1
|
Ferrero L, Zhang W, Benhamed M, Crespi M, Ariel F. Non-B DNA in plant genomes: prediction, mapping, and emerging roles. TRENDS IN PLANT SCIENCE 2024; 29:1224-1244. [PMID: 39079769 DOI: 10.1016/j.tplants.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 11/09/2024]
Abstract
Regulating gene expression in plant development and environmental responses is vital for mitigating the effects of climate change on crop growth and productivity. The eukaryotic genome largely shows the canonical B-DNA structure that is organized into nucleosomes with histone modifications shaping the epigenome. Nuclear proteins and RNA interactions influence chromatin conformations and dynamically modulate gene activity. Non-B DNA conformations and their transitions introduce novel aspects to gene expression modulation, particularly in response to environmental shifts. We explore the current understanding of non-B DNA structures in plant genomes, their interplay with epigenomics and gene expression, and advances in methods for their mapping and characterization. The exploration of so far uncharacterized non-B DNA structures remains an intriguing area in plant chromatin research and offers insights into their potential role in gene regulation.
Collapse
Affiliation(s)
- Lucía Ferrero
- APOLO Biotech, Santa Fe de la Vera Cruz, Santa Fe, Argentina
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), Bâtiment 630, 91192 Gif-sur-Yvette, France
| | - Martin Crespi
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), Bâtiment 630, 91192 Gif-sur-Yvette, France
| | - Federico Ariel
- APOLO Biotech, Santa Fe de la Vera Cruz, Santa Fe, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
2
|
Singh A, Jain N, Shankar U, Sharma TK, Kumar A. Characterization of G-quadruplex structures in genes involved in survival and pathogenesis of Acinetobacter baumannii as a potential drug target. Int J Biol Macromol 2024; 269:131806. [PMID: 38670179 DOI: 10.1016/j.ijbiomac.2024.131806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
Acinetobacter baumannii is a notorious pathogen that commonly thrives in hospital environments and is responsible for numerous nosocomial infections in humans. The burgeoning multi-drug resistance leaves relatively minimal options for treating the bacterial infection, posing a significant problem and prompting the identification of new approaches for tackling the same. This motivated us to focus on non-canonical nucleic acid structures, mainly G-quadruplexes, as drug targets. G-quadruplexes have recently been gaining attention due to their involvement in multiple bacterial and viral pathogenesis. Herein, we sought to explore conserved putative G-quadruplex motifs in A. baumannii. In silico analysis revealed the presence of eight conserved motifs in genes involved in bacterial survival and pathogenesis. The biophysical and biomolecular analysis confirmed stable G-quadruplex formation by the motifs and showed a high binding affinity with the well-reported G-quadruplex binding ligand, BRACO-19. BRACO-19 exposure also decreased the growth of bacteria and downregulated the expression of G-quadruplex-harboring genes. The biofilm-forming ability of the bacteria was also affected by BRACO-19 addition. Taking all these observations into account, we have shown here for the first time the potential of G-quadruplex structures as a promising drug target in Acinetobacter baumannii, for addressing the challenges posed by this infamous pathogen.
Collapse
Affiliation(s)
- Aakriti Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Neha Jain
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Uma Shankar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Tarun Kumar Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar 382355, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
3
|
Song K, Li B, Li H, Zhang R, Zhang X, Luan R, Liu Y, Yang L. The Characterization of G-Quadruplexes in Tobacco Genome and Their Function under Abiotic Stress. Int J Mol Sci 2024; 25:4331. [PMID: 38673916 PMCID: PMC11050182 DOI: 10.3390/ijms25084331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Tobacco is an ideal model plant in scientific research. G-quadruplex is a guanine-rich DNA structure, which regulates transcription and translation. In this study, the prevalence and potential function of G-quadruplexes in tobacco were systematically analyzed. In tobacco genomes, there were 2,924,271,002 G-quadruplexes in the nuclear genome, 430,597 in the mitochondrial genome, and 155,943 in the chloroplast genome. The density of the G-quadruplex in the organelle genome was higher than that in the nuclear genome. G-quadruplexes were abundant in the transcription regulatory region of the genome, and a difference in G-quadruplex density in two DNA strands was also observed. The promoter of 60.4% genes contained at least one G-quadruplex. Compared with up-regulated differentially expressed genes (DEGs), the G-quadruplex density in down-regulated DEGs was generally higher under drought stress and salt stress. The G-quadruplex formed by simple sequence repeat (SSR) and its flanking sequence in the promoter region of the NtBBX (Nitab4.5_0002943g0010) gene might enhance the drought tolerance of tobacco. This study lays a solid foundation for further research on G-quadruplex function in tobacco and other plants.
Collapse
Affiliation(s)
- Kangkang Song
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Bin Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Haozhen Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Rui Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohua Zhang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Ruiwei Luan
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Ying Liu
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| |
Collapse
|
4
|
Huang R, Feng Y, Gao Z, Ahmed A, Zhang W. The Epigenomic Features and Potential Functions of PEG- and PDS-Favorable DNA G-Quadruplexes in Rice. Int J Mol Sci 2024; 25:634. [PMID: 38203805 PMCID: PMC10779103 DOI: 10.3390/ijms25010634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
A G-quadruplex (G4) is a typical non-B DNA structure and involved in various DNA-templated events in eukaryotic genomes. PEG and PDS chemicals have been widely applied for promoting the folding of in vivo or in vitro G4s. However, how PEG and PDS preferentially affect a subset of G4 formation genome-wide is still largely unknown. We here conducted a BG4-based IP-seq in vitro under K++PEG or K++PDS conditions in the rice genome. We found that PEG-favored IP-G4s+ have distinct sequence features, distinct genomic distributions and distinct associations with TEGs, non-TEGs and subtypes of TEs compared to PDS-favored ones. Strikingly, PEG-specific IP-G4s+ are associated with euchromatin with less enrichment levels of DNA methylation but with more enriched active histone marks, while PDS-specific IP-G4s+ are associated with heterochromatin with higher enrichment levels of DNA methylation and repressive marks. Moreover, we found that genes with PEG-specific IP-G4s+ are more expressed than those with PDS-specific IP-G4s+, suggesting that PEG/PDS-specific IP-G4s+ alone or coordinating with epigenetic marks are involved in the regulation of the differential expression of related genes, therefore functioning in distinct biological processes. Thus, our study provides new insights into differential impacts of PEG and PDS on G4 formation, thereby advancing our understanding of G4 biology.
Collapse
Affiliation(s)
| | | | | | | | - Wenli Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (R.H.); (Y.F.); (Z.G.); (A.A.)
| |
Collapse
|
5
|
Satapathy SN, Nial PS, Tulsiyan KD, Subudhi U. Light rare earth elements stabilize G-quadruplex structure in variants of human telomeric sequences. Int J Biol Macromol 2024; 254:127703. [PMID: 37918592 DOI: 10.1016/j.ijbiomac.2023.127703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Recently, light rare earth elements (LREEs) are gaining importance in modern-day technologies. Thus, the entry of LREEs into biochemical pathways cannot be ignored, which might affect the conformation of biomacromolecules. Herein, for the first time, we discover the G-quadruplex formation in the human telomeric variants in presence of micromolar concentrations of LREEs. Thermal melting show that the LREE-induced unimolecular G-quadruplex structure. Isothermal titration calorimetry, UV-vis, and CD spectroscopy results suggest the binding stoichiometry of lanthanide ions to telomeric variants is 2:1. The data confirms that the LREE ions coordinate between adjacent G-quartets. The excess LREE ions are most likely binding to quadruplex loops. The CD spectra revealed that the LREE-induced quadruplex in human telomere and its variant have antiparallel orientation. The binding equilibria of LREEs have been studied both in the presence and absence of competing metal cations. Addition of LREEs to the Na+ or K+-induced G-quadruplexes led to conformational change, which may be ascribed to the displacement of K+ or Na+ ions by LREE ions and formation of a more compact LREE-induced G-quadruplex structure in human telomeric variant. Moreover, the thymine in the central loop of the human telomeric sequence stabilizes LREE induced G-quadruplex.
Collapse
Affiliation(s)
- Sampat N Satapathy
- DNA Nanotechnology & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Partha S Nial
- DNA Nanotechnology & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kiran D Tulsiyan
- School of Chemical Sciences, National Institute of Science Education & Research, Bhubaneswar 752050, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Umakanta Subudhi
- DNA Nanotechnology & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Sharma N, Madan B, Khan MS, Sandhu KS, Raghuram N. Weighted gene co-expression network analysis of nitrogen (N)-responsive genes and the putative role of G-quadruplexes in N use efficiency (NUE) in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1135675. [PMID: 37351205 PMCID: PMC10282765 DOI: 10.3389/fpls.2023.1135675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/10/2023] [Indexed: 06/24/2023]
Abstract
Rice is an important target to improve crop nitrogen (N) use efficiency (NUE), and the identification and shortlisting of the candidate genes are still in progress. We analyzed data from 16 published N-responsive transcriptomes/microarrays to identify, eight datasets that contained the maximum number of 3020 common genes, referred to as N-responsive genes. These include different classes of transcription factors, transporters, miRNA targets, kinases and events of post-translational modifications. A Weighted gene co-expression network analysis (WGCNA) with all the 3020 N-responsive genes revealed 15 co-expression modules and their annotated biological roles. Protein-protein interaction network analysis of the main module revealed the hub genes and their functional annotation revealed their involvement in the ubiquitin process. Further, the occurrences of G-quadruplex sequences were examined, which are known to play important roles in epigenetic regulation but are hitherto unknown in N-response/NUE. Out of the 3020 N-responsive genes studied, 2298 contained G-quadruplex sequences. We compared these N-responsive genes containing G-quadruplex sequences with the 3601 genes we previously identified as NUE-related (for being both N-responsive and yield-associated). This analysis revealed 389 (17%) NUE-related genes containing G-quadruplex sequences. These genes may be involved in the epigenetic regulation of NUE, while the rest of the 83% (1811) genes may regulate NUE through genetic mechanisms and/or other epigenetic means besides G-quadruplexes. A few potentially important genes/processes identified as associated with NUE were experimentally validated in a pair of rice genotypes contrasting for NUE. The results from the WGCNA and G4 sequence analysis of N-responsive genes helped identify and shortlist six genes as candidates to improve NUE. Further, the hitherto unavailable segregation of genetic and epigenetic gene targets could aid in informed interventions through genetic and epigenetic means of crop improvement.
