1
|
Cusumano JA, Kalogeropoulos AP, Le Provost M, Gallo NR, Levine SM, Inzana T, Papamanoli A. The emerging challenge of Enterococcus faecalis endocarditis after transcatheter aortic valve implantation: time for innovative treatment approaches. Clin Microbiol Rev 2024:e0016823. [PMID: 39235238 DOI: 10.1128/cmr.00168-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
SUMMARYInfective endocarditis (IE) is a life-threatening infection that has nearly doubled in prevalence over the last two decades due to the increase in implantable cardiac devices. Transcatheter aortic valve implantation (TAVI) is currently one of the most common cardiac procedures. TAVI usage continues to exponentially rise, inevitability increasing TAVI-IE. Patients with TAVI are frequently nonsurgical candidates, and TAVI-IE 1-year mortality rates can be as high as 74% without valve or bacterial biofilm removal. Enterococcus faecalis, a historically less common IE pathogen, is the primary cause of TAVI-IE. Treatment options are limited due to enterococcal intrinsic resistance and biofilm formation. Novel approaches are warranted to tackle current therapeutic gaps. We describe the existing challenges in treating TAVI-IE and how available treatment discovery approaches can be combined with an in silico "Living Heart" model to create solutions for the future.
Collapse
Affiliation(s)
- Jaclyn A Cusumano
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA
| | - Andreas P Kalogeropoulos
- Renaissance School of Medicine Division of Cardiology, Stony Brook University, Stony Brook, New York, USA
| | - Mathieu Le Provost
- School of Engineering, Computer Science and Artificial Intelligence, Long Island University, Brooklyn, New York, USA
| | - Nicolas R Gallo
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York, USA
- School of Engineering, Computer Science and Artificial Intelligence, Long Island University, Brooklyn, New York, USA
| | | | - Thomas Inzana
- College of Veterinary Medicine, Long Island University, Brooklyn, New York, USA
| | - Aikaterini Papamanoli
- Division of Infectious Diseases, Stony Brook University Medical Center, Stony Brook, New York, USA
| |
Collapse
|
2
|
Jahan I, Kumar SD, Shin SY, Lee CW, Shin SH, Yang S. Multifunctional Properties of BMAP-18 and Its Aliphatic Analog against Drug-Resistant Bacteria. Pharmaceuticals (Basel) 2023; 16:1356. [PMID: 37895827 PMCID: PMC10609797 DOI: 10.3390/ph16101356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
BMAP-18, derived from the N-terminal region of bovine myeloid antimicrobial peptide BMAP-27, demonstrates potent antimicrobial activity without cytotoxicity. This study aimed to compare the antibacterial, antibiofilm, and anti-inflammatory properties of BMAP-18, rich in aromatic phenylalanine residues, with its aliphatic analog, BMAP-18-FL. Both aromatic BMAP-18 and aliphatic BMAP-18-FL exhibited equally potent antimicrobial activities against Gram-positive and Gram-negative bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRPA). Mechanistic investigations employing SYTOX green uptake, DNA binding, and FACScan analysis revealed that both peptides acted by inducing membrane permeabilization and subsequent intracellular targeting. Moreover, both BMAP-18 and BMAP-18-FL effectively prevented biofilm formation and eradicated existing biofilms of MRSA and MDRPA. Notably, BMAP-18-FL displayed a superior anti-inflammatory activity compared to BMAP-18, significantly reducing the expression levels of pro-inflammatory cytokines in lipopolysaccharide-stimulated macrophages. This study emphasizes the similarities and differences in the antimicrobial, antibiofilm, and anti-inflammatory properties between aromatic BMAP-18 and aliphatic BMAP-18-FL, providing valuable insights for the development of multifunctional antimicrobial peptides against drug-resistant bacteria.
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Biomedical Sciences, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea;
| | - Sukumar Dinesh Kumar
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (S.D.K.); (S.Y.S.)
| | - Song Yub Shin
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (S.D.K.); (S.Y.S.)
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Sung-Heui Shin
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (S.D.K.); (S.Y.S.)
| | - Sungtae Yang
- Department of Microbiology, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
3
|
Li F, Wang C, Xu J, Wang X, Cao M, Wang S, Zhang T, Xu Y, Wang J, Pan S, Hu W. Evaluation of the antibacterial activity of Elsholtzia ciliate essential oil against halitosis-related Fusobacterium nucleatum and Porphyromonas gingivalis. Front Microbiol 2023; 14:1219004. [PMID: 37608950 PMCID: PMC10440386 DOI: 10.3389/fmicb.2023.1219004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
The broad-spectrum antimicrobial activity of Elsholtzia ciliate essential oil (ECO) has been previously reported, but its effectiveness against halitosis-causing bacteria such as Fusobacterium nucleatum and Porphyromonas gingivalis is not well understood. In this study, we investigated the bacteriostatic activity of ECO against planktonic cells and biofilms of F. nucleatum and P. gingivalis, as well as its ability to inhibit bacterial metabolism and production of volatile sulfur compounds (VSCs) at sub-lethal concentrations. Our findings revealed that ECO exhibited comparable activities to chlorhexidine against these oral bacteria. Treatment with ECO significantly reduced the production of VSCs, including hydrogen sulfide, dimethyl disulfide, and methanethiol, which are major contributors to bad breath. As the major chemical components of ECO, carvacrol, p-cymene, and phellandrene, were demonstrated in vitro inhibitory effects on F. nucleatum and P. gingivalis, and their combined use showed synergistic and additive effects, suggesting that the overall activity of ECO is derived from the cumulative or synergistic effect of multiple active components. ECO was found to have a destructive effect on the bacterial cell membrane by examining the cell morphology and permeability. Furthermore, the application of ECO induced significant changes in the bacterial composition of saliva-derived biofilm, resulting in the elimination of bacterial species that contribute to halitosis, including Fusobacterium, Porphyromonas, and Prevotella. These results provide experimental evidence for the potential clinical applications of ECOs in the prevention and treatment of halitosis.
Collapse
Affiliation(s)
- Fengjiao Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jing Xu
- Shenzhen RELX Technology Co., Ltd., Shenzhen, China
| | - Xiaoyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Meng Cao
- Shandong Aobo Biotechnology Co., Ltd., Liaocheng, China
| | - Shuhua Wang
- Shandong Aobo Biotechnology Co., Ltd., Liaocheng, China
| | | | - Yanyong Xu
- Beijing Xinyue Technology Co., Ltd., Beijing, China
| | - Jing Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shaobin Pan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Sheng X, Yu J, Liu H, Wang Z, Deng S, Shen Y. Dual effectiveness of a novel all-in-one endodontic irrigating solution in antibiofilm activity and smear layer removal. Front Bioeng Biotechnol 2023; 11:1254927. [PMID: 37593327 PMCID: PMC10427723 DOI: 10.3389/fbioe.2023.1254927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The continuous destruction of dental hard tissues increases the risk of bacterial invasion, which leads to pulp infections. Irrigation is critical for successful root canal treatment in terms of infection control. However, no single irrigant covers all of the functions demanded, including antibiofilm and tissue-dissolving activities. The aim of this study was to investigate the antimicrobial properties of Triton, an all-in-one irrigant, on Enterococcus faecalis and multispecies oral biofilms in dentin canals, as well as its ability to remove the smear layer. Dentin blocks (192 specimens) were prepared from single-root human teeth and then assigned to 48 groups (24 groups for each biofilm type). Serial centrifugation was used for bacterial introduction into dentinal tubules. After 3 weeks, half of the specimens were created a uniform smear layer. The following treatments were applied: short time (separate): Triton, 6% NaOCl, 2% NaOCl, and water (all for 3 min); short time (combined): Triton (3 + 1 min), 6% NaOCl +17% EDTA (3 + 1 or 2 + 1 min), and 2% NaOCl +17% EDTA (3 + 1 min); and long time: Triton (3 + 3 min), 6% NaOCl (5 min), 6% NaOCl +17% EDTA (5 + 1 min), and water (3 + 3 min). Confocal laser scanning microscopy and scanning electron microscopy were employed to examine the antimicrobial activity and smear layer removal, respectively. The results revealed that despite the absence or presence of the smear layer, Triton (3 + 3 min) showed the highest killing for both tested biofilms (61.53%-72.22%) among all groups (p < 0.05). Furthermore, the smear layer was removed by Triton after 3 + 3 min, exposing open dentin canals. These findings demonstrated that Triton can provide dual benefits of antibiofilm and smear layer removal capabilities simultaneously, indicating a simplified and effective strategy for application in root canal treatment.
Collapse
Affiliation(s)
- Xuyan Sheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Jian Yu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Zhejun Wang
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Soleimani M, Szafranski SP, Qu T, Mukherjee R, Stiesch M, Wriggers P, Junker P. Numerical and experimental investigation of multi-species bacterial co-aggregation. Sci Rep 2023; 13:11839. [PMID: 37481628 PMCID: PMC10363141 DOI: 10.1038/s41598-023-38806-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023] Open
Abstract
This paper deals with the mathematical modeling of bacterial co-aggregation and its numerical implementation in a FEM framework. Since the concept of co-aggregation refers to the physical binding between cells of different microbial species, a system composed of two species is considered in the modeling framework. The extension of the model to an arbitrary number of species is straightforward. In addition to two-species (multi-species growth) dynamics, the transport of a nutritional substance and the extent of co-aggregation are introduced into the model as the third and fourth primary variables. A phase-field modeling approach is employed to describe the co-aggregation between the two species. The mathematical model is three-dimensional and fully based on the continuum description of the problem without any need for discrete agents which are the key elements of the individual-based modeling approach. It is shown that the use of a phase-field-based model is equivalent to a particular form of classical diffusion-reaction systems. Unlike the so-called mixture models, the evolution of each component of the multi-species system is captured thanks to the inherent capability of phase-field modeling in treating systems consisting of distinct multi-phases. The details of numerical implementation in a FEM framework are also presented. Indeed, a new multi-field user element is developed and implemented in ANSYS for this multiphysics problem. Predictions of the model are compared with the experimental observations. By that, the versatility and applicability of the model and the numerical tool are well established.
