1
|
Li J, Ni B, Wu Y, Yang Y, Mu D, Wu K, Zhang A, Du Y, Li Q. The cultivable gut bacteria Enterococcus mundtii promotes early-instar larval growth of Conogethes punctiferalis via enhancing digestive enzyme activity. PEST MANAGEMENT SCIENCE 2024; 80:6179-6188. [PMID: 39072862 DOI: 10.1002/ps.8346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Gut bacteria are crucial in influencing insect development and even phenotypic plasticity. The yellow peach moth Conogethes punctiferalis, as a significant borer pest, has been the subject of limited reports regarding the structural and diversification changes in its gut microbiota during feeding, and their potential impacts on the growth and development of the host insects. RESULTS This study, employing 16S rRNA sequencing, demonstrates distinct shifts in the larvae gut microbiome of C. punctiferalis between different feeding stages, highlighting a pronounced diversity in the early-instar with Enterococcus as a predominant genus in laboratory populations. Through in vitro cultivation and sequencing, three bacterial strains - Micrococcus sp., Brevibacterium sp. and Enterococcus mundtii - were isolated and characterized. Bioassays revealed that E. mundtii-infused corn significantly boosts early-instar larval growth, enhancing both body length and weight. Quantitative PCR and spectrophotometry confirmed a higher abundance of E. mundtii in younger larvae, correlating with increased digestive enzyme activity and total protein levels. CONCLUSION This study reveals the heightened gut microbiota diversity in early instars of C. punctiferalis larvae, highlighting that Enterococcus represent a predominant bacteria in laboratory populations. In vitro cultivation and bioassays unequivocally demonstrate the significant role of the cultivable gut bacteria E. mundtii in promoting the growth of early-instar larva. These findings provide a solid theoretical foundation for advancing the comprehension of the intricate interactions between gut microbiota and insect hosts, as well as for the development of eco-friendly pest control technologies based on targeted manipulation of insect gut microbial communities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiayu Li
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Boqing Ni
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yanan Wu
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yueyue Yang
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Dongli Mu
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - KaiNing Wu
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Aihuan Zhang
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yanli Du
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Qian Li
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
2
|
Ramírez‐Serrano B, Querejeta M, Minchev Z, Pozo MJ, Dubreuil G, Giron D. Root inoculation with soil-borne microorganisms alters gut bacterial communities and performance of the leaf-chewer Spodoptera exigua. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70049. [PMID: 39592916 PMCID: PMC11598745 DOI: 10.1111/1758-2229.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Soil-borne microorganisms can impact leaf-chewing insect fitness by modifying plant nutrition and defence. Whether the altered insect performance is linked to changes in microbial partners of caterpillars remains unclear. We investigated the effects of root inoculation with soil bacteria or fungi on the gut bacterial community and biomass of the folivore Spodoptera exigua. We also explored the potential correlation between both parameters. We performed herbivory bioassay using leaves of tomato plants (Solanum lycopersicum), measured caterpillar weight gain and characterized the gut bacterial communities via 16S rRNA gene metabarcoding. All soil microbes modified the gut bacterial communities, but the extent of these changes depended on the inoculated species. Rhizophagus irregularis and Bacillus amyloliquefaciens had opposite effects on S. exigua weight. While plant inoculation with the fungus influenced gut bacterial diversity, B. amyloliquefaciens also affected the community composition. A reduced abundance of two S. exigua enterococcal symbionts correlated with decreased insect biomass. Our results show that soil microorganisms can induce plant-mediated changes in the gut bacterial community of foliar-feeding caterpillars. We propose that the impact of these alterations on insect performance might rely on specific adaptations within the gut bacteria, rather than solely on the occurrence of changes.
Collapse
Affiliation(s)
- Beatriz Ramírez‐Serrano
- Biodiversity and Interactions Between Micro‐organisms/Insects/Plants (IMIP)Institut de Recherche sur la Biologie de l'Insecte (IRBI)—UMR 7261 CNRS/Université de ToursToursFrance
- Department of Soil and Plant MicrobiologyEstación Experimental del Zaidín (EEZ‐CSIC)GranadaSpain
| | - Marina Querejeta
- Biodiversity and Interactions Between Micro‐organisms/Insects/Plants (IMIP)Institut de Recherche sur la Biologie de l'Insecte (IRBI)—UMR 7261 CNRS/Université de ToursToursFrance
- UMR CNRS 7267, Ecologie et Biologie des InteractionsUniversité de PoitiersPoitiersFrance
| | - Zhivko Minchev
- Department of Soil and Plant MicrobiologyEstación Experimental del Zaidín (EEZ‐CSIC)GranadaSpain
- Agronomical Development Department, Business Unit MicrobiologyKoppert Biological SystemsBerkel en RodenrijsThe Netherlands
| | - María J. Pozo
- Department of Soil and Plant MicrobiologyEstación Experimental del Zaidín (EEZ‐CSIC)GranadaSpain
| | - Géraldine Dubreuil
- Biodiversity and Interactions Between Micro‐organisms/Insects/Plants (IMIP)Institut de Recherche sur la Biologie de l'Insecte (IRBI)—UMR 7261 CNRS/Université de ToursToursFrance
| | - David Giron
- Biodiversity and Interactions Between Micro‐organisms/Insects/Plants (IMIP)Institut de Recherche sur la Biologie de l'Insecte (IRBI)—UMR 7261 CNRS/Université de ToursToursFrance
| |
Collapse
|
3
|
Sanaei E, Chavez J, Harris EV, Alcaide TY, Baffour-Addo K, Bugay MJ, Adams KL, Zelaya A, de Roode JC, Gerardo NM. Microbiome analysis of monarch butterflies reveals effects of development and diet. FEMS Microbiol Ecol 2024; 100:fiae143. [PMID: 39557647 DOI: 10.1093/femsec/fiae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/22/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Diet profoundly influences the composition of an animal's microbiome, especially in holometabolous insects, offering a valuable model to explore the impact of diet on gut microbiome dynamics throughout metamorphosis. Here, we use monarch butterflies (Danaus plexippus), specialist herbivores that feed as larvae on many species of chemically well-defined milkweed plants (Asclepias sp.), to investigate the impacts of development and diet on the composition of the gut microbial community. While a few microbial taxa are conserved across life stages of monarchs, the microbiome appears to be highly dynamic throughout the life cycle. Microbial diversity gradually diminishes throughout the larval instars, ultimately reaching its lowest point during the pupal stage and then recovering again in the adult stage. The microbial composition then undergoes a substantial shift upon the transition from pupa to adult, with female adults having significantly different microbial communities than the eggs that they lay, indicating limited evidence for vertical transmission of gut microbiota. While diet did not significantly impact overall microbial composition, our results suggest that fourth instar larvae exhibit higher microbial diversity when consuming milkweed with high concentrations of toxic cardenolide phytochemicals. This study underscores how diet and developmental stage collectively shape the monarch's gut microbiota.
Collapse
Affiliation(s)
- Ehsan Sanaei
- Department of Biology, Emory University, Atlanta, GA 30322, United States
| | - Joselyne Chavez
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, United States
| | - Erica V Harris
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- Agnes Scott College, Department of Medical Sciences, Decatur, GA 30030, United States
| | - Tiffanie Y Alcaide
- Department of Biology, Emory University, Atlanta, GA 30322, United States
| | - Keisha Baffour-Addo
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- University of Michigan School of Medicine, Ann Arbor, MI 48109, United States
| | - Mahal J Bugay
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Kandis L Adams
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- Department of Biology, Earlham College, Richmond, IN 47374, United States
| | - Anna Zelaya
- Department of Biology, Emory University, Atlanta, GA 30322, United States
- Department of Biology, California State University, San Bernardino, CA 92407, United States
| | - Jacobus C de Roode
- Department of Biology, Emory University, Atlanta, GA 30322, United States
| | - Nicole M Gerardo
- Department of Biology, Emory University, Atlanta, GA 30322, United States
| |
Collapse
|
4
|
Visser B, Scheifler M. Insect Lipid Metabolism in the Presence of Symbiotic and Pathogenic Viruses and Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39548000 DOI: 10.1007/5584_2024_833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Insects, like most animals, have intimate interactions with microorganisms that can influence the insect host's lipid metabolism. In this chapter, we describe what is known so far about the role prokaryotic microorganisms play in insect lipid metabolism. We start exploring microbe-insect lipid interactions focusing on endosymbionts, and more specifically the gut microbiota that has been predominantly studied in Drosophila melanogaster. We then move on to an overview of the work done on the common and well-studied endosymbiont Wolbachia pipientis, also in interaction with other microbes. Taking a slightly different angle, we then look at the effect of human pathogens, including dengue and other viruses, on the lipids of mosquito vectors. We extend the work on human pathogens and include interactions with the endosymbiont Wolbachia that was identified as a natural tool to reduce the spread of mosquito-borne diseases. Research on lipid metabolism of plant disease vectors is up and coming and we end this chapter by highlighting current knowledge in that field.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
5
|
Sheng K, Miao H, Ni J, Yang K, Gu P, Ren X, Xiong J, Zhang Z. Deeper insight into the storage time of food waste on black soldier fly larvae growth and nutritive value: Interactions of substrate and gut microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175759. [PMID: 39182769 DOI: 10.1016/j.scitotenv.2024.175759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Biological treatment of food waste (FW) by black soldier fly larvae (BSFL) is considered as an effective management strategy. The composition and concentrations of nutrients in FW change during its storage and transport period, which potentially affect the FW conversion and BSFL growth. The present study systematically investigated the effect of different storage times (i.e., 0-15 d) on FW characteristics and its substantial influence on the BSFL growth. Results showed that the highest larvae weight of 282 mg and the shortest growth time of 14 days were achieved at the group of FW stored for 15 days, but shorter storage time (i.e., 2-7 d) had adverse effect on BSFL growth. Short storage time (i.e., 2-4 d) improved protein content of BSFL biomass and prolonged storage time (i.e., 7-10 d) led to the accumulation of fat content. The changes of substrate characteristics and indigenous microorganisms via FW storage time were the main reasons for BSFL growth difference. Lactic acid (LA) accumulation (i.e., 19.84 g/L) in FW storage for 7 days significantly limited the BSFL growth, leading to lowest larvae weight. Both the substrate and BSFL gut contained same bacterial communities (e.g., Klebsiella and Proteus), which exhibited similar change trend with the prolonged storage time. The transfer of Clostridioides from substrate to BSFL gut promoted nutrients digestion and intestinal flora balance with the FW stored for 15 days. Pathogens (e.g., Acinetobacter) in BSFL gut feeding with FW storage time of 7 days led to the decreased digestive function, consistent with the lowest larvae weight. Overall, shorter storage time (i.e., 2-7 d) inhibited the BSFL digestive function and growth performance, while the balance of the substrate nutrients and intestinal flora promoted the BSFL growth when using the FW stored for 15 days.
