1
|
Stilianu C, Graf C, Huemer M, Diwoky C, Soellradl M, Rund A, Zaiss M, Stollberger R. Enhanced and robust contrast in CEST MRI: Saturation pulse shape design via optimal control. Magn Reson Med 2024; 92:1867-1880. [PMID: 38818538 DOI: 10.1002/mrm.30164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE To employ optimal control for the numerical design of Chemical Exchange Saturation Transfer (CEST) saturation pulses to maximize contrast and stability againstB 0 $$ {\mathrm{B}}_0 $$ inhomogeneities. THEORY AND METHODS We applied an optimal control framework for the design pulse shapes for CEST saturation pulse trains. The cost functional minimized both the pulse energy and the discrepancy between the corresponding CEST spectrum and the target spectrum based on a continuous radiofrequency (RF) pulse. The optimization is subject to hardware limitations. In measurements on a 7 T preclinical scanner, the optimal control pulses were compared to continuous-wave and Gaussian saturation methods. We conducted a comparison of the optimal control pulses with Gaussian, block pulse trains, and adiabatic spin-lock pulses. RESULTS The optimal control pulse train demonstrated saturation levels comparable to continuous-wave saturation and surpassed Gaussian saturation by up to 50 % in phantom measurements. In phantom measurements at 3 T the optimized pulses not only showcased the highest CEST contrast, but also the highest stability against field inhomogeneities. In contrast, block pulse saturation resulted in severe artifacts. Dynamic Bloch-McConnell simulations were employed to identify the source of these artifacts, and underscore theB 0 $$ {\mathrm{B}}_0 $$ robustness of the optimized pulses. CONCLUSION In this work, it was shown that a substantial improvement in pulsed saturation CEST imaging can be achieved by using Optimal Control design principles. It is possible to overcome the sensitivity of saturation to B0 inhomogeneities while achieving CEST contrast close to continuous wave saturation.
Collapse
Affiliation(s)
- Clemens Stilianu
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
| | - Christina Graf
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
| | - Markus Huemer
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
| | - Clemens Diwoky
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martin Soellradl
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
- Department of Radiology and Radiological Sciences, Monash University, Melbourne, Australia
| | - Armin Rund
- Institute for Mathematics and Scientific Computing, University of Graz, Graz, Austria
| | - Moritz Zaiss
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
- High-Field Magnetic Resonance Center, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Rudolf Stollberger
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
2
|
Javadi M, Sharma R, Tsiamyrtzis P, Webb AG, Leiss E, Tsekos NV. Let UNet Play an Adversarial Game: Investigating the Effect of Adversarial Training in Enhancing Low-Resolution MRI. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01205-8. [PMID: 39085718 DOI: 10.1007/s10278-024-01205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Adversarial training has attracted much attention in enhancing the visual realism of images, but its efficacy in clinical imaging has not yet been explored. This work investigated adversarial training in a clinical context, by training 206 networks on the OASIS-1 dataset for improving low-resolution and low signal-to-noise ratio (SNR) magnetic resonance images. Each network corresponded to a different combination of perceptual and adversarial loss weights and distinct learning rate values. For each perceptual loss weighting, we identified its corresponding adversarial loss weighting that minimized structural disparity. Each optimally weighted adversarial loss yielded an average SSIM reduction of 1.5%. We further introduced a set of new metrics to assess other clinically relevant image features: Gradient Error (GE) to measure structural disparities; Sharpness to compute edge clarity; and Edge-Contrast Error (ECE) to quantify any distortion of the pixel distribution around edges. Including adversarial loss increased structural enhancement in visual inspection, which correlated with statistically consistent GE reductions (p-value << 0.05). This also resulted in increased Sharpness; however, the level of statistical significance was dependent on the perceptual loss weighting. Additionally, adversarial loss yielded ECE reductions for smaller perceptual loss weightings, while showing non-significant increases (p-value >> 0.05) when these weightings were higher, demonstrating that the increased Sharpness does not adversely distort the pixel distribution around the edges in the image. These studies clearly suggest that adversarial training significantly improves the performance of an MRI enhancement pipeline, and highlights the need for systematic studies of hyperparameter optimization and investigation of alternative image quality metrics.
Collapse
Affiliation(s)
- Mohammad Javadi
- Medical Robotics and Imaging Lab, Department of Computer Science, University of Houston, 501, Philip G. Hoffman Hall, 4800 Calhoun Road, Houston, TX, 77204, USA
| | - Rishabh Sharma
- Medical Robotics and Imaging Lab, Department of Computer Science, University of Houston, 501, Philip G. Hoffman Hall, 4800 Calhoun Road, Houston, TX, 77204, USA
| | - Panagiotis Tsiamyrtzis
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
- Department of Statistics, Athens University of Economics and Business, Athens, Greece
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ernst Leiss
- Department of Computer Science, University of Houston, Houston, TX, USA
| | - Nikolaos V Tsekos
- Medical Robotics and Imaging Lab, Department of Computer Science, University of Houston, 501, Philip G. Hoffman Hall, 4800 Calhoun Road, Houston, TX, 77204, USA.
| |
Collapse
|
3
|
Rivlin M, Perlman O, Navon G. Metabolic brain imaging with glucosamine CEST MRI: in vivo characterization and first insights. Sci Rep 2023; 13:22030. [PMID: 38086821 PMCID: PMC10716494 DOI: 10.1038/s41598-023-48515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The utility of chemical exchange saturation transfer (CEST) MRI for monitoring the uptake of glucosamine (GlcN), a safe dietary supplement, has been previously demonstrated in detecting breast cancer in both murine and human subjects. Here, we studied and characterized the detectability of GlcN uptake and metabolism in the brain. Following intravenous GlcN administration in mice, CEST brain signals calculated by magnetization transfer ratio asymmetry (MTRasym) analysis, were significantly elevated, mainly in the cortex, hippocampus, and thalamus. The in vivo contrast remained stable during 40 min of examination, which can be attributed to GlcN uptake and its metabolic products accumulation as confirmed using 13C NMR spectroscopic studies of brain extracts. A Lorentzian multi-pool fitting analysis revealed an increase in the hydroxyl, amide, and relayed nuclear Overhauser effect (rNOE) signal components after GlcN treatment. With its ability to cross the blood-brain barrier (BBB), the GlcN CEST technique has the potential to serve as a metabolic biomarker for the diagnosis and monitoring various brain disorders.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Tel-Aviv University, Tel-Aviv, Israel
| | - Or Perlman
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Gil Navon
- School of Chemistry, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
4
|
Wu Y, Derks SHAE, Wood TC, de Blois E, van der Veldt AAM, Smits M, Warnert EAH. Improved postprocessing of dynamic glucose-enhanced CEST MRI for imaging brain metastases at 3 T. Eur Radiol Exp 2023; 7:78. [PMID: 38066225 PMCID: PMC10709288 DOI: 10.1186/s41747-023-00390-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/14/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Dynamic glucose-enhanced (DGE) chemical exchange saturation transfer (CEST) has the potential to characterize glucose metabolism in brain metastases. Since the effect size of DGE CEST is small at 3 T (< 1%), measurements of signal-to-noise ratios are challenging. To improve DGE detection, we developed an acquisition pipeline and extended image analysis for DGE CEST on a hybrid 3-T positron emission tomography/magnetic resonance imaging system. METHODS This cross-sectional study was conducted after local ethical approval. Static Z-spectra (from -100 to 100 ppm) were acquired to compare the use of 1.2 versus 2 ppm to calculate static glucose-enhanced (glucoCEST) maps in 10 healthy volunteers before and after glucose infusion. Dynamic CEST images were acquired during glucose infusion. Image analysis was optimized using motion correction, dynamic B0 correction, and principal component analysis (PCA) to improve the detection of DGE CEST in the sagittal sinus, cerebrospinal fluid, and grey and white matter. The developed DGE CEST pipeline was applied to four patients diagnosed with brain metastases. RESULTS GlucoCEST was strongest in healthy tissues at 2 ppm. Correcting for motion, B0, and use of PCA locally improved DGE maps. A larger contrast between healthy tissues and enhancing regions in brain metastases was found when dynamic B0 correction and PCA denoising were applied. CONCLUSION We demonstrated the feasibility of DGE CEST with our developed acquisition and analysis pipeline at 3 T in patients with brain metastases. This work enables a direct comparison of DGE CEST to 18F-fluoro-deoxy-D-glucose positron emission tomography of glucose metabolism in patients with brain metastases. RELEVANCE STATEMENT Contrast between brain metastasis and healthy brain tissue in DGE CEST MR images is improved by including principle component analysis and dynamic magnetic field correction during postprocessing. This approach enables the detection of increased DGE CEST signal in brain metastasis, if present. KEY POINTS • Despite the low signal-to-noise ratio, dynamic glucose-enhanced CEST MRI is feasible at 3 T. • Principal component analyses and dynamic magnetic field correction improve DGE CEST MRI. • DGE CEST MRI does not consequently show changes in brain metastases compared to healthy brain tissue. • Increased DGE CEST MRI in brain metastases, if present, shows overlap with contrast enhancement on T1-weighted images.
Collapse
Affiliation(s)
- Yulun Wu
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
- Brain Tumor Centre, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Sophie H A E Derks
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
- Departments of Neurology, Erasmus MC, Rotterdam, Netherlands
- Departments of Medical Oncology, Erasmus MC, Rotterdam, Netherlands
| | - Tobias C Wood
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Erik de Blois
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Astrid A M van der Veldt
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
- Departments of Medical Oncology, Erasmus MC, Rotterdam, Netherlands
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
- Brain Tumor Centre, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Medical Delta, Delft, Netherlands
| | - Esther A H Warnert
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands.
- Brain Tumor Centre, Erasmus MC Cancer Institute, Rotterdam, Netherlands.
| |
Collapse
|
5
|
Bryant JM, Doniparthi A, Weygand J, Cruz-Chamorro R, Oraiqat IM, Andreozzi J, Graham J, Redler G, Latifi K, Feygelman V, Rosenberg SA, Yu HHM, Oliver DE. Treatment of Central Nervous System Tumors on Combination MR-Linear Accelerators: Review of Current Practice and Future Directions. Cancers (Basel) 2023; 15:5200. [PMID: 37958374 PMCID: PMC10649155 DOI: 10.3390/cancers15215200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Magnetic resonance imaging (MRI) provides excellent visualization of central nervous system (CNS) tumors due to its superior soft tissue contrast. Magnetic resonance-guided radiotherapy (MRgRT) has historically been limited to use in the initial treatment planning stage due to cost and feasibility. MRI-guided linear accelerators (MRLs) allow clinicians to visualize tumors and organs at risk (OARs) directly before and during treatment, a process known as online MRgRT. This novel system permits adaptive treatment planning based on anatomical changes to ensure accurate dose delivery to the tumor while minimizing unnecessary toxicity to healthy tissue. These advancements are critical to treatment adaptation in the brain and spinal cord, where both preliminary MRI and daily CT guidance have typically had limited benefit. In this narrative review, we investigate the application of online MRgRT in the treatment of various CNS malignancies and any relevant ongoing clinical trials. Imaging of glioblastoma patients has shown significant changes in the gross tumor volume over a standard course of chemoradiotherapy. The use of adaptive online MRgRT in these patients demonstrated reduced target volumes with cavity shrinkage and a resulting reduction in radiation dose to uninvolved tissue. Dosimetric feasibility studies have shown MRL-guided stereotactic radiotherapy (SRT) for intracranial and spine tumors to have potential dosimetric advantages and reduced morbidity compared with conventional linear accelerators. Similarly, dosimetric feasibility studies have shown promise in hippocampal avoidance whole brain radiotherapy (HA-WBRT). Next, we explore the potential of MRL-based multiparametric MRI (mpMRI) and genomically informed radiotherapy to treat CNS disease with cutting-edge precision. Lastly, we explore the challenges of treating CNS malignancies and special limitations MRL systems face.
