1
|
Wang Y, Zhang Y, Qiao H, Zheng Y, Hou X, Shi L. An integrated transcriptome and physiological analysis of nitrogen use efficiency in rice ( Oryza sativa L. ssp. indica) under drought stress. Front Genet 2024; 15:1483113. [PMID: 39553474 PMCID: PMC11564168 DOI: 10.3389/fgene.2024.1483113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Nitrogen is a critical nutrient vital for crop growth. However, our current understanding of nitrogen use efficiency (NUE) under drought remains inadequate. To delve into the molecular mechanisms underlying NUE under drought, a transcriptome and physiological co-expression analysis was performed in rice, which is particularly sensitive to drought. We conducted a pot experiment using rice grown under normal irrigation, mild drought stress, and severe drought stress. Compared to the normal treatment, drought stress led to a significant reduction in NUE across growth stages, with decreases ranging from 2.18% to 31.67%. Totals of 4,424 and 2,452 genes were identified as NUE-related DEGs that showed differential expressions (DEGs) and significantly correlated with NUE (NUE-related) under drought in the vegetative and reproductive stages, respectively. Interestingly, five genes involved in nitrogen metabolism were found in the overlapped genes of these two sets. Furthermore, the two sets of NUE-related DEGs were enriched in glyoxylate and dicarboxylate metabolism, as well as carbon fixation in photosynthetic organisms. Several genes in these two pathways were identified as hub genes in the two sets of NUE-related DEGs. This study offers new insights into the molecular mechanism of rice NUE under drought in agricultural practices and provides potential genes for breeding drought-resistant crops with high NUE.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, Jiangsu, China
| | - Yufan Zhang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, China
| | - Han Qiao
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, China
| | - Yutong Zheng
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Liangsheng Shi
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Ma X, Nian J, Yu H, Zhang F, Feng T, Kou L, Zhang J, Wang D, Li H, Chen L, Dong G, Xie X, Wang G, Qian Q, Li J, Zuo J. Linking glucose signaling to nitrogen utilization by the OsHXK7-ARE4 complex in rice. Dev Cell 2023; 58:1489-1501.e5. [PMID: 37413992 DOI: 10.1016/j.devcel.2023.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/09/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023]
Abstract
How reciprocal regulation of carbon and nitrogen metabolism works is a long-standing question. In plants, glucose and nitrate are proposed to act as signaling molecules, regulating carbon and nitrogen metabolism via largely unknown mechanisms. Here, we show that the MYB-related transcription factor ARE4 coordinates glucose signaling and nitrogen utilization in rice. ARE4 is retained in the cytosol in complexing with the glucose sensor OsHXK7. Upon sensing a glucose signal, ARE4 is released, is translocated into the nucleus, and activates the expression of a subset of high-affinity nitrate transporter genes, thereby boosting nitrate uptake and accumulation. This regulatory scheme displays a diurnal pattern in response to circadian changes of soluble sugars. The are4 mutations compromise in nitrate utilization and plant growth, whereas overexpression of ARE4 increases grain size. We propose that the OsHXK7-ARE4 complex links glucose to the transcriptional regulation of nitrogen utilization, thereby coordinating carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Xiaohui Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinqiang Nian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianpeng Feng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Danfeng Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanwen Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichao Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Xianzhi Xie
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; C.A.S. Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China; Hainan Seed Laboratory, Sanya 572025, Hainan, China.
| |
Collapse
|
3
|
He Y, Zhang K, Li S, Lu X, Zhao H, Guan C, Huang X, Shi Y, Kang Z, Fan Y, Li W, Chen C, Li G, Long O, Chen Y, Hu M, Cheng J, Xu B, Chapman MA, Georgiev MI, Fernie AR, Zhou M. Multiomics analysis reveals the molecular mechanisms underlying virulence in Rhizoctonia and jasmonic acid-mediated resistance in Tartary buckwheat (Fagopyrum tataricum). THE PLANT CELL 2023; 35:2773-2798. [PMID: 37119263 PMCID: PMC10396374 DOI: 10.1093/plcell/koad118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Rhizoctonia solani is a devastating soil-borne pathogen that seriously threatens the cultivation of economically important crops. Multiple strains with a very broad host range have been identified, but only 1 (AG1-IA, which causes rice sheath blight disease) has been examined in detail. Here, we analyzed AG4-HGI 3 originally isolated from Tartary buckwheat (Fagopyrum tataricum), but with a host range comparable to AG1-IA. Genome comparison reveals abundant pathogenicity genes in this strain. We used multiomic approaches to improve the efficiency of screening for disease resistance genes. Transcriptomes of the plant-fungi interaction identified differentially expressed genes associated with virulence in Rhizoctonia and resistance in Tartary buckwheat. Integration with jasmonate-mediated transcriptome and metabolome changes revealed a negative regulator of jasmonate signaling, cytochrome P450 (FtCYP94C1), as increasing disease resistance probably via accumulation of resistance-related flavonoids. The integration of resistance data for 320 Tartary buckwheat accessions identified a gene homolog to aspartic proteinase (FtASP), with peak expression following R. solani inoculation. FtASP exhibits no proteinase activity but functions as an antibacterial peptide that slows fungal growth. This work reveals a potential mechanism behind pathogen virulence and host resistance, which should accelerate the molecular breeding of resistant varieties in economically essential crops.