Collapse
Affiliation(s)
- Kuang Sheng
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Hengfeng Miao
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China; Water Treatment Technology and Material Innovation Center, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jun Ni
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Kunlun Yang
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Peng Gu
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xueli Ren
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianglei Xiong
- China Electronics Innovation Environmental Technology Co. Ltd, Wuxi 214111, PR China
| | - Zengshuai Zhang
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
6
|
Zhang N, Qian Z, He J, Shen X, Lei X, Sun C, Fan J, Felton GW, Shao Y. Gut bacteria of lepidopteran herbivores facilitate digestion of plant toxins. Proc Natl Acad Sci U S A 2024; 121:e2412165121. [PMID: 39392666 PMCID: PMC11494336 DOI: 10.1073/pnas.2412165121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Lepidopterans commonly feed on plant material, being the most significant insect herbivores in nature. Despite plant resistance to herbivory, such as producing toxic secondary metabolites, herbivores have developed mechanisms encoded in their genomes to tolerate or detoxify plant defensive compounds. Recent studies also highlight the role of gut microbiota in mediating detoxification in herbivores; however, convincing evidence supporting the significant contribution of gut symbionts is rare in Lepidoptera. Here, we show that the growth of various lepidopteran species was inhibited by a mulberry-derived secondary metabolite, 1-deoxynojirimycin (DNJ); as expected, the specialist silkworm Bombyx mori grew well, but interestingly, gut microbiota of early-instar silkworms was affected by the DNJ level, and several bacterial species responded positively to enriched DNJ. Among these, a bacterial strain isolated from the silkworm gut (Pseudomonas fulva ZJU1) can degrade and utilize DNJ as the sole energy source, and after inoculation into nonspecialists (e.g., beet armyworm Spodoptera exigua), P. fulva ZJU1 increased host resistance to DNJ and significantly promoted growth. We used genomic and transcriptomic analyses to identify genes potentially involved in DNJ degradation, and CRISPR-Cas9-mediated mutagenesis verified the function of ilvB, a key binding protein, in metabolizing DNJ. Furthermore, the ilvB deletion mutant, exhibiting normal bacterial growth, could no longer enhance nonspecialist performance, supporting a role in DNJ degradation in vivo. Therefore, our study demonstrated causality between the gut microbiome and detoxification of plant chemical defense in Lepidoptera, facilitating a mechanistic understanding of host-microbe relationships across this complex, abundant insect group.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
| | - Zhaoyi Qian
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
| | - Jintao He
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
| | - Xiaoqiang Shen
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
| | - Xiaoyu Lei
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou310058, China
| | - Jie Fan
- Department of Chemistry, Zhejiang University, Hangzhou310027, China
| | - Gary W. Felton
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA16802
| | - Yongqi Shao
- Department of Economic Zoology, Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou310058, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou310058, China
| |
Collapse
|
7
|
Cho A, Finke JF, Zhong KX, Chan AM, Saunders R, Schulze A, Warne S, Miller KM, Suttle CA. The core microbiome of cultured Pacific oyster spat is affected by age but not mortality. Microbiol Spectr 2024; 12:e0003124. [PMID: 39162495 PMCID: PMC11448229 DOI: 10.1128/spectrum.00031-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
The Pacific oyster is the most widely cultured shellfish worldwide, but production has been affected by mortality events, including in hatcheries that supply the seed for growers. Several pathogens cause disease in oysters, but in many cases, mortality events cannot be attributed to a single agent and appear to be multifactorial, involving environmental variables and microbial interactions. As an organism's microbiome can provide resilience against pathogens and environmental stressors, we investigated the microbiomes in cohorts of freshly settled oyster spat, some of which experienced notable mortality. Deep sequencing of 16S rRNA gene fragments did not show a significant difference among the microbiomes of cohorts experiencing different mortality levels, but revealed a characteristic core microbiome comprising 74 taxa. Irrespective of mortality, the relative abundance of taxa in the core microbiomes changed significantly as the spat aged, yet remained distinct from the microbial community in the surrounding water. The core microbiome was dominated by bacteria in the families Rhodobacteraceae, Nitrosomonadaceae, Flavobacteriaceae, Pirellulaeceae, and Saprospiraceae. Within these families, 14 taxa designated as the "Hard-Core Microbiome" were indicative of changes in the core microbiome as the spat aged. The variability in diversity and richness of the core taxa decreased with age, implying niche occupation. As well, there was exchange of microbes with surrounding water during development of the core microbiome. The shift in the core microbiome demonstrates the dynamic nature of the microbiome as oyster spat age.IMPORTANCEThe Pacific oyster (Magallana gigas, also known as Crassostrea gigas) is the most widely cultivated shellfish and is important to the economy of many coastal communities. However, high mortality of spat during the first few days following metamorphosis can affect the seed supply to oyster growers. Here, we show that the microbiome composition of recently settled oyster spat experiencing low or high mortality was not significantly different. Instead, development of the core microbiome was associated with spat aging and was partially driven by dispersal through the water. These findings imply the importance of early-stage rearing conditions for spat microbiome development in aquaculture facilities. Furthermore, shellfish growers could gain information about the developmental state of the oyster spat microbiome by assessing key taxa. Additionally, the study provides a baseline microbiome for future hypothesis testing and potential probiotic applications on developing spat.
Collapse
Affiliation(s)
- Anna Cho
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jan F Finke
- Hakai Institute, Heriot Bay, British Columbia, Canada
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin X Zhong
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy M Chan
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Angela Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, Canada
| | | | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, Canada
| | - Curtis A Suttle
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Gloder G, Bourne ME, Cuny MAC, Verreth C, Crauwels S, Dicke M, Poelman E, Jacquemyn H, Lievens B. Caterpillar-parasitoid interactions: species-specific influences on host microbiome composition. FEMS Microbiol Ecol 2024; 100:fiae115. [PMID: 39165109 PMCID: PMC11407444 DOI: 10.1093/femsec/fiae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024] Open
Abstract
There is increasing evidence that host-parasitoid interactions can have a pronounced impact on the microbiome of host insects, but it is unclear to what extent this is caused by the host and/or parasitoid. Here, we compared the internal and external microbiome of caterpillars of Pieris brassicae and Pieris rapae parasitized by Cotesia glomerata or Cotesia rubecula with nonparasitized caterpillars. Additionally, we investigated the internal and external microbiome of the parasitoid larvae. Both internal and external bacterial densities were significantly higher for P. brassicae than P. rapae, while no differences were found between parasitized and nonparasitized caterpillars. In contrast, parasitism significantly affected the composition of the internal and external microbiome of the caterpillars and the parasitoid larvae, but the effects were dependent on the host and parasitoid species. Irrespective of host species, a Wolbachia species was exclusively found inside caterpillars parasitized by C. glomerata, as well as in the corresponding developing parasitoid larvae. Similarly, a Nosema species was abundantly present inside parasitized caterpillars and the parasitoid larvae, but this was independent of the host and the parasitoid species. We conclude that parasitism has pronounced effects on host microbiomes, but the effects depend on both the host and parasitoid species.
Collapse
Affiliation(s)
- Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Mitchel E Bourne
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maximilien A C Cuny
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Christel Verreth
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B-3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
9
|
Zhang B, Yang W, He Q, Chen H, Che B, Bai X. Analysis of differential effects of host plants on the gut microbes of Rhoptroceros cyatheae. Front Microbiol 2024; 15:1392586. [PMID: 38962140 PMCID: PMC11221597 DOI: 10.3389/fmicb.2024.1392586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
As an indispensable part of insects, intestinal symbiotic bacteria play a vital role in the growth and development of insects and their adaptability. Rhoptroceros cyatheae, the main pest of the relict plant Alsophila spinulosa, poses a serious threat to the development of the A. spinulosa population. In the present study, 16S rDNA and internal transcribed spacer high-throughput sequencing techniques were used to analyze the structure of intestinal microbes and the diversity of the insect feeding on two different plants, as well as the similarities between the intestinal microorganisms of R. cyatheae. The dominant bacteria of leaf endophytes were also compared based on the sequencing data. The results showed that Proteobacteria, Firmicutes, and Actinobacteria were the dominant phyla of intestinal bacteria, and Ascomycota was the dominant phylum of intestinal fungi. Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Methylobacterium-Methylorubrum, and Enterococcus were the dominant genera in the intestine of R. cyatheae feeding on two plants, and the relative abundance was significantly different between the two groups. Candida was the common dominant genus of intestinal fungi in the two groups, and no significant difference was observed in its abundance between the two groups. This showed that compared with the intestinal fungi of R. cyatheae, the abundance of the intestinal bacteria was greatly affected by food. The common core microbiota between the microorganisms in A. spinulosa leaves and the insect gut indicated the presence of a microbial exchange between the two. The network correlation diagram showed that the gut microbes of R. cyatheae feeding on Gymnosphaera metteniana were more closely related to each other, which could help the host to better cope with the adverse external environment. This study provides a theoretical basis for the adaptation mechanism of R. cyatheae and a new direction for the effective prevention and control of R. cyatheae.
Collapse
Affiliation(s)
- Bingchen Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Weicheng Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Qinqin He
- Guizhou Chishui Alsophila National Nature Reserve Administration Bureau, Chishui, Guizhou, China
| | - Hangdan Chen
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Bingjie Che
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Xiaojie Bai
- Guizhou Chishui Alsophila National Nature Reserve Administration Bureau, Chishui, Guizhou, China
| |
Collapse
|
10
|
Subrahmanyam G, Thirupathaiah Y, Vijay N, Debnath R, Arunkumar KP, Gadwala M, Sangannavar PA, Manthira Moorthy S, Chutia M. Contrasting gut bacteriomes unveiled between wild Antheraea assamensis Helfer (Lepidoptera: Saturniidae) and domesticated Bombyx mori L. (Lepidoptera: Bombycidae) silkworms. Mol Biol Rep 2024; 51:666. [PMID: 38777963 DOI: 10.1007/s11033-024-09629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Insect gut microbiomes play a fundamental role in various aspects of insect physiology, including digestion, nutrient metabolism, detoxification, immunity, growth and development. The wild Muga silkworm, Antheraea assamensis Helfer holds significant economic importance, as it produces golden silk. METHODS AND RESULTS In the current investigation, we deciphered its intricate gut bacteriome through high-throughput 16S rRNA amplicon sequencing. Further, to understand bacterial community dynamics among silkworms raised under outdoor environmental conditions, we compared its gut bacteriomes with those of the domesticated mulberry silkworm, Bombyx mori L. Most abundant bacterial phyla identified in the gut of A. assamensis were Proteobacteria (78.1%), Bacteroidetes (8.0%) and Firmicutes (6.6%), whereas the most-abundant phyla in B. mori were Firmicutes (49-86%) and Actinobacteria (10-36%). Further, Gammaproteobacteria (57.1%), Alphaproteobacteria (10.47%) and Betaproteobacteria (8.28%) were the dominant bacterial classes found in the gut of A. assamensis. The predominant bacterial families in A. assamensis gut were Enterobacteriaceae (27.7%), Comamonadaceae (9.13%), Pseudomonadaceae (9.08%) Flavobacteriaceae (7.59%) Moraxellaceae (7.38%) Alteromonadaceae (6.8%) and Enterococcaceae (4.46%). In B. mori, the most-abundant bacterial families were Peptostreptococcaceae, Enterococcaceae, Lactobacillaceae and Bifidobacteriaceae, though all showed great variability among the samples. The core gut bacteriome of A. assamensis consisted of Pseudomonas, Acinetobacter, Variovorax, Myroides, Alteromonas, Enterobacter, Enterococcus, Sphingomonas, Brevundimonas, Oleispira, Comamonas, Oleibacter Vagococcus, Aminobacter, Marinobacter, Cupriavidus, Aeromonas, and Bacillus. Comparative gut bacteriome analysis revealed a more complex gut bacterial diversity in wild A. assamensis silkworms than in domesticated B. mori silkworms, which contained a relatively simple gut bacteriome as estimated by OTU richness. Predictive functional profiling of the gut bacteriome suggested that gut bacteria in A. assamensis were associated with a wide range of physiological, nutritional, and metabolic functions, including biodegradation of xenobiotics, lipid, amino acid, carbohydrate metabolism, and biosynthesis of secondary metabolites and amino acids. CONCLUSIONS These results showed great differences in the composition and diversity of gut bacteria between the two silkworm species. Both insect species harbored core bacterial taxa commonly found in insects, but the relative abundance and composition of these taxa varied markedly.
Collapse
Affiliation(s)
- Gangavarapu Subrahmanyam
- Seri-biotech Research Laboratory, Central Silk Board, Ministry of Textiles, Govt. of India, Kodathi, Carmelram Post, Bangalore, Karnataka, 560035, India.
| | - Yeruva Thirupathaiah
- Central Sericultural Research & Training Institute, Central Silk Board, Manandawadi Road, Srirampura, Mysore, Karnataka, 570008, India
| | - N Vijay
- Central Muga Eri Research & Training Institute, Central Silk Board, Ministry of Textiles, Govt. of India, Lahdoigarh, Jorhat, Assam, 785700, India
| | - Rajal Debnath
- Seri-biotech Research Laboratory, Central Silk Board, Ministry of Textiles, Govt. of India, Kodathi, Carmelram Post, Bangalore, Karnataka, 560035, India
| | - K P Arunkumar
- Central Muga Eri Research & Training Institute, Central Silk Board, Ministry of Textiles, Govt. of India, Lahdoigarh, Jorhat, Assam, 785700, India
| | - Mallikarjuna Gadwala
- Central Sericultural Research & Training Institute, Central Silk Board, Manandawadi Road, Srirampura, Mysore, Karnataka, 570008, India
| | - Prashant A Sangannavar
- Central Silk Board, Ministry of Textiles, Govt. of India, B.T.M. Layout, Madivala, Bangalore, Karnataka, 560068, India
| | - S Manthira Moorthy
- Seri-biotech Research Laboratory, Central Silk Board, Ministry of Textiles, Govt. of India, Kodathi, Carmelram Post, Bangalore, Karnataka, 560035, India
| | - Mahananda Chutia
- Muga Eri Silkworm Seed Organization, Central Silk Board, Reshom Nagar, Khanapara, Guwahati, Assam, 781022, India
| |
Collapse
|
11
|
Zhao L, Zhang S, Xiao R, Zhang C, Lyu Z, Zhang F. Diversity and Functionality of Bacteria Associated with Different Tissues of Spider Heteropoda venatoria Revealed through Integration of High-Throughput Sequencing and Culturomics Approaches. MICROBIAL ECOLOGY 2024; 87:67. [PMID: 38703220 PMCID: PMC11069485 DOI: 10.1007/s00248-024-02383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
Spiders host a diverse range of bacteria in their guts and other tissues, which have been found to play a significant role in their fitness. This study aimed to investigate the community diversity and functional characteristics of spider-associated bacteria in four tissues of Heteropoda venatoria using HTS of the 16S rRNA gene and culturomics technologies, as well as the functional verification of the isolated strains. The results of HTS showed that the spider-associated bacteria in different tissues belonged to 34 phyla, 72 classes, 170 orders, 277 families, and 458 genera. Bacillus was found to be the most abundant bacteria in the venom gland, silk gland, and ovary, while Stenotrophomonas, Acinetobacter, and Sphingomonas were dominant in the gut microbiota. Based on the amplicon sequencing results, 21 distinct cultivation conditions were developed using culturomics to isolate bacteria from the ovary, gut, venom gland, and silk gland. A total of 119 bacterial strains, representing 4 phyla and 25 genera, with Bacillus and Serratia as the dominant genera, were isolated. Five strains exhibited high efficiency in degrading pesticides in the in vitro experiments. Out of the 119 isolates, 28 exhibited antibacterial activity against at least one of the tested bacterial strains, including the pathogenic bacteria Staphylococcus aureus, Acinetobacter baumanii, and Enterococcus faecalis. The study also identified three strains, GL312, PL211, and PL316, which exhibited significant cytotoxicity against MGC-803. The crude extract from the fermentation broth of strain PL316 was found to effectively induce apoptosis in MGC-803 cells. Overall, this study offers a comprehensive understanding of the bacterial community structure associated with H. venatoria. It also provides valuable insights into discovering novel antitumor natural products for gastric cancer and xenobiotic-degrading bacteria of spiders.