Collapse
Affiliation(s)
- Meisam Soleimani
- Institute of Continuum Mechanics (IKM), Leibniz Universität Hannover, Hannover, Germany.
| | | | - Taoran Qu
- Medical School Hannover (MHH), Hannover, Germany
| | | | | | - Peter Wriggers
- Institute of Continuum Mechanics (IKM), Leibniz Universität Hannover, Hannover, Germany
| | - Philipp Junker
- Institute of Continuum Mechanics (IKM), Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
6
|
Hu J, Yu J, Liu H, Wang Z, Haapasalo M, Haney EF, Hancock REW, Deng S, Shen Y. Dynamic killing effectiveness of mouthrinses and a D-enantiomeric peptide on oral multispecies biofilms grown on dental restorative material surfaces. J Dent 2023; 134:104552. [PMID: 37201774 DOI: 10.1016/j.jdent.2023.104552] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023] Open
Abstract
OBJECTIVE To evaluate the dynamics of killing of oral multispecies biofilms grown on dental restorative materials by commercially available mouthrinses and a D-enantiomeric peptide. METHODS Four composite resins (3M Supreme, 3M Supreme flow, Kerr Sonicfill, and Shofu Beautifil II) and one glass ionomer (GC Fuji II) were used as restorative materials. Plaque biofilms were grown on the surfaces of restorative material discs for 1 week. The surface roughness and biofilm attachment were assessed by atomic force microscopy and scanning electron microscopy. One-week-old biofilms grown anaerobically at 37°C were exposed to each of five solutions for one minute (twice daily for seven days): Listerine Total care and Paroex Gum mouthrinses, 0.12% chlorhexidine, 0.001% D-enantiomeric peptide DJK-5, and sterile water. The dynamic variation of the biovolume of the biofilms and the percentage of dead bacteria were monitored and analyzed using confocal laser scanning microscopy. RESULTS All restorative materials had similar surface roughness with intact biofilm attachment. The percentage of dead bacteria and biovolume of biofilms treated by each oral rinse solution remained constant between days 1 and 7, with no statistically significant difference. DJK-5 showed the highest percentage of dead bacteria (up to 75.7%; cf. ∼20-40% for other mouthrinses) of all solutions tested within 7 days. CONCLUSIONS DJK-5 outperformed conventional mouthrinses in killing bacteria in oral multispecies biofilms grown on dental restorative materials. CLINICAL SIGNIFICANCE The antimicrobial peptide DJK-5 is effective against oral biofilms and serves as a promising candidate for the development of future mouthrinses to improve long-term oral hygiene.
Collapse
Affiliation(s)
- Jinghao Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China; Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Jian Yu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Zhejun Wang
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Markus Haapasalo
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
7
|
Schönbächler N, Thurnheer T, Paqué PN, Attin T, Karygianni L. In vitro versus in situ biofilms for evaluating the antimicrobial effectiveness of herbal mouthrinses. Front Cell Infect Microbiol 2023; 13:1130255. [PMID: 36798085 PMCID: PMC9927218 DOI: 10.3389/fcimb.2023.1130255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
For centuries, diverse mouthrinses have been applied for medicinal purposes in the oral cavity. In view of the growing resistance of oral microorganisms against conventional antimicrobial agents e.g. chlorhexidine, the implementation of alternative treatments inspired by nature has lately gained increasing interest. The aim of the present study was to compare in vitro biofilm models with in situ biofilms in order to evaluate the antimicrobial potential of different natural mouthrinses. For the in vitro study a six-species supragingival biofilm model containing A. oris, V. dispar, C. albicans, F. nucleatum, S. mutans and S. oralis was used. Biofilms were grown anaerobically on hydroxyapatite discs and treated with natural mouthrinses Ratanhia, Trybol and Tebodont. 0.9% NaCl and 10% ethanol served as negative controls, while 0.2% CHX served as positive control. After 64h hours, biofilms were harvested and quantified by cultural analysis CFU. For the in situ study, individual test splints were manufactured for the participants. After 2h and 72h the biofilm-covered samples were removed and treated with the mouthrinses and controls mentioned above. The biofilms were quantified by CFU and stained for vitality under the confocal laser scanning microscope. In the in vitro study, 0.2% CHX yielded the highest antimicrobial effect. Among all mouthrinses, Tebodont (4.708 ± 1.294 log10 CFU, median 5.279, p<0.0001) compared with 0.9% NaCl showed the highest antimicrobial potential. After 72h there was no significant reduction in CFU after 0.2% CHX treatment. Only Trybol showed a statistically significant reduction of aerobic growth of microorganisms in situ (5.331 ± 0.7350 log10 CFU, median 5.579, p<0.0209). After treatment with the positive control 0.2% CHX, a significant percentage of non-vital bacteria (42.006 ± 12.173 log10 CFU, median 42.150) was detected. To sum up, a less pronounced effect of all mouthrinses was shown for the in situ biofilms compared to the in vitro biofilms.
Collapse
Affiliation(s)
- Nicole Schönbächler
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Pune Nina Paqué
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Lamprini Karygianni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- *Correspondence: Lamprini Karygianni,
| |
Collapse
|
8
|
Alves PJ, Gryson L, Hajjar J, Lepelletier D, Reners M, Rodríguez Salazar J, Simon A. Role of antiseptics in the prevention and treatment of infections in nursing homes. J Hosp Infect 2023; 131:58-69. [PMID: 36216172 DOI: 10.1016/j.jhin.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Inadequate infection control, wound care, and oral hygiene protocols in nursing homes pose challenges to residents' quality of life. Based on the outcomes from a focus group meeting and a literature search, this narrative review evaluates the current and potential roles of antiseptics within nursing home infection management procedures. We examine contemporary strategies and concerns within the management of meticillin-resistant Staphylococcus aureus (MRSA; including decolonization regimes), chronic wound care, and oral hygiene, and review the available data for the use of antiseptics, with a focus on povidone-iodine. Compared with chlorhexidine, polyhexanide, and silver, povidone-iodine has a broader spectrum of antimicrobial activity, with rapid and potent activity against MRSA and other microbes found in chronic wounds, including biofilms. As no reports of bacterial resistance or cross-resistance following exposure to povidone-iodine exist, it may be preferable for MRSA decolonization compared with mupirocin and chlorhexidine, which can lead to resistant MRSA strains. Povidone-iodine oral products have greater efficacy against oral pathogens compared with other antiseptics such as chlorhexidine mouthwash, highlighting the clinical benefit of povidone-iodine in oral care. Additionally, povidone-iodine-based products, including mouthwash, have demonstrated rapid in-vitro virucidal activity against SARS-CoV-2 and may help reduce its transmission if incorporated into nursing home coronavirus 2019 control protocols. Importantly, povidone-iodine activity is not adversely affected by organic material, such as that found in chronic wounds and the oral cavity. Povidone-iodine is a promising antiseptic agent for the management of infections in the nursing home setting, including MRSA decolonization procedures, chronic wound management, and oral care.
Collapse
Affiliation(s)
- P J Alves
- Wounds Research Laboratory, Centre for Interdisciplinary Research in Health (CIIS), Universidade Católica Portuguesa, Portugal.
| | - L Gryson
- Belgian Defence Medical Component, Brussels, Belgium
| | - J Hajjar
- Infection Control Practitioner, Consultant, Pau, France
| | - D Lepelletier
- Hospital Hygiene Department, Nantes University Hospital, Nantes, France
| | - M Reners
- Private Dental Practice, Liège, Belgium
| | | | - A Simon
- Infection Control Team, Groupe Hospitalier Jolimont, Haine Saint-Paul, Belgium
| |
Collapse
|
9
|
Liu H, Li H, Zhang L, Wang Z, Qian J, Yu M, Shen Y. In vitro evaluation of the antibacterial effect of four root canal sealers on dental biofilms. Clin Oral Investig 2022; 26:4361-4368. [PMID: 35137277 DOI: 10.1007/s00784-022-04399-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/03/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To dynamically evaluate the effect of four root canal sealers on the killing of biofilms within dentinal tubules. MATERIALS AND METHODS Dentin blocks were prepared for infection of the dentinal tubules. Enterococcus faecalis VP3-181 and multi-species bacteria from two donors were cultured. After 3 days of incubation, the infected dentin specimens were rinsed with sterile water for 1 min and subjected to treatment. Additionally, multi-species bacteria from donor 1 were incubated for 3 weeks to allow biofilm maturation and then the specimens were subjected to treatment. Gutta-percha-treated dentin specimens comprised the control group. A root canal sealer (bioceramic sealers: EndoSequence BC Sealer, ProRoot Endo Sealer, or GuttaFlow Bioseal; and a traditional silicone-based sealer: Guttaflow 2) was spread onto the canal walls of the dentin. The specimens were examined with confocal laser scanning microscopy at 7, 30, or 60 days. RESULTS In the 3-day-old biofilm group, the proportion of killed bacteria decreased significantly from the first 7 days of treatment to 60 days of treatment for all sealers (p < 0.05). In the 3-week-old biofilm group, 60 days of exposure to bioceramic sealers resulted in more significant dead bacteria than 7-day exposures of the biofilms (p < 0.05). Bioceramic sealers were more effective in killing bacteria than the GuttaFlow 2 sealer (p < 0.05). CONCLUSIONS Calcium silicate-based sealers showed good antimicrobial effects against biofilms within dentinal tubules, especially in the first week in young biofilms. There is no substantive antibacterial activity observed for the examined root canal sealers against young dentinal tubule biofilms. CLINICAL RELEVANCE The bioceramic root canal sealers examined demonstrate minimal additional antibacterial effects after long-term exposure to young biofilms.
Collapse
Affiliation(s)
- He Liu
- Department of Stomatology, Affiliated Hospital of Jining Medical University, Jining, People's Republic of China.,Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Heng Li
- Department of Stomatology, Affiliated Hospital of Jining Medical University, Jining, People's Republic of China
| | - Lei Zhang
- Department of Stomatology, Affiliated Hospital of Jining Medical University, Jining, People's Republic of China
| | - Zhejun Wang
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Junrong Qian
- Department of Stomatology, Affiliated Hospital of Jining Medical University, Jining, People's Republic of China
| | - Miao Yu
- Department of Periodontics, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, People's Republic of China.
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
10
|
Wong J, Manoil D, Näsman P, Belibasakis GN, Neelakantan P. Microbiological Aspects of Root Canal Infections and Disinfection Strategies: An Update Review on the Current Knowledge and Challenges. FRONTIERS IN ORAL HEALTH 2022; 2:672887. [PMID: 35048015 PMCID: PMC8757850 DOI: 10.3389/froh.2021.672887] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The oral cavity is the habitat of several hundreds of microbial taxa that have evolved to coexist in multispecies communities in this unique ecosystem. By contrast, the internal tissue of the tooth, i.e., the dental pulp, is a physiologically sterile connective tissue in which any microbial invasion is a pathological sign. It results in inflammation of the pulp tissue and eventually to pulp death and spread of inflammation/infection to the periradicular tissues. Over the past few decades, substantial emphasis has been placed on understanding the pathobiology of root canal infections, including the microbial composition, biofilm biology and host responses to infections. To develop clinically effective treatment regimens as well as preventive therapies, such extensive understanding is necessary. Rather surprisingly, despite the definitive realization that root canal infections are biofilm mediated, clinical strategies have been focused more on preparing canals to radiographically impeccable levels, while much is left desired on the debridement of these complex root canal systems. Hence, solely focusing on "canal shaping" largely misses the point of endodontic treatment as the current understanding of the microbial aetiopathogenesis of apical periodontitis calls for the emphasis to be placed on "canal cleaning" and chemo-mechanical disinfection. In this review, we dissect in great detail, the current knowledge on the root canal microbiome, both in terms of its composition and functional characteristics. We also describe the challenges in root canal disinfection and the novel strategies that attempt to address this challenge. Finally, we provide some critical pointers for areas of future research, which will serve as an important area for consideration in Frontiers in Oral Health.
