1
|
Khanna V, Singh K. MicroRNAs as promising drug delivery target to ameliorate chronic obstructive pulmonary disease using nano-carriers: a comprehensive review. Mol Cell Biochem 2024:10.1007/s11010-024-05110-0. [PMID: 39254870 DOI: 10.1007/s11010-024-05110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a deteriorating condition triggered by various factors, such as smoking, free radicals, and air pollution. This worsening disease is characterized by narrowing and thickening of airways, painful cough, and dyspnea. In COPD, numerous genes as well as microRNA (miRNA) play a significant role in the pathogenesis of the disease. Many in vivo and in vitro studies suggest that upregulation or suppression of certain miRNAs are effective treatment options for COPD. They have been proven to be more beneficial than the current symptomatic treatments, such as bronchodilators and corticosteroids. MiRNAs play a crucial role in immune cell development and regulate inflammatory responses in various tissues. MiRNA treatment thus allows for precision therapy with improved outcomes. Nanoparticle drug delivery systems such as polymeric nanoparticles, inorganic nanoparticles, dendrimers, polymeric micelles, and liposomes are an efficient method to ensure the biodistribution of the miRNAs to the target site. Identification of the right nanoparticle depending on the requirements and compatibility is essential for achieving maximum therapeutic effect. In this review, we offer a thorough comprehension of the pathology and genetics of COPD and the significance of miRNAs concerning various pathologies of the lung, as potential targets for treating the disease. The present review offers the latest insights into the nanoparticle drug delivery systems that can efficiently carry and deliver miRNA or antagomirs to the specific target site and hence help in effective management of COPD.
Collapse
Affiliation(s)
- Vamika Khanna
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
2
|
Christian L, Manjrekar P, Henkels KM, Rapp CM, Annamraju R, Lohade RP, Singh S, Carpenter MA, Khan S, Kemp MG, Chen Y, Sahu RP, Travers JB. Evidence for the involvement of keratinocyte-derived microvesicle particles in the photosensitivity associated with xeroderma pigmentosum type A deficiency. Photochem Photobiol 2024; 100:1457-1466. [PMID: 38287748 PMCID: PMC11284252 DOI: 10.1111/php.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
Photosensitivity can be due to numerous causes. The photosensitivity associated with deficiency of xeroderma pigmentosum type A (XPA) has been previously shown to be associated with excess levels of the lipid mediator platelet-activating factor (PAF) generated by the keratinocyte. As PAF has been reported to trigger the production of subcellular microvesicle particles (MVP) due to the enzyme acid sphingomyelinase (aSMase), the goal of these studies was to discern if PAF and aSMase could serve as therapeutic targets for the XPA deficiency photosensitivity. HaCaT keratinocytes lacking XPA generated greater levels of MVP in comparison to control cells. Mice deficient in XPA also generated enhanced MVP levels in skin and in plasma in response to UV radiation. Use of a genetic strategy with mice deficient in both XPA and PAF receptors revealed that these mice generated less MVP release as well as decreased skin erythema and cytokine release compared to XPA knockout mice alone. Finally, the aSMase inhibitor imipramine blocked UV-induced MVP release in HaCaT keratinocytes, as well as XPA knockout mice. These studies support the concept that the photosensitivity associated with XPA involves PAF- and aSMase-mediated MVP release and provides a potential pharmacologic target in treating this form of photosensitivity.