Collapse
Affiliation(s)
- Likun Zhao
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, People's Republic of China
| | - Shanfeng Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Ruoyi Xiao
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Chao Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Zhitang Lyu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China.
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, People's Republic of China.
| | - Feng Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China.
- The Key Laboratory of Zoological Systematics and Application of Hebei Province, Baoding, 071002, People's Republic of China.
| |
Collapse
|
12
|
Marulanda-Moreno SM, Saldamando-Benjumea CI, Vivero Gomez R, Cadavid-Restrepo G, Moreno-Herrera CX. Comparative analysis of Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) corn and rice strains microbiota revealed minor changes across life cycle and strain endosymbiont association. PeerJ 2024; 12:e17087. [PMID: 38623496 PMCID: PMC11017975 DOI: 10.7717/peerj.17087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/20/2024] [Indexed: 04/17/2024] Open
Abstract
Background Spodoptera frugiperda (FAW) is a pest that poses a significant threat to corn production worldwide, causing millions of dollars in losses. The species has evolved into two strains (corn and rice) that differ in their genetics, reproductive isolation, and resistance to insecticides and Bacillus thuringiensis endotoxins. The microbiota plays an important role in insects' physiology, nutrient acquisition, and response to chemical and biological controls. Several studies have been carried out on FAW microbiota from larvae guts using laboratory or field samples and a couple of studies have analyzed the corn strain microbiota across its life cycle. This investigation reveals the first comparison between corn strain (CS) and rice strain (RS) of FAW during different developmental insect stages and, more importantly, endosymbiont detection in both strains, highlighting the importance of studying both FAW populations and samples from different stages. Methods The composition of microbiota during the life cycle of the FAW corn and rice strains was analyzed through high-throughput sequencing of the bacterial 16S rRNA gene using the MiSeq system. Additionally, culture-dependent techniques were used to isolate gut bacteria and the Transcribed Internal Spacer-ITS, 16S rRNA, and gyrB genes were examined to enhance bacterial identification. Results Richness, diversity, and bacterial composition changed significantly across the life cycle of FAW. Most diversity was observed in eggs and males. Differences in gut microbiota diversity between CS and RS were minor. However, Leuconostoc, A2, Klebsiella, Lachnoclostridium, Spiroplasma, and Mucispirilum were mainly associated with RS and Colidextribacter, Pelomonas, Weissella, and Arsenophonus to CS, suggesting that FAW strains differ in several genera according to the host plant. Firmicutes and Proteobacteria were the dominant phyla during FAW metamorphosis. Illeobacterium, Ralstonia, and Burkholderia exhibited similar abundancies in both strains. Enterococcus was identified as a conserved taxon across the entire FAW life cycle. Microbiota core communities mainly consisted of Enterococcus and Illeobacterium. A positive correlation was found between Spiroplasma with RS (sampled from eggs, larvae, pupae, and adults) and Arsenophonus (sampled from eggs, larvae, and adults) with CS. Enterococcus mundtii was predominant in all developmental stages. Previous studies have suggested its importance in FAW response to B. thuringensis. Our results are relevant for the characterization of FAW corn and rice strains microbiota to develop new strategies for their control. Detection of Arsenophonus in CS and Spiroplasma in RS are promising for the improvement of this pest management, as these bacteria induce male killing and larvae fitness reduction in other Lepidoptera species.
Collapse
Affiliation(s)
- Sandra María Marulanda-Moreno
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Colombia
| | - Clara Inés Saldamando-Benjumea
- Grupo de Biotecnología Vegetal UNALMED-CIB. Línea en Ecología y Evolución de Insectos, Facultad de Ciencias, Universidad Nacional de Colombia, Medellín, Colombia
| | - Rafael Vivero Gomez
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Universidad Nacional de Colombia, sede Medellín, Colombia
| | - Gloria Cadavid-Restrepo
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Colombia
| | - Claudia Ximena Moreno-Herrera
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Colombia
| |
Collapse
|
13
|
Wang J, Zhang S, Kong J, Chang J. Pecan secondary metabolites influenced the population of Zeuzera coffeae by affecting the structure and function of the larval gut microbiota. Front Microbiol 2024; 15:1379488. [PMID: 38680914 PMCID: PMC11045946 DOI: 10.3389/fmicb.2024.1379488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Background The plant secondary metabolites (PSMs), as important plant resistance indicators, are important targets for screening plant insect resistance breeding. In this study, we aimed to investigate whether the population of Zeuzera coffeae (ZC) is affected by different varieties of Carya illinoinensis PSMs content. At the same time, the structure and function of the gut microbiome of ZC were also analyzed in relation to different pecan varieties. Methods We counted the populations of ZC larvae in four pecan varieties and determined the content of four types of PSMs. The structure and function of the larval gut microbiota were studied in connection to the number of larvae and the content of PSMs. The relationships were investigated between larval number, larval gut microbiota, and PSM content. Results We found that the tannins, total phenolics, and total saponins of 4 various pecans PSMs stifled the development of the ZC larval population. The PSMs can significantly affect the diversity and abundance of the larval gut microbiota. Enrichment of ASV46 (Pararhizobium sp.), ASV994 (Olivibacter sp.), ASV743 (Rhizobium sp.), ASV709 (Rhizobium sp.), ASV671 (Luteolibacter sp.), ASV599 (Agrobacterium sp.), ASV575 (Microbacterium sp.), and ASV27 (Rhizobium sp.) in the gut of larvae fed on high-resistance cultivars was positively associated with their tannin, total saponin, and total phenolic content. The results of the gut microbiome functional prediction for larvae fed highly resistant pecan varieties showed that the enriched pathways in the gut were related to the breakdown of hazardous chemicals. Conclusion Our findings provide further evidence that pecan PSMs influence the structure and function of the gut microbiota, which in turn affects the population stability of ZC. The study's findings can serve as a theoretical foundation for further work on selecting ZC-resistant cultivars and developing green management technology for ZC.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Junqia Kong
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou, China
| | - Jun Chang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
14
|
Lateef AA, Azeez AA, Ren W, Hamisu HS, Oke OA, Asiegbu FO. Bacterial biota associated with the invasive insect pest Tuta absoluta (Meyrick). Sci Rep 2024; 14:8268. [PMID: 38594362 PMCID: PMC11003966 DOI: 10.1038/s41598-024-58753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Tuta absoluta (the tomato pinworm) is an invasive insect pest with a highly damaging effect on tomatoes causing between 80 and 100% yield losses if left uncontrolled. Resistance to chemical pesticides have been reported in some T. absoluta populations. Insect microbiome plays an important role in the behavior, physiology, and survivability of their host. In a bid to explore and develop an alternative control method, the associated microbiome of this insect was studied. In this study, we unraveled the bacterial biota of T. absoluta larvae and adults by sequencing and analyzing the 16S rRNA V3-V4 gene regions using Illumina NovaSeq PE250. Out of 2,092,015 amplicon sequence variants (ASVs) recovered from 30 samples (15 larvae and 15 adults), 1,268,810 and 823,205 ASVs were obtained from the larvae and adults, respectively. A total of 433 bacterial genera were shared between the adults and larval samples while 264 and 139 genera were unique to the larvae and adults, respectively. Amplicon metagenomic analyses of the sequences showed the dominance of the phylum Proteobacteria in the adult samples while Firmicutes and Proteobacteria dominated in the larval samples. Linear discriminant analysis effect size (LEfSe) comparison revealed the genera Pseudomonas, Delftia and Ralstonia to be differentially enriched in the adult samples while Enterococcus, Enterobacter, Lactococcus, Klebsiella and Wiessella were differentially abundant in the larvae. The diversity indices showed that the bacterial communities were not different between the insect samples collected from different geographical regions. However, the bacterial communities significantly differed based on the sample type between larvae and adults. A co-occurrence network of significantly correlated taxa revealed a strong interaction between the microbial communities. The functional analysis of the microbiome using FAPROTAX showed that denitrification, arsenite oxidation, methylotrophy and methanotrophy as the active functional groups of the adult and larvae microbiomes. Our results have revealed the core taxonomic, functional, and interacting microbiota of T. absoluta and these indicate that the larvae and adults harbor a similar but transitory set of bacteria. The results provide a novel insight and a basis for exploring microbiome-based biocontrol strategy for this invasive insect pest as well as the ecological significance of some of the identified microbiota is discussed.
Collapse
Affiliation(s)
- A A Lateef
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland.
- Department of Plant Biology, University of Ilorin, Kwara State, Ilorin, Nigeria.
| | - A A Azeez
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Rainforest Research Station, Forestry Research Institute of Nigeria, Jericho Hill, Ibadan, Nigeria
| | - W Ren
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - H S Hamisu
- National Horticultural Research Institute, Ibadan, Nigeria
| | - O A Oke
- National Horticultural Research Institute, Ibadan, Nigeria
| | - F O Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Zhu X, Li J, He A, Gurr GM, You M, You S. Developmental Shifts in the Microbiome of a Cosmopolitan Pest: Unraveling the Role of Wolbachia and Dominant Bacteria. INSECTS 2024; 15:132. [PMID: 38392551 PMCID: PMC10888865 DOI: 10.3390/insects15020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Wolbachia bacteria (phylum Proteobacteria) are ubiquitous intracellular parasites of diverse invertebrates. In insects, coevolution has forged mutualistic associations with Wolbachia species, influencing reproduction, immunity, development, pathogen resistance, and overall fitness. However, the impact of Wolbachia on other microbial associates within the insect microbiome, which are crucial for host fitness, remains less explored. The diamondback moth (Plutella xylostella), a major pest of cruciferous vegetables worldwide, harbors the dominant Wolbachia strain plutWB1, known to distort its sex ratio. This study investigated the bacterial community diversity and dynamics across different developmental life stages and Wolbachia infection states in P. xylostella using high-throughput 16S rDNA amplicon sequencing. Proteobacteria and Firmicutes dominated the P. xylostella microbiome regardless of life stage or Wolbachia infection. However, the relative abundance of dominant genera, including an unclassified genus of Enterobacteriaceae, Wolbachia, Carnobacterium, and Delftia tsuruhatensis, displayed significant stage-specific variations. While significant differences in bacterial diversity and composition were observed across life stages, Wolbachia infection had no substantial impact on overall diversity. Nonetheless, relative abundances of specific genera differed between infection states. Notably, Wolbachia exhibited a stable, high relative abundance across all stages and negatively correlated with an unclassified genus of Enterobacteriaceae, Delftia tsuruhatensis, and Carnobacterium. Our findings provide a foundational understanding of the complex interplay between the host, Wolbachia, and the associated microbiome in P. xylostella, paving the way for a deeper understanding of their complex interactions and potential implications for pest control strategies.
Collapse
Affiliation(s)
- Xiangyu Zhu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinyang Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ao He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Geoff M Gurr
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Gulbali Institute, Charles Sturt University, Orange, NSW 2800, Australia
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Erban T, Sopko B, Klimov PB, Hubert J. Mixta mediterraneensis as a novel and abundant gut symbiont of the allergen-producing domestic mite Blomia tropicalis. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:161-181. [PMID: 38227156 DOI: 10.1007/s10493-023-00875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Blomia tropicalis is an allergen-producing mite in the human environment in tropical regions. The microbiome of B. tropicalis was described using the barcode sequencing region of V4 16S rDNA and genome assemblage. Mixta mediterraneensis, previously isolated from human skin swabs, was identified as a B. tropicalis gut symbiont based on genome assembly. The microbiome contains two bacteria, Staphylococcus and M. mediterraneensis. The number of M. mediterraneensis 16S DNA copies was 106 per mite and 109 per feces in the rearing chamber based on qPCR quantification. The profile of this bacterium reached 50% of reads in the mite gut and feces. Genomic analyses revealed that the bacterium has several metabolic pathways that suggest metabolic cooperation with the mite host in vitamin and amino acid synthesis, nitrogen recycling, and antimicrobial defense. Lysozyme is present in the symbiotic bacterium but absent in the mite. The B. tropicalis microbiome contained Staphylococcus, which accelerates mite population growth. Mites can digest Staphylococcus by using specific enzymes with hydrolytic functions against bacterial cell walls (chitinases and cathepsin D), leading to endocytosis of bacteria and their degradation in lysosomes and phagosomes. Gene expression analysis of B. tropicalis indicated that phagocytosis was mediated by the PI3-kinase/Akt pathway interacting with the invasins produced by M. mediterraneensis. Moreover, the symbiont had metabolic pathways that allowed it to recycle the mite metabolic waste product guanine, known as a mite attractant. The mite host symbiont enhances mite aggregation in the feces, and the fecal-oral transmission route is excepted.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, 161 06, Prague 6 - Ruzyne, Czechia
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, 161 06, Prague 6 - Ruzyne, Czechia
| | - Pavel B Klimov
- Purdue University, Lilly Hall of Life Sciences, G-225, 915 W State St, West Lafayette, IN, 47907, USA
| | - Jan Hubert
- Crop Research Institute, Drnovska 507/73, 161 06, Prague 6 - Ruzyne, Czechia.