Collapse
Affiliation(s)
- John Michael Bryant
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Ajay Doniparthi
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA;
| | - Joseph Weygand
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Ruben Cruz-Chamorro
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Ibrahim M. Oraiqat
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Jacqueline Andreozzi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Jasmine Graham
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Gage Redler
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Vladimir Feygelman
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Stephen A. Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Hsiang-Hsuan Michael Yu
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Daniel E. Oliver
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| |
Collapse
|
6
|
Weygand J, Armstrong T, Bryant JM, Andreozzi JM, Oraiqat IM, Nichols S, Liveringhouse CL, Latifi K, Yamoah K, Costello JR, Frakes JM, Moros EG, El Naqa IM, Naghavi AO, Rosenberg SA, Redler G. Accurate, repeatable, and geometrically precise diffusion-weighted imaging on a 0.35 T magnetic resonance imaging-guided linear accelerator. Phys Imaging Radiat Oncol 2023; 28:100505. [PMID: 38045642 PMCID: PMC10692914 DOI: 10.1016/j.phro.2023.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Background and purpose Diffusion weighted imaging (DWI) allows for the interrogation of tissue cellularity, which is a surrogate for cellular proliferation. Previous attempts to incorporate DWI into the workflow of a 0.35 T MR-linac (MRL) have lacked quantitative accuracy. In this study, accuracy, repeatability, and geometric precision of apparent diffusion coefficient (ADC) maps produced using an echo planar imaging (EPI)-based DWI protocol on the MRL system is illustrated, and in vivo potential for longitudinal patient imaging is demonstrated. Materials and methods Accuracy and repeatability were assessed by measuring ADC values in a diffusion phantom at three timepoints and comparing to reference ADC values. System-dependent geometric distortion was quantified by measuring the distance between 93 pairs of phantom features on ADC maps acquired on a 0.35 T MRL and a 3.0 T diagnostic scanner and comparing to spatially precise CT images. Additionally, for five sarcoma patients receiving radiotherapy on the MRL, same-day in vivo ADC maps were acquired on both systems, one of which at multiple timepoints. Results Phantom ADC quantification was accurate on the 0.35 T MRL with significant discrepancies only seen at high ADC. Average geometric distortions were 0.35 (±0.02) mm and 0.85 (±0.02) mm in the central slice and 0.66 (±0.04) mm and 2.14 (±0.07) mm at 5.4 cm off-center for the MRL and diagnostic system, respectively. In the sarcoma patients, a mean pretreatment ADC of 910x10-6 (±100x10-6) mm2/s was measured on the MRL. Conclusions The acquisition of accurate, repeatable, and geometrically precise ADC maps is possible at 0.35 T with an EPI approach.
Collapse
Affiliation(s)
- Joseph Weygand
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | | | - Steven Nichols
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Kujtim Latifi
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kosj Yamoah
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Jessica M. Frakes
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Eduardo G. Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Issam M. El Naqa
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, USA
| | - Arash O. Naghavi
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Gage Redler
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
7
|
Dan Q, Jiang X, Wang R, Dai Z, Sun D. Biogenic Imaging Contrast Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207090. [PMID: 37401173 PMCID: PMC10477908 DOI: 10.1002/advs.202207090] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/08/2023] [Indexed: 07/05/2023]
Abstract
Imaging contrast agents are widely investigated in preclinical and clinical studies, among which biogenic imaging contrast agents (BICAs) are developing rapidly and playing an increasingly important role in biomedical research ranging from subcellular level to individual level. The unique properties of BICAs, including expression by cells as reporters and specific genetic modification, facilitate various in vitro and in vivo studies, such as quantification of gene expression, observation of protein interactions, visualization of cellular proliferation, monitoring of metabolism, and detection of dysfunctions. Furthermore, in human body, BICAs are remarkably helpful for disease diagnosis when the dysregulation of these agents occurs and can be detected through imaging techniques. There are various BICAs matched with a set of imaging techniques, including fluorescent proteins for fluorescence imaging, gas vesicles for ultrasound imaging, and ferritin for magnetic resonance imaging. In addition, bimodal and multimodal imaging can be realized through combining the functions of different BICAs, which helps overcome the limitations of monomodal imaging. In this review, the focus is on the properties, mechanisms, applications, and future directions of BICAs.
Collapse
Affiliation(s)
- Qing Dan
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Xinpeng Jiang
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Run Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Desheng Sun
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| |
Collapse
|
8
|
Hoffmann E, Schache D, Höltke C, Soltwisch J, Niland S, Krähling T, Bergander K, Grewer M, Geyer C, Groeneweg L, Eble JA, Vogl T, Roth J, Heindel W, Maus B, Helfen A, Faber C, Wildgruber M, Gerwing M, Hoerr V. Multiparametric chemical exchange saturation transfer MRI detects metabolic changes in breast cancer following immunotherapy. J Transl Med 2023; 21:577. [PMID: 37641066 PMCID: PMC10463706 DOI: 10.1186/s12967-023-04451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND With metabolic alterations of the tumor microenvironment (TME) contributing to cancer progression, metastatic spread and response to targeted therapies, non-invasive and repetitive imaging of tumor metabolism is of major importance. The purpose of this study was to investigate whether multiparametric chemical exchange saturation transfer magnetic resonance imaging (CEST-MRI) allows to detect differences in the metabolic profiles of the TME in murine breast cancer models with divergent degrees of malignancy and to assess their response to immunotherapy. METHODS Tumor characteristics of highly malignant 4T1 and low malignant 67NR murine breast cancer models were investigated, and their changes during tumor progression and immune checkpoint inhibitor (ICI) treatment were evaluated. For simultaneous analysis of different metabolites, multiparametric CEST-MRI with calculation of asymmetric magnetization transfer ratio (MTRasym) at 1.2 to 2.0 ppm for glucose-weighted, 2.0 ppm for creatine-weighted and 3.2 to 3.6 ppm for amide proton transfer- (APT-) weighted CEST contrast was conducted. Ex vivo validation of MRI results was achieved by 1H nuclear magnetic resonance spectroscopy, matrix-assisted laser desorption/ionization mass spectrometry imaging with laser postionization and immunohistochemistry. RESULTS During tumor progression, the two tumor models showed divergent trends for all examined CEST contrasts: While glucose- and APT-weighted CEST contrast decreased and creatine-weighted CEST contrast increased over time in the 4T1 model, 67NR tumors exhibited increased glucose- and APT-weighted CEST contrast during disease progression, accompanied by decreased creatine-weighted CEST contrast. Already three days after treatment initiation, CEST contrasts captured response to ICI therapy in both tumor models. CONCLUSION Multiparametric CEST-MRI enables non-invasive assessment of metabolic signatures of the TME, allowing both for estimation of the degree of tumor malignancy and for assessment of early response to immune checkpoint inhibition.
Collapse
Affiliation(s)
- Emily Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany.
| | - Daniel Schache
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Carsten Höltke
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Tobias Krähling
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Klaus Bergander
- Institute of Organic Chemistry, University of Münster, Münster, Germany
| | - Martin Grewer
- Clinic of Radiology, University of Münster, Münster, Germany
| | | | - Linda Groeneweg
- Institute of Immunology, University of Münster, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Walter Heindel
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Bastian Maus
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Anne Helfen
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Moritz Wildgruber
- Clinic of Radiology, University of Münster, Münster, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Mirjam Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Verena Hoerr
- Clinic of Radiology, University of Münster, Münster, Germany
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
9
|
Wang Y, Wang L, Huang H, Ma J, Lin L, Liu L, Song Q, Liu A. Amide proton transfer-weighted magnetic resonance imaging for the differentiation of parotid gland tumors. Front Oncol 2023; 13:1223598. [PMID: 37664057 PMCID: PMC10471989 DOI: 10.3389/fonc.2023.1223598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Purpose To assess the usefulness of amide proton transfer-weighted (APTw) imaging in the differentiation of parotid gland tumors. Materials and methods Patients with parotid gland tumors who underwent APTw imaging were retrospectively enrolled and divided into groups according to pathology. Two radiologists evaluated the APTw image quality independently, and APTw images with quality score ≥3 were enrolled. The maximum and average values of APTw imaging for tumor lesions (APTmax and APTmean) were measured. The differences in APTmax and APTmean were compared between malignant tumors (MTs) and benign tumors (BTs), as well as between MTs and pleomorphic adenomas (PAs) and between MTs and Warthin tumors (WTs). Independent-samples t-test, Kruskal-Wallis H test, and receiver operating characteristic (ROC) curve analyses were used for statistical analysis. Results Seventy-three patients were included for image quality evaluation. In this study, 32/73 and 29/73 parotid tumors were scored as 4 and 3, respectively. After excluding lesions with quality score ≤2 (12/73), the APTmean and APTmax of MTs were 4.15% ± 1.33% and 7.43% ± 1.61%, higher than those of BTs 2.74% ± 1.04% and 5.25% ± 1.54%, respectively (p < 0.05). The areas under the ROC curve (AUCs) of the APTmean and APTmax for differentiation between MTs and BTs were 0.819 and 0.821, respectively. MTs indicated significantly higher APTmean and APTmax values than those of PAs (p < 0.05) and WTs (p < 0.05). The AUCs of the APTmean and APTmax for differentiation between MTs and PAs were 0.830 and 0.815 and between MTs and WTs were 0.847 and 0.920, respectively. Conclusion Most APTw images for parotid tumors had acceptable image quality for APTw value evaluation. Both APTmax and APTmean can be used to differentiate MTs from BTs and to differentiate MTs from subtype parotid gland tumors.
Collapse
Affiliation(s)
- Yihua Wang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lijun Wang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haitao Huang
- Department of Stomatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Juntao Ma
- Department of Stomatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liangjie Lin
- Clinical and Technical Support, Philips Healthcare, Beijing, China
| | - Lin Liu
- Department of Stomatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingwei Song
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ailian Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Knutsson L, Xu X, van Zijl PCM, Chan KWY. Imaging of sugar-based contrast agents using their hydroxyl proton exchange properties. NMR IN BIOMEDICINE 2023; 36:e4784. [PMID: 35665547 PMCID: PMC9719573 DOI: 10.1002/nbm.4784] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 05/13/2023]
Abstract
The ability of CEST MRI to detect the presence of millimolar concentrations of non-metallic contrast agents has made it possible to study, non-invasively, important biological molecules such as proteins and sugars, as well as drugs already approved for clinical use. Here, we review efforts to use sugar and sugar polymers as exogenous contrast agents, which is possible based on the exchange of their hydroxyl protons with water protons. While this capability has raised early enthusiasm, for instance about the possibility of imaging D-glucose metabolism with MRI in a way analogous to PET, experience over the past decade has shown that this is not trivial. On the other hand, many studies have confirmed the possibility of imaging a large variety of sugar analogues, each with potentially interesting applications to assess tissue physiology. Some promising applications are the study of (i) sugar delivery and transport to assess blood-brain barrier integrity and (ii) sugar uptake by cells for their characterization (e.g., cancer versus healthy), as well as (iii) clearance of sugars to assess tissue drainage-for instance, through the glymphatic system. To judge these opportunities and their challenges, especially in the clinic, it is necessary to understand the technical aspects of detecting the presence of rapidly exchanging protons through the water signal in MRI, especially as a function of magnetic field strength. We expect that novel approaches in terms of MRI detection (both saturation transfer and relaxation based), MRI data analysis, and sugar design will push this young field forward in the next decade.
Collapse
Affiliation(s)
- Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, US
| | - Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter CM van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, US
| | - Kannie WY Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong
- City University of Hong Kong Shenzhen Institute, Shenzhen, China
| |
Collapse
|
11
|
Rogers G, Barker S, Sharma M, Khakoo S, Utz M. Operando NMR metabolomics of a microfluidic cell culture. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107405. [PMID: 36842430 DOI: 10.1016/j.jmr.2023.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
In this work we demonstrate the use of microfluidic NMR for in situ culture and quantitative analysis of metabolism in hepatocellular carcinoma (HCC) cell lines. A hydrothermal heating system is used to enable continuous in situ NMR observation of HCC cell culture over a 24 h incubation period. This technique is nondestructive, non-invasive and can measure millimolar concentrations at microlitre volumes, within a few minutes and in precisely controlled culture conditions. This is sufficient to observe changes in primary energy metabolism, using around 500-3500 cells per device, and with a time resolution of 17 min. The ability to observe intracellular responses in a time-resolved manner provides a more detailed view of a biological system and how it reacts to stimuli. This capability will allow detailed metabolomic studies of cell-culture based cancer models, enabling quantification of metabolic reporgramming, the metabolic tumor microenvironment, and the metabolic interplay between cancer- and immune cells.