Collapse
Affiliation(s)
- Lea Christian
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Pranali Manjrekar
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Karen M. Henkels
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Christine M. Rapp
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Risha Annamraju
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Rushabh P. Lohade
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Shikshita Singh
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | | | - Saman Khan
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Michael G. Kemp
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
- The Dayton V.A. Medical Center, Dayton, OH
| | - Yanfang Chen
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Ravi P. Sahu
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
| | - Jeffrey B. Travers
- Department of Pharmacology & Toxicology, Wright State University, Dayton OH
- Department of Dermatology, Wright State University, Dayton OH
- The Dayton V.A. Medical Center, Dayton, OH
| |
Collapse
|
3
|
Lv J, Xiong X. Extracellular Vesicle microRNA: A Promising Biomarker and Therapeutic Target for Respiratory Diseases. Int J Mol Sci 2024; 25:9147. [PMID: 39273095 PMCID: PMC11395461 DOI: 10.3390/ijms25179147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Respiratory diseases, including chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and coronavirus pneumonia, present a major global health challenge. Current diagnostic and therapeutic options for these diseases are limited, necessitating the urgent development of novel biomarkers and therapeutic strategies. In recent years, microRNAs (miRNAs) within extracellular vesicles (EVs) have received considerable attention due to their crucial role in intercellular communication and disease progression. EVs are membrane-bound structures released by cells into the extracellular environment, encapsulating a variety of biomolecules such as DNA, RNA, lipids, and proteins. Specifically, miRNAs within EVs, known as EV-miRNAs, facilitate intercellular communication by regulating gene expression. The expression levels of these miRNAs can reflect distinct disease states and significantly influence immune cell function, chronic airway inflammation, airway remodeling, cell proliferation, angiogenesis, epithelial-mesenchymal transition, and other pathological processes. Consequently, EV-miRNAs have a profound impact on the onset, progression, and therapeutic responses of respiratory diseases, with great potential for disease management. Synthesizing the current understanding of EV-miRNAs in respiratory diseases such as COPD, asthma, lung cancer, and novel coronavirus pneumonia, this review aims to explore the potential of EV-miRNAs as biomarkers and therapeutic targets and examine their prospects in the diagnosis and treatment of these respiratory diseases.
Collapse
Affiliation(s)
- Jiaxi Lv
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xianzhi Xiong
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
4
|
Wang R, Zhu Z, Peng S, Xu J, Chen Y, Wei S, Liu X. Exosome microRNA-125a-5p derived from epithelium promotes M1 macrophage polarization by targeting IL1RN in chronic obstructive pulmonary disease. Int Immunopharmacol 2024; 137:112466. [PMID: 38875998 DOI: 10.1016/j.intimp.2024.112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/21/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The interplay between airway epithelium and macrophages plays a pivotal role in Chronic Obstructive Pulmonary Disease (COPD) pathogenesis. Exosomes, which transport miRNA cargo, have emerged as novel mediators of intercellular communication. MicroRNA-125a-5p (miR-125a-5p) has been implicated in macrophage polarization.This study aims to investigate the role of exosomal miR-125a-5p in the dysfunctional epithelium-macrophage cross-talk in cigarette smoke (CS)-induced COPD. METHODS In cell models, THP-1 monocytic cells were differentiated into macrophages (M0). Human bronchial epithelial cells treated with CS extract (CSE) were co-cultured with M0. Exosomes were isolated from culture media using commercial kits and characterized using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Exosomes labeled with PKH26 red fluorescent cell linker kits were incubated with macrophages. Luciferase reporter assay was used to confirm the target gene of miR-125a-5p. In mouse experiments, inhibiting miR-125a-5p was utilized to examine its role in macrophage polarization. Furthermore, the underlying mechanism was explored. RESULTS In vitro results indicated that CSE treatment led to upregulation of miR-125a-5p in HBE cells, and exosomes contained miR-125a-5p. PKH26-labeled exosomes were internalized by macrophages. Co-culture experiments between bronchial epithelial cells and miR-125a-5p mimic resulted in significant increase in M1 macrophage markers (TNF-α, iNOS-2, IL-1β) and decrease in M2 markers (IL-10 and Arg-1). In COPD mouse models, miR-125a-5p inhibitor reduced levels of TNF-α, IL-1β, and IL-6. Luciferase assays revealed that miR-125a-5p inhibitors enhanced the relative luciferase activity of IL1RN. Mechanistic experiments demonstrated that HBE-derived exosomes transfected with miR-125a-5p mimics promoted upregulation of MyD88, TRAF6, p65, iNOS-2, and downregulation of Arg-1. CONCLUSION This study suggests that exosomal miR-125a-5p may act as a mediator in the cross-talk between airway epithelium and macrophage polarization in COPD. Exosomal miR-125a-5p targeting IL1RN may promote M1 macrophage polarization via the MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Ruiying Wang
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital,Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan, Shanxi, China.