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6 - Suchdol, Czechia.
| |
Collapse
|
17
|
Shao Y, Mason CJ, Felton GW. Toward an Integrated Understanding of the Lepidoptera Microbiome. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:117-137. [PMID: 37585608 DOI: 10.1146/annurev-ento-020723-102548] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Research over the past 30 years has led to a widespread acceptance that insects establish widespread and diverse associations with microorganisms. More recently, microbiome research has been accelerating in lepidopteran systems, leading to a greater understanding of both endosymbiont and gut microorganisms and how they contribute to integral aspects of the host. Lepidoptera are associated with a robust assemblage of microorganisms, some of which may be stable and routinely detected in larval and adult hosts, while others are ephemeral and transient. Certain microorganisms that populate Lepidoptera can contribute significantly to the hosts' performance and fitness, while others are inconsequential. We emphasize the context-dependent nature of the interactions between players. While our review discusses the contemporary literature, there are major avenues yet to be explored to determine both the fundamental aspects of host-microbe interactions and potential applications for the lepidopteran microbiome; we describe these avenues after our synthesis.
Collapse
Affiliation(s)
- Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China;
| | - Charles J Mason
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K. Inouye US Pacific Basin Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Hilo, Hawaii, USA;
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
18
|
Lu Y, Chu S, Shi Z, You R, Chen H. Marked variations in diversity and functions of gut microbiota between wild and domestic stag beetle Dorcus Hopei Hopei. BMC Microbiol 2024; 24:24. [PMID: 38238710 PMCID: PMC10795464 DOI: 10.1186/s12866-023-03177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Although stag beetles are a popular saprophytic insect, their gut microbiome has been poorly studied. Here, 16 S rRNA gene sequencing was employed to reveal the gut microbiota composition and functional variations between wild and domestic Dorcus hopei hopei (Dhh) larval individuals. RESULTS The results indicated a significant difference between the wild and domestic Dhh gut microbiota., the domestic Dhh individuals contained more gut microbial taxa (e.g. genera Ralstonia and Methyloversatilis) with xenobiotic degrading functions. The wild Dhh possesses gut microbiota compositions (e.g. Turicibacter and Tyzzerella ) more appropriate for energy metabolism and potential growth. This study furthermore assigned all Dhh individuals by size into groups for data analysis; which indicated limited disparities between the gut microbiota of different-sized D. hopei hopei larvae. CONCLUSION The outcome of this study illustrated that there exists a significant discrepancy in gut microbiota composition between wild and domestic Dhh larvae. In addition, the assemblage of gut microbiome in Dhh was primarily attributed to environmental influences instead of individual differences such as developmental potential or size. These findings will provide a valuable theoretical foundation for the protection of wild saprophytic insects and the potential utilization of the insect-associated intestinal microbiome in the future.
Collapse
Affiliation(s)
- Yikai Lu
- BASIS International School Hangzhou, Hangzhou, 310020, Zhejiang, China
| | - Siyuan Chu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Zhiyuan Shi
- BASIS International School Hangzhou, Hangzhou, 310020, Zhejiang, China
| | - Ruobing You
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Haimin Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
19
|
El Hamss H, Maruthi MN, Omongo CA, Wang HL, van Brunschot S, Colvin J, Delatte H. Microbiome diversity and composition in Bemisia tabaci SSA1-SG1 whitefly are influenced by their host's life stage. Microbiol Res 2024; 278:127538. [PMID: 37952351 DOI: 10.1016/j.micres.2023.127538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Within the Bemisia tabaci group of cryptic whitefly species, many are damaging agricultural pests and plant-virus vectors, conferring upon this group the status of one of the world's top 100 most invasive and destructive species, affecting farmers' income and threatening their livelihoods. Studies on the microbiome of whitefly life stages are scarce, although their composition and diversity greatly influence whitefly fitness and development. We used high-throughput sequencing to understand microbiome diversity in different developmental stages of the B. tabaci sub-Saharan Africa 1 (SSA1-SG1) species of the whitefly from Uganda. Endosymbionts (Portiera, Arsenophonus, Wolbachia, and Hemipteriphilus were detected but excluded from further statistical analysis as they were not influenced by life stage using Permutational Multivariate Analysis of Variance Using Distance Matrices (ADONIS, p = 0.925 and Bray, p = 0.903). Our results showed significant differences in the meta microbiome composition in different life stages of SSA1-SG1. The diversity was significantly higher in eggs (Shannon, p = 0.024; Simpson, p = 0.047) than that in nymphs and pupae, while the number of microbial species observed by the amplicon sequence variant (ASV) was not significant (n(ASV), p = 0.094). At the phylum and genus levels, the dominant constituents in the microbiome changed significantly during various developmental stages, with Halomonas being present in eggs, whereas Bacillus and Caldalkalibacillus were consistently found across all life stages. These findings provide the first description of differing meta microbiome diversity in the life stage of whiteflies, suggesting their putative role in whitefly development.
Collapse
Affiliation(s)
- Hajar El Hamss
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, United Kingdom.
| | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, United Kingdom.
| | - Christopher A Omongo
- Root Crops Programme, National Crops Resource Research Institute (RCP-NaCRRI), Kampala, Uganda
| | - Hua-Ling Wang
- College of Forestry, Hebei Agricultural University, Hebei, China
| | - Sharon van Brunschot
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, United Kingdom; School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, United Kingdom
| | | |
Collapse
|
20
|
Sun C, Shao Y, Iqbal J. Insect Insights at the Single-Cell Level: Technologies and Applications. Cells 2023; 13:91. [PMID: 38201295 PMCID: PMC10777908 DOI: 10.3390/cells13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Single-cell techniques are a promising way to unravel the complexity and heterogeneity of transcripts at the cellular level and to reveal the composition of different cell types and functions in a tissue or organ. In recent years, advances in single-cell RNA sequencing (scRNA-seq) have further changed our view of biological systems. The application of scRNA-seq in insects enables the comprehensive characterization of both common and rare cell types and cell states, the discovery of new cell types, and revealing how cell types relate to each other. The recent application of scRNA-seq techniques to insect tissues has led to a number of exciting discoveries. Here we provide an overview of scRNA-seq and its application in insect research, focusing on biological applications, current challenges, and future opportunities to make new discoveries with scRNA-seq in insects.
Collapse
Affiliation(s)
- Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junaid Iqbal
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Han WK, Tang FX, Yan YY, Wang Y, Liu ZW. Plasticity of the Gene Transcriptional Level and Microbiota in the Gut Contributes to the Adaptability of the Fall Armyworm to Rice Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18546-18556. [PMID: 37963218 DOI: 10.1021/acs.jafc.3c05506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Insects coordinate a variety of mechanisms to overcome the feeding challenges, including gene transcriptional plasticity and stable symbioses in the gut. Here, Spodoptera frugiperda larvae were reared on corn and rice plants for successive generations to obtain two specific strains. The rice strain displayed a longer developmental period, lower female fecundity, and intrinsic growth rate at G1 and G5 but not at G10. KEGG analysis of the G1, G5, and G11 gut transcriptome indicated that detoxification enzymes might play vital roles in host adaptation. RNAi-mediated knockdown of CYP12A2 and UGT41B8, which were highly expressed in the gut of the rice strain, significantly reduced the larval adaptability to rice. Besides, the dsCYP12A2-treated larvae displayed an increased sensitivity to luteolin, a flavonoid phytochemical. The KEGG function prediction of gut microbiota indicated that the high enrichment level of metabolism in the rice strain would play essential roles in rice adaptation.
Collapse
Affiliation(s)
- Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Feng-Xian Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yang-Yang Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| |
Collapse
|
22
|
Yan K, Zhang J, Cai Y, Cao G, Meng L, Soaud SA, Heakel RMY, Ihtisham M, Zhao X, Wei Q, Dai T, Abbas M, El-Sappah AH. Comparative analysis of endophytic fungal communities in bamboo species Phyllostachys edulis, Bambusa rigida, and Pleioblastus amarus. Sci Rep 2023; 13:20910. [PMID: 38017106 PMCID: PMC10684524 DOI: 10.1038/s41598-023-48187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
Fungal endophytes in plant leaf mesophyll form mutually beneficial associations through carbon assimilation, synthesis of biologically active chemicals, and enhancement of aesthetic and nutritional value. Here, we compared community structure, diversity, and richness of endophytic fungi in the leaves of three bamboo species, including Phyllostachys edulis (MZ), Bambusa rigida (KZ), and Pleioblastus amarus (YT) via high-throughput Illumina sequencing. In total, 1070 operational taxonomic units (OTUs) were retrieved and classified into 7 phylum, 27 classes, 82 orders, 185 families, 310 genus, and 448 species. Dominant genera were Cladosporium, Trichomerium, Hannaella, Ascomycota, Sporobolomyces, Camptophora and Strelitziana. The highest fungal diversity was observed in Pleioblastus amarus, followed by Bambusa rigida, and Phyllostachys edulis. Comparatively, monopodial species Ph. edulis and sympodial B. rigida, mixed P. amarus revealed the highest richness of endophytic fungi. We retrieved a few biocontrol agents, Sarocladium and Paraconiothyrium, and unique Sporobolomyces, Camptophora, and Strelitziana genera. FUNGuild analysis revealed the surrounding environment (The annual average temperature is between 15 and 25 °C, and the relative humidity of the air is above 83% all year round) as a source of fungal accumulation in bamboo leaves and their pathogenic nature. Our results provide precise knowledge for better managing bamboo forests and pave the way for isolating secondary metabolites and potential bioactive compounds.
Collapse
Affiliation(s)
- Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Jian Zhang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Yu Cai
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Guiling Cao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Lina Meng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Salma A Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Rania M Y Heakel
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Muhammad Ihtisham
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Xianming Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Qin Wei
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Tainfei Dai
- Sichuan Green Food Development Center, Chengdu, 610041, China.
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China.
| | - Ahmed H El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China.
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China.
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
23
|
Moldovan OT, Carrell AA, Bulzu PA, Levei E, Bucur R, Sitar C, Faur L, Mirea IC, Șenilă M, Cadar O, Podar M. The gut microbiome mediates adaptation to scarce food in Coleoptera. ENVIRONMENTAL MICROBIOME 2023; 18:80. [PMID: 37957741 PMCID: PMC10644639 DOI: 10.1186/s40793-023-00537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Beetles are ubiquitous cave invertebrates worldwide that adapted to scarce subterranean resources when they colonized caves. Here, we investigated the potential role of gut microbiota in the adaptation of beetles to caves from different climatic regions of the Carpathians. The beetles' microbiota was host-specific, reflecting phylogenetic and nutritional adaptation. The microbial community structure further resolved conspecific beetles by caves suggesting microbiota-host coevolution and influences by local environmental factors. The detritivore species hosted a variety of bacteria known to decompose and ferment organic matter, suggesting turnover and host cooperative digestion of the sedimentary microbiota and allochthonous-derived nutrients. The cave Carabidae, with strong mandibula, adapted to predation and scavenging of animal and plant remains, had distinct microbiota dominated by symbiotic lineages Spiroplasma or Wolbachia. All beetles had relatively high levels of fermentative Carnobacterium and Vagococcus involved in lipid accumulation and a reduction of metabolic activity, and both features characterize adaptation to caves.
Collapse
Affiliation(s)
- Oana Teodora Moldovan
- Cluj-Napoca Department, Emil Racovita Institute of Speleology, Clinicilor 5, Cluj- Napoca, 400006, Romania.
- Romanian Institute of Science and Technology, V. Fulicea 3, Cluj-Napoca, 400022, Romania.
- Centro Nacional de Investigación sobre la Evolución Humana, CENIEH, Paseo Sierra de Atapuerca 3, Burgos, 09002, Spain.