Collapse
Affiliation(s)
- Genevieve Rogers
- School of Medicine, University of Southampton, Tremona Road, Southampton, SO17 1BJ Hampshire, UK
| | - Sylwia Barker
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ Hampshire, UK
| | - Manvendra Sharma
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ Hampshire, UK
| | - Salim Khakoo
- School of Medicine, University of Southampton, Tremona Road, Southampton, SO17 1BJ Hampshire, UK
| | - Marcel Utz
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ Hampshire, UK.
| |
Collapse
|
12
|
Bryant JM, Weygand J, Keit E, Cruz-Chamorro R, Sandoval ML, Oraiqat IM, Andreozzi J, Redler G, Latifi K, Feygelman V, Rosenberg SA. Stereotactic Magnetic Resonance-Guided Adaptive and Non-Adaptive Radiotherapy on Combination MR-Linear Accelerators: Current Practice and Future Directions. Cancers (Basel) 2023; 15:2081. [PMID: 37046741 PMCID: PMC10093051 DOI: 10.3390/cancers15072081] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Stereotactic body radiotherapy (SBRT) is an effective radiation therapy technique that has allowed for shorter treatment courses, as compared to conventionally dosed radiation therapy. As its name implies, SBRT relies on daily image guidance to ensure that each fraction targets a tumor, instead of healthy tissue. Magnetic resonance imaging (MRI) offers improved soft-tissue visualization, allowing for better tumor and normal tissue delineation. MR-guided RT (MRgRT) has traditionally been defined by the use of offline MRI to aid in defining the RT volumes during the initial planning stages in order to ensure accurate tumor targeting while sparing critical normal tissues. However, the ViewRay MRIdian and Elekta Unity have improved upon and revolutionized the MRgRT by creating a combined MRI and linear accelerator (MRL), allowing MRgRT to incorporate online MRI in RT. MRL-based MR-guided SBRT (MRgSBRT) represents a novel solution to deliver higher doses to larger volumes of gross disease, regardless of the proximity of at-risk organs due to the (1) superior soft-tissue visualization for patient positioning, (2) real-time continuous intrafraction assessment of internal structures, and (3) daily online adaptive replanning. Stereotactic MR-guided adaptive radiation therapy (SMART) has enabled the safe delivery of ablative doses to tumors adjacent to radiosensitive tissues throughout the body. Although it is still a relatively new RT technique, SMART has demonstrated significant opportunities to improve disease control and reduce toxicity. In this review, we included the current clinical applications and the active prospective trials related to SMART. We highlighted the most impactful clinical studies at various tumor sites. In addition, we explored how MRL-based multiparametric MRI could potentially synergize with SMART to significantly change the current treatment paradigm and to improve personalized cancer care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stephen A. Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.M.B.)
| |
Collapse
|
13
|
In vivo tracking of unlabelled mesenchymal stromal cells by mannose-weighted chemical exchange saturation transfer MRI. Nat Biomed Eng 2022; 6:658-666. [PMID: 35132228 PMCID: PMC9425291 DOI: 10.1038/s41551-021-00822-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
The tracking of the in vivo biodistribution of transplanted human mesenchymal stromal cells (hMSCs) relies on reporter genes or on the addition of exogenous imaging agents. However, reporter genes and exogenous labels may require bespoke manufacturing and regulatory processes if used in cell therapies, and the labels may alter the cells' properties and are diluted on cellular division. Here we show that high-mannose N-linked glycans, which are abundantly expressed on the surface of hMSCs, can serve as a biomarker for the label-free tracking of transplanted hMSCs by mannose-weighted chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI). For live mice with luciferase-transfected hMSCs transplanted into their brains, post-mortem fluorescence staining with a mannose-specific lectin showed that increases in the CEST MRI signal, which correlated well with the bioluminescence intensity of viable hMSCs for 14 days, corresponded to the presence of mannose. In vitro, osteogenically differentiated hMSCs led to lower CEST MRI signal intensities owing to the concomitantly reduced expression of mannose. The label-free imaging of hMSCs may facilitate the development and testing of cell therapies.
Collapse
|
14
|
Huang J, Chen Z, Park SW, Lai JHC, Chan KWY. Molecular Imaging of Brain Tumors and Drug Delivery Using CEST MRI: Promises and Challenges. Pharmaceutics 2022; 14:451. [PMID: 35214183 PMCID: PMC8880023 DOI: 10.3390/pharmaceutics14020451] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) detects molecules in their natural forms in a sensitive and non-invasive manner. This makes it a robust approach to assess brain tumors and related molecular alterations using endogenous molecules, such as proteins/peptides, and drugs approved for clinical use. In this review, we will discuss the promises of CEST MRI in the identification of tumors, tumor grading, detecting molecular alterations related to isocitrate dehydrogenase (IDH) and O-6-methylguanine-DNA methyltransferase (MGMT), assessment of treatment effects, and using multiple contrasts of CEST to develop theranostic approaches for cancer treatments. Promising applications include (i) using the CEST contrast of amide protons of proteins/peptides to detect brain tumors, such as glioblastoma multiforme (GBM) and low-grade gliomas; (ii) using multiple CEST contrasts for tumor stratification, and (iii) evaluation of the efficacy of drug delivery without the need of metallic or radioactive labels. These promising applications have raised enthusiasm, however, the use of CEST MRI is not trivial. CEST contrast depends on the pulse sequences, saturation parameters, methods used to analyze the CEST spectrum (i.e., Z-spectrum), and, importantly, how to interpret changes in CEST contrast and related molecular alterations in the brain. Emerging pulse sequence designs and data analysis approaches, including those assisted with deep learning, have enhanced the capability of CEST MRI in detecting molecules in brain tumors. CEST has become a specific marker for tumor grading and has the potential for prognosis and theranostics in brain tumors. With increasing understanding of the technical aspects and associated molecular alterations detected by CEST MRI, this young field is expected to have wide clinical applications in the near future.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Se-Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Joseph H. C. Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Kim M, Eleftheriou A, Ravotto L, Weber B, Rivlin M, Navon G, Capozza M, Anemone A, Longo DL, Aime S, Zaiss M, Herz K, Deshmane A, Lindig T, Bender B, Golay X. What do we know about dynamic glucose-enhanced (DGE) MRI and how close is it to the clinics? Horizon 2020 GLINT consortium report. MAGMA (NEW YORK, N.Y.) 2022; 35:87-104. [PMID: 35032288 PMCID: PMC8901523 DOI: 10.1007/s10334-021-00994-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022]
Abstract
Cancer is one of the most devastating diseases that the world is currently facing, accounting for 10 million deaths in 2020 (WHO). In the last two decades, advanced medical imaging has played an ever more important role in the early detection of the disease, as it increases the chances of survival and the potential for full recovery. To date, dynamic glucose-enhanced (DGE) MRI using glucose-based chemical exchange saturation transfer (glucoCEST) has demonstrated the sensitivity to detect both d-glucose and glucose analogs, such as 3-oxy-methyl-d-glucose (3OMG) uptake in tumors. As one of the recent international efforts aiming at pushing the boundaries of translation of the DGE MRI technique into clinical practice, a multidisciplinary team of eight partners came together to form the “glucoCEST Imaging of Neoplastic Tumors (GLINT)” consortium, funded by the Horizon 2020 European Commission. This paper summarizes the progress made to date both by these groups and others in increasing our knowledge of the underlying mechanisms related to this technique as well as translating it into clinical practice.
Collapse
Affiliation(s)
- Mina Kim
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Afroditi Eleftheriou
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Michal Rivlin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Navon
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Martina Capozza
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Annasofia Anemone
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Torino, Italy
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Neuroradiology, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kai Herz
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anagha Deshmane
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Tobias Lindig
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.
| | | |
Collapse
|
16
|
Pavuluri K, Yang E, Ayyappan V, Sonkar K, Tan Z, Tressler CM, Bo S, Bibic A, Glunde K, McMahon MT. Unlabeled aspirin as an activatable theranostic MRI agent for breast cancer. Theranostics 2022; 12:1937-1951. [PMID: 35198081 PMCID: PMC8825591 DOI: 10.7150/thno.53147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/17/2021] [Indexed: 01/11/2023] Open
Abstract
Rationale: Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is emerging as an alternative to gadolinium-based contrast MRI. We have evaluated the possibility of CEST MRI of orthotopic breast tumor xenografts with unlabeled aspirin's conversion to salicylic acid (SA) through various enzymatic activities, most notably inhibition of cyclooxygenase (COX)-1/-2 enzymes. Methods: We measured the COX-1/-2 expression in four breast cancer cell lines by Western Blot analysis and selected the highest and lowest expressing cell lines. We then performed CEST MRI following aspirin treatment to detect SA levels and ELISA to measure levels of downstream prostaglandin E2 (PGE2). We also injected aspirin into the tail vein of mice growing orthotopic tumor xenografts which expressed high and low COX-1/-2 and acquired SA CEST MR images of these tumor xenografts for up to 70 minutes. Tumors were then harvested to perform Western Blot and ELISA experiments to measure COX-1/-2 expression and PGE2 levels, respectively. Results: Western Blots determined that SUM159 cells contained significantly higher COX-1/-2 expression levels than MDA-MB-231 cells, in line with higher levels of downstream PGE2. SA CEST MRI yielded similar contrast at approximately 3% for both cell lines, independent of COX-1/-2 expression level. PGE2 levels decreased by about 50% following aspirin treatment. Results from our mouse study aligned with cultured cells, the overall SA CEST MRI contrast in both MDA-MB-231 and SUM159 tumor xenograft models was 5~8% at one hour post injection. PGE2 levels were ten times higher in SUM159 than MDA-MB-231 and decreased by 50%. The CEST contrast directly depended on the injected dose, with ~6%, ~3% and ~1.5% contrast observed following injection of 100 µL of 300 mM, 200 mM and 150 mM aspirin, respectively. Conclusions: Our data demonstrate the feasibility of using aspirin as a noninvasive activatable CEST MRI contrast agent for breast tumor detection.
Collapse
Affiliation(s)
- KowsalyaDevi Pavuluri
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ethan Yang
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vinay Ayyappan
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kanchan Sonkar
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Zheqiong Tan
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Caitlin M. Tressler
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shaowei Bo
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Adnan Bibic
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD.,The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD.,✉ Corresponding authors: ,
| | - Michael T McMahon
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD.,✉ Corresponding authors: ,
| |
Collapse
|
17
|
Anemone A, Capozza M, Arena F, Zullino S, Bardini P, Terreno E, Longo DL, Aime S. In vitro and in vivo comparison of MRI chemical exchange saturation transfer (CEST) properties between native glucose and 3-O-Methyl-D-glucose in a murine tumor model. NMR IN BIOMEDICINE 2021; 34:e4602. [PMID: 34423470 PMCID: PMC9285575 DOI: 10.1002/nbm.4602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 05/05/2023]
Abstract
D-Glucose and 3-O-Methyl-D-glucose (3OMG) have been shown to provide contrast in magnetic resonance imaging-chemical exchange saturation transfer (MRI-CEST) images. However, a systematic comparison between these two molecules has yet to be performed. The current study deals with the assessment of the effect of pH, saturation power level (B1 ) and magnetic field strength (B0 ) on the MRI-CEST contrast with the aim of comparing the in vivo CEST contrast detectability of these two agents in the glucoCEST procedure. Phosphate-buffered solutions of D-Glucose or 3OMG (20 mM) were prepared at different pH values and Z-spectra were acquired at several B1 levels at 37°C. In vivo glucoCEST images were obtained at 3 and 7 T over a period of 30 min after injection of D-Glucose or 3OMG (at doses of 1.5 or 3 g/kg) in a murine melanoma tumor model (n = 3-5 mice for each molecule, dose and B0 field). A markedly different pH dependence of CEST response was observed in vitro for D-Glucose and 3OMG. The glucoCEST contrast enhancement in the tumor region following intravenous administration (at the 3 g/kg dose) was comparable for both molecules: 1%-2% at 3 T and 2%-3% at 7 T. The percentage change in saturation transfer that resulted was almost constant for 3OMG over the 30-min period, whereas a significant increase was detected for D-Glucose. Our results show similar CEST contrast efficiency but different temporal kinetics for the metabolizable and the nonmetabolizable glucose derivatives in a tumor murine model when administered at the same doses.