| | - Zhifan Zhu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Shisheng Peng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Jianying Xu
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital,Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Shuang Wei
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital,Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Department of Pulmonary and Critical Care Medicine,Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital,Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Department of Pulmonary and Critical Care Medicine,Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Carpi S, Polini B, Nieri D, Doccini S, Conti M, Bazzan E, Pagnini M, Santorelli FM, Cecchini M, Nieri P, Celi A, Neri T. Extracellular Vesicles Induce Nuclear Factor-κB Activation and Interleukin-8 Synthesis through miRNA-191-5p Contributing to Inflammatory Processes: Potential Implications in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Biomolecules 2024; 14:1030. [PMID: 39199417 PMCID: PMC11352467 DOI: 10.3390/biom14081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Extracellular vesicles (EVs) play a pivotal role in a variety of physiologically relevant processes, including lung inflammation. Recent attention has been directed toward EV-derived microRNAs (miRNAs), such as miR-191-5p, particularly in the context of inflammation. Here, we investigated the impact of miR-191-5p-enriched EVs on the activation of NF-κB and the expression of molecules associated with inflammation such as interleukin-8 (IL-8). To this aim, cells of bronchial epithelial origin, 16HBE, were transfected with miR-191-5p mimic and inhibitor and subsequently subjected to stimulations to generate EVs. Then, bronchial epithelial cells were exposed to the obtained EVs to evaluate the activation of NF-κB and IL-8 levels. Additionally, we conducted a preliminary investigation to analyze the expression profiles of miR-191-5p in EVs isolated from the plasma of patients diagnosed with chronic obstructive pulmonary disease (COPD). Our initial findings revealed two significant observations. First, the exposure of bronchial epithelial cells to miR-191-5p-enriched EVs activated the NF-kB signaling and increased the synthesis of IL-8. Second, we discovered the presence of miR-191-5p in peripheral blood-derived EVs from COPD patients and noted a correlation between miR-191-5p levels and inflammatory and functional parameters. Collectively, these data corroborate and further expand the proinflammatory role of EVs, with a specific emphasis on miR-191-5p as a key cargo involved in this process. Consequently, we propose a model in which miR-191-5p, carried by EVs, plays a role in airway inflammation and may contribute to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Sara Carpi
- Department of Health Sciences, University ‘Magna Græcia’ of Catanzaro, 88100 Catanzaro, Italy;
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy;
| | - Beatrice Polini
- Department of Pathology, University of Pisa, 56100 Pisa, Italy;
| | - Dario Nieri
- Centre for Cardio-Respiratory Cell Biology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56100 Pisa, Italy; (D.N.); (M.P.); (T.N.)
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (S.D.); (F.M.S.)
| | - Maria Conti
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padua, Italy; (M.C.); (E.B.)
| | - Erika Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padua, Italy; (M.C.); (E.B.)
| | - Marta Pagnini
- Centre for Cardio-Respiratory Cell Biology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56100 Pisa, Italy; (D.N.); (M.P.); (T.N.)
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (S.D.); (F.M.S.)