Collapse
Affiliation(s)
- Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Shijuan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiang Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Hui Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Chaonan Guan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xu Huang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Yaliang Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Zhen Kang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Wei Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Cheng Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Guangsheng Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Ou Long
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Yuanyuan Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Mang Hu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Milen I Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv 4000, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
4
|
Ding S, Lv J, Hu Z, Wang J, Wang P, Yu J, Foyer CH, Shi K. Phytosulfokine peptide optimizes plant growth and defense via glutamine synthetase GS2 phosphorylation in tomato. EMBO J 2023; 42:e111858. [PMID: 36562188 PMCID: PMC10015362 DOI: 10.15252/embj.2022111858] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Phytosulfokine (PSK) is a plant pentapeptide hormone that fulfills a wide range of functions. Although PSK has frequently been reported to function in the inverse regulation of growth and defense in response to (hemi)biotrophic pathogens, the mechanisms involved remain largely unknown. Using the tomato (Solanum lycopersicum) and Pseudomonas syringae pv. tomato (Pst) DC3000 pathogen system, we present compelling evidence that the PSK receptor PSKR1 interacts with the calcium-dependent protein kinase CPK28, which in turn phosphorylates the key enzyme of nitrogen assimilation glutamine synthetase GS2 at two sites (Serine-334 and Serine-360). GS2 phosphorylation at S334 specifically regulates plant defense, whereas S360 regulates growth, uncoupling the PSK-induced effects on defense responses and growth regulation. The discovery of these sites will inform breeding strategies designed to optimize the growth-defense balance in a compatible manner.
Collapse
Affiliation(s)
- Shuting Ding
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jianrong Lv
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Zhangjian Hu
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jiao Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Ping Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jingquan Yu
- Department of HorticultureZhejiang UniversityHangzhouChina
- Hainan Institute, Yazhou Bay Science and Technology CityZhejiang UniversitySanyaChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Kai Shi
- Department of HorticultureZhejiang UniversityHangzhouChina
- Hainan Institute, Yazhou Bay Science and Technology CityZhejiang UniversitySanyaChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| |
Collapse
|
5
|
Frontini M, Morel JB, Gravot A, Lafarge T, Ballini E. Increased Rice Susceptibility to Rice Blast Is Related to Post-Flowering Nitrogen Assimilation Efficiency. J Fungi (Basel) 2022; 8:1217. [PMID: 36422038 PMCID: PMC9694259 DOI: 10.3390/jof8111217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 09/10/2024] Open
Abstract
Reducing nitrogen leaching and nitrous oxide emissions with the goal of more sustainability in agriculture implies better identification and characterization of the different patterns in nitrogen use efficiency by crops. However, a change in the ability of varieties to use nitrogen resources could also change the access to nutrient resources for a foliar pathogen such as rice blast and lead to an increase in the susceptibility of these varieties. This study focuses on the pre- and post-floral biomass accumulation and nitrogen uptake and utilization of ten temperate japonica rice genotypes grown in controlled conditions, and the relationship of these traits with molecular markers and susceptibility to rice blast disease. After flowering, the ten varieties displayed diversity in nitrogen uptake and remobilization. Surprisingly, post-floral nitrogen uptake was correlated with higher susceptibility to rice blast, particularly in plants fertilized with nitrogen. This increase in susceptibility is associated with a particular metabolite profile in the upper leavers of these varieties.
Collapse
Affiliation(s)
- Mathias Frontini
- PHIM, INRAE, CIRAD, Institut Agro, University Montpellier, 34060 Montpellier, France
| | - Jean-Benoit Morel
- PHIM, INRAE, CIRAD, Institut Agro, University Montpellier, 34060 Montpellier, France
| | - Antoine Gravot
- IGEPP, INRAE, Institut Agro, University Rennes, 35000 Rennes, France
| | - Tanguy Lafarge
- AGAP, INRAE, CIRAD, Institut Agro, University Montpellier, 34090 Montpellier, France
| | - Elsa Ballini
- PHIM, INRAE, CIRAD, Institut Agro, 34060 Montpellier, France
| |
Collapse
|
6
|
Yang Z, Chen Y, Wang Y, Xia H, Zheng S, Xie S, Cao Y, Liu J, Sehar S, Lin Y, Guo Y, Shamsi IH. Nitrogen metabolic rate and differential ammonia volatilization regulate resistance against opportunistic fungus Alternaria alternata in tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:1003534. [PMID: 36212279 PMCID: PMC9538177 DOI: 10.3389/fpls.2022.1003534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Nutritional correlations between plants and pathogens can crucially affect disease severity. As an essential macronutrient, the availability of nitrogen (N) and the types of N content play a fundamental part not only in energy metabolism and protein synthesis but also in pathogenesis. However, a direct connection has not yet been established between differences in the level of resistance and N metabolism. Pertinently, former studies hold ammonia (NH3) accountable for the development of diseases in tobacco (Nicotiana tabacum L.) and in some post-harvest fruits. With a purpose of pinpointing the function of NH3 volatilization on Alternaria alternata (Fries) Keissl pathogenesis and its correlation with both N metabolism and resistance differences to Alternaria alternata infection in tobacco, leaf tissue of two tobacco cultivars with susceptibility (Changbohuang; CBH), or resistance (Jingyehuang; JYH) were analyzed apropos of ammonia compensation point, apoplastic NH4 + concentration, pH value as well as activities of key enzymes and N status. At the leaf age of 40 to 60 d, the susceptible cultivar had a significantly higher foliar apoplastic ammonium (NH4 +) concentration, pH value and NH3 volatilization potential compared to the resistant one accompanied by a significant reduction in glutamine synthetase (GS), which in particular was a primary factor causing the NH3 volatilization. The NH4 + concentration in CBH was 1.44 times higher than that in JYH, and CBH had NH3 compensation points that were 7.09, 6.15 and 4.35-fold higher than those of JYH at 40, 50 and 60 d, respectively. Moreover, the glutamate dehydrogenase (GDH) activity had an upward tendency related to an increased NH4 + accumulation in both leaf tissues and apoplast but not with the NH3 compensation point. Collectively, our results strongly suggest that the accumulation of NH3 volatilization, rather than NH4 + and total N, was the primary factor inducing the Alternaria alternata infection in tobacco. Meanwhile, the susceptible cultivar was characterized by a higher N re-transfer ability of NH3 volatilization, in contrast to the disease-resistant cultivar, and had a stronger capability of N assimilation and reutilization. This study provides a deeper understanding of the pathogenicity mechanism induced by Alternaria alternata, which is useful for breeding Alternaria alternata-resistant varieties of tobacco, at the same time, our research is also conducive to control tobacco brown spot caused by Alternaria alternata in the field.