Collapse
Affiliation(s)
- Annasofia Anemone
- Molecular Imaging Center, Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
| | - Martina Capozza
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
| | - Francesca Arena
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
| | - Sara Zullino
- Molecular Imaging Center, Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
| | - Paola Bardini
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
| | - Enzo Terreno
- Molecular Imaging Center, Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TorinoItaly
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TorinoItaly
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TorinoItaly
| |
Collapse
|
18
|
Shalash W, Ahrens SR, Bardonova LA, Byvaltsev VA, Giers MB. Patient-specific apparent diffusion maps used to model nutrient availability in degenerated intervertebral discs. JOR Spine 2021; 4:e1179. [PMID: 35005445 PMCID: PMC8717112 DOI: 10.1002/jsp2.1179] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 09/29/2021] [Accepted: 10/25/2021] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION In this study, magnetic resonance imaging data was used to (1) model IVD-specific gradients of glucose, oxygen, lactate, and pH; and (2) investigate possible effects of covariate factors (i.e., disc geometry, and mean apparent diffusion coefficient values) on the IVD's microenvironment. Mathematical modeling of the patient's specific IVD microenvironment could be important when selecting patients for stem cell therapy due to the increased nutrient demand created by that treatment. MATERIALS AND METHODS Disc geometry and water diffusion coefficients were extracted from MRIs of 37 patients using sagittal T1-weighted images, T2-weighted images, and ADC Maps. A 2-D steady state finite element mathematical model was developed in COMSOL Multiphysics® 5.4 to compute concentration maps of glucose, oxygen, lactate and pH. RESULTS Concentration of nutrients (i.e., glucose, and oxygen) dropped with increasing distance from the cartilaginous endplates (CEP), whereas acidity levels increased. Most discs experienced poor nutrient levels along with high acidity values in the inner annulus fibrosus (AF). The disc's physiological microenvironment became more deficient as degeneration progressed. For example, minimum glucose concentration in grade 4 dropped by 31.1% compared to grade 3 (p < 0.0001). The model further suggested a strong effect of the following parameters: disc size, AF and CEP diffusivities, metabolic reactions, and cell density on solute concentrations in the disc (p < 0.05). CONCLUSION The significance of this work implies that the individual morphology and physiological conditions of each disc, even among discs of the same Pfirrmann grade, should be evaluated when modeling IVD solute concentrations.
Collapse
Affiliation(s)
- Ward Shalash
- School of Chemical, Biological and Environmental EngineeringOregon State UniversityCorvallisOregonUSA
| | - Sonia R. Ahrens
- School of Chemical, Biological and Environmental EngineeringOregon State UniversityCorvallisOregonUSA
| | - Liudmila A. Bardonova
- School of Chemical, Biological and Environmental EngineeringOregon State UniversityCorvallisOregonUSA
- Irkutsk State Medical UniversityIrkutskRussia
| | - Vadim A. Byvaltsev
- Irkutsk State Medical UniversityIrkutskRussia
- Railway Clinical Hospital at the Irkutsk‐Passazhirsky StationIrkutskRussia
| | - Morgan B. Giers
- School of Chemical, Biological and Environmental EngineeringOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
19
|
Polvoy I, Qin H, Flavell RR, Gordon J, Viswanath P, Sriram R, Ohliger MA, Wilson DM. Deuterium Metabolic Imaging-Rediscovery of a Spectroscopic Tool. Metabolites 2021; 11:570. [PMID: 34564385 PMCID: PMC8470013 DOI: 10.3390/metabo11090570] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 01/31/2023] Open
Abstract
The growing demand for metabolism-specific imaging techniques has rekindled interest in Deuterium (2H) Metabolic Imaging (DMI), a robust method based on administration of a substrate (glucose, acetate, fumarate, etc.) labeled with the stable isotope of hydrogen and the observation of its metabolic fate in three-dimensions. This technique allows the investigation of multiple metabolic processes in both healthy and diseased states. Despite its low natural abundance, the short relaxation time of deuterium allows for rapid radiofrequency (RF) pulses without saturation and efficient image acquisition. In this review, we provide a comprehensive picture of the evolution of DMI over the course of recent decades, with a special focus on its potential clinical applications.
Collapse
Affiliation(s)
- Ilona Polvoy
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St., San Francisco, CA 94158, USA; (I.P.); (H.Q.); (R.R.F.); (J.G.); (P.V.); (R.S.); (M.A.O.)
| | - Hecong Qin
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St., San Francisco, CA 94158, USA; (I.P.); (H.Q.); (R.R.F.); (J.G.); (P.V.); (R.S.); (M.A.O.)
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St., San Francisco, CA 94158, USA; (I.P.); (H.Q.); (R.R.F.); (J.G.); (P.V.); (R.S.); (M.A.O.)
| | - Jeremy Gordon
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St., San Francisco, CA 94158, USA; (I.P.); (H.Q.); (R.R.F.); (J.G.); (P.V.); (R.S.); (M.A.O.)
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St., San Francisco, CA 94158, USA; (I.P.); (H.Q.); (R.R.F.); (J.G.); (P.V.); (R.S.); (M.A.O.)
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St., San Francisco, CA 94158, USA; (I.P.); (H.Q.); (R.R.F.); (J.G.); (P.V.); (R.S.); (M.A.O.)
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St., San Francisco, CA 94158, USA; (I.P.); (H.Q.); (R.R.F.); (J.G.); (P.V.); (R.S.); (M.A.O.)
- Department of Radiology, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St., San Francisco, CA 94158, USA; (I.P.); (H.Q.); (R.R.F.); (J.G.); (P.V.); (R.S.); (M.A.O.)
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Ave, San Francisco, CA 94143, USA
| |
Collapse
|
20
|
Capozza M, Anemone A, Dhakan C, Della Peruta M, Bracesco M, Zullino S, Villano D, Terreno E, Longo DL, Aime S. GlucoCEST MRI for the Evaluation Response to Chemotherapeutic and Metabolic Treatments in a Murine Triple-Negative Breast Cancer: A Comparison with[ 18F]F-FDG-PET. Mol Imaging Biol 2021; 24:126-134. [PMID: 34383241 DOI: 10.1007/s11307-021-01637-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) patients have usually poor outcome after chemotherapy and early prediction of therapeutic response would be helpful. [18F]F-FDG-PET/CT acquisitions are often carried out to monitor variation in metabolic activity associated with response to the therapy, despite moderate accuracy and radiation exposure limit its application. The glucoCEST technique relies on the use of unlabelled D-glucose to assess glucose uptake with conventional MRI scanners and is currently under active investigations at clinical level. This work aims at validating the potential of MRI-glucoCEST in monitoring the therapeutic responses in a TNBC tumor murine model. PROCEDURES Breast tumor (4T1)-bearing mice were treated with doxorubicin or dichloroacetate for 1 week. PET/CT with [18F]F-FDG and MRI-glucoCEST were performed at baseline and after 3 cycles of treatment. Metabolic changes measured with [18F]F-FDG-PET and glucoCEST were compared and evaluated with changes in tumor volumes. RESULTS Doxorubicin-treated mice showed a significant decrease in tumor growth when compared to the control group. GlucoCEST imaging provided metabolic response after three cycles of treatment. Conversely, no variations were detected in [18F]F-FDG uptake. Dichloroacetate-treated mice did not show any decrease either in tumor volume or in tumor metabolic activity as assessed by both glucoCEST and [18F]F-FDG-PET. CONCLUSIONS Metabolic changes during doxorubicin treatment can be predicted by glucoCEST imaging that appears more sensitive than [18F]F-FDG-PET in reporting on therapeutic response. These findings support the view that glucoCEST may be a sensitive technique for monitoring metabolic response, but future studies are needed to explore the accuracy of this approach in other tumor types and treatments.
Collapse
Affiliation(s)
- Martina Capozza
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Annasofia Anemone
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Chetan Dhakan
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Melania Della Peruta
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Martina Bracesco
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Sara Zullino
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Daisy Villano
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Enzo Terreno
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| |
Collapse
|
21
|
Lee FT, Marini D, Seed M, Sun L. Maternal hyperoxygenation in congenital heart disease. Transl Pediatr 2021; 10:2197-2209. [PMID: 34584891 PMCID: PMC8429855 DOI: 10.21037/tp-20-226] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/27/2020] [Indexed: 01/26/2023] Open
Abstract
The importance of prenatal diagnosis and fetal intervention has been increasing as a preventative strategy for improving the morbidity and mortality in congenital heart disease (CHD). The advancements in medical imaging technology have greatly enhanced our understanding of disease progression, assessment, and impact in those with CHD. In particular, there has been a growing focus on improving the morbidity and mortality of fetuses diagnosed with left-sided lesions. The disruption of fetal hemodynamics resulting from poor structural developmental of the left outflow tract during cardiogenesis is considered a major factor in the progressive lethal underdevelopment of the left ventricle (LV). This positive feedback cycle of inadequate flow and underdevelopment of the LV leads to a disrupted fetal circulation, which has been described to impact fetal brain growth where systemic outflow is poor and, in some cases, the fetal lungs in the setting of a restrictive interatrial communication. For the past decade, maternal hyperoxygenation (MH) has been investigated as a diagnostic tool to assess the pulmonary vasculature and a therapeutic agent to improve the development of the heart and brain in fetuses with CHD with a focus on left-sided cardiac defects. This review discusses the findings of these studies as well as the utility of acute and chronic administration of MH in CHD.
Collapse
Affiliation(s)
- Fu-Tsuen Lee
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Davide Marini
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mike Seed
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada.,Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Liqun Sun
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
Mamoune KE, Barantin L, Adriaensen H, Tillet Y. Application of Chemical Exchange Saturation Transfer (CEST) in neuroimaging. J Chem Neuroanat 2021; 114:101944. [PMID: 33716103 DOI: 10.1016/j.jchemneu.2021.101944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Since the early eighties MRI has become the most powerful technic for in-vivo imaging particularly in the field of brain research. This non-invasive method allows acute anatomical observations of the living brain similar to post-mortem dissected tissues. However, one of the main limitation of MRI is that it does not make possible the neurochemical identification of the tissues conversely to positron emission tomography scanner which can provide a specific molecular characterization of tissue, in spite of poor anatomical definition. To gain neurochemical information using MRI, new categories of contrast agents were developed from the beginning of the 2000's, particularly using the chemical-exchange saturation transfer (CEST) method. This method induces a significant change in the magnitude of the water proton signal and allows the detection of specific molecules within the tissues like sugars, amino acids, transmitters, and nucleosides. This short review presents several CEST contrast agents and their recent developments for in vivo detection of metabolites and neurotransmitters in the brain for research and clinical purposes.
Collapse
Affiliation(s)
- Kahina El Mamoune
- Physiologie de la Reproduction et des Comportements, UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; Siemens Healthcare SAS, Saint Denis, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France
| | - Laurent Barantin
- iBrain, UMR 1253 INSERM, Université de Tours, 10 Bd Tonnellé, 37032 Tours, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France
| | - Hans Adriaensen
- Physiologie de la Reproduction et des Comportements, UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; CIRE UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France
| | - Yves Tillet
- Physiologie de la Reproduction et des Comportements, UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France.
| |
Collapse
|
23
|
von Knebel Doeberitz N, Maksimovic S, Loi L, Paech D. [Chemical exchange saturation transfer (CEST) : Magnetic resonance imaging in diagnostic oncology]. Radiologe 2021; 61:43-51. [PMID: 33337509 DOI: 10.1007/s00117-020-00786-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Contrast generation by chemical exchange saturation transfer (CEST) is a recently emerging magnetic resonance imaging (MRI) research field with high clinical potential. METHODS This review covers the methodological principles and summarizes the clinical experience of CEST imaging studies in diagnostic oncology performed to date. RESULTS AND CONCLUSION CEST enables the detection of lowly concentrated metabolites, such as peptides and glucose, through selective saturation of metabolite-bound protons and subsequent magnetization transfer to free water. This technology yields additional information about metabolic activity and the tissue microenvironment without the need for conventional contrast agents or radioactive tracers. Various studies, mainly conducted in patients with neuro-oncolgic diseases, suggest that this technology may aid to assess tumor malignancy as well as therapeutic response prior to and in the first follow-up after intervention. KEY POINTS CEST-MRI enables the indirect detection of metabolites without radioactive tracers or contrast agents. Clinical experience exists especially in the setting of neuro-oncologic imaging. In oncologic imaging, CEST-MRI may improve assessment of prognosis and therapy response.