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy;
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, 56100 Pisa, Italy;
| | - Alessandro Celi
- Centre for Cardio-Respiratory Cell Biology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56100 Pisa, Italy; (D.N.); (M.P.); (T.N.)
| | - Tommaso Neri
- Centre for Cardio-Respiratory Cell Biology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56100 Pisa, Italy; (D.N.); (M.P.); (T.N.)
| |
Collapse
|
6
|
Xuan W, Wang S, Alarcon-Calderon A, Bagwell MS, Para R, Wang F, Zhang C, Tian X, Stalboerger P, Peterson T, Sabbah MS, Du Z, Sarrafian T, Mahlberg R, Hillestad ML, Rizzo SA, Paradise CR, Behfar A, Vassallo R. Nebulized platelet-derived extracellular vesicles attenuate chronic cigarette smoke-induced murine emphysema. Transl Res 2024; 269:76-93. [PMID: 38325750 DOI: 10.1016/j.trsl.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent lung disease usually resulting from cigarette smoking (CS). Cigarette smoking induces oxidative stress, which causes inflammation and alveolar epithelial cell apoptosis and represents a compelling therapeutic target for COPD. Purified human platelet-derived exosome product (PEP) is endowed with antioxidant enzymes and immunomodulatory molecules that mediate tissue repair. In this study, a murine model of CS-induced emphysema was used to determine whether nebulized PEP can influence the development of CS-induced emphysema through the mitigation of oxidative stress and inflammation in the lung. Nebulization of PEP effectively delivered the PEP vesicles into the alveolar region, with evidence of their uptake by type I and type II alveolar epithelial cells and macrophages. Lung function testing and morphometric assessment showed a significant attenuation of CS-induced emphysema in mice treated with nebulized PEP thrice weekly for 4 weeks. Whole lung immuno-oncology RNA sequencing analysis revealed that PEP suppressed several CS-induced cell injuries and inflammatory pathways. Validation of inflammatory cytokines and apoptotic protein expression on the lung tissue revealed that mice treated with PEP had significantly lower levels of S100A8/A9 expressing macrophages, higher levels of CD4+/FOXP3+ Treg cells, and reduced NF-κB activation, inflammatory cytokine production, and apoptotic proteins expression. Further validation using in vitro cell culture showed that pretreatment of alveolar epithelial cells with PEP significantly attenuated CS extract-induced apoptotic cell death. These data show that nebulization of exosomes like PEP can effectively deliver exosome cargo into the lung, mitigate CS-induced emphysema in mice, and suppress oxidative lung injury, inflammation, and apoptotic alveolar epithelial cell death.
Collapse
Affiliation(s)
- Weixia Xuan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Department of Respiratory Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shaohua Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota
| | - Amarilys Alarcon-Calderon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota
| | - Monique Simone Bagwell
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel Para
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Touro College of Osteopathic Medicine, New York, NY
| | - Faping Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chujie Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Department of Cardiology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710000, China
| | - Xue Tian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Paul Stalboerger
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy Peterson
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael S Sabbah
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zeji Du
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Tiffany Sarrafian
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ryan Mahlberg
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew L Hillestad
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Skylar A Rizzo
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Mayo Clinic Medical Scientist Training Program, Rochester, MN, USA
| | | | - Atta Behfar
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Center for Regenerative Therapeutics, Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Summer Undergraduate Research Fellowship, Mayo Clinic, Rochester, MN, USA; Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.
| |
Collapse
|
7
|
Afzal A, Khawar MB, Habiba U, Afzal H, Hamid SE, Rafiq M, Abbasi MH, Sheikh N, Abaidullah R, Asif Z, Saeed T. Diagnostic and therapeutic value of EVs in lungs diseases and inflammation. Mol Biol Rep 2023; 51:26. [PMID: 38127201 DOI: 10.1007/s11033-023-09045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023]
Abstract
Extracellular vesicles (EVs) are membrane-derived messengers which have been playing an important role in the inflammation and pathogenesis of lung diseases. EVs contain varieties of DNA, RNA, and membrane receptors through which they work as a delivery system for bioactive molecules as well as intracellular communicators. EV signaling mediates tumor progression and metastasis. EVs are linked with many diseases and perform a diagnostic role in lung injury and inflammation so are used to diagnose the severity of diseases. EVs containing a variety of biomolecules communicate with the recipient cells during pathophysiological mechanisms thereby acquiring the attention of clinicians toward the diagnostic and therapeutic potential of EVs in different lung diseases. In this review, we summarize the role of EVs in inflammation with an emphasis on their potential as a novel candidate in the diagnostics and therapeutics of chronic obstructive pulmonary disease, asthma, and sarcoidosis.