Collapse
Affiliation(s)
- Narendra Sharma
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Bhumika Madan
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - M. Suhail Khan
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Kuljeet S. Sandhu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) - Mohali, Nagar, Punjab, India
| | - Nandula Raghuram
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| |
Collapse
|
7
|
Deng Z, Ren Y, Guo L, Xie X, Wang L, Li X. Genome-wide analysis of G-quadruplex in Spodoptera frugiperda. Int J Biol Macromol 2023; 226:840-852. [PMID: 36481335 DOI: 10.1016/j.ijbiomac.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Spodoptera frugiperda (Lepidoptera: Noctuidae) is a globally distributed lepidopteran crop pest that has developed resistance to most insecticides. The G-quadruplex (G4) is a secondary structure in the genome enriched in the promoters for regulating gene expression. However, little is known about G4 in S. frugiperda, especially whether G4 is involved in insecticide resistance and pest control. In this study, 387,875 G4 motifs in the whole genome of S. frugiperda were identified by bioinformatics prediction. We found that 66.90 % of theseG4 structures were located in genic regions and highly enriched in the upstream regions of start codons. Functional and pathway analyses showed that the genes with G4 enriched in promoter regions participate in several metabolic processes. Further analyses showed that G4 structures occurred more frequently in the promoters of P450 and CarE gene families. It was also investigated that G4 ligand N-methyl mesoporphyrin IX (NMM) decreased P450 protein activity in larval midgut tissue. Cytotoxicity and bioassay results revealed that NMM and pesticides had synergistic effects on toxicity. In conclusion, our findings suggest that G4 motif could be a new potential target for pest control.
Collapse
Affiliation(s)
- Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Yudong Ren
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Lina Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xingcheng Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lixiang Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
8
|
Strejčková B, Mazzucotelli E, Čegan R, Milec Z, Brus J, Çakır E, Mastrangelo AM, Özkan H, Šafář J. Wild emmer wheat, the progenitor of modern bread wheat, exhibits great diversity in the VERNALIZATION1 gene. FRONTIERS IN PLANT SCIENCE 2023; 13:1106164. [PMID: 36684759 PMCID: PMC9853909 DOI: 10.3389/fpls.2022.1106164] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Wild emmer wheat is an excellent reservoir of genetic variability that can be utilized to improve cultivated wheat to address the challenges of the expanding world population and climate change. Bearing this in mind, we have collected a panel of 263 wild emmer wheat (WEW) genotypes across the Fertile Crescent. The genotypes were grown in different locations and phenotyped for heading date. Genome-wide association mapping (GWAS) was carried out, and 16 SNPs were associated with the heading date. As the flowering time is controlled by photoperiod and vernalization, we sequenced the VRN1 gene, the most important of the vernalization response genes, to discover new alleles. Unlike most earlier attempts, which characterized known VRN1 alleles according to a partial promoter or intron sequences, we obtained full-length sequences of VRN-A1 and VRN-B1 genes in a panel of 95 wild emmer wheat from the Fertile Crescent and uncovered a significant sequence variation. Phylogenetic analysis of VRN-A1 and VRN-B1 haplotypes revealed their evolutionary relationships and geographic distribution in the Fertile Crescent region. The newly described alleles represent an attractive resource for durum and bread wheat improvement programs.
Collapse
Affiliation(s)
- Beáta Strejčková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics (CREA) Research Centre for Genomics and Bioinformatics via San Protaso 302, Fiorenzuola d’Arda, Italy
| | - Radim Čegan
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, ;Czechia
| | - Zbyněk Milec
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Jan Brus
- Department of Geoinformatics, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Esra Çakır
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana, Turkey
| | - Anna Maria Mastrangelo
- Council for Agricultural Research and Economics (CREA) Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana, Turkey
| | - Jan Šafář
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
9
|
Volná A, Bartas M, Nezval J, Pech R, Pečinka P, Špunda V, Červeň J. Beyond the Primary Structure of Nucleic Acids: Potential Roles of Epigenetics and Noncanonical Structures in the Regulations of Plant Growth and Stress Responses. Methods Mol Biol 2023; 2642:331-361. [PMID: 36944887 DOI: 10.1007/978-1-0716-3044-0_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Epigenetics deals with changes in gene expression that are not caused by modifications in the primary sequence of nucleic acids. These changes beyond primary structures of nucleic acids not only include DNA/RNA methylation, but also other reversible conversions, together with histone modifications or RNA interference. In addition, under particular conditions (such as specific ion concentrations or protein-induced stabilization), the right-handed double-stranded DNA helix (B-DNA) can form noncanonical structures commonly described as "non-B DNA" structures. These structures comprise, for example, cruciforms, i-motifs, triplexes, and G-quadruplexes. Their formation often leads to significant differences in replication and transcription rates. Noncanonical RNA structures have also been documented to play important roles in translation regulation and the biology of noncoding RNAs. In human and animal studies, the frequency and dynamics of noncanonical DNA and RNA structures are intensively investigated, especially in the field of cancer research and neurodegenerative diseases. In contrast, noncanonical DNA and RNA structures in plants have been on the fringes of interest for a long time and only a few studies deal with their formation, regulation, and physiological importance for plant stress responses. Herein, we present a review focused on the main fields of epigenetics in plants and their possible roles in stress responses and signaling, with special attention dedicated to noncanonical DNA and RNA structures.
Collapse
Affiliation(s)
- Adriana Volná
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Radomír Pech
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Petr Pečinka
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiří Červeň
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
10
|
Falanga AP, Terracciano M, Oliviero G, Roviello GN, Borbone N. Exploring the Relationship between G-Quadruplex Nucleic Acids and Plants: From Plant G-Quadruplex Function to Phytochemical G4 Ligands with Pharmaceutic Potential. Pharmaceutics 2022; 14:2377. [PMID: 36365194 PMCID: PMC9698481 DOI: 10.3390/pharmaceutics14112377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 10/31/2023] Open
Abstract
G-quadruplex (G4) oligonucleotides are higher-order DNA and RNA secondary structures of enormous relevance due to their implication in several biological processes and pathological states in different organisms. Strategies aiming at modulating human G4 structures and their interrelated functions are first-line approaches in modern research aiming at finding new potential anticancer treatments or G4-based aptamers for various biomedical and biotechnological applications. Plants offer a cornucopia of phytocompounds that, in many cases, are effective in binding and modulating the thermal stability of G4s and, on the other hand, contain almost unexplored G4 motifs in their genome that could inspire new biotechnological strategies. Herein, we describe some G4 structures found in plants, summarizing the existing knowledge of their functions and biological role. Moreover, we review some of the most promising G4 ligands isolated from vegetal sources and report on the known relationships between such phytochemicals and G4-mediated biological processes that make them potential leads in the pharmaceutical sector.
Collapse
Affiliation(s)
- Andrea P. Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Monica Terracciano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Institute of Applied Sciences and Intelligent Systems, Italian National Council of Research (ISASI-CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
11
|
Dobrovolná M, Bohálová N, Peška V, Wang J, Luo Y, Bartas M, Volná A, Mergny JL, Brázda V. The Newly Sequenced Genome of Pisum sativum Is Replete with Potential G-Quadruplex-Forming Sequences-Implications for Evolution and Biological Regulation. Int J Mol Sci 2022; 23:8482. [PMID: 35955617 PMCID: PMC9369095 DOI: 10.3390/ijms23158482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
G-quadruplexes (G4s) have been long considered rare and physiologically unimportant in vitro curiosities, but recent methodological advances have proved their presence and functions in vivo. Moreover, in addition to their functional relevance in bacteria and animals, including humans, their importance has been recently demonstrated in evolutionarily distinct plant species. In this study, we analyzed the genome of Pisum sativum (garden pea, or the so-called green pea), a unique member of the Fabaceae family. Our results showed that this genome contained putative G4 sequences (PQSs). Interestingly, these PQSs were located nonrandomly in the nuclear genome. We also found PQSs in mitochondrial (mt) and chloroplast (cp) DNA, and we experimentally confirmed G4 formation for sequences found in these two organelles. The frequency of PQSs for nuclear DNA was 0.42 PQSs per thousand base pairs (kbp), in the same range as for cpDNA (0.53/kbp), but significantly lower than what was found for mitochondrial DNA (1.58/kbp). In the nuclear genome, PQSs were mainly associated with regulatory regions, including 5'UTRs, and upstream of the rRNA region. In contrast to genomic DNA, PQSs were located around RNA genes in cpDNA and mtDNA. Interestingly, PQSs were also associated with specific transposable elements such as TIR and LTR and around them, pointing to their role in their spreading in nuclear DNA. The nonrandom localization of PQSs uncovered their evolutionary and functional significance in the Pisum sativum genome.
Collapse
Affiliation(s)
- Michaela Dobrovolná
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (M.D.); (N.B.); (V.P.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Natália Bohálová
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (M.D.); (N.B.); (V.P.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Vratislav Peška
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (M.D.); (N.B.); (V.P.)
| | - Jiawei Wang
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, CEDEX, 91128 Palaiseau, France; (J.W.); (Y.L.)
| | - Yu Luo
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, CEDEX, 91128 Palaiseau, France; (J.W.); (Y.L.)