Collapse
Affiliation(s)
- N von Knebel Doeberitz
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - S Maksimovic
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - L Loi
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - D Paech
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland.
| |
Collapse
|
24
|
Kwiatkowski G, Kozerke S. Accelerating CEST MRI in the mouse brain at 9.4 T by exploiting sparsity in the Z-spectrum domain. NMR IN BIOMEDICINE 2020; 33:e4360. [PMID: 32621367 DOI: 10.1002/nbm.4360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE Chemical exchange saturation transfer (CEST) is an MR contrast modality offering an enhanced sensitivity for the detection of dilute metabolites with exchangeable protons. Quantitative analysis requires the acquisition of a number of images (usually between 20 and 50 RF offsets) per Z-spectrum, leading to long acquisition times of the order of 5-40 min in practice. In this work, we explore the possibility of employing sparsity in the Z-spectrum domain (irradiation offset dimension) to provide an accelerated acquisition scheme without compromising the quality of reconstructed CEST spectra. METHOD AND THEORY Ex vivo and in vivo data were acquired on an experimental, small animal 9.4 T system. Three different reconstruction methods were tested: k-Z SPARSE, k-Z SLR and k-Z principal component analysis (PCA) using retrospective undersampling with net acceleration factors R = 2, 3, 5. The quality of the reconstructed data was compared with respect to CEST spectra and full magnetization transfer ratio (MTR) asymmetry maps. RESULTS In both phantom and in vivo data, CEST spectra and the resulting MTR asymmetry maps were reconstructed without significant deterioration in data quality. For a low acceleration factor (R = 2, 3) all applied methods resulted in similar data quality, while for high acceleration factor (R = 5) only k-Z PCA and k-Z SLR could be used. Loss in spatial resolution was observed in reconstruction with k-Z PCA for all acceleration factors. An example of prospective undersampling with acceleration factor R = 3 and k-Z PCA reconstruction demonstrates improved CEST maps when compared with fully sampled data acquisition with either three times longer scan duration or threefold prolonged acquisition window per frequency offset. CONCLUSION The acquisition time of CEST spectra can be significantly accelerated by exploiting the sparsity of the Z-domain. For prospective and retrospective analysis using k-Z PCA, an acceleration factor of up to R = 3 can be used without significant loss in data quality.
Collapse
Affiliation(s)
- Grzegorz Kwiatkowski
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Huang J, van Zijl PCM, Han X, Dong CM, Cheng GWY, Tse KH, Knutsson L, Chen L, Lai JHC, Wu EX, Xu J, Chan KWY. Altered d-glucose in brain parenchyma and cerebrospinal fluid of early Alzheimer's disease detected by dynamic glucose-enhanced MRI. SCIENCE ADVANCES 2020; 6:eaba3884. [PMID: 32426510 PMCID: PMC7220384 DOI: 10.1126/sciadv.aba3884] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/27/2020] [Indexed: 05/09/2023]
Abstract
Altered cerebral glucose uptake is one of the hallmarks of Alzheimer's disease (AD). A dynamic glucose-enhanced (DGE) magnetic resonance imaging (MRI) approach was developed to simultaneously monitor d-glucose uptake and clearance in both brain parenchyma and cerebrospinal fluid (CSF). We observed substantially higher uptake in parenchyma of young (6 months) transgenic AD mice compared to age-matched wild-type (WT) mice. Notably lower uptakes were observed in parenchyma and CSF of old (16 months) AD mice. Both young and old AD mice had an obviously slower CSF clearance than age-matched WT mice. This resembles recent reports of the hampered CSF clearance that leads to protein accumulation in the brain. These findings suggest that DGE MRI can identify altered glucose uptake and clearance in young AD mice upon the emergence of amyloid plaques. DGE MRI of brain parenchyma and CSF has potential for early AD stratification, especially at 3T clinical field strength MRI.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Peter C. M. van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Celia M. Dong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Gerald W. Y. Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Lin Chen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Joseph H. C. Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Ed X. Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Corresponding author. (K.W.Y.C.); (J.X.)
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Corresponding author. (K.W.Y.C.); (J.X.)
| |
Collapse
|
26
|
Consolino L, Anemone A, Capozza M, Carella A, Irrera P, Corrado A, Dhakan C, Bracesco M, Longo DL. Non-invasive Investigation of Tumor Metabolism and Acidosis by MRI-CEST Imaging. Front Oncol 2020; 10:161. [PMID: 32133295 PMCID: PMC7040491 DOI: 10.3389/fonc.2020.00161] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Altered metabolism is considered a core hallmark of cancer. By monitoring in vivo metabolites changes or characterizing the tumor microenvironment, non-invasive imaging approaches play a fundamental role in elucidating several aspects of tumor biology. Within the magnetic resonance imaging (MRI) modality, the chemical exchange saturation transfer (CEST) approach has emerged as a new technique that provides high spatial resolution and sensitivity for in vivo imaging of tumor metabolism and acidosis. This mini-review describes CEST-based methods to non-invasively investigate tumor metabolism and important metabolites involved, such as glucose and lactate, as well as measurement of tumor acidosis. Approaches that have been exploited to assess response to anticancer therapies will also be reported for each specific technique.
Collapse
Affiliation(s)
- Lorena Consolino
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.,Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Annasofia Anemone
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Martina Capozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| | - Pietro Irrera
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessia Corrado
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| | - Chetan Dhakan
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy.,University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Bracesco
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| |
Collapse
|
27
|
Sapir G, Harris T, Uppala S, Nardi-Schreiber A, Sosna J, Gomori JM, Katz-Brull R. [ 13C 6,D 8]2-deoxyglucose phosphorylation by hexokinase shows selectivity for the β-anomer. Sci Rep 2019; 9:19683. [PMID: 31873121 PMCID: PMC6928223 DOI: 10.1038/s41598-019-56063-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/06/2019] [Indexed: 12/27/2022] Open
Abstract
A non-radioactive 2-deoxyglucose (2DG) analog has been developed here for hyperpolarized magnetic resonance investigations. The analog, [13C6,D8]2DG, showed 13% polarization in solution (27,000-fold signal enhancement at the C1 site), following a dissolution-DNP hyperpolarization process. The phosphorylation of this analog by yeast hexokinase (yHK) was monitored in real-time with a temporal resolution of 1 s. We show that yHK selectively utilizes the β anomer of the 2DG analog, thus revealing a surprising anomeric specificity of this reaction. Such anomeric selectivity was not observed for the reaction of yHK or bacterial glucokinase with a hyperpolarized glucose analog. yHK is highly similar to the human HK-2, which is overexpressed in malignancy. Thus, the current finding may shed a new light on a fundamental enzyme activity which is utilized in the most widespread molecular imaging technology for cancer detection - positron-emission tomography with 18F-2DG.
Collapse
Affiliation(s)
- Gal Sapir
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Talia Harris
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Sivaranjan Uppala
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Atara Nardi-Schreiber
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel.
| |
Collapse
|
28
|
Boyd PS, Breitling J, Zimmermann F, Korzowski A, Zaiss M, Schuenke P, Weinfurtner N, Schlemmer HP, Ladd ME, Bachert P, Paech D, Goerke S. Dynamic glucose-enhanced (DGE) MRI in the human brain at 7 T with reduced motion-induced artifacts based on quantitative R 1ρ mapping. Magn Reson Med 2019; 84:182-191. [PMID: 31788870 DOI: 10.1002/mrm.28112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE Dynamic glucose-enhanced (DGE)-MRI based on chemical exchange-sensitive MRI, that is, glucoCEST and gluco-chemical exchange-sensitive spin-lock (glucoCESL), is intrinsically prone to motion-induced artifacts because the final DGE contrast relies on the difference of images, which were acquired with a time gap of several mins. In this study, identification of different types of motion-induced artifacts led to the development of a 3D acquisition protocol for DGE examinations in the human brain at 7 T with improved robustness in the presence of subject motion. METHODS DGE-MRI was realized by the chemical exchange-sensitive spin-lock approach based either on relaxation rate in the rotating frame (R1ρ )-weighted or quantitative R1ρ imaging. A 3D image readout was implemented at 7 T, enabling retrospective volumetric coregistration of the image series and quantification of subject motion. An examination of a healthy volunteer without administration of glucose allowed for the identification of isolated motion-induced artifacts. RESULTS Even after coregistration, significant motion-induced artifacts remained in the DGE contrast based on R1ρ -weighted images. This is due to the spatially varying sensitivity of the coil and was found to be compensated by a quantitative R1ρ approach. The coregistered quantitative approach allowed the observation of a clear increase of the DGE contrast in a patient with glioblastoma, which did not correlate with subject motion. CONCLUSION The presented 3D acquisition protocol enables DGE-MRI examinations in the human brain with improved robustness against motion-induced artifacts. Correction of motion-induced artifacts is of high importance for DGE-MRI in clinical studies where an unambiguous assignment of contrast changes due to an actual change in local glucose concentration is a prerequisite.
Collapse
Affiliation(s)
- Philip S Boyd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Johannes Breitling
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.,Max-Planck-Institute for Nuclear Physics, Heidelberg, Germany
| | - Ferdinand Zimmermann
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Andreas Korzowski
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Moritz Zaiss
- Max-Planck-Institute for Biological Cybernetics, Department of High-field Magnetic Resonance, Tübingen, Germany
| | - Patrick Schuenke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Weinfurtner
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Goerke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
29
|
Luo J, Abaci Turk E, Gagoski B, Copeland N, Zhou IY, Young V, Bibbo C, Robinson JN, Zera C, Barth WH, Roberts DJ, Sun PZ, Grant PE. Preliminary evaluation of dynamic glucose enhanced MRI of the human placenta during glucose tolerance test. Quant Imaging Med Surg 2019; 9:1619-1627. [PMID: 31728306 DOI: 10.21037/qims.2019.09.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background To investigate dynamic glucose enhanced (DGE) chemical exchange saturation transfer (CEST) MRI as a means to non-invasively image glucose transport in the human placenta. Methods Continuous wave (CW) CEST MRI was performed at 3.0 Tesla. The glucose contrast enhancement (GCE) was calculated based on the magnetization transfer asymmetry (MTRasym), and the DGE was calculated with the positive side of Z-spectra in reference to the first time point. The glucose CEST (GlucoCEST) was optimized using a glucose solution phantom. Glucose solution perfused ex vivo placenta tissue was used to demonstrate GlucoCEST MRI effect. The vascular density of ex vivo placental tissue was evaluated with yellow dye after MRI scans. Finally, we preliminarily demonstrated GlucoCEST MRI in five pregnant subjects who received a glucose tolerance test. For human studies, the dynamic R2* change was captured with T2*-weighted echo planar imaging (EPI). Results The GCE effect peaks at a saturation B1 field of about 2 μT, and the GlucoCEST effect increases linearly with the glucose concentration between 4-20 mM. In ex vivo tissue, the GlucoCEST MRI was sensitive to the glucose perfusate and the placenta vascular density. Although the in vivo GCE baseline was sensitive to field inhomogeneity and motion artifacts, the temporal evolution of the GlucoCEST effect showed a consistent and positive response after oral glucose tolerance drink. Conclusions Despite the challenges of placental motion and field inhomogeneity, our study demonstrated the feasibility of DGE placenta MRI at 3.0 Tesla.
Collapse
Affiliation(s)
- Jie Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Esra Abaci Turk
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Natalie Copeland
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Iris Y Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Vanessa Young
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Carolina Bibbo
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Julian N Robinson
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Chloe Zera
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - William H Barth
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Drucilla J Roberts
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
30
|
Julià-Sapé M, Candiota AP, Arús C. Cancer metabolism in a snapshot: MRS(I). NMR IN BIOMEDICINE 2019; 32:e4054. [PMID: 30633389 DOI: 10.1002/nbm.4054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
The contribution of MRS(I) to the in vivo evaluation of cancer-metabolism-derived metrics, mostly since 2016, is reviewed here. Increased carbon consumption by tumour cells, which are highly glycolytic, is now being sampled by 13 C magnetic resonance spectroscopic imaging (MRSI) following the injection of hyperpolarized [1-13 C] pyruvate (Pyr). Hot-spots of, mostly, increased lactate dehydrogenase activity or flow between Pyr and lactate (Lac) have been seen with cancer progression in prostate (preclinical and in humans), brain and pancreas (both preclinical) tumours. Therapy response is usually signalled by decreased Lac/Pyr 13 C-labelled ratio with respect to untreated or non-responding tumour. For therapeutic agents inducing tumour hypoxia, the 13 C-labelled Lac/bicarbonate ratio may be a better metric than the Lac/Pyr ratio. 31 P MRSI may sample intracellular pH changes from brain tumours (acidification upon antiangiogenic treatment, basification at fast proliferation and relapse). The steady state tumour metabolome pattern is still in use for cancer evaluation. Metrics used for this range from quantification of single oncometabolites (such as 2-hydroxyglutarate in mutant IDH1 glial brain tumours) to selected metabolite ratios (such as total choline to N-acetylaspartate (plain ratio or CNI index)) or the whole 1 H MRSI(I) pattern through pattern recognition analysis. These approaches have been applied to address different questions such as tumour subtype definition, following/predicting the response to therapy or defining better resection or radiosurgery limits.