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, 370 05, Czech Republic
| | - Erika Levei
- Research Institute for Analytical Instrumentation subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Donath 67, Cluj-Napoca, 400293, Romania
| | - Ruxandra Bucur
- Cluj-Napoca Department, Emil Racovita Institute of Speleology, Clinicilor 5, Cluj- Napoca, 400006, Romania
| | - Cristian Sitar
- Cluj-Napoca Department, Emil Racovita Institute of Speleology, Clinicilor 5, Cluj- Napoca, 400006, Romania
- Romanian Institute of Science and Technology, V. Fulicea 3, Cluj-Napoca, 400022, Romania
- Zoological Museum, Babeș Bolyai University, Clinicilor 5, Cluj-Napoca, 400006, Romania
| | - Luchiana Faur
- Romanian Institute of Science and Technology, V. Fulicea 3, Cluj-Napoca, 400022, Romania
- Department of Geospeleology and Paleontology, Emil Racovita Institute of Speleology, 13 Septembrie 13, Bucharest, 050711, Romania
| | - Ionuț Cornel Mirea
- Romanian Institute of Science and Technology, V. Fulicea 3, Cluj-Napoca, 400022, Romania
- Department of Geospeleology and Paleontology, Emil Racovita Institute of Speleology, 13 Septembrie 13, Bucharest, 050711, Romania
| | - Marin Șenilă
- Research Institute for Analytical Instrumentation subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Donath 67, Cluj-Napoca, 400293, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Donath 67, Cluj-Napoca, 400293, Romania
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
24
|
Xia G, Zhu S, Zhao W, Yang X, Sheng L, Mao H. Arbuscular mycorrhizal fungi alter rhizosphere fungal community characteristics of Acorus calamus to improve Cr resistance. PeerJ 2023; 11:e15681. [PMID: 37953782 PMCID: PMC10638908 DOI: 10.7717/peerj.15681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/13/2023] [Indexed: 11/14/2023] Open
Abstract
To investigate changes in fungal community characteristics under different Cr(VI) concentration stresses and the advantages of adding arbuscular mycorrhizal fungi (AMF), we used high throughput sequencing to characterize the fungal communities. Cr(VI) stress reduced rhizosphere soil SOM (soil organic matter) content and AMF addition improved this stress phenomenon. There were significant differences in fungal community changes under different Cr(VI) concentrations. The fungal community characteristics changed through inhibition of fungal metabolic ability, as fungal abundance increased after AMF addition, and the fungal diversity increased under high Cr(VI) concentration. The dominant phyla were members of the Ascomycota, Basidiomycota, Mortierellomycota, and Rozellomycota. Dominant groups relevant to Cr resistance were Ascomycota and Basidiomycota fungi. Moreover, Fungal community characteristics were analyzed using high-throughput sequencing of the cytochrome c metabolic pathway, NADH dehydrogenase, and NADH: ubiquinone reductase and all these functions were enhanced after AMF addition. Therefore, Cr(VI) stress significantly affects fungal community structure, while AMF addition could increase its SOM content, and metabolic capacity, and improve fungal community tolerance to Cr stress. This study contributed to the understanding response of rhizosphere fungal community in AMF-assisted wetland phytoremediation under Cr stress.
Collapse
Affiliation(s)
- Guodong Xia
- Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, Guizhou, China
| | - Sixi Zhu
- Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, Guizhou, China
| | - Wei Zhao
- Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, Guizhou, China
| | - Xiuqing Yang
- Guizhou Minzu University, Guiyang, Guizhou, China
| | - Luying Sheng
- Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, Guizhou, China
| | - Huan Mao
- Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, Guizhou, China
| |
Collapse
|
25
|
Sun T, Zou W, Luo R, Li C, Zhang C, Yu H. Compositional and functional diversities of core microbial communities in wild and artificial Ophiocordyceps sinensis. Int Microbiol 2023; 26:791-806. [PMID: 36781511 DOI: 10.1007/s10123-023-00333-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Ophiocordyceps sinensis is an entomogenous fungus, and its wildlife resource is very insufficient, as it is widely traded as a natural health product. The artificial culture of O. sinensis is a remarkably effective progress in addressing the problem. Adding microorganisms may improve the process of artificial culture. To analyse the composition and function of the microbial community, high-throughput sequencing was used to explore the microbial community inhabiting wild and artificial O. sinensis and surrounding soil. Significant differences in the microbial communities across groups were revealed by the PCoA analysis. There were 51 fungal and 598 bacterial operational taxonomic units only being assigned to the fruiting bodies of wild O. sinensis (Wf) by the Venn diagram. From the LEfSe analysis, 39 fungal taxa and 75 bacterial taxa were enriched in Wf. Enzymes that were highly abundant in the core fungi were involved in physiological metabolic processes. Metabolic pathways were dominated in the core bacteria, followed by environmental information processing. The core microorganisms, with the marked differences between Wf and the other three groups, were essential for wild O. sinensis. Functional analysis verified their involvement in the growth, development, and infection of O. sinensis. These core microorganisms may be a valuable resource for the artificial culture of O. sinensis.
Collapse
Affiliation(s)
- Tao Sun
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Sciences, Yunnan University, Kunming, 650504, China
| | - Weiqiu Zou
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Sciences, Yunnan University, Kunming, 650504, China
| | - Run Luo
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Sciences, Yunnan University, Kunming, 650504, China
| | - Chengpeng Li
- School of Life Sciences, Yunnan University, Kunming, 650504, China
| | - Canming Zhang
- YiKangBao Biotech Co., Ltd, Shangri-La 674400, China
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China.
| |
Collapse
|
26
|
Hirata K, Asahi T, Kataoka K. Spatial and Sexual Divergence of Gut Bacterial Communities in Field Cricket Teleogryllus occipitalis (Orthoptera: Gryllidae). MICROBIAL ECOLOGY 2023; 86:2627-2641. [PMID: 37479827 PMCID: PMC10640434 DOI: 10.1007/s00248-023-02265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
The insect gut is colonized by microbes that confer a myriad of beneficial services to the host, including nutritional support, immune enhancement, and even influence behavior. Insect gut microbes show dynamic changes due to the gut compartments, sex, and seasonal and geographic influences. Crickets are omnivorous hemimetabolous insects that have sex-specific roles, such as males producing chirping sounds for communication and exhibiting fighting behavior. However, limited information is available on their gut bacterial communities, hampering studies on functional compartmentalization of the gut and sex-specific roles of the gut microbiota in omnivorous insects. Here, we report a metagenomic analysis of the gut bacteriome of the field cricket Teleogryllus occipitalis using 16S rRNA V3-V4 amplicon sequencing to identify sex- and compartment-dependent influences on its diversity and function. The structure of the gut microbiota is strongly influenced by their gut compartments rather than sex. The species richness and diversity analyses revealed large difference in the bacterial communities between the gut compartments while minor differences were observed between the sexes. Analysis of relative abundance and predicted functions revealed that nitrogen- and oxygen-dependent metabolism and amino acid turnover were subjected to functional compartmentalization in the gut. Comparisons between the sexes revealed differences in the gut microbiota, reflecting efficiency in energy use, including glycolytic and carbohydrate metabolism, suggesting a possible involvement in egg production in females. This study provides insights into the gut compartment dependent and sex-specific roles of host-gut symbiont interactions in crickets and the industrial production of crickets.
Collapse
Affiliation(s)
- Kazuya Hirata
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toru Asahi
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
- Comprehensive Research Organization, Waseda University, Tokyo, Japan.
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan.
| | - Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, Tokyo, Japan.
| |
Collapse
|
27
|
El Yamlahi Y, Bel Mokhtar N, Maurady A, Britel MR, Batargias C, Mutembei DE, Nyingilili HS, Malulu DJ, Malele II, Asimakis E, Stathopoulou P, Tsiamis G. Characterization of the Bacterial Profile from Natural and Laboratory Glossina Populations. INSECTS 2023; 14:840. [PMID: 37999039 PMCID: PMC10671886 DOI: 10.3390/insects14110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Tsetse flies (Glossina spp.; Diptera: Glossinidae) are viviparous flies that feed on blood and are found exclusively in sub-Saharan Africa. They are the only cyclic vectors of African trypanosomes, responsible for human African trypanosomiasis (HAT) and animal African trypanosomiasis (AAT). In this study, we employed high throughput sequencing of the 16S rRNA gene to unravel the diversity of symbiotic bacteria in five wild and three laboratory populations of tsetse species (Glossina pallidipes, G. morsitans, G. swynnertoni, and G. austeni). The aim was to assess the dynamics of bacterial diversity both within each laboratory and wild population in relation to the developmental stage, insect age, gender, and location. Our results indicated that the bacterial communities associated with the four studied Glossina species were significantly influenced by their region of origin, with wild samples being more diverse compared to the laboratory samples. We also observed that the larval microbiota was significantly different than the adults. Furthermore, the sex and the species did not significantly influence the formation of the bacterial profile of the laboratory colonies once these populations were kept under the same rearing conditions. In addition, Wigglesworthia, Acinetobacter, and Sodalis were the most abundant bacterial genera in all the samples, while Wolbachia was significantly abundant in G. morsitans compared to the other studied species. The operational taxonomic unit (OTU) co-occurrence network for each location (VVBD insectary, Doma, Makao, and Msubugwe) indicated a high variability between G. pallidipes and the other species in terms of the number of mutual exclusion and copresence interactions. In particular, some bacterial genera, like Wigglesworthia and Sodalis, with high relative abundance, were also characterized by a high degree of interactions.
Collapse
Affiliation(s)
- Youssef El Yamlahi
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
- Faculty of Sciences and Technics of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - Naima Bel Mokhtar
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
- Faculty of Sciences and Technics of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco
| | - Mohammed R. Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece;
| | - Delphina E. Mutembei
- Vector & Vector Borne Diseases, Tanzania Veterinary Laboratory Agency (TVLA), Tanga P.O. Box 1026, Tanzania; (D.E.M.); (H.S.N.); (D.J.M.)
| | - Hamisi S. Nyingilili
- Vector & Vector Borne Diseases, Tanzania Veterinary Laboratory Agency (TVLA), Tanga P.O. Box 1026, Tanzania; (D.E.M.); (H.S.N.); (D.J.M.)
| | - Deusdedit J. Malulu
- Vector & Vector Borne Diseases, Tanzania Veterinary Laboratory Agency (TVLA), Tanga P.O. Box 1026, Tanzania; (D.E.M.); (H.S.N.); (D.J.M.)
| | - Imna I. Malele
- Directorate of Research and Technology Development, TVLA, Dar Es Salaam P.O. Box 9254, Tanzania;
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| |
Collapse
|
28
|
Quan J, Wang Y, Cheng X, Li C, Yuan Z. Revealing the effects of fermented food waste on the growth and intestinal microorganisms of black soldier fly (Hermetia illucens) larvae. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:580-589. [PMID: 37820415 DOI: 10.1016/j.wasman.2023.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
The escalating global food waste (FW) issues necessitate sustainable management strategies. Black soldier fly larvae (BSFL) offer a promising solution for FW management by converting organic matter into insect protein. However, the fermentation of FW during production, collection, and transportation induces changes in FW's physicochemical properties and bacterial communities, requiring further exploration of its impact on BSFL growth and gut microbiota. The results showed that feeding FW fermented for different durations (0-10 d) slightly affected the BSFL yield. Feeding FW fermented for 8 d, characterized by a lower pH and higher biodiversity, resulted in a slight increase in larval biomass (222 mg/larvae). Nearly all groups harvested the peak larval biomass after 10 day's bioconversion. The fermentation significantly altered the microbial community of FW, with an increase in the abundance of unclassified_f_Clostridiaceae and a decrease in Lactobacillus abundance. As bioconversion progressed, intricate and mutualistic microbial interactions likely occurred between the BSFL gut and FW substrate, restructuring each other's microbial community. Specifically, the abundance of unclassified_f_Clostridiaceae increased in the BSFL gut, while its abundance in the initial larval gut was extremely low (<1 %). Despite the substrate microbial changes and interactions, a stable core gut microbiota was identified across all BSFL samples, primarily composed of nine genera dominated by Enterococcus and Klebsiella. This core gut microbiome may play a crucial role in facilitating the adaptation of BSFL to various environmental conditions and maintaining efficient FW bioconversion. These findings enhance our understanding of the role of BSFL gut microbiota in FW bioconversion.
Collapse
Affiliation(s)
- Jiawei Quan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiang Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 212200, China
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 212200, China; Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
29
|
Gogoi P, Boruah JLH, Yadav A, Debnath R, Saikia R. Comparative seasonal analysis of Eri silkworm (Samia ricini Donovan) gut composition: implications for lignocellulose degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109198-109213. [PMID: 37768488 DOI: 10.1007/s11356-023-29893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Conversion of biomass such as lignocelluloses to an alternative energy source can contribute to sustainable development. Recently, biomass-degrading enzymes are reported to be common resources in insect-microbe interacting systems. Northeast India harbors ample sericigenous insect resources which are exploited for their silk products. Samia ricini Donovan is an economically important poly-phytophagous silkmoth capable of digesting foliage from different plant species, suggesting the versatility of a robust gut system. Here, a gut bacterial profile was determined by 16S rRNA gene characterization across the holometabolous life cycle during the summer and winter seasons, revealing 3 phyla, 13 families, and 22 genera. Comparative analysis among the seasonal gut isolates revealed a high diversity in summer, predominated by the genus Bacillus due to its high occurrence in all developmental stages. Shannon's diversity index demonstrated the second and fourth instars of summer as well as the fifth instar of winter to be relatively better developmental stages for gut bacteria assembly. Bacterial community shifts in concert to host developmental changes were found to be apparent between early instars and late instars in summer, which differed from those of winter. Forty-three and twenty-nine gut bacterial isolates were found to be cellulolytic and xylanolytic enzyme producers, respectively. The present results illustrate the gut microbiota of S. ricini over the seasons and support the holometabolous life cycle effect as the most likely factor shaping the gut bacterial microbiota. These findings may provide leads for the development of new cleaner and environmentally friendly lignocellulose-degrading enzymes.