Collapse
Affiliation(s)
- Zhixiao Yang
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Yi Chen
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Yi Wang
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Haiqian Xia
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Shaoqing Zheng
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Shengdong Xie
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Yi Cao
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Jiemin Liu
- Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yingchao Lin
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Yushuang Guo
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Han M, Xu X, Li X, Xu M, Hu M, Xiong Y, Feng J, Wu H, Zhu H, Su T. New Insight into Aspartate Metabolic Pathways in Populus: Linking the Root Responsive Isoenzymes with Amino Acid Biosynthesis during Incompatible Interactions of Fusarium solani. Int J Mol Sci 2022; 23:ijms23126368. [PMID: 35742809 PMCID: PMC9224274 DOI: 10.3390/ijms23126368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/10/2023] Open
Abstract
Integrating amino acid metabolic pathways into plant defense and immune systems provides the building block for stress acclimation and host-pathogen interactions. Recent progress in L-aspartate (Asp) and its deployed metabolic pathways highlighted profound roles in plant growth and defense modulation. Nevertheless, much remains unknown concerning the multiple isoenzyme families involved in Asp metabolic pathways in Populus trichocarpa, a model tree species. Here, we present comprehensive features of 11 critical isoenzyme families, representing biological significance in plant development and stress adaptation. The in silico prediction of the molecular and genetic patterns, including phylogenies, genomic structures, and chromosomal distribution, identify 44 putative isoenzymes in the Populus genome. Inspection of the tissue-specific expression demonstrated that approximately 26 isogenes were expressed, predominantly in roots. Based on the transcriptomic atlas in time-course experiments, the dynamic changes of the genes transcript were explored in Populus roots challenged with soil-borne pathogenic Fusarium solani (Fs). Quantitative expression evaluation prompted 12 isoenzyme genes (PtGS2/6, PtGOGAT2/3, PtAspAT2/5/10, PtAS2, PtAspg2, PtAlaAT1, PtAK1, and PtAlaAT4) to show significant induction responding to the Fs infection. Using high-performance liquid chromatography (HPLC) and non-target metabolomics assay, the concurrent perturbation on levels of Asp-related metabolites led to findings of free amino acids and derivatives (e.g., Glutamate, Asp, Asparagine, Alanine, Proline, and α-/γ-aminobutyric acid), showing marked differences. The multi-omics integration of the responsive isoenzymes and differential amino acids examined facilitates Asp as a cross-talk mediator involved in metabolite biosynthesis and defense regulation. Our research provides theoretical clues for the in-depth unveiling of the defense mechanisms underlying the synergistic effect of fine-tuned Asp pathway enzymes and the linked metabolite flux in Populus.
Collapse
Affiliation(s)
- Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Xianglei Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Xue Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyue Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Mei Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yuan Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Junhu Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
| | - Hao Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (M.H.); (X.X.); (X.L.); (M.X.); (M.H.); (Y.X.); (J.F.); (H.W.); (H.Z.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-1589-598-3381
| |
Collapse
|
8
|
Liao HS, Chung YH, Hsieh MH. Glutamate: A multifunctional amino acid in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111238. [PMID: 35351313 DOI: 10.1016/j.plantsci.2022.111238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Glutamate (Glu) is a versatile metabolite and a signaling molecule in plants. Glu biosynthesis is associated with the primary nitrogen assimilation pathway. The conversion between Glu and 2-oxoglutarate connects Glu metabolism to the tricarboxylic acid cycle, carbon metabolism, and energy production. Glu is the predominant amino donor for transamination reactions in the cell. In addition to protein synthesis, Glu is a building block for tetrapyrroles, glutathione, and folate. Glu is the precursor of γ-aminobutyric acid that plays an important role in balancing carbon/nitrogen metabolism and various cellular processes. Glu can conjugate to the major auxin indole 3-acetic acid (IAA), and IAA-Glu is destined for oxidative degradation. Glu also conjugates with isochorismate for the production of salicylic acid. Accumulating evidence indicates that Glu functions as a signaling molecule to regulate plant growth, development, and defense responses. The ligand-gated Glu receptor-like proteins (GLRs) mediate some of these responses. However, many of the Glu signaling events are GLR-independent. The receptor perceiving extracellular Glu as a danger signal is still unknown. In addition to GLRs, Glu may act on receptor-like kinases or receptor-like proteins to trigger immune responses. Glu metabolism and Glu signaling may entwine to regulate growth, development, and defense responses in plants.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
9
|
Li H, Nian J, Fang S, Guo M, Huang X, Zhang F, Wang Q, Zhang J, Bai J, Dong G, Xin P, Xie X, Chen F, Wang G, Wang Y, Qian Q, Zuo J, Chu J, Ma X. Regulation of nitrogen starvation responses by the alarmone (p)ppGpp in rice. J Genet Genomics 2022; 49:469-480. [DOI: 10.1016/j.jgg.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/20/2022]
|
10
|