Collapse
Affiliation(s)
- Margarida Julià-Sapé
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
31
|
Goldenberg JM, Pagel MD. Assessments of tumor metabolism with CEST MRI. NMR IN BIOMEDICINE 2019; 32:e3943. [PMID: 29938857 PMCID: PMC7377947 DOI: 10.1002/nbm.3943] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 05/06/2023]
Abstract
Chemical exchange saturation transfer (CEST) is a relatively new contrast mechanism for MRI. CEST MRI exploits a specific MR frequency (chemical shift) of a molecule while generating an image with good spatial resolution using standard MRI techniques, combining the specificity of MRS with the spatial resolution of MRI. Many CEST MRI acquisition methods have been developed to improve analyses of tumor metabolism. GluCEST, CrCEST, and LATEST can map glutamate, creatine, and lactate, which are important metabolites involved in tumor metabolism. GlucoCEST MRI tracks the pharmacokinetics of glucose transport and cell internalization within tumors. CatalyCEST MRI detects enzyme catalysis that changes a substrate CEST agent. AcidoCEST MRI measures extracellular pH of the tumor microenvironment by exploiting a ratio of two pH-dependent CEST signals. This review describes each technique, the technical issues involved with CEST MRI and each specific technique, and the merits and challenges associated with applying each CEST MRI technique to study tumor metabolism.
Collapse
Affiliation(s)
- Joshua M. Goldenberg
- Department of Pharmaceutical Sciences, The University of Arizona, Tucson, AZ, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark D. Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
32
|
Rivlin M, Navon G. Molecular imaging of tumors by chemical exchange saturation transfer MRI of glucose analogs. Quant Imaging Med Surg 2019; 9:1731-1746. [PMID: 31728315 DOI: 10.21037/qims.2019.09.12] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Early detection of the cancerous process would benefit greatly from imaging at the cellular and molecular level. Increased glucose demand has been recognized as one of the hallmarks of cancerous cells (the "Warburg effect"), hence glucose and its analogs are commonly used for cancer imaging. One example is FDG-PET technique, that led to the use of chemical exchange saturation transfer (CEST) MRI of glucose ("glucoCEST") for tumor imaging. This technique combines high-resolution MRI obtained by conventional imaging with simultaneous molecular information obtained from the exploitation of agents with exchangeable protons from amine, amide or hydroxyl residues with the water signal. In the case of glucoCEST, these agents are based on glucose or its analogs. Recently, preclinical glucoCEST studies demonstrated the ability to increase the sensitivity of MRI to the level of metabolic activity, enabling identification of tumor staging, biologic potential, treatment planning, therapy response and local recurrence, in addition to guiding target biopsy for clinically suspected cancer. However, natural glucose limits this method because of its rapid conversion to lactic acid, leading to reduced CEST effect and short signal duration. For that reason, a variety of glucose analogs have been tested as alternatives to the original glucoCEST. This review discusses the merits of these analogs, including new data on glucose analogs heretofore not reported in the literature. This summarized preclinical data may help strengthen the translation of CEST MRI of glucose analogs into the clinic, improving cancer imaging to enable early intervention without the need for invasive techniques. The data should also broaden our knowledge of fundamental biological processes.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Navon
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Dou W, Lin CYE, Ding H, Shen Y, Dou C, Qian L, Wen B, Wu B. Chemical exchange saturation transfer magnetic resonance imaging and its main and potential applications in pre-clinical and clinical studies. Quant Imaging Med Surg 2019; 9:1747-1766. [PMID: 31728316 PMCID: PMC6828581 DOI: 10.21037/qims.2019.10.03] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/29/2019] [Indexed: 12/26/2022]
Abstract
Chemical exchange saturation transfer (CEST) imaging is a novel contrast mechanism, relying on the exchange between mobile protons in amide (-NH), amine (-NH2) and hydroxyl (-OH) groups and bulk water. Due to the targeted protons present in endogenous molecules or exogenous compounds applied externally, CEST imaging can respectively, generate endogenous or exogenous contrast. Nowadays, CEST imaging for endogenous contrast has been explored in pre-clinical and clinical studies. Amide CEST, also called amide proton transfer weighted (APT) imaging, generates CEST effect at 3.5 ppm away from the water signal and has been widely investigated. Given the sensitivity to amide proton concentration and pH level, APT imaging has shown robust performance in the assessment of ischemia, brain tumors, breast and prostate cancer as well as neurodegenerative diseases. With advanced methods proposed, pure APT and Nuclear Overhauser Effect (NOE) mediated CEST effects were separately fitted from original APT signal. Using both effects, early but promising results were obtained for glioma patients in the evaluation of tumor response to therapy and patient survival. Compared to amide CEST, amine CEST is also mobile proton concentration and pH dependent, but has a faster exchange rate between amine protons and water. The resultant CEST effect is usually introduced at 1.8-3 ppm. Glutamate and creatine, as two main metabolites with amine groups for CEST imaging, have been applied to quantitatively assess diseases in the central nervous system and muscle system, respectively. Glycosaminoglycan (Gag) as a representative metabolite with hydroxyl groups has also been measured to evaluate the cartilage of knee or intervertebral discs in CEST MRI. Due to limited frequency difference between hydroxyl protons and water, 7T for better spectral separation is preferred over 3T for GagCEST measurement. The applications of CEST MRI with exogenous contrast agents are still quite limited in clinic. While certain diamagnetic CEST agents, such as dynamic-glucose, have been tried in human for brain tumor or neck cancer assessment, most exogenous agents, i.e., paramagnetic CEST agents, are still tested in the pre-clinical stage, mainly due to potential toxicity. Engineered tissues for tissue regeneration and drug delivery have also shown a great potential in CEST imaging, as many of them, such as hydrogel and polyamide materials, contain mobile protons or can be incorporated with CEST specific chemical compounds. These engineered tissues can thus generate CEST effect in vivo, allowing a possibility to understand the fate of them in vivo longitudinally. Although the CEST MRI with engineered tissues has only been established in early stage, the obtained first evidence is crucial for further optimizing these biomaterials and finally accomplishing the translation into clinical use.
Collapse
Affiliation(s)
- Weiqiang Dou
- MR Research, GE Healthcare, Beijing 100076, China
| | | | - Hongyuan Ding
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yong Shen
- MR Enhanced Application, GE Healthcare, Beijing 100076, China
| | - Carol Dou
- Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Long Qian
- MR Research, GE Healthcare, Beijing 100076, China
| | - Baohong Wen
- Department of MRI, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bing Wu
- MR Research, GE Healthcare, Beijing 100076, China
| |
Collapse
|
34
|
Kim M, Torrealdea F, Adeleke S, Rega M, Evans V, Beeston T, Soteriou K, Thust S, Kujawa A, Okuchi S, Isaac E, Piga W, Lambert JR, Afaq A, Demetriou E, Choudhary P, Cheung KK, Naik S, Atkinson D, Punwani S, Golay X. Challenges in glucoCEST MR body imaging at 3 Tesla. Quant Imaging Med Surg 2019; 9:1628-1640. [PMID: 31728307 PMCID: PMC6828585 DOI: 10.21037/qims.2019.10.05] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND The aim of this study was to translate dynamic glucose enhancement (DGE) body magnetic resonance imaging (MRI) based on the glucose chemical exchange saturation transfer (glucoCEST) signal to a 3 T clinical field strength. METHODS An infusion protocol for intravenous (i.v.) glucose was optimised using a hyperglycaemic clamp to maximise the chances of detecting exchange-sensitive MRI signal. Numerical simulations were performed to define the optimum parameters for glucoCEST measurements with consideration to physiological conditions. DGE images were acquired for patients with lymphomas and prostate cancer injected i.v. with 20% glucose. RESULTS The optimised hyperglycaemic clamp infusion based on the DeFronzo method demonstrated higher efficiency and stability of glucose delivery as compared to manual determination of glucose infusion rates. DGE signal sensitivity was found to be dependent on T2, B1 saturation power and integration range. Our results show that motion correction and B0 field inhomogeneity correction are crucial to avoid mistaking signal changes for a glucose response while field drift is a substantial contributor. However, after B0 field drift correction, no significant glucoCEST signal enhancement was observed in tumour regions of all patients in vivo. CONCLUSIONS Based on our simulated and experimental results, we conclude that glucose-related signal remains elusive at 3 T in body regions, where physiological movements and strong effects of B1 + and B0 render the originally small glucoCEST signal difficult to detect.
Collapse
Affiliation(s)
- Mina Kim
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Francisco Torrealdea
- Medical Physics and Biomedical Engineering, University College Hospital, London, UK
| | | | - Marilena Rega
- Institute of Nuclear Medicine, University College Hospital, London, UK
| | | | | | | | - Stefanie Thust
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Aaron Kujawa
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Sachi Okuchi
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | | | | | | | - Asim Afaq
- Institute of Nuclear Medicine, University College Hospital, London, UK
| | - Eleni Demetriou
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Pratik Choudhary
- King’s College Hospital NHS Foundation Trust, London, UK
- Department of Diabetes, School of Life Course Sciences, King’s College London, London, UK
| | | | - Sarita Naik
- Department of Diabetes and Endocrinology, University College Hospital, London, UK
| | | | | | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
35
|
Poblador Rodriguez E, Moser P, Dymerska B, Robinson S, Schmitt B, van der Kouwe A, Gruber S, Trattnig S, Bogner W. A comparison of static and dynamic ∆B 0 mapping methods for correction of CEST MRI in the presence of temporal B 0 field variations. Magn Reson Med 2019; 82:633-646. [PMID: 30924210 PMCID: PMC6563466 DOI: 10.1002/mrm.27750] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE To assess the performance, in the presence of scanner instabilities, of three dynamic correction methods which integrate ∆B0 mapping into the chemical exchange saturation transfer (CEST) measurement and three established static ∆B0 -correction approaches. METHODS A homogeneous phantom and five healthy volunteers were scanned with a CEST sequence at 7 T. The in vivo measurements were performed twice: first with unaltered system frequency and again applying frequency shifts during the CEST acquisition. In all cases, retrospective voxel-wise ∆B0 -correction was performed using one intrinsic and two extrinsic [prescans with dual-echo gradient-echo and water saturation shift referencing (WASSR)] static approaches. These were compared with two intrinsic [using phase data directly generated by single-echo or double-echo GRE (gradient-echo) CEST readout (CEST-GRE-2TE)] and one extrinsic [phase from interleaved dual-echo EPI (echo planar imaging) navigator (NAV-EPI-2TE)] dynamic ∆B0 -correction approaches [allowing correction of each Z-spectral point before magnetization transfer ratio asymmetry (MTRasym) analysis]. RESULTS All three dynamic methods successfully mapped the induced drift. The intrinsic approaches were affected by the CEST labeling near water (∆ω < |0.3| ppm). The MTRasym contrast was distorted by the frequency drift in the brain by up to 0.21%/Hz when static ∆B0 -corrections were applied, whereas the dynamic ∆B0 corrections reduced this to <0.01%/Hz without the need of external scans. The CEST-GRE-2TE and NAV-EPI-2TE resulted in highly consistent MTRasym values with/without drift for all subjects. CONCLUSION Reliable correction of scanner instabilities is essential to establish clinical CEST MRI. The three dynamic approaches presented improved the ∆B0 -correction performance significantly in the presence of frequency drift compared to established static methods. Among them, the self-corrected CEST-GRE-2TE was the most accurate and straightforward to implement.
Collapse
Affiliation(s)
- Esau Poblador Rodriguez
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Philipp Moser
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Barbara Dymerska
- Medical Physics and Bioengineering, University College London, London, United Kingdom
| | - Simon Robinson
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | | | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephan Gruber
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| |
Collapse
|
36
|
Yu L, Li C, Luo X, Zhou J, Zhang C, Zhang Y, Chen M. Differentiation of Malignant and Benign Head and Neck Tumors with Amide Proton Transfer-Weighted MR Imaging. Mol Imaging Biol 2019; 21:348-355. [PMID: 29987616 DOI: 10.1007/s11307-018-1248-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To prospectively evaluate the feasibility and capability of amide proton transfer-weighted (APTw) imaging for the characterization of head and neck tumors. PROCEDURES Twenty-nine consecutive patients with suspected head and neck tumors were enrolled in this study and underwent APTw magnetic resonance imaging (MRI) on a 3.0-T MRI scanner. The patients were divided into malignant (n = 16) and benign (n = 13) groups, based on pathological results. A map of magnetization transfer ratio asymmetry at 3.5 ppm [MTRasym (3.5 ppm)] was generated for each patient. Interobserver agreement was evaluated and comparisons of MTRasym (3.5 ppm) were made between the malignant and benign groups. Receiver operating characteristic analysis was used to determine the appropriate threshold value of MTRasym (3.5 ppm) for the differentiation of malignant from benign tumors. RESULTS The intraclass correlation coefficients of the malignant and benign groups were 0.96 and 0.90, respectively, which indicated a good interobserver agreement. MTRasym (3.5 ppm) was significantly higher for the malignant group (3.66 ± 1.15 %) than for the benign group (1.94 ± 0.93 %, P < 0.001). APTw MRI revealed an area under the curve of 0.904 in discriminating these two groups, with a sensitivity of 81.3 %, a specificity of 92.3 %, and an accuracy of 86.2 %, at the threshold of 2.62 % of MTRasym (3.5 ppm). CONCLUSIONS APTw MRI is feasible for use in the head and neck tumors and is a valuable imaging biomarker for distinguishing malignant from benign lesions.