Collapse
Affiliation(s)
- Parishmita Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research, Uttar Pradesh, Kamala Nehru Nagar, Sector 19, Ghaziabad, 201002, India
| | - Jyoti Lakshmi Hati Boruah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Archana Yadav
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Rajal Debnath
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, 560035, India
| | - Ratul Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
- Academy of Scientific and Innovative Research, Uttar Pradesh, Kamala Nehru Nagar, Sector 19, Ghaziabad, 201002, India.
| |
Collapse
|
30
|
Sun Z, Liu Y, Hou A, Han A, Yan C, Sun J. Transcriptome and gut microbiota analyses reveal a possible mechanism underlying rifampin-mediated interruption of the larval development of chironomid Propsilocerus akamusi (Diptera: Chironomidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115467. [PMID: 37716071 DOI: 10.1016/j.ecoenv.2023.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Chironomids, the most abundant insect group found in freshwater habitats, are known to be pollution tolerate and serve as important bioindicators of contaminant stress. Gut microbiota has recently been shown to potentially provide a number of beneficial services to insect hosts. However, the antibiotic-mediated interruption of chironomid gut microbial community and its subsequent influence on host body are still unclear. In the present study, the effects of rifampin on chironomid larvae were investigated at both transcriptome and microbiome level to assess the relationship between gut bacteria and associated genes. Our data indicated that the rifampin-induced imbalance of gut ecosystem could inhibit the development of chironomid larvae via decreasing the body weight, body length and larval eclosion rate during 96-h treatment. Both the community structure and taxonomic composition were significantly altered due to the invasion of rifampin in digestive tracts. The relative abundance of phylum Deferribacterota and Bacteroidota were dramatically increased with rifampin exposure. A set of genes involved in amino acid synthesis as well as xenobiotic metabolism pathways were greatly changed and proved to have tight correlation with certain genus. Bacterial genus Tyzzerella was positively correlated with detoxifying PaCYP6GF1 and PaCYP9HL1 genes. This study provides a reference for understanding the environmental risks of antibiotic and aims to accelerate new biological insights into the effects of antibiotic on the fitness of chironomids and into the microbe mediated-regulatory mechanism of aquatic insects.
Collapse
Affiliation(s)
- Zeyang Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Yue Liu
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Aoran Hou
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Anqi Han
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Chuncai Yan
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.
| | - Jinsheng Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
31
|
Liu Y, Liu J, Zhang X, Yun Y. Diversity of Bacteria Associated with Guts and Gonads in Three Spider Species and Potential Transmission Pathways of Microbes within the Same Spider Host. INSECTS 2023; 14:792. [PMID: 37887804 PMCID: PMC10607309 DOI: 10.3390/insects14100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Microbial symbiosis plays a crucial role in the ecological and evolutionary processes of animals. It is well known that spiders, with their unique and diverse predatory adaptations, assume an indispensable role in maintaining ecological balance and the food chain. However, our current understanding of spider microbiomes remains relatively limited. The gut microbiota and gonad microbiota of spiders can both potentially influence their physiology, ecology, and behavior, including aspects such as digestion, immunity, reproductive health, and reproductive behavior. In the current study, based on high-throughput sequencing of the 16S rRNA V3 and V4 regions, we detected the gut and gonad microbiota communities of three spider species captured from the same habitat, namely, Eriovixia cavaleriei, Larinioides cornutus, and Pardosa pseudoannulata. In these three species, we observed that, at the phylum level classification, the gut and gonad of E. cavaleriei are primarily composed of Proteobacteria, while those of L. cornutus and P. pseudoannulata are primarily composed of Firmicutes. At the genus level of classification, we identified 372 and 360 genera from the gut and gonad bacterial communities. It is noteworthy that the gut and gonad bacterial flora of E. cavaleriei and L. cornutus were dominated by Wolbachia and Spiroplasma. Results show that there were no differences in microbial communities between females and males of the same spider species. Furthermore, there is similarity between the gut and ovary microbial communities of female spiders, implying a potential avenue for microbial transmission between the gut and gonad within female spiders. By comprehensively studying these two microbial communities, we can establish the theoretical foundation for exploring the relationship between gut and gonad microbiota and their host, as well as the mechanisms through which microbes exert their effects.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jia Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaopan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
- Centre for Behavioral Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
32
|
Fu J, Wang J, Huang X, Guan B, Feng Q, Deng H. Composition and diversity of gut microbiota across developmental stages of Spodoptera frugiperda and its effect on the reproduction. Front Microbiol 2023; 14:1237684. [PMID: 37789854 PMCID: PMC10543693 DOI: 10.3389/fmicb.2023.1237684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Spodoptera frugiperda is a serious world-wide agricultural pest. Gut microorganisms play crucial roles in growth, development, immunity and behavior of host insects. Methods Here, we reported the composition of gut microbiota in a laboratory-reared strain of S. frugiperda using 16S rDNA sequencing and the effects of gut microbiota on the reproduction. Results Proteobacteria and Firmicutes were the predominant bacteria and the taxonomic composition varied during the life cycle. Alpha diversity indices indicated that the eggs had higher bacterial diversity than larvae, pupae and adults. Furthermore, eggs harbored a higher abundance of Ralstonia, Sediminibacterium and microbes of unclassified taxonomy. The dynamics changes in bacterial communities resulted in differences in the metabolic functions of the gut microbiota during development. Interestingly, the laid eggs in antibiotic treatment groups did not hatch much due to the gut dysbacteriosis, the results showed gut microbiota had a significant impact on the male reproduction. Discussion Our findings provide new perspectives to understand the intricate associations between microbiota and host, and have value for the development of S. frugiperda management strategies focusing on the pest gut microbiota.
Collapse
Affiliation(s)
- Junrui Fu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Junhan Wang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ximei Huang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Boyang Guan
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qili Feng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Huimin Deng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
33
|
Castañeda-Molina Y, Marulanda-Moreno SM, Saldamando-Benjumea C, Junca H, Moreno-Herrera CX, Cadavid-Restrepo G. Microbiome analysis of Spodoptera frugiperda (Lepidoptera, Noctuidae) larvae exposed to Bacillus thuringiensis (Bt) endotoxins. PeerJ 2023; 11:e15916. [PMID: 37719127 PMCID: PMC10503500 DOI: 10.7717/peerj.15916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/27/2023] [Indexed: 09/19/2023] Open
Abstract
Background Spodoptera frugiperda (or fall armyworm, FAW) is a polyphagous pest native to Western Hemisphere and recently discovered in the Eastern Hemisphere. In Colombia, S. frugiperda is recognized as a pest of economic importance in corn. The species has genetically differentiated into two host populations named "corn" and "rice" strains. In 2012, a study made in central Colombia demonstrated that the corn strain is less susceptible to Bacillus thuringiensis (Bt) endotoxins (Cry1Ac and Cry 1Ab) than the rice strain. In this country, Bt transgenic corn has been extensively produced over the last 15 years. Since gut microbiota plays a role in the physiology and immunity of insects, and has been implicated in promoting the insecticidal activity of Bt, in this study an analysis of the interaction between Bt endotoxins and FAW gut microbiota was made. Also, the detection of endosymbionts was performed here, as they might have important implications in the biological control of a pest. Methods The composition and diversity of microbiomes associated with larval specimens of S. frugiperda(corn strain) was investigated in a bioassay based on six treatments in the presence/absence of Bt toxins and antibiotics (Ab) through bacterial isolate analyses and by high throughput sequencing of the bacterial 16S rRNA gene. Additionally, species specific primers were used, to detect endosymbionts from gonads in S. frugiperda corn strain. Results Firmicutes, Proteobacteria and Bacteroidota were the most dominant bacterial phyla found in S. frugiperda corn strain. No significant differences in bacteria species diversity and richness among the six treatments were found. Two species of Enterococcus spp., E. mundtii and E. casseliflavus were detected in treatments with Bt and antibiotics, suggesting that they are less susceptible to both of them. Additionally, the endosymbiont Arsenophonus was also identified on treatments in presence of Bt and antibiotics. The results obtained here are important since little knowledge exists about the gut microbiota on this pest and its interaction with Bt endotoxins. Previous studies made in Lepidoptera suggest that alteration of gut microbiota can be used to improve the management of pest populations, demonstrating the relevance of the results obtained in this work.
Collapse
Affiliation(s)
- Yuliana Castañeda-Molina
- Departamento de Biociencias/Grupo de investigación Microbiodiversidad y Bioprospección/Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Sandra María Marulanda-Moreno
- Departamento de Biociencias/Grupo de investigación Microbiodiversidad y Bioprospección/Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Clara Saldamando-Benjumea
- Departamento de Biociencias/Grupo de Biotecnologia Vegetal UNALMED-CIB/Laboratorio de Ecología y Evolución de Insectos, Universidad Nacional de Colombia, Medellin, Antioquia, Colombia
| | - Howard Junca
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Div. Ecogenomics & Holobionts, Microbiomas Foundation, Chía, Cundinamarca, Colombia
| | - Claudia Ximena Moreno-Herrera
- Departamento de Biociencias/Grupo de investigación Microbiodiversidad y Bioprospección/Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Gloria Cadavid-Restrepo
- Departamento de Biociencias/Grupo de investigación Microbiodiversidad y Bioprospección/Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| |
Collapse
|
34
|
Peng Y, Wen S, Wang G, Zhang X, Di T, Du G, Chen B, Zhang L. Reconstruction of Gut Bacteria in Spodoptera frugiperda Infected by Beauveria bassiana Affects the Survival of Host Pest. J Fungi (Basel) 2023; 9:906. [PMID: 37755014 PMCID: PMC10532432 DOI: 10.3390/jof9090906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Spodoptera frugiperda (Lepidoptera: Noctuidae) is a migratory agricultural pest that is devastating on a global scale. Beauveria bassiana is a filamentous entomopathogenic fungus that has a strong pathogenic effect on Lepidoptera pests but little is known about the microbial community in the host gut and the dominant populations in fungus-infected insects. B. bassiana AJS91881 was isolated and identified from the infected larvae of Spodoptera litura. The virulence of AJS91881 to the eggs, larvae, pupae and adults of S. frugiperda was measured. Moreover, the gut microbial community diversity of healthy and fungus-infected insects was analyzed. Our results showed that after treatment with B. bassiana AJS91881, the egg hatching rate, larval survival rate and adult lifespan of the insects were significantly reduced, and the pupae rigor rate was significantly increased compared to that of the control group. Additionally, the gut microbial community was reconstructed after B. bassiana infection. At the phylum and genus level, the relative abundance of the Proteobacteria and Serratia increased significantly in the B. bassiana treatment group. The KEGG function prediction results showed that fungal infection affected insect gut metabolism, environmental information processing, genetic information processing, organism systems and cellular processes. Fungal infection was closely related to the metabolism of various substances in the insect gut. Serratia marcescens was the bacterium with the highest relative abundance after infection by B. bassiana; intestinal bacteria S. marcescens inhibited the infection of insect fungi B. bassiana against the S. frugiperda. The presence of gut bacteria also significantly reduced the virulence of the fungi against the insects when compared to the group with the larvae fed antibiotics that were infected with fungal suspension (Germfree, GF) and healthy larvae that were infected with fungal suspension prepared with an antibiotic solution (+antibiotic). In conclusion, the reconstruction of the insect intestinal bacterial community is an indispensable link for understanding the pathogenicity of B. bassiana against S. frugiperda. Most importantly, in the later stage of fungal infection, the increased abundance of S. marcescens in the insect intestine inhibited the virulence of B. bassiana to some extent. The findings aid in understanding changes in the gut microbiota during the early stages of entomopathogenic fungal infection of insects and the involvement of insect gut microbes in host defense mediated by pathogenic fungal infection. This study is also conducive to understanding the interaction between entomopathogenic fungi, hosts and gut microbes, and provides a new idea for the joint use of entomopathogenic fungi and gut bacteria to control pests.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.P.); (S.W.); (G.W.); (X.Z.); (T.D.); (G.D.)
| | - Limin Zhang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.P.); (S.W.); (G.W.); (X.Z.); (T.D.); (G.D.)