Collapse
Affiliation(s)
- Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Ume Habiba
- Department of Zoology, University of Education, Lahore, Pakistan
| | - Hanan Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Syeda Eisha Hamid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mussarat Rafiq
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Rimsha Abaidullah
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Zoya Asif
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Tahaa Saeed
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
8
|
Higashi Y. Smoking cessation and vascular endothelial function. Hypertens Res 2023; 46:2670-2678. [PMID: 37828134 PMCID: PMC10695829 DOI: 10.1038/s41440-023-01455-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
Smoking is associated with vascular endothelial dysfunction. It is thought that smoking impairs vascular endothelial function through a decrease in nitric oxide bioavailability induced by activation of oxidative stress and inflammation. Endothelial dysfunction can be improved or augmented by appropriate interventions including pharmacotherapy, administration of supplements and lifestyle modifications. Although there have not been many studies, the effects of smoking cessation on endothelial function have been shown. In those studies, it was shown that smoking cessation does not always have a positive effect on vascular endothelial function. In this review, I will focus on the role of smoking in endothelial function and the effects of smoking cessation on endothelial function. Smoking impairs vascular endothelial function and leads to atherosclerosis. Smoking cessation is expected to improve vascular endothelial function. Effects of smoking cessation on endothelial function are not always consistent. Further studies are needed to determine whether smoking cessation directly improves endothelial function. NO indicates nitric oxide.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan.
| |
Collapse
|
9
|
Tesfaigzi Y, Curtis JL, Petrache I, Polverino F, Kheradmand F, Adcock IM, Rennard SI. Does Chronic Obstructive Pulmonary Disease Originate from Different Cell Types? Am J Respir Cell Mol Biol 2023; 69:500-507. [PMID: 37584669 PMCID: PMC10633838 DOI: 10.1165/rcmb.2023-0175ps] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 08/17/2023] Open
Abstract
The onset of chronic obstructive pulmonary disease (COPD) is heterogeneous, and current approaches to define distinct disease phenotypes are lacking. In addition to clinical methodologies, subtyping COPD has also been challenged by the reliance on human lung samples from late-stage diseases. Different COPD phenotypes may be initiated from the susceptibility of different cell types to cigarette smoke, environmental pollution, and infections at early stages that ultimately converge at later stages in airway remodeling and destruction of the alveoli when the disease is diagnosed. This perspective provides discussion points on how studies to date define different cell types of the lung that can initiate COPD pathogenesis, focusing on the susceptibility of macrophages, T and B cells, mast cells, dendritic cells, endothelial cells, and airway epithelial cells. Additional cell types, including fibroblasts, smooth muscle cells, neuronal cells, and other rare cell types not covered here, may also play a role in orchestrating COPD. Here, we discuss current knowledge gaps, such as which cell types drive distinct disease phenotypes and/or stages of the disease and which cells are primarily affected by the genetic variants identified by whole genome-wide association studies. Applying new technologies that interrogate the functional role of a specific cell type or a combination of cell types as well as single-cell transcriptomics and proteomic approaches are creating new opportunities to understand and clarify the pathophysiology and thereby the clinical heterogeneity of COPD.
