australia
| | - Gabrielle C Musk
- Animal Care Services, University of Western Australia , Perth, Western Australia , Australia
| | - Mark H Oliver
- Liggins Institute, University of Auckland , Auckland , New Zealand
| | - Timothy R H Regnault
- Department of Obstetrics and Gynecology and Department of Physiology and Pharmacology, Western University, and Children's Health Research Institute , London, Ontario , Canada
| | - Claire T Roberts
- Robinson Research Institute and Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
41
|
Mittal R, Woo FW, Castro CS, Cohen MA, Karanxha J, Mittal J, Chhibber T, Jhaveri VM. Organ‐on‐chip models: Implications in drug discovery and clinical applications. J Cell Physiol 2018; 234:8352-8380. [DOI: 10.1002/jcp.27729] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Frank W. Woo
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Carlo S. Castro
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Madeline A. Cohen
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Joana Karanxha
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Tanya Chhibber
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University Chandigarh India
| | - Vasanti M. Jhaveri
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| |
Collapse
|
42
|
Nayler SP, Becker EBE. The Use of Stem Cell-Derived Neurons for Understanding Development and Disease of the Cerebellum. Front Neurosci 2018; 12:646. [PMID: 30319335 PMCID: PMC6168705 DOI: 10.3389/fnins.2018.00646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022] Open
Abstract
The cerebellum is a fascinating brain structure, containing more neurons than the rest of the brain combined. The cerebellum develops according to a highly orchestrated program into a well-organized laminar structure. Much has been learned about the underlying genetic networks controlling cerebellar development through the study of various animal models. Cerebellar development in humans however, is significantly protracted and more complex. Given that the cerebellum regulates a number of motor and non-motor functions and is affected in a wide variety of neurodevelopmental and neurodegenerative disorders, a better understanding of human cerebellar development is highly desirable. Pluripotent stem cells offer an exciting new tool to unravel human cerebellar development and disease by providing a dynamic and malleable platform, which is amenable to genetic manipulation and temporally unrestricted sampling. It remains to be seen, however, whether in vitro neuronal cultures derived from pluripotent stem cells fully recapitulate the formation and organization of the developing nervous system, with many reports detailing the functionally immature nature of these cultures. Nevertheless, recent advances in differentiation protocols, cell-sampling methodologies, and access to informatics resources mean that the field is poised for remarkable discoveries. In this review, we provide a general overview of the field of neuronal differentiation, focusing on the cerebellum and highlighting conceptual advances in understanding neuronal maturity, including a discussion of both current and emerging methods to classify, and influence neuroanatomical identity and maturation status.
Collapse
Affiliation(s)
- Samuel P Nayler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Esther B E Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Scalable Cardiac Differentiation of Pluripotent Stem Cells Using Specific Growth Factors and Small Molecules. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:39-69. [PMID: 29071404 DOI: 10.1007/10_2017_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The envisioned routine application of human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) for therapies and industry-compliant screening approaches will require efficient and highly reproducible processes for the mass production of well-characterized CM batches.On their way toward beating CMs, hPSCs initially undergo an epithelial-to-mesenchymal transition into a primitive-streak (PS)-like population that later gives rise to all endodermal and mesodermal lineages, including cardiovascular progenies (CVPs). CVPs are multipotent and possess the capability to give rise to all major cell types of the heart, including CMs, endothelial cells, cardiac fibroblasts, and smooth muscle cells. This article provides an historical overview and describes the stepwise development of protocols that typically result in the appearance of beating CMs within 7-12 days of hPSC differentiation.We describe the development of directed and closely controlled cardiomyogenic differentiation, which now enables the induction of >90% CM purity without further lineage enrichment. Although secreted lineage specifiers (revealed from developmental biology) were initially used, we outline the advantages of chemical pathway modulators, as defined by more recent screening approaches. Subsequently, we discuss the use of defined culture media for upscaling the production of hPSC-CMs in controlled bioreactors and how this, in principle, unlimited source of human CMs can be used to progress heart regeneration and stimulate the drug discovery pipeline. Graphical Abstract.