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, CEDEX, 91405 Orsay, France
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Adriana Volná
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (M.D.); (N.B.); (V.P.)
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, CEDEX, 91128 Palaiseau, France; (J.W.); (Y.L.)
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (M.D.); (N.B.); (V.P.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| |
Collapse
|
12
|
Feng Y, Luo Z, Huang R, Yang X, Cheng X, Zhang W. Epigenomic Features and Potential Functions of K+ and Na+ Favorable DNA G-Quadruplexes in Rice. Int J Mol Sci 2022; 23:ijms23158404. [PMID: 35955535 PMCID: PMC9368837 DOI: 10.3390/ijms23158404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
DNA G-quadruplexes (G4s) are non-canonical four-stranded DNA structures involved in various biological processes in eukaryotes. Molecularly crowded solutions and monovalent cations have been reported to stabilize in vitro and in vivo G4 formation. However, how K+ and Na+ affect G4 formation genome-wide is still unclear in plants. Here, we conducted BG4-DNA-IP-seq, DNA immunoprecipitation with anti-BG4 antibody coupled with sequencing, under K+ and Na+ + PEG conditions in vitro. We found that K+-specific IP-G4s had a longer peak size, more GC and PQS content, and distinct AT and GC skews compared to Na+-specific IP-G4s. Moreover, K+- and Na+-specific IP-G4s exhibited differential subgenomic enrichment and distinct putative functional motifs for the binding of certain trans-factors. More importantly, we found that K+-specific IP-G4s were more associated with active marks, such as active histone marks, and low DNA methylation levels, as compared to Na+-specific IP-G4s; thus, K+-specific IP-G4s in combination with active chromatin features facilitate the expression of overlapping genes. In addition, K+- and Na+-specific IP-G4 overlapping genes exhibited differential GO (gene ontology) terms, suggesting they may have distinct biological relevance in rice. Thus, our study, for the first time, explores the effects of K+ and Na+ on global G4 formation in vitro, thereby providing valuable resources for functional G4 studies in rice. It will provide certain G4 loci for the biotechnological engineering of rice in the future.
Collapse
Affiliation(s)
- Yilong Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
| | - Zhenyu Luo
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
| | - Ranran Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
| | - Xueming Yang
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
- Correspondence: ; Tel.: +86-25-84396610; Fax: +86-25-84396302
| |
Collapse
|
13
|
Liu H, Chu Z, Yang X. A Key Molecular Regulator, RNA G-Quadruplex and Its Function in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:926953. [PMID: 35783953 PMCID: PMC9242502 DOI: 10.3389/fpls.2022.926953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
RNA structure plays key roles in plant growth, development, and adaptation. One of the complex RNA structures is the RNA G-quadruplex (RG4) where guanine-rich sequences are folded into two or more layers of G-quartets. Previous computational predictions of RG4 revealed that it is widespread across the whole transcriptomes in many plant species, raising the hypothesis that RG4 is likely to be an important regulatory motif in plants. Recently, with the advances in both high-throughput sequencing and cell imaging technologies, RG4 can be detected in living cells as well as at the genome-wide scale. Here, we provide a comprehensive review of recent developments in new methods for detecting RG4 in plants. We also summarize the new functions of RG4 in regulating plant growth and development. We then discuss the possible role of RG4 in adapting to environmental conditions along with evolutionary perspectives.
Collapse
Affiliation(s)
- Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaofei Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Shanghai, China
| |
Collapse
|
14
|
Feng Y, Tao S, Zhang P, Sperti FR, Liu G, Cheng X, Zhang T, Yu H, Wang XE, Chen C, Monchaud D, Zhang W. Epigenomic features of DNA G-quadruplexes and their roles in regulating rice gene transcription. PLANT PHYSIOLOGY 2022; 188:1632-1648. [PMID: 34893906 PMCID: PMC8896617 DOI: 10.1093/plphys/kiab566] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/04/2021] [Indexed: 06/01/2023]
Abstract
A DNA G-quadruplex (G4) is a non-canonical four-stranded nucleic acid structure involved in many biological processes in mammals. The current knowledge on plant DNA G4s, however, is limited; whether and how DNA G4s impact gene expression in plants is still largely unknown. Here, we applied a protocol referred to as BG4-DNA-IP-seq followed by a comprehensive characterization of DNA G4s in rice (Oryza sativa L.); we next integrated dG4s (experimentally detectable G4s) with existing omics data and found that dG4s exhibited differential DNA methylation between transposable element (TE) and non-TE genes. dG4 regions displayed genic-dependent enrichment of epigenomic signatures; finally, we showed that these sites displayed a positive association with expression of DNA G4-containing genes when located at promoters, and a negative association when located in the gene body, suggesting localization-dependent promotional/repressive roles of DNA G4s in regulating gene transcription. This study reveals interrelations between DNA G4s and epigenomic signatures, as well as implicates DNA G4s in modulating gene transcription in rice. Our study provides valuable resources for the functional characterization or bioengineering of some of key DNA G4s in rice.
Collapse
Affiliation(s)
- Yilong Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Shentong Tao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Pengyue Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Francesco Rota Sperti
- Institut de Chimie Moleculaire, ICMUB, CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Guanqing Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology and Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Tao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology and Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Xiu-e Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Caiyan Chen
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - David Monchaud
- Institut de Chimie Moleculaire, ICMUB, CNRS UMR 6302, UBFC Dijon, 21078 Dijon, France
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| |
Collapse
|
15
|
Impact of G-Quadruplexes and Chronic Inflammation on Genome Instability: Additive Effects during Carcinogenesis. Genes (Basel) 2021; 12:genes12111779. [PMID: 34828385 PMCID: PMC8619830 DOI: 10.3390/genes12111779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Genome instability is an enabling characteristic of cancer, essential for cancer cell evolution. Hotspots of genome instability, from small-scale point mutations to large-scale structural variants, are associated with sequences that potentially form non-B DNA structures. G-quadruplex (G4) forming motifs are enriched at structural variant endpoints in cancer genomes. Chronic inflammation is a physiological state underlying cancer development, and oxidative DNA damage is commonly invoked to explain how inflammation promotes genome instability. We summarize where G4s and oxidative stress overlap, with a focus on DNA replication. Guanine has low ionization potential, making G4s vulnerable to oxidative damage. Impacts to G4 structure are dependent upon lesion type, location, and G4 conformation. Occasionally, G4s pose a challenge to replicative DNA polymerases, requiring specialized DNA polymerases to maintain genome stability. Therefore, chronic inflammation creates a dual challenge for DNA polymerases to maintain genome stability: faithful G4 synthesis and bypassing unrepaired oxidative lesions. Inflammation is also accompanied by global transcriptome changes that may impact mutagenesis. Several studies suggest a regulatory role for G4s within cancer- and inflammatory-related gene promoters. We discuss the extent to which inflammation could influence gene regulation by G4s, thereby impacting genome instability, and highlight key areas for new investigation.
Collapse
|
16
|
Cadoni E, De Paepe L, Manicardi A, Madder A. Beyond small molecules: targeting G-quadruplex structures with oligonucleotides and their analogues. Nucleic Acids Res 2021; 49:6638-6659. [PMID: 33978760 PMCID: PMC8266634 DOI: 10.1093/nar/gkab334] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
G-Quadruplexes (G4s) are widely studied secondary DNA/RNA structures, naturally occurring when G-rich sequences are present. The strategic localization of G4s in genome areas of crucial importance, such as proto-oncogenes and telomeres, entails fundamental implications in terms of gene expression regulation and other important biological processes. Although thousands of small molecules capable to induce G4 stabilization have been reported over the past 20 years, approaches based on the hybridization of a synthetic probe, allowing sequence-specific G4-recognition and targeting are still rather limited. In this review, after introducing important general notions about G4s, we aim to list, explain and critically analyse in more detail the principal approaches available to target G4s by using oligonucleotides and synthetic analogues such as Locked Nucleic Acids (LNAs) and Peptide Nucleic Acids (PNAs), reporting on the most relevant examples described in literature to date.
Collapse
Affiliation(s)
- Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Lessandro De Paepe
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
17
|
Yan KKP, Obi I, Sabouri N. The RGG domain in the C-terminus of the DEAD box helicases Dbp2 and Ded1 is necessary for G-quadruplex destabilization. Nucleic Acids Res 2021; 49:8339-8354. [PMID: 34302476 PMCID: PMC8373067 DOI: 10.1093/nar/gkab620] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/31/2022] Open
Abstract
The identification of G-quadruplex (G4) binding proteins and insights into their mechanism of action are important for understanding the regulatory functions of G4 structures. Here, we performed an unbiased affinity-purification assay coupled with mass spectrometry and identified 30 putative G4 binding proteins from the fission yeast Schizosaccharomyces pombe. Gene ontology analysis of the molecular functions enriched in this pull-down assay included mRNA binding, RNA helicase activity, and translation regulator activity. We focused this study on three of the identified proteins that possessed putative arginine-glycine-glycine (RGG) domains, namely the Stm1 homolog Oga1 and the DEAD box RNA helicases Dbp2 and Ded1. We found that Oga1, Dbp2, and Ded1 bound to both DNA and RNA G4s in vitro. Both Dbp2 and Ded1 bound to G4 structures through the RGG domain located in the C-terminal region of the helicases, and point mutations in this domain weakened the G4 binding properties of the helicases. Dbp2 and Ded1 destabilized less thermostable G4 RNA and DNA structures, and this ability was independent of ATP but dependent on the RGG domain. Our study provides the first evidence that the RGG motifs in DEAD box helicases are necessary for both G4 binding and G4 destabilization.