Cao W, Zhang H, Zhou Y, Zhao J, Lu S, Wang X, Chen X, Yuan L, Guan H, Wang G, Shen W, De Vleesschauwer D, Li Z, Shi X, Gu J, Guo M, Feng Z, Chen Z, Zhang Y, Pan X, Liu W, Liang G, Yan C, Hu K, Liu Q, Zuo S. Suppressing chlorophyll degradation by silencing OsNYC3 improves rice resistance to Rhizoctonia solani, the causal agent of sheath blight. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:335-349. [PMID: 34582620 PMCID: PMC8753359 DOI: 10.1111/pbi.13715] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/21/2021] [Accepted: 09/10/2021] [Indexed: 05/20/2023]
Abstract
Necrotrophic fungus Rhizoctonia solani Kühn (R. solani) causes serious diseases in many crops worldwide, including rice and maize sheath blight (ShB). Crop resistance to the fungus is a quantitative trait and resistance mechanism remains largely unknown, severely hindering the progress on developing resistant varieties. In this study, we found that resistant variety YSBR1 has apparently stronger ability to suppress the expansion of R. solani than susceptible Lemont in both field and growth chamber conditions. Comparison of transcriptomic profiles shows that the photosynthetic system including chlorophyll biosynthesis is highly suppressed by R. solani in Lemont but weakly in YSBR1. YSBR1 shows higher chlorophyll content than that of Lemont, and inducing chlorophyll degradation by dark treatment significantly reduces its resistance. Furthermore, three rice mutants and one maize mutant that carry impaired chlorophyll biosynthesis all display enhanced susceptibility to R. solani. Overexpression of OsNYC3, a chlorophyll degradation gene apparently induced expression by R. solani infection, significantly enhanced ShB susceptibility in a high-yield ShB-susceptible variety '9522'. However, silencing its transcription apparently improves ShB resistance without compromising agronomic traits or yield in field tests. Interestingly, altering chlorophyll content does not affect rice resistance to blight and blast diseases, caused by biotrophic and hemi-biotrophic pathogens, respectively. Our study reveals that chlorophyll plays an important role in ShB resistance and suppressing chlorophyll degradation induced by R. solani infection apparently improves rice ShB resistance. This discovery provides a novel target for developing resistant crop to necrotrophic fungus R. solani.
Collapse
|
11
|
Liu Z, Zhu Y, Shi H, Qiu J, Ding X, Kou Y. Recent Progress in Rice Broad-Spectrum Disease Resistance. Int J Mol Sci 2021; 22:11658. [PMID: 34769087 PMCID: PMC8584176 DOI: 10.3390/ijms222111658] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Rice is one of the most important food crops in the world. However, stable rice production is constrained by various diseases, in particular rice blast, sheath blight, bacterial blight, and virus diseases. Breeding and cultivation of resistant rice varieties is the most effective method to control the infection of pathogens. Exploitation and utilization of the genetic determinants of broad-spectrum resistance represent a desired way to improve the resistance of susceptible rice varieties. Recently, researchers have focused on the identification of rice broad-spectrum disease resistance genes, which include R genes, defense-regulator genes, and quantitative trait loci (QTL) against two or more pathogen species or many isolates of the same pathogen species. The cloning of broad-spectrum disease resistance genes and understanding their underlying mechanisms not only provide new genetic resources for breeding broad-spectrum rice varieties, but also promote the development of new disease resistance breeding strategies, such as editing susceptibility and executor R genes. In this review, the most recent advances in the identification of broad-spectrum disease resistance genes in rice and their application in crop improvement through biotechnology approaches during the past 10 years are summarized.
Collapse
Affiliation(s)
- Zhiquan Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Yujun Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Huanbin Shi
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Yanjun Kou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| |
Collapse
|
12
|
Ding S, Shao X, Li J, Ahammed GJ, Yao Y, Ding J, Hu Z, Yu J, Shi K. Nitrogen forms and metabolism affect plant defence to foliar and root pathogens in tomato. PLANT, CELL & ENVIRONMENT 2021; 44:1596-1610. [PMID: 33547690 DOI: 10.1111/pce.14019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 05/16/2023]
Abstract
Nitrogen (N) influences a myriad of physiological processes while its effects on plant defences and the underlying mechanisms are largely unknown. Here, the interaction between tomato and pathogens was examined under four N regimes (sole NO3- or mixed NO3- /NH4+ of total 1 and 7 mM N, denoting low and high N regimes, respectively) followed by inoculation with two bacterial pathogens, Pseudomonas syringae and Ralstonia solanacearum. Tomato immunity against both pathogens was generally higher under low N as well as NO3- as the sole N source. The disease susceptibility was reduced by silencing N metabolism genes such as NR, NiR and Fd-GOGAT, while increased in NiR1-overexpressed plants. Further studies demonstrated that the N-modulated defence was dependent on the salicylic acid (SA) defence pathway. Low N as well as the silencing of N metabolism genes increased the SA levels and transcripts of its maker genes, and low N-enhanced defence was blocked in NahG transgenic tomato plants that do not accumulate SA, while exogenous SA application attenuated the susceptibility of OE-NiR1. The study provides insights into the mechanisms of how nitrogen fertilization and metabolism affect plant immunity in tomato, which might be useful for designing effective agronomic strategies for the management of N supply.