Collapse
|
44
|
Chadly DM, Oleksijew AM, Coots KS, Fernandez JJ, Kobayashi S, Kessler JA, Matsuoka AJ. Full Factorial Microfluidic Designs and Devices for Parallelizing Human Pluripotent Stem Cell Differentiation. SLAS Technol 2018; 24:41-54. [PMID: 29995450 DOI: 10.1177/2472630318783497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human pluripotent stem cells (hPSCs) are promising therapeutic tools for regenerative therapies and disease modeling. Differentiation of cultured hPSCs is influenced by both exogenous factors added to the cultures and endogenously secreted molecules. Optimization of protocols for the differentiation of hPSCs into different cell types is difficult because of the many variables that can influence cell fate. We present microfluidic devices designed to perform three- and four-factor, two-level full factorial experiments in parallel for investigating and directly optimizing hPSC differentiation. These devices feature diffusion-isolated, independent culture wells that allow for control of both exogenous and endogenous cellular signals and that allow for immunocytochemistry (ICC) and confocal microscopy in situ. These devices are fabricated by soft lithography in conjunction with 3D-printed molds and are operable with a single syringe pump, eliminating the need for specialized equipment or cleanroom facilities. Their utility was demonstrated by on-chip differentiation of hPSCs into the auditory neuron lineage. More broadly, these devices enable multiplexing for experimentation with any adherent cell type or even multiple cell types, allowing efficient investigation of the effects of medium conditions, pharmaceuticals, or other soluble reagents.
Collapse
Affiliation(s)
- Duncan M Chadly
- 1 Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrew M Oleksijew
- 1 Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kyle S Coots
- 1 Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jose J Fernandez
- 2 Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Shun Kobayashi
- 1 Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - John A Kessler
- 3 Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Akihiro J Matsuoka
- 1 Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,4 Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA.,5 Hugh Knowles Center for Hearing Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
45
|
Stage-specific Effects of Bioactive Lipids on Human iPSC Cardiac Differentiation and Cardiomyocyte Proliferation. Sci Rep 2018; 8:6618. [PMID: 29700394 PMCID: PMC5920079 DOI: 10.1038/s41598-018-24954-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Bioactive lipids such as sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) regulate diverse processes including cell proliferation, differentiation, and migration. However, their roles in cardiac differentiation and cardiomyocyte proliferation have not been explored. Using a 96-well differentiation platform for generating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) we found that S1P and LPA can independently enhance cardiomyocyte generation when administered at an early stage of differentiation. We showed that the combined S1P and LPA treatment of undifferentiated hiPSCs resulted in increased nuclear accumulation of β-catenin, the canonical Wnt signaling pathway mediator, and synergized with CHIR99021, a glycogen synthase kinase 3 beta inhibitor, to enhance mesodermal induction and subsequent cardiac differentiation. At later stages of cardiac differentiation, the addition of S1P and LPA resulted in cell cycle initiation in hiPSC-CMs, an effect mediated through increased ERK signaling. Although the addition of S1P and LPA alone was insufficient to induce cell division, it was able to enhance β-catenin-mediated hiPSC-CM proliferation. In summary, we demonstrated a developmental stage-specific effect of bioactive lipids to enhance hiPSC-CM differentiation and proliferation via modulating the effect of canonical Wnt/β-catenin and ERK signaling. These findings may improve hiPSC-CM generation for cardiac disease modeling, precision medicine, and regenerative therapies.