Collapse
Affiliation(s)
- Kevin Kok-Phen Yan
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
18
|
G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story. Int J Mol Sci 2021; 22:ijms22147381. [PMID: 34299001 PMCID: PMC8306923 DOI: 10.3390/ijms22147381] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
G-quadruplexes have long been perceived as rare and physiologically unimportant nucleic acid structures. However, several studies have revealed their importance in molecular processes, suggesting their possible role in replication and gene expression regulation. Pathways involving G-quadruplexes are intensively studied, especially in the context of human diseases, while their involvement in gene expression regulation in plants remains largely unexplored. Here, we conducted a bioinformatic study and performed a complex circular dichroism measurement to identify a stable G-quadruplex in the gene RPB1, coding for the RNA polymerase II large subunit. We found that this G-quadruplex-forming locus is highly evolutionarily conserved amongst plants sensu lato (Archaeplastida) that share a common ancestor more than one billion years old. Finally, we discussed a new hypothesis regarding G-quadruplexes interacting with UV light in plants to potentially form an additional layer of the regulatory network.
Collapse
|
19
|
Cagirici HB, Budak H, Sen TZ. Genome-wide discovery of G-quadruplexes in barley. Sci Rep 2021; 11:7876. [PMID: 33846409 PMCID: PMC8041835 DOI: 10.1038/s41598-021-86838-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/19/2021] [Indexed: 12/04/2022] Open
Abstract
G-quadruplexes (G4s) are four-stranded nucleic acid structures with closely spaced guanine bases forming square planar G-quartets. Aberrant formation of G4 structures has been associated with genomic instability. However, most plant species are lacking comprehensive studies of G4 motifs. In this study, genome-wide identification of G4 motifs in barley was performed, followed by a comparison of genomic distribution and molecular functions to other monocot species, such as wheat, maize, and rice. Similar to the reports on human and some plants like wheat, G4 motifs peaked around the 5′ untranslated region (5′ UTR), the first coding domain sequence, and the first intron start sites on antisense strands. Our comparative analyses in human, Arabidopsis, maize, rice, and sorghum demonstrated that the peak points could be erroneously merged into a single peak when large window sizes are used. We also showed that the G4 distributions around genic regions are relatively similar in the species studied, except in the case of Arabidopsis. G4 containing genes in monocots showed conserved molecular functions for transcription initiation and hydrolase activity. Additionally, we provided examples of imperfect G4 motifs.
Collapse
Affiliation(s)
- H Busra Cagirici
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, U.S. Department of Agriculture - Agricultural Research Service, 800 Buchanan St, Albany, CA, 94710, USA
| | - Hikmet Budak
- Montana BioAg Inc., Missoula, MT, USA.,Agrogen, LLC., Omaha, NE, USA
| | - Taner Z Sen
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, U.S. Department of Agriculture - Agricultural Research Service, 800 Buchanan St, Albany, CA, 94710, USA.
| |
Collapse
|
20
|
Wu F, Niu K, Cui Y, Li C, Lyu M, Ren Y, Chen Y, Deng H, Huang L, Zheng S, Liu L, Wang J, Song Q, Xiang H, Feng Q. Genome-wide analysis of DNA G-quadruplex motifs across 37 species provides insights into G4 evolution. Commun Biol 2021; 4:98. [PMID: 33483610 PMCID: PMC7822830 DOI: 10.1038/s42003-020-01643-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/29/2020] [Indexed: 01/30/2023] Open
Abstract
G-quadruplex (G4) structures have been predicted in the genomes of many organisms and proven to play regulatory roles in diverse cellular activities. However, there is little information on the evolutionary history and distribution characteristics of G4s. Here, whole-genome characteristics of potential G4s were studied in 37 evolutionarily representative species. During evolution, the number, length, and density of G4s generally increased. Immunofluorescence in seven species confirmed G4s' presence and evolutionary pattern. G4s tended to cluster in chromosomes and were enriched in genetic regions. Short-loop G4s were conserved in most species, while loop-length diversity also existed, especially in mammals. The proportion of G4-bearing genes and orthologue genes, which appeared to be increasingly enriched in transcription factors, gradually increased. The antagonistic relationship between G4s and DNA methylation sites was detected. These findings imply that organisms may have evolutionarily developed G4 into a novel reversible and elaborate transcriptional regulatory mechanism benefiting multiple physiological activities of higher organisms.
Collapse
Affiliation(s)
- Feng Wu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Kangkang Niu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yong Cui
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Cencen Li
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Mo Lyu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yandong Ren
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yanfei Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Huimin Deng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lihua Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Hui Xiang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
21
|
MD-TSPC4: Computational Method for Predicting the Thermal Stability of I-Motif. Int J Mol Sci 2020; 22:ijms22010061. [PMID: 33374624 PMCID: PMC7793491 DOI: 10.3390/ijms22010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/23/2022] Open
Abstract
I-Motif is a tetrameric cytosine-rich DNA structure with hemi-protonated cytosine: cytosine base pairs. Recent evidence showed that i-motif structures in human cells play regulatory roles in the genome. Therefore, characterization of novel i-motifs and investigation of their functional implication are urgently needed for comprehensive understanding of their roles in gene regulation. However, considering the complications of experimental investigation of i-motifs and the large number of putative i-motifs in the genome, development of an in silico tool for the characterization of i-motifs in the high throughput scale is necessary. We developed a novel computation method, MD-TSPC4, to predict the thermal stability of i-motifs based on molecular modeling and molecular dynamic simulation. By assuming that the flexibility of loops in i-motifs correlated with thermal stability within certain temperature ranges, we evaluated the correlation between the root mean square deviations (RMSDs) of model structures and the thermal stability as the experimentally obtained melting temperature (Tm). Based on this correlation, we propose an equation for Tm prediction from RMSD. We expect this method can be useful for estimating the overall structure and stability of putative i-motifs in the genome, which can be a starting point of further structural and functional studies of i-motifs.
Collapse
|
22
|
Gazanion E, Lacroix L, Alberti P, Gurung P, Wein S, Cheng M, Mergny JL, Gomes AR, Lopez-Rubio JJ. Genome wide distribution of G-quadruplexes and their impact on gene expression in malaria parasites. PLoS Genet 2020; 16:e1008917. [PMID: 32628663 PMCID: PMC7365481 DOI: 10.1371/journal.pgen.1008917] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/16/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
Mechanisms of transcriptional control in malaria parasites are still not fully understood. The positioning patterns of G-quadruplex (G4) DNA motifs in the parasite's AT-rich genome, especially within the var gene family which encodes virulence factors, and in the vicinity of recombination hotspots, points towards a possible regulatory role of G4 in gene expression and genome stability. Here, we carried out the most comprehensive genome-wide survey, to date, of G4s in the Plasmodium falciparum genome using G4Hunter, which identifies G4 forming sequences (G4FS) considering their G-richness and G-skewness. We show an enrichment of G4FS in nucleosome-depleted regions and in the first exon of var genes, a pattern that is conserved within the closely related Laverania Plasmodium parasites. Under G4-stabilizing conditions, i.e., following treatment with pyridostatin (a high affinity G4 ligand), we show that a bona fide G4 found in the non-coding strand of var promoters modulates reporter gene expression. Furthermore, transcriptional profiling of pyridostatin-treated parasites, shows large scale perturbations, with deregulation affecting for instance the ApiAP2 family of transcription factors and genes involved in ribosome biogenesis. Overall, our study highlights G4s as important DNA secondary structures with a role in Plasmodium gene expression regulation, sub-telomeric recombination and var gene biology.
Collapse
Affiliation(s)
- Elodie Gazanion
- MIVEGEC UMR IRD 224, CNRS 5290, Montpellier University, Montpellier, France
| | - Laurent Lacroix
- IBENS, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Patrizia Alberti
- "Structure and Instability of Genomes" laboratory, Muséum National d'Histoire Naturelle (MNHN), Inserm U1154, CNRS UMR 7196, Paris, France
| | - Pratima Gurung
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, CNRS, Montpellier University, Montpellier, France
| | - Sharon Wein
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, CNRS, Montpellier University, Montpellier, France
| | - Mingpan Cheng
- ARNA Laboratory, IECB, CNRS UMR5320, INSERM U1212, Bordeaux University, Pessac, France
| | - Jean-Louis Mergny
- ARNA Laboratory, IECB, CNRS UMR5320, INSERM U1212, Bordeaux University, Pessac, France
- Institute of Biophysics of the Czech Academy of Sciences, Czech Republic
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, France
| | - Ana Rita Gomes
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, CNRS, Montpellier University, Montpellier, France
| | - Jose-Juan Lopez-Rubio
- MIVEGEC UMR IRD 224, CNRS 5290, Montpellier University, Montpellier, France
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, CNRS, Montpellier University, Montpellier, France
| |
Collapse
|
23
|
Reina C, Cavalieri V. Epigenetic Modulation of Chromatin States and Gene Expression by G-Quadruplex Structures. Int J Mol Sci 2020; 21:E4172. [PMID: 32545267 PMCID: PMC7312119 DOI: 10.3390/ijms21114172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes are four-stranded helical nucleic acid structures formed by guanine-rich sequences. A considerable number of studies have revealed that these noncanonical structural motifs are widespread throughout the genome and transcriptome of numerous organisms, including humans. In particular, G-quadruplexes occupy strategic locations in genomic DNA and both coding and noncoding RNA molecules, being involved in many essential cellular and organismal functions. In this review, we first outline the fundamental structural features of G-quadruplexes and then focus on the concept that these DNA and RNA structures convey a distinctive layer of epigenetic information that is critical for the complex regulation, either positive or negative, of biological activities in different contexts. In this framework, we summarize and discuss the proposed mechanisms underlying the functions of G-quadruplexes and their interacting factors. Furthermore, we give special emphasis to the interplay between G-quadruplex formation/disruption and other epigenetic marks, including biochemical modifications of DNA bases and histones, nucleosome positioning, and three-dimensional organization of chromatin. Finally, epigenetic roles of RNA G-quadruplexes in post-transcriptional regulation of gene expression are also discussed. Undoubtedly, the issues addressed in this review take on particular importance in the field of comparative epigenetics, as well as in translational research.