Collapse
Affiliation(s)
- Shuting Ding
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Xiangqi Shao
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Jianxin Li
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Yanlai Yao
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian Ding
- Zhejiang Agricultural Technical Extension Center, Hangzhou, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
13
|
Xiong E, Li Z, Zhang C, Zhang J, Liu Y, Peng T, Chen Z, Zhao Q. A study of leaf-senescence genes in rice based on a combination of genomics, proteomics and bioinformatics. Brief Bioinform 2020; 22:5998850. [PMID: 33257942 DOI: 10.1093/bib/bbaa305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Leaf senescence is a highly complex, genetically regulated and well-ordered process with multiple layers and pathways. Delaying leaf senescence would help increase grain yields in rice. Over the past 15 years, more than 100 rice leaf-senescence genes have been cloned, greatly improving the understanding of leaf senescence in rice. Systematically elucidating the molecular mechanisms underlying leaf senescence will provide breeders with new tools/options for improving many important agronomic traits. In this study, we summarized recent reports on 125 rice leaf-senescence genes, providing an overview of the research progress in this field by analyzing the subcellular localizations, molecular functions and the relationship of them. These data showed that chlorophyll synthesis and degradation, chloroplast development, abscisic acid pathway, jasmonic acid pathway, nitrogen assimilation and ROS play an important role in regulating the leaf senescence in rice. Furthermore, we predicted and analyzed the proteins that interact with leaf-senescence proteins and achieved a more profound understanding of the molecular principles underlying the regulatory mechanisms by which leaf senescence occurs, thus providing new insights for future investigations of leaf senescence in rice.
Collapse
Affiliation(s)
- Erhui Xiong
- College of Agriculture, Henan Agricultural University (HAU), China
| | - Zhiyong Li
- Academy for Advanced Interdisciplinary Studies, South University of Science and Technology, Shenzhen, China
| | - Chen Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | | | - Ye Liu
- College of Agriculture, HAU
| | | | | | | |
Collapse
|
14
|
A Pyrimidin-Like Plant Activator Stimulates Plant Disease Resistance and Promotes the Synthesis of Primary Metabolites. Int J Mol Sci 2020; 21:ijms21082705. [PMID: 32295118 PMCID: PMC7215783 DOI: 10.3390/ijms21082705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
Plant activators are chemicals that induce plant defense responses to various pathogens. Here, we reported a new potential plant activator, 6-(methoxymethyl)-2-[5-(trifluoromethyl)-2-pyridyl] pyrimidin-4-ol, named PPA2 (pyrimidin-type plant activator 2). Unlike the traditional commercial plant activator benzothiadiazole S-methyl ester (BTH), PPA2 was fully soluble in water, and it did not inhibit plant growth or root system development in rice (Oryza sativa). PPA2 pretreatment significantly increased plant resistance against bacterial infection in both Arabidopsis and rice, in conjunction with increases in the level of jasmonoyl-isoleucine and 12-oxo-phytodienoic acid. In addition, metabolite profiling indicated that BTH significantly reduced the abundance of various primary metabolites in rice seedlings, including most amino acids, sugars, and organic acids; by contrast, PPA2 promoted their synthesis. Our results thus indicate that PPA2 enhances plant defenses against bacterial infection through the jasmonic acid pathway, and that as a water-soluble compound that can promote the synthesis of primary metabolites it has broad potential applications in agriculture.
Collapse
|
15
|
Xu Y, Wang R, Wang Y, Zhang L, Yao S. A point mutation in LTT1 enhances cold tolerance at the booting stage in rice. PLANT, CELL & ENVIRONMENT 2020; 43:992-1007. [PMID: 31922260 PMCID: PMC7154693 DOI: 10.1111/pce.13717] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 05/31/2023]
Abstract
The cold tolerance of rice at the booting stage is a main factor determining sustainability and regional adaptability. However, relatively few cold tolerance genes have been identified that can be effectively used in breeding programmes. Here, we show that a point mutation in the low-temperature tolerance 1 (LTT1) gene improves cold tolerance by maintaining tapetum degradation and pollen development, by activation of systems that metabolize reactive oxygen species (ROS). Cold-induced ROS accumulation is therefore prevented in the anthers of the ltt1 mutants allowing correct development. In contrast, exposure to cold stress dramatically increases ROS accumulation in the wild type anthers, together with the expression of genes encoding proteins associated with programmed cell death and with the accelerated degradation of the tapetum that ultimately leads to pollen abortion. These results demonstrate that appropriate ROS management is critical for the cold tolerance of rice at the booting stage. Hence, the ltt1 mutation can significantly improve the seed setting ability of cold-sensitive rice varieties under low-temperature stress conditions, with little yield penalty under optimal temperature conditions. This study highlights the importance of a valuable genetic resource that may be applied in rice breeding programmes to enhance cold tolerance.
Collapse
Affiliation(s)
- Yufang Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- Genome Biology CenterUniversity of Chinese Academy of SciencesBeijingChina
| | - Ruci Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Yueming Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Li Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- Genome Biology CenterUniversity of Chinese Academy of SciencesBeijingChina
| | - Shanguo Yao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
16
|
Yi J, Gao J, Zhang W, Zhao C, Wang Y, Zhen X. Differential Uptake and Utilization of Two Forms of Nitrogen in Japonica Rice Cultivars From North-Eastern China. FRONTIERS IN PLANT SCIENCE 2019; 10:1061. [PMID: 31552066 PMCID: PMC6738331 DOI: 10.3389/fpls.2019.01061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 08/06/2019] [Indexed: 05/17/2023]
Abstract
Japonica rice is widely planted in north-eastern China because of its superior food quality and stable grain yields. Nitrogen (N) is an essential element for rice growth, and development and its availability directly impacts on rice yields. The knowledge of N uptake and its utilization characteristics in japonica are thus important areas of research. Three japonica rice cultivars, SN265, SN1401, and SN9816, which are planted across large areas of north-eastern China, were used here to evaluate the uptake and utilization along the life cycle of both ammonium( N H 4 + ) and nitrate( N O 3 - ) in hydroponically grown plants. The plants were grown in one of three different solutions with varying N H 4 + : N O 3 - ratios: 1:0, 0:1, and 1:1 (The total N content was 40 mg L-1 for each treatment). At the tillering stage, when only N O 3 - was provided, lower rates of N uptake and enzyme activities of three rice plants resulted in reduced tiller numbers. During the reproductive stage, the N H 4 + and( N H 4 + ) uptake rates in SN1401 were consistently maintained at high levels, whereas the rates in SN265 and SN9816 were significantly lower, across all three treatments. At the booting stage, when only N O 3 - was provided, SN1401 plants had significantly higher expression levels of OsNRT2.1 and OsNRT2.2, higher activity of nitrate reductase in the roots, and higher activity levels of glutamine synthetase and glutamate synthase in the leaves, compared with the SN265 and SN9816 plants. The higher enzyme activity was beneficial to the secondary assimilation of N, which ultimately promoted panicle development in SN1401. Consequently, the grain yield per plant of SN1401 was the highest with solutions of both N H 4 + and N O 3 - . These results indicate that selecting a rice cultivar with higher utilization of N O 3 - is beneficial for increasing the number of grains per panicle, grain yield, and N use efficiency.