Collapse
Affiliation(s)
- Jasmine Wong
- Discipline of Endodontology, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Peggy Näsman
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Prasanna Neelakantan
- Discipline of Endodontology, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Liu N, Li X, Wang M, Zhang F, Wang C, Zhang K, Wang H, Xu S, Hu W, Gu L. DexA70, the Truncated Form of a Self-Produced Dextranase, Effectively Disrupts Streptococcus mutans Biofilm. Front Microbiol 2021; 12:737458. [PMID: 34650538 PMCID: PMC8505985 DOI: 10.3389/fmicb.2021.737458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
Billions of people suffer from dental caries every year in spite of the effort to reduce the prevalence over the past few decades. Streptococcus mutans is the leading member of a specific group of cariogenic bacteria that cause dental caries. S. mutans forms biofilm, which is highly resistant to harsh environment, host immunity, and antimicrobial treatments. In this study, we found that S. mutans biofilm is highly resistant to both antimicrobial agents and lysozyme. DexA70, the truncated form of DexA (amino acids 100–732), a dextranase in S. mutans, prevents S. mutans biofilm formation and disassembles existing biofilms within minutes at nanomolar concentrations when supplied exogenously. DexA70 treatment markedly enhances biofilm sensitivity to antimicrobial agents and lysozyme, indicating its great potential in combating biofilm-related dental caries.
Collapse
Affiliation(s)
- Nan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Maofeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Hongwei Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
12
|
Abstract
Mediators of the initiation, development, and recurrence of periodontitis include the oral microbiome embedded in subgingival plaque and the host immune response to a dysbiosis within this dynamic and complex microbial community. Although mediators have been studied extensively, researchers in the field have been unable to fully ascribe certain clinical presentations of periodontitis to their nature. Emergence of high-throughput sequencing technologies has resulted in better characterization of the microbial oral dysbiosis that extends beyond the extensively studied putative bacterial periodontopathogens to a shift in the oral virome composition during disease conditions. Although the biological dark matter inserted by retroviruses was once believed to be nonfunctional, research has revealed that it encodes historical viral-eukaryotic interactions and influences host development. The objective of this review is to evaluate the proposed association of herpesviruses to the etiology and pathogenesis of periodontal disease and survey the highly abundant prokaryotic viruses to delineate their potential roles in biofilm dynamics, as well as their interactions with putative bacterial periodontopathogens and eukaryotic cells. The findings suggest that potential novel periodontal therapies targeting or utilizing the oral virome can alleviate certain clinical presentations of periodontitis. Perhaps it is time to embrace the viral dark matter within the periodontal environment to fully comprehend the pathogenesis and systemic implications of periodontitis.
Collapse
Affiliation(s)
- April Martínez
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ryutaro Kuraji
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Life Science DentistryThe Nippon Dental UniversityTokyoJapan
- Department of PeriodontologyThe Nippon Dental University School of Life Dentistry at TokyoTokyoJapan
| | - Yvonne L. Kapila
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
13
|
Khan F, Bamunuarachchi NI, Pham DTN, Tabassum N, Khan MSA, Kim YM. Mixed biofilms of pathogenic Candida-bacteria: regulation mechanisms and treatment strategies. Crit Rev Microbiol 2021; 47:699-727. [PMID: 34003065 DOI: 10.1080/1040841x.2021.1921696] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mixed-species biofilm is one of the most frequently recorded clinical problems. Mixed biofilms develop as a result of interactions between microorganisms of a single or multiple species (e.g. bacteria and fungi). Candida spp., particularly Candida albicans, are known to associate with various bacterial species to form a multi-species biofilm. Mixed biofilms of Candida spp. have been previously detected in vivo and on the surfaces of many biomedical instruments. Treating infectious diseases caused by mixed biofilms of Candida and bacterial species has been challenging due to their increased resistance to antimicrobial drugs. Here, we review and discuss the clinical significance of mixed Candida-bacteria biofilms as well as the signalling mechanisms involved in Candida-bacteria interactions. We also describe possible approaches for combating infections associated with mixed biofilms, such as the use of natural or synthetic drugs and combination therapy. The review presented here is expected to contribute to the advances in the biomedical field on the understanding of underlying interaction mechanisms of pathogens in mixed biofilm, and alternative approaches to treating the related infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea.,Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Dung Thuy Nguyen Pham
- Center of Excellence for Biochemistry and Natural Products, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.,NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
14
|
Rajendiran M, Trivedi HM, Chen D, Gajendrareddy P, Chen L. Recent Development of Active Ingredients in Mouthwashes and Toothpastes for Periodontal Diseases. Molecules 2021; 26:molecules26072001. [PMID: 33916013 PMCID: PMC8037529 DOI: 10.3390/molecules26072001] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 01/01/2023] Open
Abstract
Periodontal diseases like gingivitis and periodontitis are primarily caused by dental plaque. Several antiplaque and anti-microbial agents have been successfully incorporated into toothpastes and mouthwashes to control plaque biofilms and to prevent and treat gingivitis and periodontitis. The aim of this article was to review recent developments in the antiplaque, anti-gingivitis, and anti-periodontitis properties of some common compounds in toothpastes and mouthwashes by evaluating basic and clinical studies, especially the ones published in the past five years. The common active ingredients in toothpastes and mouthwashes included in this review are chlorhexidine, cetylpyridinium chloride, sodium fluoride, stannous fluoride, stannous chloride, zinc oxide, zinc chloride, and two herbs—licorice and curcumin. We believe this comprehensive review will provide useful up-to-date information for dental care professionals and the general public regarding the major oral care products on the market that are in daily use.
Collapse
Affiliation(s)
- Meenakshi Rajendiran
- The Center for Wound Healing and Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Harsh M Trivedi
- Colgate-Palmolive Company, Piscataway, NJ 08854, USA; (H.M.T.); (D.C.)
| | - Dandan Chen
- Colgate-Palmolive Company, Piscataway, NJ 08854, USA; (H.M.T.); (D.C.)
| | - Praveen Gajendrareddy
- The Center for Wound Healing and Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Correspondence: (P.G.); (L.C.); Tel.: +1-312-413-8405 (P.G.); +1-312-413-5387 (L.C.)
| | - Lin Chen
- The Center for Wound Healing and Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Correspondence: (P.G.); (L.C.); Tel.: +1-312-413-8405 (P.G.); +1-312-413-5387 (L.C.)
| |
Collapse
|
15
|
Antibacterial Effect of High-Purity Nisin Alone and in Combination with D-Amino Acids or Chlorhexidine in an Endodontic-Like Biofilm Model. Antibiotics (Basel) 2021; 10:antibiotics10020149. [PMID: 33540860 PMCID: PMC7913098 DOI: 10.3390/antibiotics10020149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
New strategies to eradicate endodontic biofilms are needed. Therefore, we evaluated the effect of high-purity nisin alone and in combination with D-amino acids (D-AAs) or chlorhexidine (CHX) against an “endodontic-like” biofilm model. Biofilms were grown on hydroxyapatite discs for 64 h and treated with nisin, eight D-AAs mixture, nisin + eight D-AAs, 2% CHX, and nisin + 2% CHX. After the 5 min and 24 h treatments, biofilm cells were harvested and total colony-forming units were counted. Differences between groups were tested by two-way ANOVA followed by Tukey’s multiple comparisons test (p < 0.05). Nisin and D-AAs, alone or in combination, were not effective in reducing bacteria after short or long exposure times. After 5 min, treatment with 2% CHX and nisin + 2% CHX resulted in 2 and 2.4-log cell reduction, respectively, compared with the no treatment control (p < 0.001). After 24 h, 2% CHX and nisin + 2% CHX drastically reduced bacterial counts. In conclusion, high-purity nisin alone or in combination with D-AAs did not show antibacterial activity against multispecies biofilms. Moreover, combined treatment using nisin and CHX showed similar antibiofilm activity compared with the use of CHX alone.
Collapse
|
16
|
Candida albicans as an Essential "Keystone" Component within Polymicrobial Oral Biofilm Models? Microorganisms 2020; 9:microorganisms9010059. [PMID: 33379333 PMCID: PMC7823588 DOI: 10.3390/microorganisms9010059] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Existing standardized biofilm assays focus on simple mono-species or bacterial-only models. Incorporating Candida albicans into complex biofilm models can offer a more appropriate and relevant polymicrobial biofilm for the development of oral health products. Aims: This study aimed to assess the importance of interkingdom interactions in polymicrobial oral biofilm systems with or without C. albicans, and test how these models respond to oral therapeutic challenges in vitro. Materials and Methods: Polymicrobial biofilms (two models containing 5 and 10 bacterial species, respectively) were created in parallel in the presence and absence of C. albicans and challenged using clinically relevant antimicrobials. The metabolic profiles and biomasses of these complex biofilms were estimated using resazurin dye and crystal violet stain, respectively. Quantitative PCR was utilized to assess compositional changes in microbial load. Additional assays, for measurements of pH and lactate, were included to monitor fluctuations in virulence "biomarkers." Results: An increased level of metabolic activity and biomass in the presence of C. albicans was observed. Bacterial load was increased by more than a factor of 10 in the presence of C. albicans. Assays showed inclusion of C. albicans impacted the biofilm virulence profiles. C. albicans did not affect the biofilms' responses to the short-term incubations with different treatments. Conclusions: The interkingdom biofilms described herein are structurally robust and exhibit all the hallmarks of a reproducible model. To our knowledge, these data are the first to test the hypothesis that yeasts may act as potential "keystone" components of oral biofilms.