Collapse
|
46
|
Tashiro S, Le MNT, Kusama Y, Nakatani E, Suga M, Furue MK, Satoh T, Sugiura S, Kanamori T, Ohnuma K. High cell density suppresses BMP4-induced differentiation of human pluripotent stem cells to produce macroscopic spatial patterning in a unidirectional perfusion culture chamber. J Biosci Bioeng 2018; 126:379-388. [PMID: 29681444 DOI: 10.1016/j.jbiosc.2018.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 11/25/2022]
Abstract
Spatial pattern formation is a critical step in embryogenesis. Bone morphogenetic protein 4 (BMP4) and its inhibitors are major factors for the formation of spatial patterns during embryogenesis. However, spatial patterning of the human embryo is unclear because of ethical issues and isotropic culture environments resulting from conventional culture dishes. Here, we utilized human pluripotent stem cells (hiPSCs) and a simple anisotropic (unidirectional perfusion) culture chamber, which creates unidirectional conditions, to measure the cell community effect. The influence of cell density on BMP4-induced differentiation was explored during static culture using a conventional culture dish. Immunostaining of the early differentiation marker SSEA-1 and the mesendoderm marker BRACHYURY revealed that high cell density suppressed differentiation, with small clusters of differentiated and undifferentiated cells formed. Addition of five-fold higher concentration of BMP4 showed similar results, suggesting that suppression was not caused by depletion of BMP4 but rather by high cell density. Quantitative RT-PCR array analysis showed that BMP4 induced multi-lineage differentiation, which was also suppressed under high-density conditions. We fabricated an elongated perfusion culture chamber, in which proteins were transported unidirectionally, and hiPSCs were cultured with BMP4. At low density, the expression was the same throughout the chamber. However, at high density, SSEA-1 and BRACHYURY were expressed only in upstream cells, suggesting that some autocrine/paracrine factors inhibited the action of BMP4 in downstream cells to form the spatial pattern. Human iPSCs cultured in a perfusion culture chamber might be useful for studying in vitro macroscopic pattern formation in human embryogenesis.
Collapse
Affiliation(s)
- Shota Tashiro
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Minh Nguyen Tuyet Le
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Yuta Kusama
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Eri Nakatani
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| | - Miho K Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| | - Taku Satoh
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Shinji Sugiura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Toshiyuki Kanamori
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan; Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
47
|
Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci U S A 2017; 114:E8372-E8381. [PMID: 28916735 DOI: 10.1073/pnas.1707316114] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mammalian heart undergoes maturation during postnatal life to meet the increased functional requirements of an adult. However, the key drivers of this process remain poorly defined. We are currently unable to recapitulate postnatal maturation in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), limiting their potential as a model system to discover regenerative therapeutics. Here, we provide a summary of our studies, where we developed a 96-well device for functional screening in human pluripotent stem cell-derived cardiac organoids (hCOs). Through interrogation of >10,000 organoids, we systematically optimize parameters, including extracellular matrix (ECM), metabolic substrate, and growth factor conditions, that enhance cardiac tissue viability, function, and maturation. Under optimized maturation conditions, functional and molecular characterization revealed that a switch to fatty acid metabolism was a central driver of cardiac maturation. Under these conditions, hPSC-CMs were refractory to mitogenic stimuli, and we found that key proliferation pathways including β-catenin and Yes-associated protein 1 (YAP1) were repressed. This proliferative barrier imposed by fatty acid metabolism in hCOs could be rescued by simultaneous activation of both β-catenin and YAP1 using genetic approaches or a small molecule activating both pathways. These studies highlight that human organoids coupled with higher-throughput screening platforms have the potential to rapidly expand our knowledge of human biology and potentially unlock therapeutic strategies.
Collapse
|
48
|
Stem cell culture and differentiation in microfluidic devices toward organ-on-a-chip. Future Sci OA 2017; 3:FSO187. [PMID: 28670476 PMCID: PMC5481871 DOI: 10.4155/fsoa-2016-0091] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/21/2017] [Indexed: 02/07/2023] Open
Abstract
Microfluidic lab-on-a-chip provides a new platform with unique advantages to mimic complex physiological microenvironments in vivo and has been increasingly exploited to stem cell research. In this review, we highlight recent advances of microfluidic devices for stem cell culture and differentiation toward the development of organ-on-a-chip, especially with an emphasis on vital innovations within the last 2 years. Various aspects for improving on-chip stem-cell culture and differentiation, particularly toward organ-on-a-chip, are discussed, along with microenvironment control, surface modification, extracellular scaffolds, high throughput and stimuli. The combination of microfluidic technologies and stem cells hold great potential toward versatile systems of ‘organ-on-a-chip’ as desired.