Collapse
Affiliation(s)
- Lu Yu
- Department of Radiology, Beijing Hospital, National Center of Gerontology, No. 1 Da-Hua Road, Dong Dan, Beijing, 100730, China.,Graduate School of Peking Union Medical College, No. 9 Dong Dan San Tiao, Beijing, 100730, China
| | - Chunmei Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology, No. 1 Da-Hua Road, Dong Dan, Beijing, 100730, China
| | - Xiaojie Luo
- Department of Radiology, Beijing Hospital, National Center of Gerontology, No. 1 Da-Hua Road, Dong Dan, Beijing, 100730, China
| | - Jinyuan Zhou
- Department of Radiology, Johns Hopkins University, 600 N. Wolfe Street, Park 336, Baltimore, MD, 21287, USA
| | - Chen Zhang
- Department of Radiology, Beijing Hospital, National Center of Gerontology, No. 1 Da-Hua Road, Dong Dan, Beijing, 100730, China
| | - Yi Zhang
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, No. 388 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, No. 1 Da-Hua Road, Dong Dan, Beijing, 100730, China. .,Graduate School of Peking Union Medical College, No. 9 Dong Dan San Tiao, Beijing, 100730, China.
| |
Collapse
|
37
|
Sugar alcohol provides imaging contrast in cancer detection. Sci Rep 2019; 9:11092. [PMID: 31366892 PMCID: PMC6668433 DOI: 10.1038/s41598-019-47275-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/09/2019] [Indexed: 01/30/2023] Open
Abstract
Clinical imaging is widely used to detect, characterize and stage cancers in addition to monitoring the therapeutic progress. Magnetic resonance imaging (MRI) aided by contrast agents utilizes the differential relaxivity property of water to distinguish between tumorous and normal tissue. Here, we describe an MRI contrast method for the detection of cancer using a sugar alcohol, maltitol, a common low caloric sugar substitute that exploits the chemical exchange saturation transfer (CEST) property of the labile hydroxyl group protons on maltitol (malCEST). In vitro studies pointed toward concentration and pH-dependent CEST effect peaking at 1 ppm downfield to the water resonance. Studies with control rats showed that intravenously injected maltitol does not cross the intact blood-brain barrier (BBB). In glioma carrying rats, administration of maltitol resulted in the elevation of CEST contrast in the tumor region only owing to permeable BBB. These preliminary results show that this method may lead to the development of maltitol and other sugar alcohol derivatives as MRI contrast agents for a variety of preclinical imaging applications.
Collapse
|
38
|
Herz K, Lindig T, Deshmane A, Schittenhelm J, Skardelly M, Bender B, Ernemann U, Scheffler K, Zaiss M. T1ρ‐based dynamic glucose‐enhanced (DGEρ) MRI at 3 T: method development and early clinical experience in the human brain. Magn Reson Med 2019; 82:1832-1847. [DOI: 10.1002/mrm.27857] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/17/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Kai Herz
- Magnetic Resonance Center Max Planck Institute for Biological Cybernetics Tübingen Germany
- IMPRS for Cognitive and Systems Neuroscience University of Tübingen Tübingen Germany
| | - Tobias Lindig
- Magnetic Resonance Center Max Planck Institute for Biological Cybernetics Tübingen Germany
- Department of Diagnostic and Interventional Neuroradiology University Hospital Tübingen Tübingen Germany
| | - Anagha Deshmane
- Magnetic Resonance Center Max Planck Institute for Biological Cybernetics Tübingen Germany
| | - Jens Schittenhelm
- Department of Neuropathology University Hospital Tübingen Tübingen Germany
| | - Marco Skardelly
- Department of Neurosurgery University Hospital Tübingen Tübingen Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology University Hospital Tübingen Tübingen Germany
| | - Ulrike Ernemann
- Department of Diagnostic and Interventional Neuroradiology University Hospital Tübingen Tübingen Germany
| | - Klaus Scheffler
- Magnetic Resonance Center Max Planck Institute for Biological Cybernetics Tübingen Germany
- Department of Biomedical Magnetic Resonance University Hospital Tübingen Tübingen Germany
| | - Moritz Zaiss
- Magnetic Resonance Center Max Planck Institute for Biological Cybernetics Tübingen Germany
| |
Collapse
|
39
|
Mehrabian H, Detsky J, Soliman H, Sahgal A, Stanisz GJ. Advanced Magnetic Resonance Imaging Techniques in Management of Brain Metastases. Front Oncol 2019; 9:440. [PMID: 31214496 PMCID: PMC6558019 DOI: 10.3389/fonc.2019.00440] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 05/08/2019] [Indexed: 01/18/2023] Open
Abstract
Brain metastases are the most common intracranial tumors and occur in 20–40% of all cancer patients. Lung cancer, breast cancer, and melanoma are the most frequent primary cancers to develop brain metastases. Treatment options include surgical resection, whole brain radiotherapy, stereotactic radiosurgery, and systemic treatment such as targeted or immune therapy. Anatomical magnetic resonance imaging (MRI) of the tumor (in particular post-Gadolinium T1-weighted and T2-weighted FLAIR) provide information about lesion morphology and structure, and are routinely used in clinical practice for both detection and treatment response evaluation for brain metastases. Advanced MRI biomarkers that characterize the cellular, biophysical, micro-structural and metabolic features of tumors have the potential to improve the management of brain metastases from early detection and diagnosis, to evaluating treatment response. Magnetic resonance spectroscopy (MRS), chemical exchange saturation transfer (CEST), quantitative magnetization transfer (qMT), diffusion-based tissue microstructure imaging, trans-membrane water exchange mapping, and magnetic susceptibility weighted imaging (SWI) are advanced MRI techniques that will be reviewed in this article as they pertain to brain metastases.
Collapse
Affiliation(s)
- Hatef Mehrabian
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Jay Detsky
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Hany Soliman
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Arjun Sahgal
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Greg J Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin, Poland
| |
Collapse
|
40
|
Chemical exchange saturation transfer (CEST) as a new method of signal obtainment in magnetic resonance molecular imaging in clinical and research practice. Pol J Radiol 2019; 84:e147-e152. [PMID: 31019609 PMCID: PMC6479148 DOI: 10.5114/pjr.2019.84242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/14/2019] [Indexed: 01/04/2023] Open
Abstract
The work describes the physical basis of the chemical exchange saturation transfer (CEST) technique; it presents the beginnings of the implementation of the method and its possible applications. The principles of correct data acquisition and possible solutions used during the design of the CEST sequence are shown. The main problems related to data analysis are indicated, and an example Z-spectrum from in vivo study of the rat brain is introduced. Furthermore, the parameters related to spectrum analyses such as magnetisation transfer asymmetry (MTRasym) and amide proton transfer asymmetry (APTasym) are presented. In the following part, different types of the CEST method often mentioned in the literature are discussed. Subsequently, the possible applications of the CEST method in both clinical and experimental practice are described.
Collapse
|
41
|
Ntziachristos V, Pleitez MA, Aime S, Brindle KM. Emerging Technologies to Image Tissue Metabolism. Cell Metab 2019; 29:518-538. [PMID: 30269982 DOI: 10.1016/j.cmet.2018.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/24/2018] [Accepted: 09/02/2018] [Indexed: 12/19/2022]
Abstract
Due to the implication of altered metabolism in a large spectrum of tissue function and disease, assessment of metabolic processes becomes essential in managing health. In this regard, imaging can play a critical role in allowing observation of biochemical and physiological processes. Nuclear imaging methods, in particular positron emission tomography, have been widely employed for imaging metabolism but are mainly limited by the use of ionizing radiation and the sensing of only one parameter at each scanning session. Observations in healthy individuals or longitudinal studies of disease could markedly benefit from non-ionizing, multi-parameter imaging methods. We therefore focus this review on progress with the non-ionizing radiation methods of MRI, hyperpolarized magnetic resonance and magnetic resonance spectroscopy, chemical exchange saturation transfer, and emerging optoacoustic (photoacoustic) imaging. We also briefly discuss the role of nuclear and optical imaging methods for research and clinical protocols.
Collapse
Affiliation(s)
- Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany; Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaningerstr. 22, Munich 81675, Germany.
| | - Miguel A Pleitez
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany; Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaningerstr. 22, Munich 81675, Germany
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin 10126, Italy
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, Old Addenbrooke's Site, Cambridge CB2 1GA, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
42
|
Zaiss M, Herz K, Deshmane A, Kim M, Golay X, Lindig T, Bender B, Ernemann U, Scheffler K. Possible artifacts in dynamic CEST MRI due to motion and field alterations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 298:16-22. [PMID: 30500568 DOI: 10.1016/j.jmr.2018.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
PURPOSE Dynamic CEST studies such as dynamic glucose enhanced imaging, have gained a lot of attention recently. The expected CEST effects after injection are rather small in tissue especially at clinical field strengths (0.5-2%). Small movements during the dynamic CEST measurement together with a subtraction-based evaluation can lead to pseudo CEST effects of the same order of magnitude. These artifacts are studied herein. METHODS A brain tumor patient 3D-CEST baseline scan without glucose injection performed at 3 T is used to generate a virtual dynamic measurement introducing different kinds of simulated motion and B0 shifts. RESULTS Minor motion (0.6 mm translations) and B0 artifacts (7 Hz shift) can lead to pseudo effects in the order of 1% in dynamic CEST imaging. Especially around tissue interfaces such as CSF borders or tumor affected areas, the pseudo effect patterns are non-intuitive and can be mistaken as dynamic agent uptake. CONCLUSION Correction or mitigation for small motions is crucial for dynamic CEST imaging, especially in subjects with lesions. Concomitant B0 alterations can as well induce pseudo CEST effects at 3 T.
Collapse
Affiliation(s)
- Moritz Zaiss
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | - Kai Herz
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anagha Deshmane
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Mina Kim
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom
| | - Xavier Golay
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom
| | - Tobias Lindig
- Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Ulrike Ernemann
- Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Department of Biomedical Magnetic Resonance, Eberhard-Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
43
|
Windschuh J, Zaiss M, Ehses P, Lee JS, Jerschow A, Regatte RR. Assessment of frequency drift on CEST MRI and dynamic correction: application to gagCEST at 7 T. Magn Reson Med 2019; 81:573-582. [PMID: 29851141 PMCID: PMC6258338 DOI: 10.1002/mrm.27367] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the effect of a frequency drift of the static magnetic field on 3D CEST MRI based on glycosaminoglycans (GAGs) of articular cartilage at 7 T and to introduce a retrospective correction method that uses the phase images of the gradient-echo readout. METHODS Repeated gagCEST and B0 measurements were performed in a glucose model solution and in vivo in the knee joint of 3 healthy volunteers at 7 T. Phase images of the modified 3D rectangular spiral centric-reordered gradient-echo CEST sequence were used to quantify and compensate the apparent frequency drift in repeated gagCEST measurements. RESULTS The frequency drift of the MRI scanner strongly influences the gagCEST signal in the articular cartilage of the human knee joint. The gagCEST signal in the articular cartilage is changed by 0.18%/Hz while an average drift of 0.7 ± 0.2 Hz/minute was observed. The proposed correction method can be applied retrospectively without the need of additional measurements and provides improved comparability and reproducibility for gagCEST studies. This correction method may also be of interest for other applications of CEST MRI. CONCLUSION Prospective or retrospective correction of the frequency drift of the MRI scanner is essential for reproducible gagCEST measurements. The proposed retrospective correction method fulfills this requirement without the need of additional measurements.