Collapse
|
17
|
Zhang T, Xia L, Wang Z, Hancock REW, Haapasalo M. Recovery of Oral In Vitro Biofilms after Exposure to Peptides and Chlorhexidine. J Endod 2020; 47:466-471. [PMID: 33248060 DOI: 10.1016/j.joen.2020.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION This study aimed to examine the dynamic recovery of established multispecies biofilms of oral bacteria after an initial treatment by D-enantiomeric peptide DJK-5, L-enantiomeric peptide 1018, or chlorhexidine digluconate (CHX). METHODS Oral biofilms from 2 donors were grown on collagen-coated hydroxyapatite disks for 3 weeks and exposed to DJK-5, 1018, and 2% CHX for 3 minutes. Immediately after treatment and 1, 2, 3, 5, 7, 8, and 12 weeks after exposure, the biofilm volume and the volume ratio of dead and live bacteria in biofilms were assessed by confocal laser scanning microscopy using a live/dead viability stain. Results were examined by 1-way analysis of variance and post hoc multiple comparisons to determine significance at a P < .05 significance level. RESULTS DJK-5 killed almost 80% of biofilms in 3 minutes and maintained this high level of dead bacteria for 1 week. The proportion of viable bacteria in DJK-5-treated biofilms returned to the pretreatment level after 12 weeks. The biovolume of DJK-5-treated biofilm remained significantly lower than that of biofilms after CHX and no treatment throughout the 12-week follow-up period (P < .001). The proportion of dead bacteria was higher in biofilms exposed to DJK-5 than with 1018 or CHX for 8 weeks after the exposure (P < .001). The proportion of dead bacteria almost doubled to 46%-52% during the first 7 days after the 3-minute exposure to CHX and peptide 1018. The timeline of biofilm recovery was slow but similar after exposure to CHX and the 2 peptides. CONCLUSIONS ecovery time after exposure to DJK-5 was longer than that after exposure to 1018 and CHX. Peptide 1018 showed a delayed, continued antibacterial effect similar to that of 2% CHX against the biofilm microbes.
Collapse
Affiliation(s)
- Tian Zhang
- Faculty of Dentistry, Division of Endodontics, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhejun Wang
- Faculty of Dentistry, Division of Endodontics, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert E W Hancock
- Department of Microbiology and Immunology, Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Markus Haapasalo
- Faculty of Dentistry, Division of Endodontics, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
18
|
Pereira TC, Dijkstra RJB, Petridis X, Sharma PK, van de Meer WJ, van der Sluis LWM, de Andrade FB. Chemical and mechanical influence of root canal irrigation on biofilm removal from lateral morphological features of simulated root canals, dentine discs and dentinal tubules. Int Endod J 2020; 54:112-129. [PMID: 32880989 PMCID: PMC7839520 DOI: 10.1111/iej.13399] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 08/26/2020] [Indexed: 01/08/2023]
Abstract
Aim To investigate the anti‐biofilm efficacy of irrigation using a simulated root canal model, the chemical effect of irrigants against biofilms grown on dentine discs and their impact on biofilm viscoelasticity, the efficacy of the irrigants in decontaminating infected dentinal tubules and the capacity of bacteria to regrow. Methodology Biofilm removal, viscoelastic analysis of remaining biofilms and bacterial viability were evaluated using a simulated root canal model with lateral morphological features, dentine discs and a dentinal tubule model, respectively. Experiments were conducted using a two‐phase irrigation protocol. Phase 1: a modified salt solution (RISA) and sodium hypochlorite (NaOCl) were used at a low flow rate to evaluate the chemical action of the irrigants. Ultrasonic activation (US) of a chemically inert solution (buffer) was used to evaluate the mechanical efficacy of irrigation. Phase 2: a final irrigation with buffer at a high flow rate was performed for all groups. Optical coherence tomography (OCT), low load compression testing (LLCT) and confocal scanning laser microscopy analysis were used in the different models. One‐way analysis of variance (anova) was performed for the OCT and LLCT analysis, whilst Kruskal–Wallis and Wilcoxon ranked tests for the dentinal tubule model. Results US and high flow rate removed significantly more biofilm from the artificial lateral canal. For biofilm removal from the artificial isthmus, no significant differences were found between the groups. Within‐group analysis revealed significant differences between the steps of the experiment, with the exception of NaOCl. For the dentine discs, no significant differences regarding biofilm removal and viscoelasticity were detected. In the dentinal tubule model, NaOCl exhibited the greatest anti‐biofilm efficacy. Conclusions The mechanical effect of irrigation is important for biofilm removal. An extra high flow irrigation rate resulted in greater biofilm removal than US in the artificial isthmus. The mechanical effect of US seemed to be more effective when the surface contact biofilm–irrigant was small. After the irrigation procedures, the remaining biofilm could survive after a 5‐day period. RISA and NaOCl seemed to alter post‐treatment remaining biofilms.
Collapse
Affiliation(s)
- T C Pereira
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil.,Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R J B Dijkstra
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - X Petridis
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - P K Sharma
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - W J van de Meer
- Department of Orthodontics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - L W M van der Sluis
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - F B de Andrade
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
19
|
The use of host defense peptides in root canal therapy in rats. Clin Oral Investig 2020; 25:3623-3632. [PMID: 33200281 DOI: 10.1007/s00784-020-03684-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES In order to evaluate host defense peptides (HDPs) HHC-10 and synoeca-MP activity in in vitro osteoclastogenesis process and in vivo induced apical periodontitis, testing the effect of molecules in the inflammatory response and in apical periodontitis size/volume after root canal treatment. MATERIALS AND METHODS In vitro osteoclastogenesis was assessed on bone marrow cell cultures extracted from mice, while in vivo endodontic treatment involved rats treated with Ca(OH)2 or HDPs. In vitro osteoclasts were subjected to TRAP staining, and in vivo samples were evaluated by radiographic and tomographic exams, as well as histologic analysis. RESULTS None of the substances downregulated the in vitro osteoclastogenesis. Nevertheless, all treatments affected the average of apical periodontitis size in rats, although only teeth treated with HDPs demonstrated lower levels of the inflammatory process. These results demonstrated the in vivo potential of HDPs. Radiographic analysis suggested that HHC-10 and synoeca-MP-treated animals presented a similar lesion size than Ca(OH)2-treated animals after 7-day of endodontic treatment. However, tomography analysis demonstrated smaller lesion volume in synoeca-MP-treated animals than HHC-10 and Ca(OH)2-treated animals, after 7 days. CONCLUSIONS These molecules demonstrated an auxiliary effect in endodontic treatment that might be related to its immunomodulatory ability, broad-spectrum antimicrobial activity, and possible induction of tissue repair at low concentrations. These results can encourage further investigations on the specific mechanisms of action in animal models to clarify the commercial applicability of these biomolecules for endodontic treatment. CLINICAL SIGNIFICANCE HDPs have the potential to be adjuvant substances in endodontic therapy due to its potential to reduce inflammation in apical periodontitis.
Collapse
|
20
|
Ali IAA, Cheung BPK, Matinlinna J, Lévesque CM, Neelakantan P. Trans-cinnamaldehyde potently kills Enterococcus faecalis biofilm cells and prevents biofilm recovery. Microb Pathog 2020; 149:104482. [PMID: 32920147 DOI: 10.1016/j.micpath.2020.104482] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Enterococcus faecalis is a biofilm-forming, nosocomial pathogen that is frequently isolated from failed root canal treatments. Contemporary root canal disinfectants are ineffective in eliminating these biofilms and preventing reinfection. As a result, there is a pressing need to identify novel and safe antibiofilm molecules. The effect of short-term (5 and 15 min) and long-term (24 h) treatments of trans-cinnamaldehyde (TC) on the viability of E. faecalis biofilms was compared with currently used root canal disinfectants. Treatment for 15 min with TC reduced biofilm metabolic activity as effective as 1% sodium hypochlorite and 2% chlorhexidine. Treatment with TC for 24 h was significantly more effective than 2% chlorhexidine in reducing the viable cell counts of biofilms. This serendipitous effect of TC was sustained for 10 days under growth-favoring conditions. For the first time, our study highlights the strong antibacterial activity of TC against E. faecalis biofilms, and notably, its ability to prevent biofilm recovery after treatment.
Collapse
Affiliation(s)
- Islam A A Ali
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Becky P K Cheung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - JukkaP Matinlinna
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | | |
Collapse
|
21
|
Mouthwash Effects on LGG-Integrated Experimental Oral Biofilms. Dent J (Basel) 2020; 8:dj8030096. [PMID: 32882798 PMCID: PMC7560143 DOI: 10.3390/dj8030096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
In order to investigate the effects of mouthwashes on oral biofilms with probiotics, we compared in biofilms the susceptibility to mouthwashes of probiotic Lactobacillus rhamnosus GG (LGG) and oral pathogens Streptococcus mutans, Streptococcus sanguinis, and Candida albicans. We also evaluated these pathogens’ susceptibility to the mouthwashes and their recovery after mouthwash-rinsing in biofilms with/without LGG. First, 1-day-/3-day-old LGG-integrated multi-species biofilms were exposed for 1 min to mouthwashes containing chlorhexidine, essential oils, or amine fluoride/stannous fluoride. Cells were plate-counted and relative survival rates (RSRs) of LGG and pathogens calculated. Second, 1-day-/3-day-old multispecies biofilms with and without LGG were exposed for 1 min to mouthwashes; cells were plate-counted and the pathogens’ RSRs were calculated. Third, 1-day-old biofilms were treated for 1 min with mouthwashes. Cells were plate-counted immediately and after 2-day cultivation. Recovery rates of pathogens were calculated and compared between biofilms with/without LGG. Live/Dead® staining served for structural analyses. Our results showed that RSRs of LGG were insignificantly smaller than those of pathogens in both 1-day and 3-day biofilms. No significant differences appeared in pathogens’ RSRs and recovery rates after treatment between biofilms with/without LGG. To conclude, biofilm LGG was susceptible to the mouthwashes; but biofilm LGG altered neither the mouthwash effects on oral pathogens nor affected their recovery.
Collapse
|
22
|
Liao S, Tang Y, Chu C, Lu W, Baligen B, Man Y, Qu Y. Application of green tea extracts epigallocatechin‐3‐gallate in dental materials: Recent progress and perspectives. J Biomed Mater Res A 2020; 108:2395-2408. [PMID: 32379385 DOI: 10.1002/jbm.a.36991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Shengnan Liao
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yu Tang
- Stomatology College & the Affiliated Stomatology Hospital of Southwest Medical University Luzhou Sichuan China
| | - Chenyu Chu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Weitong Lu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Bolatihan Baligen
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yi Man
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yili Qu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| |
Collapse
|
23
|
Wang Z, Shen Y, Haapasalo M. Dynamics of Dissolution, Killing, and Inhibition of Dental Plaque Biofilm. Front Microbiol 2020; 11:964. [PMID: 32508783 PMCID: PMC7251032 DOI: 10.3389/fmicb.2020.00964] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 11/30/2022] Open
Abstract
The present study aims to establish a standardized model that makes it possible to evaluate the dynamic dissolution of biofilm, killing of biofilm microbes and inhibition of growth of biofilm by disinfecting solutions. Biofilm was grown from dental plaque bacteria on collagen-coated hydroxyapatite (HA) disks for 3 days or 3 weeks under anaerobic conditions. Biofilms were stained with the LIVE/DEAD viability stain and subjected to sterile water, 2% sodium hypochlorite (NaOCl), 6% NaOCl, or 2% chlorhexidine (CHX) for 32 min. Dynamic change in fluorescence on bacterial cells and extracellular polymeric substance (EPS) during the exposure was analyzed using Alexa Fluor 647-labeled dextran conjugate and a live-cell imaging confocal laser scanning microscopy (LC-CLSM). The biofilm structures after treatments were visualized by scanning electron microscopy (SEM). The treated biofilms on HA disks were collected and subjected to colony forming unit (CFU) counting. Another set of sterile HA disks were coated with CHX prior to the monitoring of plaque biofilm growth for 12 h. The LC-CLSM results showed that NaOCl dissolved biofilm effectively, more so at a higher concentration and longer exposure time. Six percent NaOCl was the most effective at dissolving and killing bacteria (e.g., 99% bacterial reduction in 3-day-old biofilm and 95% bacterial reduction in 3-week-old biofilm in 32 min) followed by 2% NaOCl and CHX. Sodium hypochlorite dissolved over 99.9% of the EPS whereas CHX only slightly reduced the EPS biovolume in 32 min. CFU results indicated that the dispersed biofilm bacteria are more resistant than planktonic bacteria to disinfectants. SEM showed the disruption of biofilm after exposures to CHX and NaOCl. The use of 2% CHX and sterile water did not result in biofilm dissolution. However, prior exposure of the HA disks to 2 and 0.2% CHX for 3 min prevented biofilm from growing on the HA disk surfaces for at least 12 h. This new platform has the potential to aid in a better understanding of the antibiofilm properties of oral disinfectants.