Collapse
Affiliation(s)
- Chiara Reina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
24
|
Genome-Wide Discovery of G-Quadruplexes in Wheat: Distribution and Putative Functional Roles. G3-GENES GENOMES GENETICS 2020; 10:2021-2032. [PMID: 32295768 PMCID: PMC7263691 DOI: 10.1534/g3.120.401288] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
G-quadruplexes are nucleic acid secondary structures formed by a stack of square planar G-quartets. G-quadruplexes were implicated in many biological functions including telomere maintenance, replication, transcription, and translation, in many species including humans and plants. For wheat, however, though it is one of the world's most important staple food, no G-quadruplex studies have been reported to date. Here, we computationally identify putative G4 structures (G4s) in wheat genome for the first time and compare its distribution across the genome against five other genomes (human, maize, Arabidopsis, rice, and sorghum). We identified close to 1 million G4 motifs with a density of 76 G4s/Mb across the whole genome and 93 G4s/Mb over genic regions. Remarkably, G4s were enriched around three regions, two located on the antisense and one on the sense strand at the following positions: 1) the transcription start site (TSS) (antisense), 2) the first coding domain sequence (CDS) (antisense), and 3) the start codon (sense). Functional enrichment analysis revealed that the gene models containing G4 motifs within these peaks were associated with specific gene ontology (GO) terms, such as developmental process, localization, and cellular component organization or biogenesis. We investigated genes encoding MADS-box transcription factors and showed examples of G4 motifs within critical regulatory regions in the VRN-1 genes in wheat. Furthermore, comparison with other plants showed that monocots share a similar distribution of G4s, but Arabidopsis shows a unique G4 distribution. Our study shows for the first time the prevalence and possible functional roles of G4s in wheat.
Collapse
|
25
|
Chakrabarti M, de Lorenzo L, Abdel-Ghany SE, Reddy ASN, Hunt AG. Wide-ranging transcriptome remodelling mediated by alternative polyadenylation in response to abiotic stresses in Sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:916-930. [PMID: 31909843 DOI: 10.1111/tpj.14671] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/14/2019] [Accepted: 01/02/2020] [Indexed: 05/28/2023]
Abstract
Alternative polyadenylation (APA) regulates diverse developmental and physiological processes through its effects on gene expression, mRNA stability, translatability, and transport. Sorghum is a major cereal crop in the world and, despite its importance, not much is known about the role of post-transcriptional regulation in mediating responses to abiotic stresses in Sorghum. A genome-wide APA analysis unveiled widespread occurrence of APA in Sorghum in response to drought, heat, and salt stress. Abiotic stress treatments incited changes in poly(A) site choice in a large number of genes. Interestingly, abiotic stresses led to the re-directing of transcriptional output into non-productive pathways defined by the class of poly(A) site utilized. This result revealed APA to be part of a larger global response of Sorghum to abiotic stresses that involves the re-direction of transcriptional output into non-productive transcriptional and translational pathways. Large numbers of stress-inducible poly(A) sites could not be linked with known, annotated genes, suggestive of the existence of numerous unidentified genes whose expression is strongly regulated by abiotic stresses. Furthermore, we uncovered a novel stress-specific cis-element in intronic poly(A) sites used in drought- and heat-stressed plants that might play an important role in non-canonical poly(A) site choice in response to abiotic stresses.
Collapse
Affiliation(s)
- Manohar Chakrabarti
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Laura de Lorenzo
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Salah E Abdel-Ghany
- Department of Biology, and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Anireddy S N Reddy
- Department of Biology, and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| |
Collapse
|
26
|
Sjakste T, Leonova E, Petrovs R, Trapina I, Röder MS, Sjakste N. Tight DNA-protein complexes isolated from barley seedlings are rich in potential guanine quadruplex sequences. PeerJ 2020; 8:e8569. [PMID: 32110488 PMCID: PMC7034378 DOI: 10.7717/peerj.8569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/15/2020] [Indexed: 11/20/2022] Open
Abstract
Background The concept of chromatin domains attached to the nuclear matrix is being revisited, with nucleus described as a set of topologically associating domains. The significance of the tightly bound to DNA proteins (TBP), a protein group that remains attached to DNA after its deproteinization should be also revisited, as the existence of these interactions is in good agreement with the concept of the topologically associating domain. The work aimed to characterize the DNA component of TBP isolated from barley seedlings. Methods The tight DNA-protein complexes from the first leaves, coleoptiles, and roots of barley seedlings were isolated by purification with chromatography on nitrocellulose or exhaustive digestion of DNA with DNase I. Cloning and transformation were performed using pMOSBBlue Blunt Ended Cloning Kit. Inserts were amplified by PCR, and sequencing was performed on the MegaBace 1000 Sequencing System. The BLAST search was performed using sequence databases at NCBI, CR-EST, and TREP and Ensembl Plants databases. Comparison to MAR/SAR sequences was performed using http://smartdb.bioinf.med.uni-goettingen.de/cgi-bin/SMARtDB/smar.cgi database. The prediction of G quadruplexes (GQ) was performed with the aid of R-studio library pqsfinder. CD spectra were recorded on a Chirascan CS/3D spectrometer. Results Although the barley genome is AT-rich (43% of GC pairs), most DNA fragments associated with TBP were GC-rich (up to 70% in some fractions). Both fractionation procedures yielded a high proportion of CT-motif sequences presented predominantly by the 16-bp CC(TCTCCC)2 TC fragment present in clones derived from the TBP-bound DNA and absent in free DNA. BLAST analysis revealed alignment with different barley repeats. Some clones, however, aligned with both nuclear and chloroplast structural genes. Alignments with MAR/SAR motifs were very few. The analysis produced by the pqsfinder program revealed numerous potential quadruplex-forming sites in the TBP-bound sequences. A set of oligonucleotides containing sites of possible GQs were designed and ordered. Three of them represented the minus strand of the CT-repeat. Two were derived from sequences of two clones of nitrocellulose retained fraction from leaves and contained GC-rich motifs different from the CT motif. Circular dichroism spectroscopy revealed profound changes in spectra when oligonucleotides were incubated with 100 mM KCl. There was either an increase of positive band in the area of 260 nm or the formation of a positive band at 290 nm. In the former case, changes are typical for parallel G-quadruplexes and, in the latter, 3 + 1 structures. Discussion The G-quadruplexes anchor proteins are probably involved in the maintenance of the topologically associated domain structure.
Collapse
Affiliation(s)
- Tatjana Sjakste
- Genomics and Bioinformatics Group, Institute of Biology, University of Latvia, Riga, Latvia
| | - Elina Leonova
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | | | - Ilva Trapina
- Genomics and Bioinformatics Group, Institute of Biology, University of Latvia, Riga, Latvia
| | - Marion S Röder
- Leibniz Institute for Plant Genetics and Crop Research, Gatersleben, Germany
| | | |
Collapse
|
27
|
Identification and characterization of two conserved G-quadruplex forming motifs in the Nipah virus genome and their interaction with G-quadruplex specific ligands. Sci Rep 2020; 10:1477. [PMID: 32001794 PMCID: PMC6992748 DOI: 10.1038/s41598-020-58406-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 01/03/2020] [Indexed: 11/09/2022] Open
Abstract
The G-quadruplex (GQ) motifs are considered as potential drug-target sites for several human pathogenic viruses such as Zika, Hepatitis, Ebola, and Human Herpesviruses. The recent outbreaks of Nipah virus (NiV) in India, the highly fatal emerging zoonotic virus is a potential threat to global health security as no anti-viral drug or vaccine in currently available. Therefore, here in the present study, we sought to assess the ability of the putative G-quadruplex forming sequences in the NiV genome to form G-quadruplex structures and act as targets for anti-viral compounds. Bioinformatics analysis underpinned by various biophysical and biochemical techniques (such as NMR, CD, EMSA, DMS footprinting assay) confirmed the presence of two highly conserved G-quadruplex forming sequences (HGQs) in the G and L genes of NiV. These genes encode the cell attachment glycoprotein and RNA-dependent RNA polymerase, respectively and are essential for the virus entry and replication within the host cell. It remains possible that stabilization of these HGQs by the known G-quadruplex binding ligands like TMPyP4 and Braco-19 represents a promising strategy to inhibit the expression of the HGQ harboring genes and thereby stop the viral entry and replication inside the host cell. Accordingly, we report for the first time, that HGQs in Nipah virus genome are targets for G-quadruplex specific ligands; therefore, could serve as potential targets for anti-viral therapy.
Collapse
|
28
|
Niu K, Xiang L, Jin Y, Peng Y, Wu F, Tang W, Zhang X, Deng H, Xiang H, Li S, Wang J, Song Q, Feng Q. Identification of LARK as a novel and conserved G-quadruplex binding protein in invertebrates and vertebrates. Nucleic Acids Res 2019; 47:7306-7320. [PMID: 31165881 PMCID: PMC6698653 DOI: 10.1093/nar/gkz484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 12/30/2022] Open
Abstract
Double-stranded DNAs are usually present in the form of linear B-form double-helix with the base pairs of adenine (A) and thymine (T) or cytosine (C) and guanine (G), but G-rich DNA can form four-stranded G-quadruplex (G4) structures, which plays important roles in transcription, replication, translation and protection of telomeres. In this study, a RNA recognition motif (RRM)-containing protein, BmLARK, was identified and demonstrated to bind G4 structures in the promoters of a transcription factor BmPOUM2 and other three unidentified genes of Bombyx mori, as well as three well-defined G4 structures in the human genes. Homologous LARKs from Bombyx mori, Drosophila melanogaster, Mus musculus and Homo sapiens bound G4 structures in BmPOUM2 and other genes in B. mori and H. sapiens. Upon binding, LARK facilitated the formation and stability of the G4 structure, enhancing the transcription of target genes. The G4 structure was visualized in vivo in cells and testis from invertebrate B. mori and vertebrate Chinese hamster ovary (CHO) cells. The results of this study strongly suggest that LARK is a novel and conserved G4-binding protein and that the G4 structure may have developed into an elaborate epigenetic mechanism of gene transcription regulation during evolution.