Collapse
Affiliation(s)
- Johannes Windschuh
- New York University Langone Medical Center, Department of Radiology, Center for Biomedical Imaging, 660 First Avenue, New York, NY 10013, USA
| | - Moritz Zaiss
- Max Planck Institute for Biological Cybernetics, High-field Magnetic Resonance Center, Spemannstr. 41, 72076 Tübingen, Germany
| | - Philipp Ehses
- German Center for Neurodegenerative Diseases, Department of MR Physics, Sigmund-Freud-Str. 27, 53127 Bonn, Germany
| | - Jae-Seung Lee
- New York University Langone Medical Center, Department of Radiology, Center for Biomedical Imaging, 660 First Avenue, New York, NY 10013, USA
- New York University, Department of Chemistry, 100 Washington Square East, New York, NY 10003, USA
| | - Alexej Jerschow
- New York University, Department of Chemistry, 100 Washington Square East, New York, NY 10003, USA
| | - Ravinder R Regatte
- New York University Langone Medical Center, Department of Radiology, Center for Biomedical Imaging, 660 First Avenue, New York, NY 10013, USA
| |
Collapse
|
44
|
Rivlin M, Navon G. 3-O-Methyl-D-glucose mutarotation and proton exchange rates assessed by 13C, 1H NMR and by chemical exchange saturation transfer and spin lock measurements. JOURNAL OF BIOMOLECULAR NMR 2018; 72:93-103. [PMID: 30203383 DOI: 10.1007/s10858-018-0209-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
3-O-Methyl-D-glucose (3OMG) was recently suggested as an agent to image tumors using chemical exchange saturation transfer (CEST) MRI. To characterize the properties of 3OMG in solution, the anomeric equilibrium and the mutarotation rates of 3OMG were studied by 1H and 13C NMR. This information is essential in designing the in vivo CEST experiments. At room temperature, the ratio of α and β 3OMG anomers at equilibrium was 1:1.4, and the time to reach 95% equilibrium was 6 h. The chemical exchange rates between the hydroxyl protons of 3OMG and water, measured by CEST and spin lock at pH 6.14 and a temperature of 4 °C, were in the range of 360-670 s-1.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Gil Navon
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
45
|
Goldenberg JM, Pagel MD, Cárdenas-Rodríguez J. Characterization of D-maltose as a T 2 -exchange contrast agent for dynamic contrast-enhanced MRI. Magn Reson Med 2018; 80:1158-1164. [PMID: 29369407 PMCID: PMC6010162 DOI: 10.1002/mrm.27082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/14/2023]
Abstract
Purpose We sought to investigate the potential of D-maltose, D-sorbitol, and D-mannitol as T2 exchange magnetic resonance imaging (MRI) contrast agents. We also sought to compare the in vivo pharmacokinetics of D-maltose with D-glucose with dynamic contrast enhancement (DCE) MRI. Methods T1 and T2 relaxation time constants of the saccharides were measured using eight pH values and nine concentrations. The effect of echo spacing in a multiecho acquisition sequence used for the T2 measurement was evaluated for all samples. Finally, performances of D-maltose and D-glucose during T2-weighted DCE-MRI were compared in vivo. Results Estimated T2 relaxivities (r2) of D-glucose and D-maltose were highly and nonlinearly dependent on pH and echo spacing, reaching their maximum at pH=7.0 (~0.08mM−1 s−1). The r2 values of D-sorbitol and D-mannitol were estimated to be ~0.02mM−1 s−1 and were invariant to pH and echo spacing for pH ≤7.0. The change in T2 in tumor and muscle tissues remained constant after administration of D-maltose, whereas the change in T2 decreased in tumor and muscle after administration of D-glucose. Therefore, D-maltose has a longer time window for T2-weighted DCE-MRI in tumors. Conclusion We have demonstrated that D-maltose can be used as a T2 exchange MRI contrast agent. The larger, sustained T2-weighted contrast from D-maltose relative to D-glucose has practical advantages for tumor diagnoses during T2-weighted DCE-MRI.
Collapse
Affiliation(s)
- Joshua M. Goldenberg
- Department of Pharmaceutical Sciences, University of Arizona, Tucson, Arizona, USA
- Department of Cancer Systems Imaging, University of Texas M.D., Anderson Cancer Center, Houston, Texas, USA
| | - Mark D. Pagel
- Department of Cancer Systems Imaging, University of Texas M.D., Anderson Cancer Center, Houston, Texas, USA
| | - Julio Cárdenas-Rodríguez
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
46
|
Pantel AR, Ackerman D, Lee SC, Mankoff DA, Gade TP. Imaging Cancer Metabolism: Underlying Biology and Emerging Strategies. J Nucl Med 2018; 59:1340-1349. [PMID: 30042161 PMCID: PMC6126440 DOI: 10.2967/jnumed.117.199869] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 06/18/2018] [Indexed: 12/22/2022] Open
Abstract
Dysregulated cellular metabolism is a characteristic feature of malignancy that has been exploited for both imaging and targeted therapy. With regard to imaging, deranged glucose metabolism has been leveraged using 18F-FDG PET. Metabolic imaging with 18F-FDG, however, probes only the early steps of glycolysis; the complexities of metabolism beyond these early steps in this single pathway are not directly captured. New imaging technologies-both PET with novel radiotracers and MR-based methods-provide unique opportunities to investigate other aspects of cellular metabolism and expand the metabolic imaging armamentarium. This review will discuss the underlying biology of metabolic dysregulation in cancer, focusing on glucose, glutamine, and acetate metabolism. Novel imaging strategies will be discussed within this biologic framework, highlighting particular strengths and limitations of each technique. Emphasis is placed on the role that combining modalities will play in enabling multiparametric imaging to fully characterize tumor biology to better inform treatment.
Collapse
Affiliation(s)
- Austin R Pantel
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel Ackerman
- Penn Image-Guided Interventions Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Seung-Cheol Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Terence P Gade
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Penn Image-Guided Interventions Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
47
|
Jin T, Iordanova B, Hitchens TK, Modo M, Wang P, Mehrens H, Kim SG. Chemical exchange-sensitive spin-lock (CESL) MRI of glucose and analogs in brain tumors. Magn Reson Med 2018; 80:488-495. [PMID: 29569739 DOI: 10.1002/mrm.27183] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/02/2018] [Accepted: 02/26/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Glucose uptake and metabolism can be measured by chemical exchange-sensitive spin-lock (CESL) MRI with an administration of glucose or its analogs. This study investigates the sensitivity, the spatiotemporal characteristics, and the signal source of glucoCESL with a 9L rat brain tumor model. METHODS Dynamic CESL MRI with intravenous injection of D-glucose, 2-deoxy-D-glucose (2DG), and L-glucose were measured and compared with gadolinium-based dynamic contrast-enhanced (DCE) MRI. RESULTS The CESL signals with an injection of glucose or analogs have faster and larger changes in tumors than normal brain tissue. In tumors, the CESL signal with 2DG injection has larger and slower peak response than that with D-glucose due to the accumulation of 2DG and 2DG-6-phosphate in the intracellular compartment, whereas L-glucose, which cannot be transported intracellularly by glucose transporters, only induces a small change. The initial glucoCESL maps (< 4 minutes) are qualitatively similar to DCE maps, whereas later maps (> 4 minutes) show more widespread responses. The rise times of D-glucose-CESL and 2DG-CESL signals in the tumor are slower than that of DCE. Our data suggest that the initial CESL contrast primarily reflects a passive increase of glucose content in the extracellular space of tumors due to a higher vascular permeability, whereas the later period may have a significant contribution from the uptake/metabolism of glucose in the intracellular compartment. CONCLUSIONS Our results demonstrate that glucoCESL MRI has both extracellular and intracellular contributions, and can be a useful tool for measurements of both vascular permeability and glucose uptake in tumors.
Collapse
Affiliation(s)
- Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bistra Iordanova
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - T Kevin Hitchens
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michel Modo
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ping Wang
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hunter Mehrens
- Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
48
|
Zu Z, Jiang X, Xu J, Gore JC. Spin-lock imaging of 3-o-methyl-D glucose (3oMG) in brain tumors. Magn Reson Med 2018; 80:1110-1117. [PMID: 29424459 DOI: 10.1002/mrm.27128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/27/2017] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Xiaoyu Jiang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee.,Deparment of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee.,Deparment of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
49
|
Zhang XY, Wang F, Xu J, Gochberg DF, Gore JC, Zu Z. Increased CEST specificity for amide and fast-exchanging amine protons using exchange-dependent relaxation rate. NMR IN BIOMEDICINE 2018; 31:10.1002/nbm.3863. [PMID: 29193448 PMCID: PMC5773365 DOI: 10.1002/nbm.3863] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 05/10/2023]
Abstract
Chemical exchange saturation transfer (CEST) imaging of amides at 3.5 ppm and fast-exchanging amines at 3 ppm provides a unique means to enhance the sensitivity of detection of, for example, proteins/peptides and neurotransmitters, respectively, and hence can provide important information on molecular composition. However, despite the high sensitivity relative to conventional magnetic resonance spectroscopy (MRS), in practice, CEST often has relatively poor specificity. For example, CEST signals are typically influenced by several confounding effects, including direct water saturation (DS), semi-solid non-specific magnetization transfer (MT), the influence of water relaxation times (T1w ) and nearby overlapping CEST signals. Although several editing techniques have been developed to increase the specificity by removing DS, semi-solid MT and T1w influences, it is still challenging to remove overlapping CEST signals from different exchanging sites. For instance, the amide proton transfer (APT) signal could be contaminated by CEST effects from fast-exchanging amines at 3 ppm and intermediate-exchanging amines at 2 ppm. The current work applies an exchange-dependent relaxation rate (Rex ) to address this problem. Simulations demonstrate that: (1) slowly exchanging amides and fast-exchanging amines have distinct dependences on irradiation powers; and (2) Rex serves as a resonance frequency high-pass filter to selectively reduce CEST signals with resonance frequencies closer to water. These characteristics of Rex provide a means to isolate the APT signal from amines. In addition, previous studies have shown that CEST signals from fast-exchanging amines have no distinct features around their resonance frequencies. However, Rex gives Lorentzian lineshapes centered at their resonance frequencies for fast-exchanging amines and thus can significantly increase the specificity of CEST imaging for amides and fast-exchanging amines.
Collapse
Affiliation(s)
- Xiao-Yong Zhang
- Vanderbilt University Institute of Imaging Science
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Science
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Department of Physics and Astronomy, Vanderbilt University
- Department of Biomedical Engineering, Vanderbilt University
| | - Daniel F. Gochberg
- Vanderbilt University Institute of Imaging Science
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Department of Physics and Astronomy, Vanderbilt University
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Department of Physics and Astronomy, Vanderbilt University
- Department of Biomedical Engineering, Vanderbilt University
- Department of Molecular Physiology and Biophysics
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Correspondence to: Zhongliang Zu, Ph.D., Vanderbilt University Institute of Imaging Science, 1161 21st Ave. S, Medical Center North, AAA-3112, Nashville, TN 37232-2310, , Phone: 615-875-9815, Fax: 615-322-0734
| |
Collapse
|
50
|
Tu TW, Ibrahim WG, Jikaria N, Munasinghe JP, Witko JA, Hammoud DA, Frank JA. On the detection of cerebral metabolic depression in experimental traumatic brain injury using Chemical Exchange Saturation Transfer (CEST)-weighted MRI. Sci Rep 2018; 8:669. [PMID: 29330386 PMCID: PMC5766554 DOI: 10.1038/s41598-017-19094-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Metabolic abnormalities are commonly observed in traumatic brain injury (TBI) patients exhibiting long-term neurological deficits. This study investigated the feasibility and reproducibility of using chemical exchange saturation transfer (CEST) MRI to detect cerebral metabolic depression in experimental TBI. Phantom and in vivo CEST experiments were conducted at 9.4 Tesla to optimize the selective saturation for enhancing the endogenous contrast-weighting of the proton exchanges over the range of glucose proton chemical shifts (glucoCEST) in the resting rat brain. The optimized glucoCEST-weighted imaging was performed on a closed-head model of diffuse TBI in rats with 2-deoxy-D-[14C]-glucose (2DG) autoradiography validation. The results demonstrated that saturation duration of 1‒2 seconds at pulse powers 1.5‒2µT resulted in an improved contrast-to-noise ratio between the gray and white matter comparable to 2DG autoradiographs. The intrasubject (n = 4) and intersubject (n = 3) coefficient of variations for repeated glucoCEST acquisitions (n = 4) ranged between 8‒16%. Optimization for the TBI study revealed that glucoCEST-weighted images with 1.5μT power and 1 s saturation duration revealed the greatest changes in contrast before and after TBI, and positively correlated with 2DG autoradiograph (r = 0.78, p < 0.01, n = 6) observations. These results demonstrate that glucoCEST-weighted imaging may be useful in detecting metabolic abnormalities following TBI.
Collapse
Affiliation(s)
- Tsang-Wei Tu
- Frank Laboratory, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States. .,Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD, United States. .,Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, United States.
| | - Wael G Ibrahim
- Center for Infectious Disease Imaging, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Neekita Jikaria
- Frank Laboratory, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States.,Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD, United States.,Acute Stroke Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jeeva P Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jaclyn A Witko
- Frank Laboratory, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States.,Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD, United States
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Joseph A Frank
- Frank Laboratory, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|