Collapse
Affiliation(s)
- Yohannes Tesfaigzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey L. Curtis
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Irina Petrache
- Division of Pulmonary Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado
- University of Colorado, Denver, Colorado
| | - Francesca Polverino
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Baylor University, Houston, Texas
| | - Farrah Kheradmand
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Baylor University, Houston, Texas
| | - Ian M. Adcock
- Department of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Stephen I. Rennard
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
10
|
Wang Y, Zou M, Zhao Y, Kabir MA, Peng X. Exosomal microRNA/miRNA Dysregulation in Respiratory Diseases: From Mycoplasma-Induced Respiratory Disease to COVID-19 and Beyond. Cells 2023; 12:2421. [PMID: 37830635 PMCID: PMC10571955 DOI: 10.3390/cells12192421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Respiratory diseases represent a significant economic and health burden worldwide, affecting millions of individuals each year in both human and animal populations. MicroRNAs (miRNAs) play crucial roles in gene expression regulation and are involved in various physiological and pathological processes. Exosomal miRNAs and cellular miRNAs have been identified as key regulators of several immune respiratory diseases, such as chronic respiratory diseases (CRD) caused by Mycoplasma gallisepticum (MG), Mycoplasma pneumoniae pneumonia (MMP) caused by the bacterium Mycoplasma pneumoniae, coronavirus disease 2019 (COVID-19), chronic obstructive pulmonary disease (COPD), asthma, and acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Consequently, miRNAs seem to have the potential to serve as diagnostic biomarkers and therapeutic targets in respiratory diseases. In this review, we summarize the current understanding of the functional roles of miRNAs in the above several respiratory diseases and discuss the potential use of miRNAs as stable diagnostic biomarkers and therapeutic targets for several immune respiratory diseases, focusing on the identification of differentially expressed miRNAs and their targeting of various signaling pathways implicated in disease pathogenesis. Despite the progress made, unanswered questions and future research directions are discussed to facilitate personalized and targeted therapies for patients with these debilitating conditions.
Collapse
Affiliation(s)
| | | | | | | | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (M.Z.); (Y.Z.); (M.A.K.)
| |
Collapse
|
11
|
Liang H, Zhang L, Rong J. Potential roles of exosomes in the initiation and metastatic progression of lung cancer. Biomed Pharmacother 2023; 165:115222. [PMID: 37549459 DOI: 10.1016/j.biopha.2023.115222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
Lung cancer (LC) incidence and mortality continue to increase annually worldwide. LC is insidious and readily metastasizes and relapses. Except for its early diagnosis and surgical resection, there is no effective cure for advanced metastatic LC, and the prognosis remains dismal. Exosomes, a class of nano-sized extracellular vesicles produced by healthy or diseased cells, are coated with a bilayer lipid membrane and contain various functional molecules such as proteins, lipids, and nucleic acids. They can be used for intracellular or intercellular signaling or the transportation of biological substances. A growing body of evidence supports that exosomes play multiple crucial roles in the occurrence and metastatic progression of many malignancies, including LC. The elucidation of the potential roles of exosomes in the initiation, invasion, and metastasis of LC and their underlying molecular mechanisms may contribute to improved early diagnosis and treatment.
Collapse
Affiliation(s)
- Hongyuan Liang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang 110004, PR China
| | - Lingyun Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, No. 210 Baita Street, Hunnan District, Shenyang 110001, PR China.
| | - Jian Rong
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang 110004, PR China.