Collapse
Affiliation(s)
- Zhejun Wang
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Markus Haapasalo
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Pereira TC, Dijkstra RJB, Petridis X, van der Meer WJ, Sharma PK, de Andrade FB, van der Sluis LWM. The influence of time and irrigant refreshment on biofilm removal from lateral morphological features of simulated root canals. Int Endod J 2020; 53:1705-1714. [PMID: 32502284 PMCID: PMC7754391 DOI: 10.1111/iej.13342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
Aim To evaluate the effect of irrigant refreshment and exposure time of a 2% sodium hypochlorite solution (NaOCl) on biofilm removal from simulated lateral root canal spaces using two different flow rates. Methodology A dual‐species biofilm was formed by a Constant Depth Film Fermenter (CDFF) for 96 h in plug inserts with anatomical features resembling an isthmus or lateral canal‐like structures. The inserts were placed in a root canal model facing the main canal. NaOCl 2% and demineralized water (control group) were used as irrigant solutions. Both substances were applied at a flow rate of 0.05 and 0.1 mL s−1. The samples were divided into three groups with zero, one or two refreshments in a total exposure time of 15 min. A three‐way analysis of variance (anova) was performed to investigate the interaction amongst the independent variables and the effect of consecutive irrigant refreshment on percentage of biofilm removal. A Tukey post hoc test was used to evaluate the effect of each independent variable on percentage biofilm removal in the absence of statistically significant interactions. Results For the lateral canal, NaOCl removed significantly more biofilm irrespective of the number of refreshments and exposure time (P = 0.005). There was no significant effect in biofilm removal between the consecutive irrigant refreshments measured in the same biofilm. For the isthmus, NaOCl removed significantly more biofilm irrespective of the number of refreshments and exposure time; both NaOCl and a high flow rate removed significantly more biofilm when the exposure time was analysed (P = 0.018 and P = 0.029, respectively). Evaluating the effect of consecutive irrigant refreshment on the same biofilm, 2% NaOCl, 0.1 mL s−1 flow rate and one or two refreshments removed significant more biofilm (P = 0.04, 0.034 and 0.003, <0.001, respectively). Conclusions In this model, refreshment did not improve biofilm removal from simulated lateral root canal spaces. NaOCl removed more biofilm from the lateral canal‐ and isthmus‐like structure. A higher flow rate removed significantly more biofilm from the isthmus‐like structure. There was always remaining biofilm left after the irrigation procedures.
Collapse
Affiliation(s)
- T C Pereira
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil.,Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R J B Dijkstra
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - X Petridis
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - W J van der Meer
- Department of Orthodontics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - P K Sharma
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - F B de Andrade
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - L W M van der Sluis
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
25
|
Chatzigiannidou I, Teughels W, Van de Wiele T, Boon N. Oral biofilms exposure to chlorhexidine results in altered microbial composition and metabolic profile. NPJ Biofilms Microbiomes 2020; 6:13. [PMID: 32198347 PMCID: PMC7083908 DOI: 10.1038/s41522-020-0124-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/27/2020] [Indexed: 01/31/2023] Open
Abstract
Oral diseases (e.g., dental caries, periodontitis) are developed when the healthy oral microbiome is imbalanced allowing the increase of pathobiont strains. Common practice to prevent or treat such diseases is the use of antiseptics, like chlorhexidine. However, the impact of these antiseptics on the composition and metabolic activity of the oral microbiome is poorly addressed. Using two types of oral biofilms—a 14-species community (more controllable) and human tongue microbiota (more representative)—the impact of short-term chlorhexidine exposure was explored in-depth. In both models, oral biofilms treated with chlorhexidine exhibited a pattern of inactivation (>3 log units) and fast regrowth to the initial bacterial concentrations. Moreover, the chlorhexidine treatment induced profound shifts in microbiota composition and metabolic activity. In some cases, disease associated traits were increased (such as higher abundance of pathobiont strains or shift in high lactate production). Our results highlight the need for alternative treatments that selectively target the disease-associated bacteria in the biofilm without targeting the commensal microorganisms.
Collapse
Affiliation(s)
| | - Wim Teughels
- Department of Oral Health Sciences, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Coupure Links 653, 9000, Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Coupure Links 653, 9000, Gent, Belgium.
| |
Collapse
|
26
|
Salehi B, Kregiel D, Mahady G, Sharifi-Rad J, Martins N, Rodrigues CF. Management of Streptococcus mutans- Candida spp. Oral Biofilms' Infections: Paving the Way for Effective Clinical Interventions. J Clin Med 2020; 9:E517. [PMID: 32075040 PMCID: PMC7074106 DOI: 10.3390/jcm9020517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Oral diseases are considered the most common noncommunicable diseases and are related to serious local and systemic disorders. Oral pathogens can grow and spread in the oral mucosae and frequently in biomaterials (e.g., dentures or prostheses) under polymicrobial biofilms, leading to several disorders such as dental caries and periodontal disease. Biofilms harbor a complex array of interacting microbes, increasingly unapproachable to antimicrobials and with dynamic processes key to disease pathogenicity, which partially explain the gradual loss of response towards conventional therapeutic regimens. New drugs (synthesized and natural) and other therapies that have revealed promising results for the treatment or control of these mixed biofilms are presented and discussed here. A structured search of bibliographic databases was applied to include recent research. There are several promising new approaches in the treatment of Candida spp.-Streptococcus mutans oral mixed biofilms that could be clinically applied in the near future. These findings confirm the importance of developing effective therapies for oral Candida-bacterial infections.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran;
| | - Dorota Kregiel
- Department of Environmental Biotechnology, Lodz University of Technology, 90-924 Lodz, Wolczanska 171/173, Poland;
| | - Gail Mahady
- Department of Pharmacy Practice, Clinical Pharmacognosy Laboratories, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, 599 Portage Avenue, Winnipeg, MB R3B 2G3, Canada
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto 4200-135, Portugal
| | - Célia F. Rodrigues
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| |
Collapse
|
27
|
Teirlinck E, Fraire J, Van Acker H, Wille J, Swimberghe R, Brans T, Xiong R, Meire M, De Moor R, De Smedt S, Coenye T, Braeckmans K. Laser-induced vapor nanobubbles improve diffusion in biofilms of antimicrobial agents for wound care. Biofilm 2019; 1:100004. [PMID: 33447791 PMCID: PMC7798460 DOI: 10.1016/j.bioflm.2019.100004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/16/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022] Open
Abstract
Being responsible for delayed wound healing, the presence of biofilms in infected wounds leads to chronic, and difficult to treat infections. One of the reasons why antimicrobial treatment often fails to cure biofilm infections is the reduced penetration rate of antibiotics through dense biofilms. Strategies that have the ability to somehow interfere with the integrity of biofilms and allowing a better penetration of drugs are highly sought after. A promising new approach is the use of laser-induced vapor nanobubbles (VNB), of which it was recently demonstrated that it can substantially enhance the penetration of antibiotics into biofilms, resulting in a marked improvement of the killing efficiency. In this study, we examined if treatment of biofilms with laser-induced vapor nanobubbles (VNB) can enhance the potency of antimicrobials which are commonly used to treat wound infections, including povidone-iodine, chlorhexidine, benzalkonium chloride, cetrimonium bromide and mupirocin. Our investigations were performed on Pseudomonas aeruginosa and Staphylococcus aureus biofilms, which are often implicated in chronic wound infections. Pre-treatment of biofilms with laser-induced VNB did enhance the killing efficiency of those antimicrobials which experience a diffusion barrier in the biofilms, while this was not the case for those compounds for which there is no diffusion barrier. The magnitude of the enhanced potency was in most cases similar to the enhancement that was obtained when the biofilms were completely disrupted by vortexing and sonication. These results show that laser-induced VNB are indeed a very efficient way to enhance drug penetration deep into biofilms, and pave the way towards clinical translation of this novel approach for treatment of wound infections.