Collapse
Affiliation(s)
| | | | - Wenzhong Zhang
- Rice Research Institute of Shenyang Agricultural University, Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Shenyang, China
| | | | | | | |
Collapse
|
17
|
Akimoto‐Tomiyama C, Tanabe S, Kajiwara H, Minami E, Ochiai H. Loss of chloroplast-localized protein phosphatase 2Cs in Arabidopsis thaliana leads to enhancement of plant immunity and resistance to Xanthomonas campestris pv. campestris infection. MOLECULAR PLANT PATHOLOGY 2018; 19:1184-1195. [PMID: 28815858 PMCID: PMC6637992 DOI: 10.1111/mpp.12596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 05/20/2023]
Abstract
Protein phosphatases (PPs) counteract kinases in reversible phosphorylation events during numerous signal transduction pathways in eukaryotes. PP2Cs, one of the four major classes of the serine/threonine-specific PP family, are greatly expanded in plants. Thus, PP2Cs are thought to play a specific role in signal transduction pathways. Some rice PP2Cs classified in subgroup K are responsive to infection by the compatible Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight. In Arabidopsis thaliana, orthologous PP2C genes (AtPP2C62 and AtPP2C26) classified to subgroup K are also responsive to Xanthomonas campestris pv. campestris (Xcc, causal agent of black rot) infection. To elucidate the function of these subgroup K PP2Cs, atpp2c62- and atpp2c26-deficient A. thaliana mutants were characterized. A double mutant plant which was inoculated with a compatible Xcc showed reduced lesion development, as well as the suppression of bacterial multiplication. AtPP2C62 and AtPP2C26 localized to the chloroplast. Furthermore, the photosynthesis-related protein, chaperonin-60, was indicated as the potential candidate for the dephosphorylated substrate catalysed by AtPP2C62 and AtPP2C26 using two-dimensional isoelectric focusing sodium dodecylsulfate-polyacrylamide gel electrophoresis (2D-IDF-SDS-PAGE). Taken together, AtPP2C62 and AtPP2C26 are suggested to be involved in both photosynthesis and suppression of the plant immune system. These results imply the occurrence of crosstalk between photosynthesis and the plant defence system to control productivity under pathogen infection.
Collapse
Affiliation(s)
- Chiharu Akimoto‐Tomiyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukubaIbaraki 305‐8602, Japan
| | - Shigeru Tanabe
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukubaIbaraki 305‐8602, Japan
- Present address:
Sakata Seed CorporationYokohamaJapan
| | - Hideyuki Kajiwara
- Advanced Analysis CenterNational Agriculture and Food Research OrganizationTsukubaIbaraki 305‐8602, Japan
| | - Eiichi Minami
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukubaIbaraki 305‐8602, Japan
| | - Hirokazu Ochiai
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukubaIbaraki 305‐8602, Japan
| |
Collapse
|
18
|
Wang Q, Nian J, Xie X, Yu H, Zhang J, Bai J, Dong G, Hu J, Bai B, Chen L, Xie Q, Feng J, Yang X, Peng J, Chen F, Qian Q, Li J, Zuo J. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nat Commun 2018; 9:735. [PMID: 29467406 PMCID: PMC5821702 DOI: 10.1038/s41467-017-02781-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/22/2017] [Indexed: 12/26/2022] Open
Abstract
In crops, nitrogen directly determines productivity and biomass. However, the improvement of nitrogen utilization efficiency (NUE) is still a major challenge in modern agriculture. Here, we report the characterization of are1, a genetic suppressor of a rice fd-gogat mutant defective in nitrogen assimilation. ARE1 is a highly conserved gene, encoding a chloroplast-localized protein. Loss-of-function mutations in ARE1 cause delayed senescence and result in 10-20% grain yield increases, hence enhance NUE under nitrogen-limiting conditions. Analysis of a panel of 2155 rice varieties reveals that 18% indica and 48% aus accessions carry small insertions in the ARE1 promoter, which result in a reduction in ARE1 expression and an increase in grain yield under nitrogen-limiting conditions. We propose that ARE1 is a key mediator of NUE and represents a promising target for breeding high-yield cultivars under nitrogen-limiting condition.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jinqiang Nian
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xianzhi Xie
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, 250100, Jinan, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jian Zhang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jiaoteng Bai
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, 310006, Hangzhou, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, 310006, Hangzhou, China
| | - Bo Bai
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, 250100, Jinan, China
| | - Lichao Chen
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qingjun Xie
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jian Feng
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaolu Yang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Juli Peng
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Fan Chen
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, 310006, Hangzhou, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, 200032, Shanghai, China.