Collapse
Affiliation(s)
- Kangkang Niu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lijun Xiang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ying Jin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yuling Peng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Feng Wu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wenhuan Tang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaojuan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Huimin Deng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hui Xiang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
29
|
Kim N. The Interplay between G-quadruplex and Transcription. Curr Med Chem 2019; 26:2898-2917. [PMID: 29284393 PMCID: PMC6026074 DOI: 10.2174/0929867325666171229132619] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/22/2017] [Accepted: 12/21/2017] [Indexed: 12/25/2022]
Abstract
G4 DNA is a non-canonical DNA structure consisting of a stacked array of Gquartets held together by base pairing between guanine bases. The formation of G4 DNA requires a cluster of guanine-runs within a strand of DNA. Even though the chemistry of this remarkable DNA structure has been under investigation for decades, evidence supporting the biological relevance of G4 DNA has only begun to emerge and point to very important and conserved biological functions. This review will specifically focus on the interplay between transcription and G4 DNA and discuss two alternative but interconnected perspectives. The first part of the review will describe the evidence substantiating the intriguing idea that a shift in DNA structural conformation could be another layer of non-genetic or epigenetic regulator of gene expression and thereby an important determinant of cell fate. The second part will describe the recent genetic studies showing that those genomic loci containing G4 DNA-forming guanine-rich sequences are potential hotspots of genome instability and that the level and orientation of transcription is critical in the materialization of genome instability associated with these sequences.
Collapse
Affiliation(s)
- Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
30
|
Stefos GC, Theodorou G, Politis I. DNA G-quadruplexes: functional significance in plant and farm animal science. Anim Biotechnol 2019; 32:262-271. [PMID: 31642375 DOI: 10.1080/10495398.2019.1679823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
G-quadruplexes (G4s) are non-canonical structures that can be formed in DNA and RNA sequences which carry four short runs of guanines. They are distributed in the whole genome but are enriched in gene promoter regions, gene UTRs and chromosome telomeres. The whole array of their functional roles is not fully explored yet but there is solid evidence supporting their implication in a number of processes like regulation of transcription, replication and telomere organization, among others. During the last decade, there is an increased research interest for G4s that has resulted in a better understanding of their role in several physiological and pathological conditions. On the other hand, these structures are poorly studied in plant species and animals of agricultural interest. Here, we summarize the current methods that are used for studying G4s, we review the studies concerning plants and farm animals and we discuss the advantages of a more thorough inclusion of G4s research in the agricultural sciences.
Collapse
Affiliation(s)
- Georgios C Stefos
- Independent researcher, Agricultural University of Athens, Athens, Greece
| | - Georgios Theodorou
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Athens, Greece
| | - Ioannis Politis
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
31
|
Cheng M, Cheng Y, Hao J, Jia G, Zhou J, Mergny JL, Li C. Loop permutation affects the topology and stability of G-quadruplexes. Nucleic Acids Res 2019; 46:9264-9275. [PMID: 30184167 PMCID: PMC6182180 DOI: 10.1093/nar/gky757] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
G-quadruplexes are unusual DNA and RNA secondary structures ubiquitous in a variety of organisms including vertebrates, plants, viruses and bacteria. The folding topology and stability of intramolecular G-quadruplexes are determined to a large extent by their loops. Loop permutation is defined as swapping two or three of these regions so that intramolecular G-quadruplexes only differ in the sequential order of their loops. Over the past two decades, both length and base composition of loops have been studied extensively, but a systematic study on the effect of loop permutation has been missing. In the present work, 99 sequences from 21 groups with different loop permutations were tested. To our surprise, both conformation and thermal stability are greatly dependent on loop permutation. Loop permutation actually matters as much as loop length and base composition on G-quadruplex folding, with effects on Tm as high as 17°C. Sequences containing a longer central loop have a high propensity to adopt a stable non-parallel topology. Conversely, sequences containing a short central loop tend to form a parallel topology of lower stability. In addition, over half of interrogated sequences were found in the genomes of diverse organisms, implicating their potential regulatory roles in the genome or as therapeutic targets. This study illustrates the structural roles of loops in G-quadruplex folding and should help to establish rules to predict the folding pattern and stability of G-quadruplexes.
Collapse
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yu Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jingya Hao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,ARNA Laboratory, Inserm U1212, CNRS UMR5320, IECB, Université de Bordeaux, Pessac 33607, France.,Institute of Biophysics of the CAS, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
32
|
Nieuwenhuis M, van de Peppel LJJ, Bakker FT, Zwaan BJ, Aanen DK. Enrichment of G4DNA and a Large Inverted Repeat Coincide in the Mitochondrial Genomes of Termitomyces. Genome Biol Evol 2019; 11:1857-1869. [PMID: 31209489 PMCID: PMC6609731 DOI: 10.1093/gbe/evz122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondria retain their own genome, a hallmark of their bacterial ancestry. Mitochondrial genomes (mtDNA) are highly diverse in size, shape, and structure, despite their conserved function across most eukaryotes. Exploring extreme cases of mtDNA architecture can yield important information on fundamental aspects of genome biology. We discovered that the mitochondrial genomes of a basidiomycete fungus (Termitomyces spp.) contain an inverted repeat (IR), a duplicated region half the size of the complete genome. In addition, we found an abundance of sequences capable of forming G-quadruplexes (G4DNA); structures that can disrupt the double helical formation of DNA. G4DNA is implicated in replication fork stalling, double-stranded breaks, altered gene expression, recombination, and other effects. To determine whether this occurrence of IR and G4DNA was correlated within the genus Termitomyces, we reconstructed the mitochondrial genomes of 11 additional species including representatives of several closely related genera. We show that the mtDNA of all sampled species of Termitomyces and its sister group, represented by the species Tephrocybe rancida and Blastosporella zonata, are characterized by a large IR and enrichment of G4DNA. To determine whether high mitochondrial G4DNA content is common in fungi, we conducted the first broad survey of G4DNA content in fungal mtDNA, revealing it to be a highly variable trait. The results of this study provide important direction for future research on the function and evolution of G4DNA and organellar IRs.
Collapse
Affiliation(s)
| | | | - Freek T Bakker
- Biosystematics Group, Wageningen University & Research, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, The Netherlands
| | - Duur K Aanen
- Laboratory of Genetics, Wageningen University & Research, The Netherlands
| |
Collapse
|
33
|
Kopec PM, Karlowski WM. Sequence Dynamics of Pre-mRNA G-Quadruplexes in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:812. [PMID: 31316532 PMCID: PMC6610454 DOI: 10.3389/fpls.2019.00812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/05/2019] [Indexed: 06/01/2023]
Abstract
Intramolecular G-quadruplexes (G4s) are secondary structures that may form within G-rich stretches of nucleic acids. Although their presence has been associated with genomic instability and mutagenicity, recent reports suggest their involvement in regulation of diverse cellular events, including transcription and translation. The majority of data regarding G4s stems from mammalian and yeast studies, leaving the plant G4s almost unexplored. Using the publicly available Arabidopsis thaliana and Oryza sativa WGS data, we examined the single nucleotide variability of sequences predicted to form G4s (pG4s) structures. We focused our analysis on protein coding transcripts and compared the results to well-characterized Homo sapiens data. We demonstrate that the overall high variability of pG4s is not uniform and differs between gene structural elements. Specifically, plant AUG-containing pG4s, located within 5'UTR/CDS junctions, are abundant and appear not to be affected by a higher frequency of sequence change, indicating their functional relevance. Furthermore, we show that substitutions lowering the probability of G4s' formation are preferred over neutral or stabilizing modifications.
Collapse
Affiliation(s)
| | - Wojciech M. Karlowski
- Department of Computational Biology, Faculty of Biology, Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
34
|
Mishra SK, Shankar U, Jain N, Sikri K, Tyagi JS, Sharma TK, Mergny JL, Kumar A. Characterization of G-Quadruplex Motifs in espB, espK, and cyp51 Genes of Mycobacterium tuberculosis as Potential Drug Targets. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:698-706. [PMID: 31128421 PMCID: PMC6531831 DOI: 10.1016/j.omtn.2019.04.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 01/31/2023]
Abstract
G-quadruplex structure forming motifs are among the most studied evolutionarily conserved drug targets that are present throughout the genome of different organisms and susceptible to influencing various biological processes. Here we report highly conserved potential G-quadruplex motifs (PGQs) in three essential genes (espK, espB, and cyp51) among 160 strains of the Mycobacterium tuberculosis genome. Products of these genes are involved in pathways that are responsible for virulence determination of bacteria inside the host cell and its survival by maintaining membrane fluidity. The espK and espB genes are essential players that prevent the formation of mature phagolysosome and antigen presentation by host macrophages. The cyp51 is another PGQ-possessing gene involved in sterol biosynthesis pathway and membrane formation. In the present study, we revealed the formation of stable intramolecular parallel G-quadruplex structures by Mycobacterium PGQs using a combination of techniques (NMR, circular dichroism [CD], and gel electrophoresis). Next, isothermal titration calorimetry (ITC) and CD melting analysis demonstrated that a well-known G-quadruplex ligand, TMPyP4, binds to and stabilizes these PGQ motifs. Finally, polymerase inhibition and qRT-PCR assays highlight the biological relevance of PGQ-possessing genes in this pathogen and demonstrate that G-quadruplexes are potential drug targets for the development of effective anti-tuberculosis therapeutics.