Collapse
Affiliation(s)
- E. Teirlinck
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
| | - J.C. Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
| | - H. Van Acker
- Laboratory of Pharmaceutical Microbiology, University of Ghent, Ghent, 9000, Belgium
| | - J. Wille
- Laboratory of Pharmaceutical Microbiology, University of Ghent, Ghent, 9000, Belgium
| | - R. Swimberghe
- Department of Oral Health Sciences, Section of Endodontology, University of Ghent, Ghent, 9000, Belgium
| | - T. Brans
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
| | - R. Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
| | - M. Meire
- Department of Oral Health Sciences, Section of Endodontology, University of Ghent, Ghent, 9000, Belgium
| | - R.J.G. De Moor
- Department of Oral Health Sciences, Section of Endodontology, University of Ghent, Ghent, 9000, Belgium
| | - S.C. De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
| | - T. Coenye
- Laboratory of Pharmaceutical Microbiology, University of Ghent, Ghent, 9000, Belgium
| | - K. Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
- Centre for Nano- and Biophotonics, Ghent, 9000, Belgium
- IEMN UMR 8520, Université de Lille, Villeneuve d’Ascq, 59652, France
- Laboratoire de Physique des Lasers, Atomes et Molécules UMR 8523, Villeneuve d’Ascq, 59655, France
| |
Collapse
|
28
|
Zhong C, Zhu N, Zhu Y, Liu T, Gou S, Xie J, Yao J, Ni J. Antimicrobial peptides conjugated with fatty acids on the side chain of D-amino acid promises antimicrobial potency against multidrug-resistant bacteria. Eur J Pharm Sci 2019; 141:105123. [PMID: 31676352 DOI: 10.1016/j.ejps.2019.105123] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
With the alarming burden of antibiotic resistance, antimicrobial peptides (AMPs) seem to be novel antimicrobial alternatives for infection treatment due to their rapid broad-spectrum antimicrobial activity and low tendency for bacterial resistance. To obtain promising AMPs, a series of new peptides were designed and synthesized by conjugating various lengths of fatty acid chains onto the side chain of the position 4 or 7 D-amino acid of Ano-D4,7 (analogue of anoplin with D-amino acid substitutions at positions 4 and 7). The new peptides exhibited excellent antimicrobial activity against a range of bacteria, especially multidrug-resistant bacteria in contrast to conventional antibiotics. Moreover, the new peptides conjugated with fatty acid chains ranging from 8 to 12 carbons in length presented preferable antimicrobial selectivity and anti-biofilm activity. Additionally, the new peptides also exerted high stability to trypsin, serum, salts and different pH environments. Most notably, the new peptides showed a low tendency to develop bacterial resistance and they displayed optimal antimicrobial activity against the obtained resistant strains. Furthermore, the results from the outer/inner membrane permeabilization and cytoplasmic membrane depolarization assays and flow cytometry and scanning electron microscopy analyses demonstrated that the new peptides exert antimicrobial effects by typical non-receptor-mediated membrane mechanisms, as well as intracellular targets characterized by gel retardation and reactive oxygen species (ROS) generation assays. Furthermore, the new peptides presented remarkable in vivo antimicrobial potency, anti-inflammatory activity, and endotoxin neutralization. Collectively, the conjugation of fatty acids to the side chains of D-amino acids is a potential strategy for designing hopeful antimicrobial alternatives to tackle the risk of bacterial resistance.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningyi Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yuewen Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Tianqi Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Sanhu Gou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Yao
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
29
|
Babateen AM, Shannon OM, Mathers JC, Siervo M. Validity and reliability of test strips for the measurement of salivary nitrite concentration with and without the use of mouthwash in healthy adults. Nitric Oxide 2019; 91:15-22. [DOI: 10.1016/j.niox.2019.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 12/19/2022]
|
30
|
Petridis X, Busanello FH, So MVR, Dijkstra RJB, Sharma PK, van der Sluis LWM. Chemical efficacy of several NaOCl concentrations on biofilms of different architecture: new insights on NaOCl working mechanisms. Int Endod J 2019; 52:1773-1788. [PMID: 31389008 PMCID: PMC7328853 DOI: 10.1111/iej.13198] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/03/2019] [Indexed: 01/20/2023]
Abstract
AIM To investigate the anti-biofilm efficacy and working mechanism of several NaOCl concentrations on dual-species biofilms of different architecture as well as the changes induced on the architecture of the remaining biofilms. METHODOLOGY Streptococcus oralis J22 and Actinomyces naeslundii T14V-J1 were co-cultured under different growth conditions on saliva-coated hydroxyapatite discs. A constant-depth film fermenter (CDFF) was used to grow steady-state, four-day mature biofilms (dense architecture). Biofilms were grown under static conditions for 4 days within a confined space (less dense architecture). Twenty microlitres of buffer, 2-, 5-, and 10% NaOCl were applied statically on the biofilms for 60 s. Biofilm disruption and dissolution, as well as bubble formation, were evaluated with optical coherence tomography (OCT). The viscoelastic profile of the biofilms post-treatment was assessed with low load compression testing (LLCT). The bacteria/extracellular polysaccharide (EPS) content of the biofilms was examined through confocal laser scanning microscopy (CLSM). OCT, LLCT and CLSM data were analysed through one-way analysis of variance (ANOVA) and Tukey's HSD post-hoc test. Linear regression analysis was performed to test the correlation between bubble formation and NaOCl concentration. The level of significance was set at a < 0.05. RESULTS The experimental hypothesis according to which enhanced biofilm disruption, dissolution and bubble formation were anticipated with increasing NaOCl concentration was generally confirmed in both biofilm types. Distinct differences between the two biofilm types were noted with regard to NaOCl anti-biofilm efficiency as well as the effect that the several NaOCl concentrations had on the viscoelasticity profile and the bacteria/EPS content. Along with the bubble generation patterns observed, these led to the formulation of a concentration and biofilm structure-dependent theory of biofilm removal. CONCLUSIONS Biofilm architecture seems to be an additional determining factor of the penetration capacity of NaOCl, and consequently of its anti-biofilm efficiency.
Collapse
Affiliation(s)
- X Petridis
- Department of Conservative Dentistry, Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - F H Busanello
- Conservative Dentistry Department, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - M V R So
- Conservative Dentistry Department, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - R J B Dijkstra
- Department of Conservative Dentistry, Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - P K Sharma
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - L W M van der Sluis
- Department of Conservative Dentistry, Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Petridis X, Busanello FH, So MVR, Dijkstra RJB, Sharma PK, van der Sluis LWM. Factors affecting the chemical efficacy of 2% sodium hypochlorite against oral steady-state dual-species biofilms: Exposure time and volume application. Int Endod J 2019; 52:1182-1195. [PMID: 30807649 PMCID: PMC7328852 DOI: 10.1111/iej.13102] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/22/2019] [Indexed: 01/06/2023]
Abstract
AIM To study the influence of time and volume of 2% sodium hypochlorite (NaOCl) on biofilm removal and to investigate the changes induced on the biofilm architecture. Steady-state, dual-species biofilms of standardized thickness and a realistic contact surface area between biofilms and NaOCl were used. METHODOLOGY Streptococcus oralis J22 and Actinomyces naeslundii T14V-J1 biofilms were grown on saliva-coated hydroxyapatite discs within sample holders in the Constant Depth Film Fermenter (CDFF) for 96 h. Two per cent NaOCl was statically applied for three different time intervals (60, 120 and 300 s) and in two different volumes (20 and 40 μL) over the biofilm samples. The diffusion-driven effects of time and volume on biofilm disruption and dissolution were assessed with Optical Coherence Tomography (OCT). Structural changes of the biofilms treated with 2% NaOCl were studied with Confocal Laser Scanning Microscopy (CLSM) and Low Load Compression Testing (LLCT). A two-way analysis of variance (2-way anova) was performed, enabling the effect of each independent variable as well as their interaction on the outcome measures. RESULTS Optical coherence tomography revealed that by increasing the exposure time and volume of 2% NaOCl, both biofilm disruption and dissolution significantly increased. Analysis of the interaction between the two independent variables revealed that by increasing the volume of 2% NaOCl, significant biofilm dissolution could be achieved in less time. Examination of the architecture of the remaining biofilms corroborated the EPS-lytic action of 2% NaOCl, especially when greater volumes were applied. The viscoelastic analysis of the 2% NaOCl-treated biofilms revealed that the preceding application of higher volumes could impact their subsequent removal. CONCLUSIONS Time and volume of 2% NaOCl application should be taken into account for maximizing the anti-biofilm efficiency of the irrigant and devising targeted disinfecting regimes against remaining biofilms.
Collapse
Affiliation(s)
- X. Petridis
- Department of Conservative DentistryCenter for Dentistry and Oral HygieneUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - F. H. Busanello
- Conservative Dentistry DepartmentSchool of DentistryFederal University of Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| | - M. V. R. So
- Conservative Dentistry DepartmentSchool of DentistryFederal University of Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| | - R. J. B. Dijkstra
- Department of Conservative DentistryCenter for Dentistry and Oral HygieneUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - P. K. Sharma
- Department of Biomedical EngineeringUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - L. W. M. van der Sluis
- Department of Conservative DentistryCenter for Dentistry and Oral HygieneUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
32
|
Zhang LY, Fang ZH, Li QL, Cao CY. A tooth-binding antimicrobial peptide to prevent the formation of dental biofilm. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:45. [PMID: 30929087 DOI: 10.1007/s10856-019-6246-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Dental caries is primarily caused by pathogenic bacteria infection, and Streptococcus mutans is considered a major cariogenic pathogen. Moreover, antimicrobial peptides have been considered an alternative to traditional antibiotics in treating caries. This study aimed to design a tooth-binding antimicrobial peptide and evaluate its antimicrobial efficacy against S. mutans. An antimicrobial peptide of polyphemusin I (PI) was modified by grafting a tooth-binding domain of diphosphoserine (Ser(p)-Ser(p)-) to create the peptide of Ser(p)-Ser(p)-polyphemusin I (DPS-PI). PI and DPS-PI were synthesized by Fmoc solid-phase peptide synthesis. The minimum inhibitory concentration of PI and DPS-PI against S. mutans were tested. Scanning electron microscopy (SEM) were used to observe the growth of S. mutans on PI and DPS-PI treated enamel surfaces. The growth of S. mutans was evaluated by optical density (OD) at 590 nm. Inhibition of dental plaque biofilm development in vivo were investigated. The cytocompatibility to bone mesenchymal stem cells (BMSCs) was tested. The MIC of PI and DPS-PI were 40 and 80 μg/ml, respectively. SEM images showed that S. mutans were sparsely distributed on the DPS-PI treated enamel surface. OD findings indicated that DPS-PI maintained its inhibition effect on S. mutans growth after 24 h. The incisor surfaces of rabbits treated with DPS-PI developed significantly less dental plaque biofilm than that on PI treated surfaces. The DPS-PI had good biocompatibility with the cells. We successfully constructed a novel tooth-binding antimicrobial peptide against S. mutans in vitro and inhibited dental plaque biofilm development in vivo. DPS-PI may provide a feasible alternative to conventional antibiotics for the prevention and treatment of dental caries. Dental caries is primarily caused by pathogenic bacteria infection, and Streptococcus mutans is considered a major cariogenic pathogen. A tooth-binding antimicrobial peptide was designed by grafted diphosphoserine (-Ser(p)-Ser(p)-) to the structure of polyphemusin I. This novel tooth-binding antimicrobial peptide can inhibit dental plaque biofilm development and thus provide a feasible alternative to conventional antibiotics for the prevention and treatment of dental caries.