Adapted with permission from [1–8]. Stem cells, capable of self-renewing and differentiating into cells of various tissue types, are drawing more and more attention for their enormous potential in many clinically associated applications that include drug screening, disease modeling and regenerative medicine. Conventional cell culture methods, however, have proven to be difficult to mimic in vivo like microenvironments and to provide a number of well-controlled stimuli that are critical for stem cell culture and differentiation. In contrast, microfluidic devices offer new capacities and unique advantages to mimic complex physiological microenvironments in vivo, and has been increasingly applied to stem cell research.
Collapse
|
49
|
Titmarsh DM, Tan CLL, Glass NR, Nurcombe V, Cooper-White JJ, Cool SM. Microfluidic Screening Reveals Heparan Sulfate Enhances Human Mesenchymal Stem Cell Growth by Modulating Fibroblast Growth Factor-2 Transport. Stem Cells Transl Med 2017; 6:1178-1190. [PMID: 28205415 PMCID: PMC5442852 DOI: 10.1002/sctm.16-0343] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/30/2016] [Accepted: 11/16/2016] [Indexed: 01/02/2023] Open
Abstract
Cost‐effective expansion of human mesenchymal stem/stromal cells (hMSCs) remains a key challenge for their widespread clinical deployment. Fibroblast growth factor‐2 (FGF‐2) is a key hMSC mitogen often supplemented to increase hMSC growth rates. However, hMSCs also produce endogenous FGF‐2, which critically interacts with cell surface heparan sulfate (HS). We assessed the interplay of FGF‐2 with a heparan sulfate variant (HS8) engineered to bind FGF‐2 and potentiate its activity. Bone marrow‐derived hMSCs were screened in perfused microbioreactor arrays (MBAs), showing that HS8 (50 μg/ml) increased hMSC proliferation and cell number after 3 days, with an effect equivalent to FGF‐2 (50 ng/ml). In combination, the effects of HS8 and FGF‐2 were additive. Differential cell responses, from upstream to downstream culture chambers under constant flow of media in the MBA, provided insights into modulation of FGF‐2 transport by HS8. HS8 treatment induced proliferation mainly in the downstream chambers, suggesting a requirement for endogenous FGF‐2 accumulation, whereas responses to FGF‐2 occurred primarily in the upstream chambers. Adding HS8 along with FGF‐2, however, maximized the range of FGF‐2 effectiveness. Measurements of FGF‐2 in static cultures then revealed that this was because HS8 caused increased endogenous FGF‐2 production and liberated FGF‐2 from the cell surface into the supernatant. HS8 also sustained levels of supplemented FGF‐2 available over 3 days. These results suggest HS8 enhances hMSC proliferation and expansion by leveraging endogenous FGF‐2 production and maximizing the effect of supplemented FGF‐2. This is an exciting strategy for cost‐effective expansion of hMSCs. Stem Cells Translational Medicine2017;6:1178–1190
Collapse
Affiliation(s)
- Drew M Titmarsh
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), Singapore
| | - Clarissa L L Tan
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), Singapore
| | - Nick R Glass
- Australian Institute for Bioengineering & Nanotechnology
| | - Victor Nurcombe
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College London, Singapore
| | - Justin J Cooper-White
- Australian Institute for Bioengineering & Nanotechnology.,School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland, Australia.,Biomedical Manufacturing, Manufacturing Flagship, CSIRO, Clayton, Victoria, Australia
| | - Simon M Cool
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|