Collapse
Affiliation(s)
- Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India
| | - Uma Shankar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India
| | - Kriti Sikri
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tarun Kumar Sharma
- Centre for Bio-design and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Jean-Louis Mergny
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, Université de Bordeaux, Bordeaux, France; Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore 453552, India.
| |
Collapse
|
35
|
Ge F, Wang Y, Li H, Zhang R, Wang X, Li Q, Liang Z, Yang L. Plant-GQ: An Integrative Database of G-Quadruplex in Plant. J Comput Biol 2019; 26:1013-1019. [PMID: 30958698 DOI: 10.1089/cmb.2019.0010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
G-quadruplex (G-Q) is advanced DNA or RNA secondary structures frequently found in plant and involved in important biological processes such as transcription, translation, and telomere maintenance. Although some databases and tools were developed for predicting and studying G-Q, none of them was for plant. With the development of next-generation sequencing technology, a large number of plant genomes have been assembled and annotated to provide opportunities for mining G-Q. Plant G-quadruplex database (Plant-GQ) was constructed for predicting G-Q in 195 plants. It has a total of 626,341,645 predicted G-Qs. The database contains four major parts: Search, Tools, JBrowse, and Download. Not only G-Q information but also online forecasting tool can be retrieved and obtained from Plant-GQ. It can also browse and analyze G-Q information by JBrowse in a graph visualization interface. Considering the key role of G-Q in plant, this database will play an important status in the study of the structure, function, and biological relevance of G-Q in plant.
Collapse
Affiliation(s)
- Fangfang Ge
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Huayang Li
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Rui Zhang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Xiaotong Wang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Qingyun Li
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Long Yang
- Agricultural Big-Data Research Center and College of Plant Protection, Shandong Agricultural University, Taian, China
| |
Collapse
|
36
|
Verma S, Ghuge SA, Ravichandiran V, Ranjan N. Spectroscopic studies of Thioflavin-T binding to c-Myc G-quadruplex DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:388-395. [PMID: 30703662 DOI: 10.1016/j.saa.2018.12.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/16/2018] [Accepted: 12/22/2018] [Indexed: 05/29/2023]
Abstract
G-quadruplexes are well-known DNA secondary structures which can be formed both within the DNA and the RNA sequences of the human genome. While many functions of G-quadruplex during cell regulatory events are still unknown, a number of reports have established their role in finding new cancer therapies. In this report, we provide a detailed account of Thioflavin T (ThT) interacting with a promoter gene (c-Myc) which has relevance in several types of human cancers. Using a variety of spectroscopic techniques, we have shown that the binding of ThT is selective to c-Myc G-quadruplex only, having poor interactions with the duplex DNA sequences. UV-Visible titration experiments show that binding involves stacking interactions which were further corroborated by CD experiments. Fluorescence studies showed that the binding of ThT to c-Myc G-quadruplex results in a large increase in the fluorescence emission spectrum of c-Myc G-quadruplex while the same to duplex DNAs was much poor. Binding of ThT to c-Myc G-quadruplex results in thermal stabilization of the quadruplex DNA by up to 7.4 °C and Job plot experiments demonstrated the presence of 1:1 and 2:1 ligand to quadruplex complexes. Finally, the docking study suggested that ThT stacks with the guanine bases in one of the grooves which is in agreement with the CD studies. These results are expected to provide leads into the design of new ThT analogs and derivatives for enhancing the stability and selectivity of new G-quadruplex targeting ligands.
Collapse
Affiliation(s)
- Smita Verma
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli 229010, India; National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata 700054, India
| | - Sandip A Ghuge
- TERI-Deakin Nanobiotechnology Research Center, Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi 110003, India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata 700054, India
| | - Nihar Ranjan
- National Institute of Pharmaceutical Education and Research, ITI Compound, Raebareli 229010, India.
| |
Collapse
|
37
|
Falabella M, Fernandez RJ, Johnson FB, Kaufman BA. Potential Roles for G-Quadruplexes in Mitochondria. Curr Med Chem 2019; 26:2918-2932. [PMID: 29493440 PMCID: PMC6113130 DOI: 10.2174/0929867325666180228165527] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
Some DNA or RNA sequences rich in guanine (G) nucleotides can adopt noncanonical conformations known as G-quadruplexes (G4). In the nuclear genome, G4 motifs have been associated with genome instability and gene expression defects, but they are increasingly recognized to be regulatory structures. Recent studies have revealed that G4 structures can form in the mitochondrial genome (mtDNA) and potential G4 forming sequences are associated with the origin of mtDNA deletions. However, little is known about the regulatory role of G4 structures in mitochondria. In this short review, we will explore the potential for G4 structures to regulate mitochondrial function, based on evidence from the nucleus.
Collapse
Affiliation(s)
- Micol Falabella
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| | - Rafael J Fernandez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| | - Brett A Kaufman
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, United States
| |
Collapse
|
38
|
Non-duplex G-Quadruplex Structures Emerge as Mediators of Epigenetic Modifications. Trends Genet 2018; 35:129-144. [PMID: 30527765 DOI: 10.1016/j.tig.2018.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
Abstract
The role of non-duplex DNA, the guanine-quadruplex structure in particular, is becoming widely appreciated. Increasing evidence in the last decade implicates quadruplexes in important processes such as transcription and replication. Interestingly, more recent work suggests roles for quadruplexes, in association with quadruplex-interacting proteins, in epigenetics through both DNA and histone modifications. Here, we review the effect of the quadruplex structure on post-replication epigenetic memory and quadruplex-induced promoter DNA/histone modifications. Furthermore, we highlight the epigenetic state of the telomerase promoter where quadruplexes could play a key regulatory role. Finally, we discuss the possibility that DNA structures such as quadruplexes, within a largely duplex DNA background, could act as molecular anchors for locally induced epigenetic modifications.
Collapse
|
39
|
Ogasawara S. Transcription Driven by Reversible Photocontrol of Hyperstable G-Quadruplexes. ACS Synth Biol 2018; 7:2507-2513. [PMID: 30350586 DOI: 10.1021/acssynbio.8b00216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
G-quadruplexes occur in promoter regions, 5'-untranslated regions of mRNA and telomeric regions, and they function as regulatory elements for various key biological events, such as transcription, translation, and telomere elongation. As the stability of G-quadruplexes dramatically impacts these biological processes, controlling G-quadruplex stability via external stimuli such as light enables regulation of important biological phenomena with high spatial and temporal resolution. Here, we report a method for reversible photoregulation of transcription by controlling the stability of G-quadruplexes via cis- trans photoisomerization of photochromic nucleobase (PCN). Transcription was effectively inhibited when the PCN-modified G-quadruplex was in a hyperstable state, whereas transcription activity recovered markedly when the G-quadruplex changed to an unstable state induced by trans to cis PCN photoisomerization. Moreover, a reversibly photoactivatable plasmid was constructed by introducing PCN-modified G-quadruplexes downstream of the cytomegalovirus promoter of the pCS2 plasmid, which was used to demonstrate photoregulation of gene expression in zebrafish embryos.
Collapse
Affiliation(s)
- Shinzi Ogasawara
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Graduate School of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
40
|
Vinyard WA, Fleming AM, Ma J, Burrows CJ. Characterization of G-Quadruplexes in Chlamydomonas reinhardtii and the Effects of Polyamine and Magnesium Cations on Structure and Stability. Biochemistry 2018; 57:6551-6561. [PMID: 30411886 DOI: 10.1021/acs.biochem.8b00749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chlamydomonas reinhardtii is a green alga with a very GC-rich genome (67%) and a high density of potential G-quadruplex-forming sequences (PQSs). Using the Ensembl Plants DNA database, 19 PQSs were selected, and their ability to fold in vitro was examined using four experimental methods. Our results support in vitro folding of 18 of the 19 PQSs selected for study. The high physiological polyamine concentrations in C. reinhardtii create unique conditions for studying G4 folding. We investigated whether high polyamine concentrations affect the stability and structural fold of two polymorphic G4s selected from the cohort of PQSs. The two polymorphic G4s selected were found to be greatly stabilized when studied at the physiologically high polyamine concentrations. Lastly, the effects of physiologically relevant Mg2+ concentrations were tested on both of the polymorphic G4s, and one of the G4s shifted from a dynamic mixture of folds to favor a parallel fold in the presence of Mg2+. Our work supports the concept of folding of G4s under the unique conditions observed in C. reinhardtii, and these structures, being located in promoter regions of DNA repair and photosynthetic genes, might be relevant structures in the physiology of C. reinhardtii.