| |
Collapse
|
35
|
Qu H, Long Y, Wang X, Wang K, Chen L, Yang Y, Chen L. Diversity and Abundance of Bacterial and Fungal Communities Inhabiting Camellia sinensis Leaf, Rhizospheric Soil, and Gut of Agriophara rhombata. Microorganisms 2023; 11:2188. [PMID: 37764032 PMCID: PMC10536862 DOI: 10.3390/microorganisms11092188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Agriophara rhombata is a tea leaf moth that is considered one of the most destructive pests of Camellia sinensis (tea plant). Several recent studies have shown that many insects acquire part of the microbiome from their host and soil, but the pattern and diversity of their microbiome have not been clearly demonstrated. The present study aimed to investigate the bacterial and fungal communities present in the rhizospheric soil and leaf of tea plant compared to the gut of tea moth at different developmental stages (larvae, pupae, adult female and male) using Illumina MiSeq technology. Alpha diversity (Shannon index) showed higher (p < 0.05) bacterial and fungal diversity in soil samples than in leaf and tea moth larvae, pupae, and adult gut samples. However, during different developmental stages of tea moth, bacterial and fungal diversity did not differ (p > 0.05) between larvae, pupae, female, and male guts. Beta diversity also revealed more distinct bacterial and fungal communities in soil and leaf samples compared with tea moth gut samples, which had a more similar microbiome. Furthermore, Proteobacteria, Firmicutes, and Tenericutes were detected as the dominant bacterial phyla, while Ascomycota, Basidiomycota, and Mortierellomycota were the most abundant fungal phyla among all groups, but their relative abundance was comparatively higher (p < 0.05) in soil and leaf samples compared to tea moth gut samples. Similarly, Klebsiella, Streptophyta, and Enterococcus were the top three bacterial genera, while Candida, Aureobasidium, and Strelitziana were the top three fungal genera, and their relative abundance varied significantly (p < 0.05) among all groups. The KEGG analysis also revealed significantly higher (p < 0.5) enrichment of the functional pathways of bacterial communities in soil and leaf samples than in tea moth gut samples. Our study concluded that the bacterial and fungal communities of soil and tea leaves were more diverse and were significantly different from the tea moth gut microbiome at different developmental stages. Our findings contribute to our understanding of the gut microbiota of the tea moth and its potential application in the development of pest management techniques.
Collapse
Affiliation(s)
- Hao Qu
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - Yaqin Long
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - Xuesong Wang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - Kaibo Wang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - Long Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| | - Yunqiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230000, China
| | - Linbo Chen
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650000, China
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China
| |
Collapse
|
36
|
Kong HG, Son JS, Chung JH, Lee S, Kim JS, Ryu CM. Population Dynamics of Intestinal Enterococcus Modulate Galleria mellonella Metamorphosis. Microbiol Spectr 2023; 11:e0278022. [PMID: 37358445 PMCID: PMC10434003 DOI: 10.1128/spectrum.02780-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 05/24/2023] [Indexed: 06/27/2023] Open
Abstract
Microbes found in the digestive tracts of insects are known to play an important role in their host's behavior. Although Lepidoptera is one of the most varied insect orders, the link between microbial symbiosis and host development is still poorly understood. In particular, little is known about the role of gut bacteria in metamorphosis. Here, we explored gut microbial biodiversity throughout the life cycle of Galleria mellonella, using amplicon pyrosequencing with the V1 to V3 regions, and found that Enterococcus spp. were abundant in larvae, while Enterobacter spp. were predominant in pupae. Interestingly, eradication of Enterococcus spp. from the digestive system accelerated the larval-to-pupal transition. Furthermore, host transcriptome analysis demonstrated that immune response genes were upregulated in pupae, whereas hormone genes were upregulated in larvae. In particular, regulation of antimicrobial peptide production in the host gut correlated with developmental stage. Certain antimicrobial peptides inhibited the growth of Enterococcus innesii, a dominant bacterial species in the gut of G. mellonella larvae. Our study highlights the importance of gut microbiota dynamics on metamorphosis as a consequence of the active secretion of antimicrobial peptides in the G. mellonella gut. IMPORTANCE First, we demonstrated that the presence of Enterococcus spp. is a driving force for insect metamorphosis. RNA sequencing and peptide production subsequently revealed that antimicrobial peptides targeted against microorganisms in the gut of Galleria mellonella (wax moth) did not kill Enterobacteria species, but did kill Enterococcus species, when the moth was at a certain stage of growth, and this promoted moth pupation.
Collapse
Affiliation(s)
- Hyun Gi Kong
- Infection Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Plant Medicine, Chungbuk National University, Cheongju, South Korea
| | - Jin-Soo Son
- Infection Disease Research Center, KRIBB, Daejeon, South Korea
| | - Joon-Hui Chung
- Infection Disease Research Center, KRIBB, Daejeon, South Korea
| | - Soohyun Lee
- Infection Disease Research Center, KRIBB, Daejeon, South Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Choong-Min Ryu
- Infection Disease Research Center, KRIBB, Daejeon, South Korea
| |
Collapse
|
37
|
Roy A, Houot B, Kushwaha S, Anderson P. Impact of transgenerational host switch on gut bacterial assemblage in generalist pest, Spodoptera littoralis (Lepidoptera: Noctuidae). Front Microbiol 2023; 14:1172601. [PMID: 37520373 PMCID: PMC10374326 DOI: 10.3389/fmicb.2023.1172601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
Diet composition is vital in shaping gut microbial assemblage in many insects. Minimal knowledge is available about the influence of transgenerational diet transition on gut microbial community structure and function in polyphagous pests. This study investigated transgenerational diet-induced changes in Spodoptera littoralis larval gut bacteriome using 16S ribosomal sequencing. Our data revealed that 88% of bacterial populations in the S. littoralis larval gut comprise Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. The first diet transition experiment from an artificial diet (F0) to a plant diet (F1), cabbage and cotton, caused an alteration of bacterial communities in the S. littoralis larval gut. The second transgenerational diet switch, where F1 larvae feed on the same plant in the F2 generation, displayed a significant variation suggesting further restructuring of the microbial communities in the Spodoptera larval gut. F1 larvae were also challenged with the plant diet transition at the F2 generation (cabbage to cotton or cotton to cabbage). After feeding on different plant diets, the microbial assemblage of F2 larvae pointed to considerable differences from other F2 larvae that continued on the same diet. Our results showed that S. littoralis larval gut bacteriome responds rapidly and inexplicably to different diet changes. Further experiments must be conducted to determine the developmental and ecological consequences of such changes. Nevertheless, this study improves our perception of the impact of transgenerational diet switches on the resident gut bacteriome in S. littoralis larvae and could facilitate future research to understand the importance of symbiosis in lepidopteran generalists better.
Collapse
Affiliation(s)
- Amit Roy
- Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Suchdol, Czechia
| | - Benjamin Houot
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sandeep Kushwaha
- Department of Bioinformatics, National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
38
|
Zeng J, An M, Tian W, Wang K, Du B, Li P. Sacha inchi albumin delays skin-aging by alleviating inflammation, oxidative stress and regulating gut microbiota in d-galactose induced-aging mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4470-4480. [PMID: 36919865 DOI: 10.1002/jsfa.12555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/02/2023] [Accepted: 03/15/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Sacha inchi albumin exhibits considerable functional activity with notable anti-inflammatory and antioxidation properties, which could delay skin aging. However, its underlying mechanisms for delaying skin aging have not been elucidated. The aim of the present study was to investigate the anti-skin-aging effect of sacha inchi albumin (SIA) in d-galactose induced-aging mice. RESULTS Sacha inchi albumin improved moisture content, collagen level, and the state of aged skin in rats. Sacha inchi albumin intervention markedly increased the skin antioxidant enzymatic activities including those of glutathione peroxidase, and catalase, but decreased the malondialdehyde content. It also regulated inflammation by reducing the level of tumor necrosis factor-α (TNF-α) and increasing the level of interleukin-6 (IL-6). Administration of SIA also increased the expression level of collagen I and III, increased the expression of tissue inhibitor of metalloprotease-1, and decreased the expression of metalloproteinases. Sacha inchi albumin can also activate the transforming growth factor-β (TGF-β)/Smad pathway. Meanwhile, 16S rRNA sequencing analysis revealed that SIA treatment altered the composition of microbiota, and increased the relative abundance of Lactobacillus, but decreased the relative abundance of Alloprevotella and Helicobacter, etc. Helicobacter was positively associated with malondialdehyde (MDA) content and was negatively related to IL-6. CONCLUSION Sacha inchi albumin exhibits excellent anti-skin-aging effect, which provide a new insight for the development of functional sacha inchi albumin. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jieyu Zeng
- College of Food Science, South China Agricultural University, Guangzhou, 510640, China
| | - Miaoqing An
- College of Food Science, South China Agricultural University, Guangzhou, 510640, China
| | - Wenni Tian
- College of Food Science, South China Agricultural University, Guangzhou, 510640, China
| | - Kun Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510640, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, 510640, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, 510640, China
| |
Collapse
|
39
|
Huang Q, Shan HW, Chen JP, Wu W. Diversity and Dynamics of Bacterial Communities in the Digestive and Excretory Systems across the Life Cycle of Leafhopper, Recilia dorsalis. INSECTS 2023; 14:545. [PMID: 37367361 DOI: 10.3390/insects14060545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Recilia dorsalis is a notorious rice pest that harbors numerous symbiotic microorganisms. However, the structure and dynamics of bacterial communities in various tissues of R. dorsalis throughout its life cycle remain unclear. In this study, we used high-throughput sequencing technology to analyze the bacterial communities in the digestive, excretory, and reproductive systems of R. dorsalis at different developmental stages. The results showed that the initial microbiota in R. dorsalis mostly originated from vertical transmission via the ovaries. After the second-instar nymphs, the diversity of bacterial communities in the salivary gland and Malpighian tubules gradually decreased, while the midgut remained stable. Principal coordinate analysis revealed that the structure of bacterial communities in R. dorsalis was primarily influenced by the developmental stage, with minimal variation in bacterial species among different tissues but significant variation in bacterial abundance. Tistrella was the most abundant bacterial genus in most developmental stages, followed by Pantoea. The core bacterial community in R. dorsalis continuously enriched throughout development and contributed primarily to food digestion and nutrient supply. Overall, our study enriches our knowledge of the bacterial community associated with R. dorsalis and provides clues for developing potential biological control technologies against this rice pest.
Collapse
Affiliation(s)
- Qiuyan Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hong-Wei Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
40
|
Moldovan OT, Carrell AA, Bulzu PA, Levei E, Bucur R, Sitar C, Faur L, Mirea IC, Enilă M, Cadar O, Podar M. The gut microbiome mediates adaptation to scarce food in Coleoptera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540564. [PMID: 37214959 PMCID: PMC10197664 DOI: 10.1101/2023.05.12.540564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Beetles are ubiquitous cave invertebrates worldwide that adapted to scarce subterranean resources when they colonized caves. Here, we investigated the potential role of gut microbiota in the adaptation of beetles to caves from different climatic regions of the Carpathians. The beetles' microbiota was host-specific, reflecting phylogenetic and nutritional adaptation. The microbial community structure further resolved conspecific beetles by caves suggesting microbiota-host coevolution and influences by local environmental factors. The detritivore species hosted a variety of bacteria known to decompose and ferment organic matter, suggesting turnover and host cooperative digestion of the sedimentary microbiota and allochthonous-derived nutrients. The cave Carabidae, with strong mandibulae adapted to predation and scavenging of animal and plant remains, had distinct microbiota dominated by symbiotic lineages Spiroplasma or Wolbachia . All beetles had relatively high levels of fermentative Carnobacterium and Vagococcus involved in lipid accumulation and a reduction of metabolic activity, and both features characterize adaptation to caves.
Collapse
|
41
|
Gao H, Jiang S, Wang Y, Hu M, Xue Y, Cao B, Dou H, Li R, Yi X, Jiang L, Zhang B, Li Y. Comparison of gut bacterial communities of Hyphantriacunea Drury (Lepidoptera, Arctiidae), based on 16S rRNA full-length sequencing. Biodivers Data J 2023; 11:e98143. [PMID: 38327372 PMCID: PMC10848398 DOI: 10.3897/bdj.11.e98143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/14/2023] [Indexed: 02/09/2024] Open
Abstract
There are a large number of microorganisms in the gut of insects, which form a symbiotic relationship with the host during the long-term co-evolution process and have a significant impact on the host's nutrition, physiology, development, immunity, stress tolerance and other aspects. However, the composition of the gut microbes of Hyphantriacunea remains unclear. In order to investigate the difference and diversity of intestinal microbiota of H.cunea larvae feeding on different host plants, we used PacBio sequencing technology for the first time to sequence the 16S rRNA full-length gene of the intestinal microbiota of H.cunea. The species classification, β diversity and function of intestinal microflora of the 5th instar larvae of four species of H.cunea feeding on apricot, plum, redbud and Chinese ash were analysed. The results showed that a total of nine phyla and 65 genera were identified by PacBio sequencing, amongst which Firmicutes was the dominant phylum and Enterococcus was the dominant genus, with an average relative abundance of 59.29% and 52.16%, respectively. PERMANOVA analysis and cluster heat map showed that the intestinal microbiomes of H.cunea larvae, fed on different hosts, were significantly different. LEfSe analysis confirmed the effect of host diet on intestinal community structure and PICRUSt2 analysis showed that most of the predictive functions were closely related to material transport and synthetic, metabolic and cellular processes. The results of this study laid a foundation for revealing the interaction between the intestinal microorganisms of H.cunea and its hosts and provided ideas for exploring new green prevention and control strategies of H.cunea.