Collapse
Affiliation(s)
- Li-Yu Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, 230032, Hefei, China
| | - Ze-Hui Fang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, 230032, Hefei, China
| | - Quan-Li Li
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, 230032, Hefei, China
| | - Chris Ying Cao
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, 230032, Hefei, China.
| |
Collapse
|
33
|
Modeling Oral Multispecies Biofilm Recovery After Antibacterial Treatment. Sci Rep 2019; 9:804. [PMID: 30692576 PMCID: PMC6349915 DOI: 10.1038/s41598-018-37170-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/28/2018] [Indexed: 11/18/2022] Open
Abstract
Recovery of multispecies oral biofilms is investigated following treatment by chlorhexidine gluconate (CHX), iodine-potassium iodide (IPI) and Sodium hypochlorite (NaOCl) both experimentally and theoretically. Experimentally, biofilms taken from two donors were exposed to the three antibacterial solutions (irrigants), respectively, for 10 minutes. We observe that (a) live bacterial cell ratios decline for a week after the exposure and the trend then reverses beyond the week; after fifteen weeks, live bacterial cell ratios in biofilms fully return to their pretreatment levels; (b) NaOCl is shown as the strongest antibacterial agent for the oral biofilms; (c) multispecies oral biofilms from different donors showed no difference in their susceptibility to all the bacterial solutions. Guided by the experiment, a mathematical model for biofilm dynamics is developed, accounting for multiple bacterial phenotypes, quorum sensing, and growth factor proteins, to describe the nonlinear time evolutionary behavior of the biofilms. The model captures time evolutionary dynamics of biofilms before and after antibacterial treatment very well. It reveals the important role played by quorum sensing molecules and growth factors in biofilm recovery and verifies that the source of biofilms has a minimal effect to their recovery. The model is also applied to describe the state of biofilms of various ages treated respectively by CHX, IPI and NaOCl, taken from different donors. Good agreement with experimental data predicted by the model is obtained as well, confirming its applicability to modeling biofilm dynamics in general.
Collapse
|
34
|
Harper RA, Carpenter GH, Proctor GB, Harvey RD, Gambogi RJ, Geonnotti AR, Hider R, Jones SA. Diminishing biofilm resistance to antimicrobial nanomaterials through electrolyte screening of electrostatic interactions. Colloids Surf B Biointerfaces 2019; 173:392-399. [DOI: 10.1016/j.colsurfb.2018.09.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/30/2018] [Accepted: 09/08/2018] [Indexed: 02/06/2023]
|
35
|
Busanello FH, Petridis X, So MVR, Dijkstra RJB, Sharma PK, van der Sluis LWM. Chemical biofilm removal capacity of endodontic irrigants as a function of biofilm structure: optical coherence tomography, confocal microscopy and viscoelasticity determination as integrated assessment tools. Int Endod J 2018; 52:461-474. [DOI: 10.1111/iej.13027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Affiliation(s)
- F. H. Busanello
- Conservative Dentistry Department; School of Dentistry; Federal University of Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
| | - X. Petridis
- Department of Conservative Dentistry; Center for Dentistry and Oral Hygiene; Groningen The Netherlands
| | - M. V. R. So
- Conservative Dentistry Department; School of Dentistry; Federal University of Rio Grande do Sul; Porto Alegre Rio Grande do Sul Brazil
| | - R. J. B. Dijkstra
- Department of Conservative Dentistry; Center for Dentistry and Oral Hygiene; Groningen The Netherlands
| | - P. K. Sharma
- Department of Biomedical Engineering; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - L. W. M. van der Sluis
- Department of Conservative Dentistry; Center for Dentistry and Oral Hygiene; Groningen The Netherlands
| |
Collapse
|
36
|
Yang Y, Xia L, Haapasalo M, Wei W, Zhang D, Ma J, Shen Y. A novel hydroxyapatite-binding antimicrobial peptide against oral biofilms. Clin Oral Investig 2018; 23:2705-2712. [DOI: 10.1007/s00784-018-2701-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/02/2018] [Indexed: 01/28/2023]
|
37
|
Cieplik F, Kara E, Muehler D, Enax J, Hiller KA, Maisch T, Buchalla W. Antimicrobial efficacy of alternative compounds for use in oral care toward biofilms from caries-associated bacteria in vitro. Microbiologyopen 2018; 8:e00695. [PMID: 30051653 PMCID: PMC6460264 DOI: 10.1002/mbo3.695] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
For caries‐active patients, antimicrobial measures may be useful in addition to mechanical biofilm removal. The aim of this study was to investigate the antimicrobial efficacy of alternative compounds for use in oral care from two main categories (i.e., preservatives and natural compounds) toward biofilms from caries‐associated bacteria as compared to oral care gold‐standards chlorhexidine digluconate (CHX), cetylpyridinium chloride (CPC), and zinc. Compounds were screened in initial Streptococcus mutans biofilms. Then, the most effective compounds were further investigated in mature S. mutans and polymicrobial biofilms comprising Actinomyces naeslundii, Actinomyces odontolyticus, and S. mutans. Here, distinct treatment periods and concentrations were evaluated. Biofilms were visualized by scanning electron microscopy and bacterial membrane damage was evaluated by means of flow cytometry and staining with SYBR Green and propidium iodide. Citrus extract was the only compound exhibiting similar antimicrobial efficacy in initial S. mutans biofilms (>5 log10) as compared to CHX and CPC, but its effect was clearly inferior in mature S. mutans and polymicrobial biofilms. Flow cytometric data suggested that the mechanism of antimicrobial action of citrus extract may be based on damage of bacterial membranes similar to CHX and CPC. From all alternative compounds investigated in this study, citrus extract exhibited the highest antimicrobial efficacy toward in vitro biofilms from caries‐associated bacteria, but still was less effective than oral care gold‐standard antiseptics CHX and CPC. Nevertheless, citrus extract may be a valuable antimicrobial compound for use in oral care for caries‐active patients.
Collapse
Affiliation(s)
- Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Esra Kara
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Denise Muehler
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Joachim Enax
- Oral Care Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Tim Maisch
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
38
|
Lee ES, de Josselin de Jong E, Jung HI, Kim BI. Red fluorescence of dental biofilm as an indicator for assessing the efficacy of antimicrobials. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-6. [PMID: 29318813 DOI: 10.1117/1.jbo.23.1.015003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
The study aimed to determine whether the red fluorescence (RF) of a dental microcosm biofilm as measured with quantitative light-induced fluorescence (QLF) technology is useful for assessing the efficacy of antimicrobials. Dental microcosm biofilms were formed on bovine enamel discs and grown under 0.3% sucrose challenge and treated with chlorhexidine (CHX) solutions at different concentrations (0.05%, 0.1%, and 0.5%) plus a negative control [sterile distilled water (DW)] twice daily for 7 days. The biofilms were photographed using a QLF-digital system to evaluate the RF by calculating the red/green ratio, and pH values of the medium were measured daily. After 7 days, the bacterial viability of the biofilm was assessed by measuring the counts of viable total bacteria and aciduric bacteria, and the percentage surface microhardness changes (%SHC) was evaluated. The RF and cariogenic properties were compared for the different concentrations of CHX, and their correlations were examined. The RF and its increase rate were much lower for CHX-treated biofilms than for DW-treated biofilms. The RF after 7 days of maturation decreased significantly with increasing CHX concentrations (p<0.001) and was from 31% (for 0.05% CHX) to 46% (for 0.5% CHX) lower than that of the DW group. Strong correlations were reported between the RF of the 7-day-maturation biofilms and cariogenic properties, such as the number of total bacteria (r=0.93), number of aciduric bacteria (r=0.97), supernatant pH (r=0.43), and %SHC (r=0.98). In conclusion, the RF of dental biofilms as measured with QLF technology can be used to nondestructively assess and monitor the effect of antimicrobials against biofilm.
Collapse
Affiliation(s)
- Eun-Song Lee
- Yonsei University College of Dentistry, Oral Science Research Institute, Department of Preventive De, Republic of Korea
| | - Elbert de Josselin de Jong
- Yonsei University College of Dentistry, Oral Science Research Institute, Department of Preventive De, Republic of Korea
- University of Liverpool, School of Dentistry, Department of Health Services Research, Liverpool, United Kingdom
- Inspektor Research Systems BV, Amsterdam, The Netherlands
| | - Hoi-In Jung
- Yonsei University College of Dentistry, Oral Science Research Institute, Department of Preventive De, Republic of Korea
| | - Baek-Il Kim
- Yonsei University College of Dentistry, Oral Science Research Institute, Department of Preventive De, Republic of Korea
| |
Collapse
|
39
|
Alzahrani KE, Niazy AA, Alswieleh AM, Wahab R, El-Toni AM, Alghamdi HS. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles. Int J Nanomedicine 2017; 13:77-87. [PMID: 29317817 PMCID: PMC5743187 DOI: 10.2147/ijn.s154218] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background The increasing resistance of pathogenic bacteria to antibiotics is a challenging worldwide health problem that has led to the search for new and more efficient antibacterial agents. Nanotechnology has proven to be an effective tool for the fight against bacteria. Methods In this paper, we present the synthesis and traits of trimetal (CuZnFe) oxide nanoparticles (NPs) using X-ray diffraction, high-resolution transmission electron microscopy, and energy dispersive x-ray spectroscopy. We evaluated the antibacterial activity of these NPs against gram-negative Escherichia coli and gram-positive Enterococcus faecalis and then compared it to that of their pure single-metal oxide components CuO and ZnO. Results Our study showed that the antibacterial activity of the trimetal oxide NPs was greater against E. coli than against E. faecalis. Overall, the antimicrobial effect of trimetal NPs is between those of pure ZnO and CuO nanoparticles, which may mean that their cytotoxicity is also between that of pure ZnO and CuO NPs, making them potential antibiotics. However, the cytotoxicity of trimetal NPs to mammalian cells needs to be verified. Conclusion The combination of three metal oxide NPs (ZnO, CuO, and Fe2O3) in one multimetal (CuZnFe) oxide NPs will enhance the therapeutic strategy against a wide range of microbial infections. Bacteria are unlikely to develop resistance against this new NP because bacteria must go through a series of mutations to become resistant to the trimetal oxide NP. Therefore, this NP can combat existing and emerging bacterial infections.