Collapse
Affiliation(s)
- W Andrew Vinyard
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Aaron M Fleming
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Jingwei Ma
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
41
|
Ding Y, Fleming AM, Burrows CJ. Case studies on potential G-quadruplex-forming sequences from the bacterial orders Deinococcales and Thermales derived from a survey of published genomes. Sci Rep 2018; 8:15679. [PMID: 30356061 PMCID: PMC6200779 DOI: 10.1038/s41598-018-33944-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Genomes provide a platform for storage of chemical information that must be stable under the context in which an organism thrives. The 2'-deoxyguanosine (G) nucleotide has the potential to provide additional chemical information beyond its Watson-Crick base-pairing capacity. Sequences with four or more runs of three G nucleotides each are potential G-quadruplex forming sequences (PQSs) that can adopt G-quadruplex folds. Herein, we analyzed sequenced genomes from the NCBI database to determine the PQS densities of the genome sequences. First, we found organisms with large genomes, including humans, alligators, and maize, have similar densities of PQSs (~300 PQSs/Mbp), and the genomes are significantly enriched in PQSs with more than four G tracks. Analysis of microorganism genomes found a greater diversity of PQS densities. In general, PQS densities positively tracked with the GC% of the genome. Exceptions to this observation were the genomes from thermophiles that had many more PQSs than expected by random chance. Analysis of the location of these PQSs in annotated genomes from the order Thermales showed these G-rich sequences to be randomly distributed; in contrast, in the order Deinococcales the PQSs were enriched and biased around transcription start sites of genes. Four representative PQSs, two each from the Thermales and Deinococcales, were studied by biophysical methods to establish the ability of them to fold to G-quadruplexes. The experiments found the two PQSs in the Thermales did not adopt G-quadruplex folds, while the two most common in the Deinococcales adopted stable parallel-stranded G-quadruplexes. The findings lead to a hypothesis that thermophilic organisms are enriched with PQSs as an unavoidable consequence to stabilize thermally their genomes to live at high temperature; in contrast, the genomes from stress-resistant bacteria found in the Deinococcales may utilize PQSs for gene regulatory purposes.
Collapse
Affiliation(s)
- Yun Ding
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112-0850, United States.
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112-0850, United States.
| |
Collapse
|
42
|
Genome-wide analysis of regulatory G-quadruplexes affecting gene expression in human cytomegalovirus. PLoS Pathog 2018; 14:e1007334. [PMID: 30265731 PMCID: PMC6179306 DOI: 10.1371/journal.ppat.1007334] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/10/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022] Open
Abstract
G-quadruplex (G4), formed by repetitive guanosine-rich sequences, is known to play various key regulatory roles in cells. Herpesviruses containing a large double-stranded DNA genome show relatively higher density of G4-forming sequences in their genomes compared to human and mouse. However, it remains poorly understood whether all of these sequences form G4 and how they play a role in the virus life cycle. In this study, we performed genome-wide analyses of G4s present in the putative promoter or gene regulatory regions of a 235-kb human cytomegalovirus (HCMV) genome and investigated their roles in viral gene expression. We evaluated 36 putative G4-forming sequences associated with 20 genes for their ability to form G4 and for the stability of G4s in the presence or absence of G4-stabilizing ligands, by circular dichroism and melting temperature analyses. Most identified sequences formed a stable G4; 28 sequences formed parallel G4s, one formed an antiparallel G4, and four showed mixed conformations. However, when we assessed the effect of G4 on viral promoters by cloning the 20 putative viral promoter regions containing 36 G4-forming sequences into the luciferase reporter and monitoring the expression of luciferase reporter gene in the presence of G4-stabilizing chemicals, we found that only 9 genes were affected by G4 formation. These results revealed promoter context-dependent gene suppression by G4 formation. Mutational analysis of two potential regulatory G4s also demonstrated gene suppression by the sequence-specific G4 formation. Furthermore, the analysis of a mutant virus incapable of G4 formation in the UL35 promoter confirmed promoter regulation by G4 in the context of virus infection. Our analyses provide a platform for assessing G4 functions at the genomic level and demonstrate the properties of the HCMV G4s and their regulatory roles in viral gene expression.
Collapse
|
43
|
Griffin BD, Bass HW. Review: Plant G-quadruplex (G4) motifs in DNA and RNA; abundant, intriguing sequences of unknown function. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:143-147. [PMID: 29606212 DOI: 10.1016/j.plantsci.2018.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/12/2018] [Accepted: 01/20/2018] [Indexed: 06/08/2023]
Abstract
DNA sequences capable of forming G-quadruplex (G4) structures can be predicted and mapped in plant genomes using computerized pattern search programs. Non-telomeric G4 motifs have recently been found to number in the thousands across many plant species and enriched around gene promoters, prompting speculation that they may represent a newly uncovered and ubiquitous family of cis-acting elements. Comparative analysis shows that monocots exhibit five to ten times higher G4 motif density than eudicots, but the significance of this difference has not been determined. The vast scale and complexity of G4 functions, actual or theoretical, are reviewed in relation to the multiple modes of action and myriad genetic functions for which G4s have been implicated in DNA and RNA. Future experimental strategies and opportunities include identifying plant G4-interactomes, resolving the structures of G4s with and without their binding partners, and defining molecular mechanisms through reporter gene, genetic, or genome editing approaches. Given the global importance of plants for food, clothing, medicine, and energy, together with the potential role of G4 motifs as a widely conserved set of DNA sequences that could coordinate gene regulation, future plant G4 research holds great potential for use in plant improvement strategies.
Collapse
Affiliation(s)
- Brianna D Griffin
- Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, FL, 32306-4295, USA.
| | - Hank W Bass
- Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, FL, 32306-4295, USA.
| |
Collapse
|
44
|
Dorion S, Rivoal J. Plant nucleoside diphosphate kinase 1: A housekeeping enzyme with moonlighting activity. PLANT SIGNALING & BEHAVIOR 2018; 13:e1475804. [PMID: 29995566 PMCID: PMC6110367 DOI: 10.1080/15592324.2018.1475804] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nucleoside diphosphate kinase (NDPK) catalyzes the interconversion of nucleoside diphosphates and triphosphates using ATP as phosphate donor. This housekeeping enzyme is present in several subcellular compartments. The main isoform (NDPK1) is located in the cytosol and is highly expressed in meristems and provascular tissues. The manipulation of NDPK1 levels in transgenic potato roots demonstrates that this enzyme plays a key role in the transfer of energy between the cytosolic adenine and uridine nucleotide pools and in the distribution of carbon between starch and cellulose. Modulation of the expression of NDPK1 also alters the homeostasis of root respiration, glycolytic flux, reactive oxygen species production and growth. Herein, we propose a model summarizing the effects of the manipulation of NDPK1 levels on root metabolism. The model also accounts for G-quadruplex DNA binding, a moonlighting activity recently attributed to NDPK1, which possibly contributes to the metabolic phenotype of transgenic roots.
Collapse
Affiliation(s)
- S. Dorion
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| | - J. Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
- CONTACT Jean RivoalInstitut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
45
|
Yadav V, Hemansi, Kim N, Tuteja N, Yadav P. G Quadruplex in Plants: A Ubiquitous Regulatory Element and Its Biological Relevance. FRONTIERS IN PLANT SCIENCE 2017; 8:1163. [PMID: 28725233 PMCID: PMC5495829 DOI: 10.3389/fpls.2017.01163] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/16/2017] [Indexed: 10/31/2023]
Abstract
G quadruplexes (G4) are higher-order DNA and RNA secondary structures formed by G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Potential G4 quadruplex sequences have been identified in G-rich eukaryotic non-telomeric and telomeric genomic regions. Upon function, G4 formation is known to involve in chromatin remodeling, gene regulation and has been associated with genomic instability, genetic diseases and cancer progression. The natural role and biological validation of G4 structures is starting to be explored, and is of particular interest for the therapeutic interventions for human diseases. However, the existence and physiological role of G4 DNA and G4 RNA in plants species have not been much investigated yet and therefore, is of great interest for the development of improved crop varieties for sustainable agriculture. In this context, several recent studies suggests that these highly diverse G4 structures in plants can be employed to regulate expression of genes involved in several pathophysiological conditions including stress response to biotic and abiotic stresses as well as DNA damage. In the current review, we summarize the recent findings regarding the emerging functional significance of G4 structures in plants and discuss their potential value in the development of improved crop varieties.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Biochemistry, Central University of HaryanaMahendergarh, India
| | - Hemansi
- Department of Microbiology, Central University of HaryanaMahendergarh, India
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, HoustonTX, United States
- The University of Texas Graduate School of Biomedical Sciences, HoustonTX, United States
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB)New Delhi, India
| | - Puja Yadav
- Department of Microbiology, Central University of HaryanaMahendergarh, India
| |
Collapse
|
46
|
Dorion S, Clendenning A, Rivoal J. Engineering the expression level of cytosolic nucleoside diphosphate kinase in transgenic Solanum tuberosum roots alters growth, respiration and carbon metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:914-926. [PMID: 27880021 DOI: 10.1111/tpj.13431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 05/06/2023]
Abstract
Nucleoside diphosphate kinase (NDPK) is a ubiquitous enzyme that catalyzes the transfer of the γ-phosphate from a donor nucleoside triphosphate to an acceptor nucleoside diphosphate. In this study we used a targeted metabolomic approach and measurement of physiological parameters to report the effects of the genetic manipulation of cytosolic NDPK (NDPK1) expression on physiology and carbon metabolism in potato (Solanum tuberosum) roots. Sense and antisense NDPK1 constructs were introduced in potato using Agrobacterium rhizogenes to generate a population of root clones displaying a 40-fold difference in NDPK activity. Root growth, O2 uptake, flux of carbon between sucrose and CO2 , levels of reactive oxygen species and some tricarboxylic acid cycle intermediates were positively correlated with levels of NDPK1 expression. In addition, NDPK1 levels positively affected UDP-glucose and cellulose contents. The activation state of ADP-glucose pyrophosphorylase, a key enzyme in starch synthesis, was higher in antisense roots than in roots overexpressing NDPK1. Further analyses demonstrated that ADP-glucose pyrophosphorylase was more oxidized, and therefore less active, in sense clones than antisense clones. Consequently, antisense NDPK1 roots accumulated more starch and the starch to cellulose ratio was negatively affected by the level of NDPK1. These data support the idea that modulation of NDPK1 affects the distribution of carbon between starch and cellulose biosynthetic pathways.
Collapse
Affiliation(s)
- Sonia Dorion
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Audrey Clendenning
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| |
Collapse
|