Collapse
Affiliation(s)
- Hui Gao
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
- School of Life Sciences, Shandong University, Qingdao, ChinaSchool of Life Sciences, Shandong UniversityQingdaoChina
| | - Sai Jiang
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Yinan Wang
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Meng Hu
- Forestry Protection and Development Service Center of Jining City, Jining, ChinaForestry Protection and Development Service Center of Jining CityJiningChina
| | - Yuyan Xue
- Qufu Bureau of Natural Resources and Planning, Qufu, ChinaQufu Bureau of Natural Resources and PlanningQufuChina
| | - Bing Cao
- Animal Husbandry and Fisheries Development Centre of Tengzhou, Tengzhou, ChinaAnimal Husbandry and Fisheries Development Centre of TengzhouTengzhouChina
| | - Hailong Dou
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Ran Li
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Lina Jiang
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Bin Zhang
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia Autonomous Region, ChinaCollege of Life Sciences and Technology, Inner Mongolia Normal UniversityHohhot, Inner Mongolia Autonomous RegionChina
| | - Yujian Li
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| |
Collapse
|
42
|
Li Y, Chang L, Xu K, Zhang S, Gao F, Fan Y. Research Progresses on the Function and Detection Methods of Insect Gut Microbes. Microorganisms 2023; 11:1208. [PMID: 37317182 DOI: 10.3390/microorganisms11051208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
The insect gut is home to an extensive array of microbes that play a crucial role in the digestion and absorption of nutrients, as well as in the protection against pathogenic microorganisms. The variety of these gut microbes is impacted by factors such as age, diet, pesticides, antibiotics, sex, and caste. Increasing evidence indicates that disturbances in the gut microbiota can lead to compromised insect health, and that its diversity has a far-reaching impact on the host's health. In recent years, the use of molecular biology techniques to conduct rapid, qualitative, and quantitative research on the host intestinal microbial diversity has become a major focus, thanks to the advancement of metagenomics and bioinformatics technologies. This paper reviews the main functions, influencing factors, and detection methods of insect gut microbes, in order to provide a reference and theoretical basis for better research utilization of gut microbes and management of harmful insects.
Collapse
Affiliation(s)
- Yazi Li
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Liyun Chang
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Ke Xu
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Shuhong Zhang
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Fengju Gao
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Yongshan Fan
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| |
Collapse
|
43
|
Oliveira NC, Rodrigues PAP, Cônsoli FL. Host-Adapted Strains of Spodoptera frugiperda Hold and Share a Core Microbial Community Across the Western Hemisphere. MICROBIAL ECOLOGY 2023; 85:1552-1563. [PMID: 35426077 DOI: 10.1007/s00248-022-02008-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/04/2022] [Indexed: 05/10/2023]
Abstract
The fall armyworm Spodoptera frugiperda is an important polyphagous agricultural pest in the Western Hemisphere and currently invasive to countries of the Eastern Hemisphere. This species has two host-adapted strains named "rice" and "corn" strains. Our goal was to identify the occurrence of core members in the gut bacterial community of fall armyworm larvae from distinct geographical distribution and/or host strain. We used next-generation sequencing to identify the microbial communities of S. frugiperda from corn fields in Brazil, Colombia, Mexico, Panama, Paraguay, and Peru, and rice fields from Panama. The larval gut microbiota of S. frugiperda larvae did not differ between the host strains nor was it affected by the geographical distribution of the populations investigated. Our findings provide additional support for Enterococcus and Pseudomonas as core members of the bacterial community associated with the larval gut of S. frugiperda, regardless of the site of collection or strain. Further investigations are required for a deeper understanding of the nature of this relationship.
Collapse
Affiliation(s)
- Nathalia C Oliveira
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Pedro A P Rodrigues
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Fernando L Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
44
|
Han S, Zhou Y, Wang D, Qin Q, Song P, He Y. Effect of Different Host Plants on the Diversity of Gut Bacterial Communities of Spodoptera frugiperda (J. E. Smith, 1797). INSECTS 2023; 14:264. [PMID: 36975949 PMCID: PMC10053068 DOI: 10.3390/insects14030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Intestinal symbiotic bacteria have formed an interdependent symbiotic relationship with many insect species after long-term coevolution, which plays a critical role in host growth and adaptation. Spodoptera frugiperda (J. E. Smith) is a worldwide significant migratory invasive pest. As a polyphagous pest, S. frugiperda can harm more than 350 plants and poses a severe threat to food security and agricultural production. In this study, 16S rRNA high-throughput sequencing technology was used to analyze the diversity and structure of the gut bacteria of this pest feeding on six diets (maize, wheat, rice, honeysuckle flowers, honeysuckle leaves, and Chinese yam). The results showed that the S. frugiperda fed on rice had the highest bacterial richness and diversity, whereas the larvae fed on honeysuckle flowers had the lowest abundance and diversity of gut bacterial communities. Firmicutes, Actinobacteriota, and Proteobacteria were the most dominant bacterial phyla. PICRUSt2 analysis indicated that most of the functional prediction categories were concentrated in metabolic bacteria. Our results confirmed that the gut bacterial diversity and community composition of S. frugiperda were affected significantly by host diets. This study provided a theoretical basis for clarifying the host adaptation mechanism of S. frugiperda, which also provided a new direction to improve polyphagous pest management strategies.
Collapse
|
45
|
A soil fungus confers plant resistance against a phytophagous insect by disrupting the symbiotic role of its gut microbiota. Proc Natl Acad Sci U S A 2023; 120:e2216922120. [PMID: 36848561 PMCID: PMC10013743 DOI: 10.1073/pnas.2216922120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Plants generate energy flows through natural food webs, driven by competition for resources among organisms, which are part of a complex network of multitrophic interactions. Here, we demonstrate that the interaction between tomato plants and a phytophagous insect is driven by a hidden interplay between their respective microbiotas. Tomato plants colonized by the soil fungus Trichoderma afroharzianum, a beneficial microorganism widely used in agriculture as a biocontrol agent, negatively affects the development and survival of the lepidopteran pest Spodoptera littoralis by altering the larval gut microbiota and its nutritional support to the host. Indeed, experiments aimed to restore the functional microbial community in the gut allow a complete rescue. Our results shed light on a novel role played by a soil microorganism in the modulation of plant-insect interaction, setting the stage for a more comprehensive analysis of the impact that biocontrol agents may have on ecological sustainability of agricultural systems.
Collapse
|
46
|
Abstract
Prokaryotic and eukaryotic microbial symbiotic communities span through kingdoms. The vast microbial gene pool extends the host genome and supports adaptations to changing environmental conditions. Plants are versatile hosts for the symbionts, carrying microbes on the surface, inside tissues, and even within the cells. Insects are equally abundantly colonized by microbial symbionts on the exoskeleton, in the gut, in the hemocoel, and inside the cells. The insect gut is a prolific environment, but it is selective on the microbial species that enter with food. Plants and insects are often highly dependent on each other and frequently interact. Regardless of the accumulating evidence on the microbiomes of both organisms, it remains unclear how much they exchange and modify each other's microbiomes. In this review, we approach this question from the point of view of herbivores that feed on plants, with a special focus on the forest ecosystems. After a brief introduction to the subject, we concentrate on the plant microbiome, the overlap between plant and insect microbial communities, and how the exchange and modification of microbiomes affects the fitness of each host.
Collapse
|
47
|
Manee MM, Alqahtani FH, Al-Shomrani BM, El-Shafie HAF, Dias GB. Omics in the Red Palm Weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae): A Bridge to the Pest. INSECTS 2023; 14:255. [PMID: 36975940 PMCID: PMC10054242 DOI: 10.3390/insects14030255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus (Coleoptera: Curculionidae), is the most devastating pest of palm trees worldwide. Mitigation of the economic and biodiversity impact it causes is an international priority that could be greatly aided by a better understanding of its biology and genetics. Despite its relevance, the biology of the RPW remains poorly understood, and research on management strategies often focuses on outdated empirical methods that produce sub-optimal results. With the development of omics approaches in genetic research, new avenues for pest control are becoming increasingly feasible. For example, genetic engineering approaches become available once a species's target genes are well characterized in terms of their sequence, but also population variability, epistatic interactions, and more. In the last few years alone, there have been major advances in omics studies of the RPW. Multiple draft genomes are currently available, along with short and long-read transcriptomes, and metagenomes, which have facilitated the identification of genes of interest to the RPW scientific community. This review describes omics approaches previously applied to RPW research, highlights findings that could be impactful for pest management, and emphasizes future opportunities and challenges in this area of research.
Collapse
Affiliation(s)
- Manee M. Manee
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Fahad H. Alqahtani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Badr M. Al-Shomrani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | | | | |
Collapse
|
48
|
Šigutová H, Šigut M, Pyszko P, Kostovčík M, Kolařík M, Drozd P. Seasonal Shifts in Bacterial and Fungal Microbiomes of Leaves and Associated Leaf-Mining Larvae Reveal Persistence of Core Taxa Regardless of Diet. Microbiol Spectr 2023; 11:e0316022. [PMID: 36629441 PMCID: PMC9927363 DOI: 10.1128/spectrum.03160-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Microorganisms are key mediators of interactions between insect herbivores and their host plants. Despite a substantial interest in studying various aspects of these interactions, temporal variations in microbiomes of woody plants and their consumers remain understudied. In this study, we investigated shifts in the microbiomes of leaf-mining larvae (Insecta: Lepidoptera) and their host trees over one growing season in a deciduous temperate forest. We used 16S and ITS2 rRNA gene metabarcoding to profile the bacterial and fungal microbiomes of leaves and larvae. We found pronounced shifts in the leaf and larval microbiota composition and richness as the season progressed, and bacteria and fungi showed consistent patterns. The quantitative similarity between leaf and larval microbiota was very low for bacteria (~9%) and decreased throughout the season, whereas fungal similarity increased and was relatively high (~27%). In both leaves and larvae, seasonality, along with host taxonomy, was the most important factor shaping microbial communities. We identified frequently occurring microbial taxa with significant seasonal trends, including those more prevalent in larvae (Streptococcus, Candida sake, Debaryomyces prosopidis, and Neoascochyta europaea), more prevalent in leaves (Erwinia, Seimatosporium quercinum, Curvibasidium cygneicollum, Curtobacterium, Ceramothyrium carniolicum, and Mycosphaerelloides madeirae), and frequent in both leaves and larvae (bacterial strain P3OB-42, Methylobacterium/Methylorubrum, Bacillus, Acinetobacter, Cutibacterium, and Botrytis cinerea). Our results highlight the importance of considering seasonality when studying the interactions between plants, herbivorous insects, and their respective microbiomes, and illustrate a range of microbial taxa persistent in larvae, regardless of their occurrence in the diet. IMPORTANCE Leaf miners are endophagous insect herbivores that feed on plant tissues and develop and live enclosed between the epidermis layers of a single leaf for their entire life cycle. Such close association is a precondition for the evolution of more intimate host-microbe relationships than those found in free-feeding herbivores. Simultaneous comparison of bacterial and fungal microbiomes of leaves and their tightly linked consumers over time represents an interesting study system that could fundamentally contribute to the ongoing debate on the microbial residence of insect gut. Furthermore, leaf miners are ideal model organisms for interpreting the ecological and evolutionary roles of microbiota in host plant specialization. In this study, the larvae harbored specific microbial communities consisting of core microbiome members. Observed patterns suggest that microbes, especially bacteria, may play more important roles in the caterpillar holobiont than generally presumed.
Collapse
Affiliation(s)
- Hana Šigutová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Kostovčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
49
|
Oliveira NCD, Cônsoli FL. Dysbiosis of the larval gut microbiota of Spodoptera frugiperda strains feeding on different host plants. Symbiosis 2023. [DOI: 10.1007/s13199-023-00907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
50
|
Crosstalk between the microbiota and insect postembryonic development. Trends Microbiol 2023; 31:181-196. [PMID: 36167769 DOI: 10.1016/j.tim.2022.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
Insect sequential development evolves from a simple molt towards complete metamorphosis. Like any multicellular host, insects interact with a complex microbiota. In this review, factors driving the microbiota dynamics were pointed out along their development. Special focus was put on tissue renewal, shift in insect ecology, and microbial interactions. Conversely, how the microbiota modulates its host development through nutrient acquisition, hormonal control, and cellular or tissue differentiation was exemplified. Such modifications might have long-term carry-over effects on insect physiology. Finally, remarkable microbe-driven control of insect behaviors along their life cycle was highlighted. Increasing knowledge of those interactions might offer new insights on how insects respond to their environment as well as perspectives on pest- or vector-control strategies.
Collapse
|