| |
Collapse
|
19
|
Bi Z, Zhang Y, Wu W, Zhan X, Yu N, Xu T, Liu Q, Li Z, Shen X, Chen D, Cheng S, Cao L. ES7, encoding a ferredoxin-dependent glutamate synthase, functions in nitrogen metabolism and impacts leaf senescence in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:24-34. [PMID: 28483051 DOI: 10.1016/j.plantsci.2017.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 06/07/2023]
Abstract
Glutamate synthase (GOGAT) is a key enzyme for nitrogen metabolism and ammonium assimilation in plants. In this study, an early senescence 7 (es7) mutant was identified and characterized. The leaves of the es7 mutant begin to senesce at the tillering stage about 60day after sowing, and become increasingly senescent as the plants develop at the heading stage. When es7 plants are grown under photorespiration-suppressed conditions (high CO2), the senescence phenotype and chlorophyll content are rescued. qRT-PCR analysis showed that senescence- associated genes were up-regulated significantly in es7. A map-based cloning strategy was used to identify ES7, which encodes a ferredoxin-dependent glutamate synthase (Fd-GOGAT). ES7 was expressed constitutively, and the ES7 protein was localized in chloroplast. qRT-PCR analysis indicated that several genes related to nitrogen metabolism were differentially expressed in es7. Further, we also demonstrated that chlorophyll synthesis-associated genes were significantly down-regulated in es7. In addition, when seedlings are grown under increasing nitrogen concentrations (NH4NO3) for 15days, the contents of chlorophyll a, chlorophyll b and total chlorophyll were significantly lower in es7. Our results demonstrated that ES7 is involved in nitrogen metabolism, effects chlorophyll synthesis, and may also associated with photorespiration, impacting leaf senescence in rice.
Collapse
Affiliation(s)
- Zhenzhen Bi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China.
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China.
| | - Weixun Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China.
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China.
| | - Ning Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China.
| | - Tingting Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China.
| | - Qunen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China.
| | - Zhi Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China.
| | - Xihong Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China.
| | - Daibo Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China.
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China.
| | - Liyong Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
20
|
Isolation and characterization of a spotted leaf 32 mutant with early leaf senescence and enhanced defense response in rice. Sci Rep 2017; 7:41846. [PMID: 28139777 PMCID: PMC5282590 DOI: 10.1038/srep41846] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/29/2016] [Indexed: 12/20/2022] Open
Abstract
Leaf senescence is a complex biological process and defense responses play vital role for rice development, their molecular mechanisms, however, remain elusive in rice. We herein reported a rice mutant spotted leaf 32 (spl32) derived from a rice cultivar 9311 by radiation. The spl32 plants displayed early leaf senescence, identified by disintegration of chloroplasts as cellular evidence, dramatically decreased contents of chlorophyll, up-regulation of superoxide dismutase enzyme activity and malondialdehyde, as physiological characteristic, and both up-regulation of senescence-induced STAY GREEN gene and senescence-associated transcription factors, and down-regulation of photosynthesis-associated genes, as molecular indicators. Positional cloning revealed that SPL32 encodes a ferredoxin-dependent glutamate synthase (Fd-GOGAT). Compared to wild type, enzyme activity of GOGAT was significantly decreased, and free amino acid contents, particularly for glutamate and glutamine, were altered in spl32 leaves. Moreover, the mutant was subjected to uncontrolled oxidative stress due to over-produced reactive oxygen species and damaged scavenging pathways, in accordance with decreased photorespiration rate. Besides, the mutant showed higher resistance to Xanthomonas oryzae pv. Oryzae than its wild type, coupled with up-regulation of four pathogenesis-related marker genes. Taken together, our results highlight Fd-GOGAT is associated with the regulation of leaf senescence and defense responses in rice.
Collapse
|
21
|
Huang H, Nguyen Thi Thu T, He X, Gravot A, Bernillon S, Ballini E, Morel JB. Increase of Fungal Pathogenicity and Role of Plant Glutamine in Nitrogen-Induced Susceptibility (NIS) To Rice Blast. FRONTIERS IN PLANT SCIENCE 2017; 8:265. [PMID: 28293247 PMCID: PMC5329020 DOI: 10.3389/fpls.2017.00265] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/13/2017] [Indexed: 05/20/2023]
Abstract
Highlight Modifications in glutamine synthetase OsGS1-2 expression and fungal pathogenicity underlie nitrogen-induced susceptibility to rice blast. Understanding why nitrogen fertilization increase the impact of many plant diseases is of major importance. The interaction between Magnaporthe oryzae and rice was used as a model for analyzing the molecular mechanisms underlying Nitrogen-Induced Susceptibility (NIS). We show that our experimental system in which nitrogen supply strongly affects rice blast susceptibility only slightly affects plant growth. In order to get insights into the mechanisms of NIS, we conducted a dual RNA-seq experiment on rice infected tissues under two nitrogen fertilization regimes. On the one hand, we show that enhanced susceptibility was visible despite an over-induction of defense gene expression by infection under high nitrogen regime. On the other hand, the fungus expressed to high levels effectors and pathogenicity-related genes in plants under high nitrogen regime. We propose that in plants supplied with elevated nitrogen fertilization, the observed enhanced induction of plant defense is over-passed by an increase in the expression of the fungal pathogenicity program, thus leading to enhanced susceptibility. Moreover, some rice genes implicated in nitrogen recycling were highly induced during NIS. We further demonstrate that the OsGS1-2 glutamine synthetase gene enhances plant resistance to M. oryzae and abolishes NIS and pinpoint glutamine as a potential key nutrient during NIS.