Collapse
Affiliation(s)
- Khalid E Alzahrani
- Department of Physics and Astronomy, King Saud University, Riyadh, Kingdom of Saudi Arabia.,King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdurahman A Niazy
- Prince Naif Health Research Center, Molecular and Cell Biology Laboratory, College of Dentistry, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah M Alswieleh
- Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Rizwan Wahab
- Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ahmed M El-Toni
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Hamdan S Alghamdi
- Prince Naif Health Research Center, Molecular and Cell Biology Laboratory, College of Dentistry, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Wang D, Shen Y, Ma J, Hancock RE, Haapasalo M. Antibiofilm Effect of D-enantiomeric Peptide Alone and Combined with EDTA In Vitro. J Endod 2017; 43:1862-1867. [DOI: 10.1016/j.joen.2017.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 10/18/2022]
|
41
|
Yu J, Yang H, Li K, Ren H, Lei J, Huang C. Development of Epigallocatechin-3-gallate-Encapsulated Nanohydroxyapatite/Mesoporous Silica for Therapeutic Management of Dentin Surface. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25796-25807. [PMID: 28703572 DOI: 10.1021/acsami.7b06597] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In dental clinic, unsatisfactory management of the dentin surface after dentin exposure often leads to the occurrence of dentin hypersensitivity and caries. Current approaches can occlude the tubules on the dentin surface to relieve dentin hypersensitivity; however, the blocked tubules are generally weak in combating daily tooth erosion and abrasion. Moreover, cariogenic bacteria, such as Streptococcus mutans, produce biofilm on the dentin surface, causing caries and compromising the tubules' sealing efficacy. To overcome this problem, the present study focused on establishing a versatile biomaterial, epigallocatechin-3-gallate-encapsulated nanohydroxyapatite/mesoporous silica nanoparticle (EGCG@nHAp@MSN), for therapeutic management of the dentin surface. The effectiveness of the biomaterial on dentinal tubule occlusion, including resistances against acid and abrasion, was evaluated by field-emission scanning electron microscopy (FESEM) and dentin permeability measurement. The inhibitory capability of the biomaterial on S. mutans biofilm formation was investigated by confocal laser scanning microscopy (CLSM), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony forming units (CFU) counts, and FESEM. Results demonstrated for the first time that the use of EGCG@nHAp@MSN on the dentin surface was capable of effectively occluding dentinal tubules, reducing dentin permeability, and achieving favorable acid- and abrasion-resistant stability. Furthermore, EGCG@nHAp@MSN held the capability to continuously release EGCG, Ca, and P, and significantly inhibit the formation and growth of S. mutans biofilm on the dentin surface. Thus, the development of EGCG@nHAp@MSN bridges the gap between multifunctional concept and dental clinical practice and is promising in providing dentists a therapeutic strategy for the management of the dentin surface to counter dentin hypersensitivity and caries.
Collapse
Affiliation(s)
- Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, China
| | - Kang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, China
| | - Hongyu Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, China
| | - Jinmei Lei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, China
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, China
| |
Collapse
|
42
|
Wang Z, Shen Y, Haapasalo M. Antibiofilm peptides against oral biofilms. J Oral Microbiol 2017; 9:1327308. [PMID: 28748031 PMCID: PMC5508375 DOI: 10.1080/20002297.2017.1327308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/01/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
The oral cavity is a major entry point for bacteria and other microorganisms. Oral biofilms are formed by mixed communities of microorganisms embedded in an exopolysaccharide matrix. Biofilms forming on dental hard or soft tissue are the major cause of caries and endodontic and periodontal disease. Human oral biofilms exhibit high resistance to antimicrobial agents. Antibiofilm peptides constitute a diverse class of host-defense molecules that act to combat invasion and infection with biofilms. Different in vitro and in vivo biofilm models with quantitative analysis have been established to provide predictable platforms for the evaluation of the antibiofilm effect of oral antibiofilm peptides. These peptides have engendered considerable interest in the past decades as potential alternatives to traditional disinfecting agents due to their ability to target bacterial biofilms specifically, leading to the prevention of biofilm formation and destruction of pre-existing biofilms by Gram-positive and -negative bacterial pathogens and fungi. At the same time, challenges associated with the application of these antibiofilm peptides in dental practice also exist. The production of effective, nontoxic, and stable antibiofilm peptides is desired in both academic and industrial fields. This review focuses on the antibiofilm properties of current synthetic peptides and their application in different areas of dentistry.
Collapse
Affiliation(s)
- Zhejun Wang
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Markus Haapasalo
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
43
|
Jiang S, Chen S, Zhang C, Zhao X, Huang X, Cai Z. Effect of the Biofilm Age and Starvation on Acid Tolerance of Biofilm Formed by Streptococcus mutans Isolated from Caries-Active and Caries-Free Adults. Int J Mol Sci 2017; 18:ijms18040713. [PMID: 28358306 PMCID: PMC5412299 DOI: 10.3390/ijms18040713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 11/16/2022] Open
Abstract
Streptococcus mutans (S. mutans) is considered a leading cause of dental caries. The capability of S. mutans to tolerate low pH is essential for its cariogenicity. Aciduricity of S. mutans is linked to its adaptation to environmental stress in oral cavity. This study aimed to investigate the effect of biofilm age and starvation condition on acid tolerance of biofilm formed by S. mutans clinical isolates. S. mutans clinical strains isolated from caries-active (SM593) and caries-free (SM18) adults and a reference strain (ATCC25175) were used for biofilm formation. (1) Both young and mature biofilms were formed and then exposed to pH 3.0 for 30 min with (acid-adapted group) or without (non-adapted group) pre-exposure to pH 5.5 for three hours. (2) The mature biofilms were cultured with phosphate-buffered saline (PBS) (starved group) or TPY (polypeptone-yeast extract) medium (non-starved group) at pH 7.0 for 24 h and then immersed in medium of pH 3.0 for 30 min. Biofilms were analyzed through viability staining and confocal laser scanning microscopy. In all three strains, mature, acid-adapted and starved biofilms showed significantly less destructive structure and more viable bacteria after acid shock than young, non-adapted and non-starved biofilms, respectively (all p < 0.05). Furthermore, in each condition, SM593 biofilm was denser, with a significantly larger number of viable bacteria than that of SM18 and ATCC25175 (all p < 0.05). Findings demonstrated that mature, acid-adapted and starvation might protect biofilms of all three S. mutans strains against acid shock. Additionally, SM593 exhibited greater aciduricity compared to SM18 and ATCC25175, which indicated that the colonization of high cariogenicity of clinical strains may lead to high caries risk in individuals.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China.
| | - Shuai Chen
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China.
| | - Chengfei Zhang
- Department of Endodontics, Comprehensive Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Xingfu Zhao
- Department of Endodontology, Tianjin Stomatological Hospital of Nankai University, 75 North Dagu Road, Heping District, Tianjin 300000, China.
| | - Xiaojing Huang
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou 350002, China.
| | - Zhiyu Cai
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
44
|
Three-Dimensional Numerical Simulations of Biofilm Dynamics with Quorum Sensing in a Flow Cell. Bull Math Biol 2017; 79:884-919. [PMID: 28290008 DOI: 10.1007/s11538-017-0259-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/15/2017] [Indexed: 10/20/2022]
Abstract
We develop a multiphasic hydrodynamic theory for biofilms taking into account interactions among various bacterial phenotypes, extracellular polymeric substance (EPS), quorum sensing (QS) molecules, solvent, and antibiotics. In the model, bacteria are classified into down-regulated QS, up-regulated QS, and non-QS cells based on their QS ability. The model is first benchmarked against an experiment yielding an excellent fit to experimental measurements on the concentration of QS molecules and the cell density during biofilm development. It is then applied to study development of heterogeneous structures in biofilms due to interactions of QS regulation, hydrodynamics, and antimicrobial treatment. Our 3D numerical simulations have confirmed that (i). QS is beneficial for biofilm development in a long run by building a robust EPS population to protect the biofilm; (ii). biofilms located upstream can induce QS downstream when the colonies are close enough spatially; (iii). QS induction may not be fully operational and can even be compromised in strong laminar flows; (v). the hydrodynamic stress alters the biofilm morphology. Through further numerical investigations, our model suggests that (i). QS-regulated EPS production contributes to the structural formation of heterogeneous biofilms; (ii) QS down-regulated cells tend to grow at the surface of the biofilm while QS up-regulated ones tend to grow in the bulk; (iii) when nutrient supply is sufficient, QS induction might be more effective upstream than downstream; (iv) QS may be of little benefit in a short timescale in term of fighting against invading strain/species; (v) the material properties of biomass (bacteria and EPS) have strong impact on the dilution of QS molecules under strong shear flow. In addition, with this modeling framework, hydrodynamic details and rheological quantities associated with biofilm formation under QS regulation can be resolved.
Collapse
|
45
|
Martin B, Tamanai-Shacoori Z, Bronsard J, Ginguené F, Meuric V, Mahé F, Bonnaure-Mallet M. A new mathematical model of bacterial interactions in two-species oral biofilms. PLoS One 2017; 12:e0173153. [PMID: 28253369 PMCID: PMC5333920 DOI: 10.1371/journal.pone.0173153] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/15/2017] [Indexed: 12/28/2022] Open
Abstract
Periodontitis are bacterial inflammatory diseases, where the bacterial biofilms present on the tooth-supporting tissues switch from a healthy state towards a pathogenic state. Among bacterial species involved in the disease, Porphyromonas gingivalis has been shown to induce dysbiosis, and to induce virulence of otherwise healthy bacteria like Streptococcus gordonii. During biofilm development, primary colonizers such as S. gordonii first attach to the surface and allow the subsequent adhesion of periodontal pathogens such as P. gingivalis. Interactions between those two bacteria have been extensively studied during the adhesion step of the biofilm. The aim of the study was to understand interactions of both species during the growing phase of the biofilm, for which little knowledge is available, using a mathematical model. This two-species biofilm model was based on a substrate-dependent growth, implemented with damage parameters, and validated thanks to data obtained on experimental biofilms. Three different hypothesis of interactions were proposed and assayed using this model: independence, competition between both bacteria species, or induction of toxicity by one species for the other species. Adequacy between experimental and simulated biofilms were found with the last hypothetic mathematical model. This new mathematical model of two species bacteria biofilms, dependent on different substrates for growing, can be applied to any bacteria species, environmental conditions, or steps of biofilm development. It will be of great interest for exploring bacterial interactions in biofilm conditions.
Collapse
Affiliation(s)
- Bénédicte Martin
- EA 1254 Microbiologie Risques infectieux, Université de Rennes 1, Université Européenne de Bretagne, Rennes, France
| | - Zohreh Tamanai-Shacoori
- EA 1254 Microbiologie Risques infectieux, Université de Rennes 1, Université Européenne de Bretagne, Rennes, France
| | - Julie Bronsard
- EA 1254 Microbiologie Risques infectieux, Université de Rennes 1, Université Européenne de Bretagne, Rennes, France
| | - Franck Ginguené
- Institut de Recherche Mathématique de Rennes, Université de Rennes I, CNRS, Université Européenne de Bretagne, Rennes, France
| | - Vincent Meuric
- EA 1254 Microbiologie Risques infectieux, Université de Rennes 1, Université Européenne de Bretagne, Rennes, France
- Centre hospitalo-universitaire, Rennes, France
| | - Fabrice Mahé
- Institut de Recherche Mathématique de Rennes, Université de Rennes I, CNRS, Université Européenne de Bretagne, Rennes, France
| | - Martine Bonnaure-Mallet
- EA 1254 Microbiologie Risques infectieux, Université de Rennes 1, Université Européenne de Bretagne, Rennes, France
- Centre hospitalo-universitaire, Rennes, France
| |
Collapse
|
46
|
Zhao J, Seeluangsawat P, Wang Q. Modeling antimicrobial tolerance and treatment of heterogeneous biofilms. Math Biosci 2016; 282:1-15. [DOI: 10.1016/j.mbs.2016.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/23/2016] [Accepted: 09/06/2016] [Indexed: 11/25/2022]
|