Collapse
Affiliation(s)
- Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural UniversityKunming, China
| | | | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural UniversityKunming, China
| | | | - Stéphane Bernillon
- INRA, UMR1332, Biologie du Fruit et Pathologie, Plateforme Métabolome de BordeauxVillenave d'Ornon, France
| | - Elsa Ballini
- SupAgro, UMR BGPI Institut National de la Recherche Agronomique/CIRAD/SupAgro, Campus International de BaillarguetMontpellier, France
| | - Jean-Benoit Morel
- Institut National de la Recherche Agronomique, UMR BGPI Institut National de la Recherche Agronomique/CIRAD/SupAgro, Campus International de BaillarguetMontpellier, France
- *Correspondence: Jean-Benoit Morel
| |
Collapse
|
22
|
Zhao J, Liu P, Li C, Wang Y, Guo L, Jiang G, Zhai W. LMM5.1 and LMM5.4, two eukaryotic translation elongation factor 1A-like gene family members, negatively affect cell death and disease resistance in rice. J Genet Genomics 2016; 44:107-118. [PMID: 28162958 DOI: 10.1016/j.jgg.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/22/2016] [Accepted: 12/26/2016] [Indexed: 11/19/2022]
Abstract
Lesion mimic mutant (LMM) genes, stimulating lesion formation in the absence of pathogens, play significant roles in immune response. In this study, we characterized a rice lesion mimic mutant, lmm5, which displayed light-dependent spontaneous lesions. Additionally, lmm5 plants exhibited enhanced resistance to all of the tested races of Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae (Xoo) by increasing the expression of defense-related genes and the accumulation of hydrogen peroxide. Genetic analysis showed that the lesion mimic phenotype of lmm5 was controlled by two genes, lmm5.1 and lmm5.4, which were isolated with a map-based cloning strategy. Remarkably, LMM5.1 and LMM5.4 share a 97.4% amino acid sequence identity, and they each encode a eukaryotic translation elongation factor 1A (eEF1A)-like protein. Besides, LMM5.1 and LMM5.4 were expressed in a tissue-specific and an indica-specific manner, respectively. In addition, high-throughput mRNA sequencing analysis confirmed that the basal immunity was constitutively activated in the lmm5 mutant. Taken together, these results suggest that the homologous eEF1A-like genes, LMM5.1 and LMM5.4, negatively affect cell death and disease resistance in rice.
Collapse
Affiliation(s)
- Jiying Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Kaifeng Institute for Food and Drug Control, Kaifeng 475000, China
| | - Pengcheng Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunrong Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lequn Guo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghuai Jiang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
23
|
Yang X, Nian J, Xie Q, Feng J, Zhang F, Jing H, Zhang J, Dong G, Liang Y, Peng J, Wang G, Qian Q, Zuo J. Rice Ferredoxin-Dependent Glutamate Synthase Regulates Nitrogen-Carbon Metabolomes and Is Genetically Differentiated between japonica and indica Subspecies. MOLECULAR PLANT 2016; 9:1520-1534. [PMID: 27677460 DOI: 10.1016/j.molp.2016.09.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 09/11/2016] [Accepted: 09/18/2016] [Indexed: 05/03/2023]
Abstract
Plants assimilate inorganic nitrogen absorbed from soil into organic forms as Gln and Glu through the glutamine synthetase/glutamine:2-oxoglutarate amidotransferase (GS/GOGAT) cycle. Whereas GS catalyzes the formation of Gln from Glu and ammonia, GOGAT catalyzes the transfer of an amide group from Gln to 2-oxoglutarate to produce two molecules of Glu. However, the regulatory role of the GS/GOGAT cycle in the carbon-nitrogen balance is not well understood. Here, we report the functional characterization of rice ABNORMAL CYTOKININ RESPONSE 1 (ABC1) gene that encodes a ferredoxin-dependent (Fd)-GOGAT. The weak mutant allele abc1-1 mutant shows a typical nitrogen-deficient syndrome, whereas the T-DNA insertional mutant abc1-2 is seedling lethal. Metabolomics analysis revealed the accumulation of an excessive amount of amino acids with high N/C ratio (Gln and Asn) and several intermediates in the tricarboxylic acid cycle in abc1-1, suggesting that ABC1 plays a critical role in nitrogen assimilation and carbon-nitrogen balance. Five non-synonymous single-nucleotide polymorphisms were identified in the ABC1 coding region and characterized as three distinct haplotypes, which have been highly and specifically differentiated between japonica and indica subspecies. Collectively, these results suggest that ABC1/OsFd-GOGAT is essential for plant growth and development by modulating nitrogen assimilation and the carbon-nitrogen balance.
Collapse
Affiliation(s)
- Xiaolu Yang
- State Key Laboratory of Plant Genomics, National Plant Gene Research Center (Beijing), CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinqiang Nian
- State Key Laboratory of Plant Genomics, National Plant Gene Research Center (Beijing), CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingjun Xie
- State Key Laboratory of Plant Genomics, National Plant Gene Research Center (Beijing), CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Feng
- State Key Laboratory of Plant Genomics, National Plant Gene Research Center (Beijing), CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics, National Plant Gene Research Center (Beijing), CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongwei Jing
- State Key Laboratory of Plant Genomics, National Plant Gene Research Center (Beijing), CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- State Key Laboratory of Plant Genomics, National Plant Gene Research Center (Beijing), CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Yan Liang
- State Key Laboratory of Plant Genomics, National Plant Gene Research Center (Beijing), CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juli Peng
- State Key Laboratory of Plant Genomics, National Plant Gene Research Center (Beijing), CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, National Plant Gene Research Center (Beijing), CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, National Plant Gene Research Center (Beijing), CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|