| |
Collapse
|
12
|
Peng Q, Duan N, Wang X, Wang W. The potential roles of cigarette smoke-induced extracellular vesicles in oral leukoplakia. Eur J Med Res 2023; 28:250. [PMID: 37481562 PMCID: PMC10362576 DOI: 10.1186/s40001-023-01217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/08/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The onset of oral leukoplakia (OLK), the most common oral lesion with a high risk of malignant transformation, is closely associated with the exposure of cigarette smoke. Cigarette smoke is a complicated mixture of more than 4500 different chemicals including various oxidants and free radical, which contributes to the onset of immune and inflammatory response or even carcinogenesis. Recent studies have proved that the exposure of cigarette smoke leads to the onset and aggravation of many diseases via significantly changed the production and components of extracellular vesicles. The extracellular vesicles are membrane-enclosed nanosized particles secreted by diverse cells and involved in cell-cell communication because of their ability to deliver a number of bioactive molecules including proteins, lipids, DNAs and RNAs. Getting insight into the mechanisms of extracellular vesicles in regulating OLK upon cigarette smoke stimulation contributes to unravel the pathophysiology of OLK in-depth. However, evidence done on the role of extracellular vesicles in cigarette smoke-induced OLK is still in its infancy. MATERIALS AND METHODS Relevant literatures on cigarette smoke, oral leukoplakia and extracellular vesicles were searched in PubMed database. CONCLUSIONS In this review, we summarize the recent findings about the function of extracellular vesicles in the pathogenesis of cigarette smoke-induced diseases, and to infer their potential utilizations as diagnostic biomarkers, prognostic evaluation, and therapeutic targets of OLK in the future.
Collapse
Affiliation(s)
- Qiao Peng
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ning Duan
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Xiang Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Wenmei Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
13
|
D’Amico G, Santonocito R, Vitale AM, Scalia F, Marino Gammazza A, Campanella C, Bucchieri F, Cappello F, Caruso Bavisotto C. Air Pollution: Role of Extracellular Vesicles-Derived Non-Coding RNAs in Environmental Stress Response. Cells 2023; 12:1498. [PMID: 37296619 PMCID: PMC10252408 DOI: 10.3390/cells12111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Air pollution has increased over the years, causing a negative impact on society due to the many health-related problems it can contribute to. Although the type and extent of air pollutants are known, the molecular mechanisms underlying the induction of negative effects on the human body remain unclear. Emerging evidence suggests the crucial involvement of different molecular mediators in inflammation and oxidative stress in air pollution-induced disorders. Among these, non-coding RNAs (ncRNAs) carried by extracellular vesicles (EVs) may play an essential role in gene regulation of the cell stress response in pollutant-induced multiorgan disorders. This review highlights EV-transported ncRNAs' roles in physiological and pathological conditions, such as the development of cancer and respiratory, neurodegenerative, and cardiovascular diseases following exposure to various environmental stressors.
Collapse
Affiliation(s)
- Giuseppa D’Amico
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Radha Santonocito
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Alessandra Maria Vitale
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Antonella Marino Gammazza
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Claudia Campanella
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Fabio Bucchieri
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Francesco Cappello
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
14
|
Petrache I, Pujadas E, Ganju A, Serban KA, Borowiec A, Babbs B, Bronova IA, Egersdorf N, Hume PS, Goel K, Janssen WJ, Berdyshev EV, Cordon-Cardo C, Kolesnick R. Marked elevations in lung and plasma ceramide in COVID-19 linked to microvascular injury. JCI Insight 2023; 8:e156104. [PMID: 37212278 PMCID: PMC10322682 DOI: 10.1172/jci.insight.156104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/05/2023] [Indexed: 05/23/2023] Open
Abstract
The pathogenesis of the marked pulmonary microvasculature injury, a distinguishing feature of COVID-19 acute respiratory distress syndrome (COVID-ARDS), remains unclear. Implicated in the pathophysiology of diverse diseases characterized by endothelial damage, including ARDS and ischemic cardiovascular disease, ceramide and in particular palmitoyl ceramide (C16:0-ceramide) may be involved in the microvascular injury in COVID-19. Using deidentified plasma and lung samples from COVID-19 patients, ceramide profiling by mass spectrometry was performed. Compared with healthy individuals, a specific 3-fold C16:0-ceramide elevation in COVID-19 patient plasma was identified. Compared with age-matched controls, autopsied lungs of individuals succumbing to COVID-ARDS displayed a massive 9-fold C16:0-ceramide elevation and exhibited a previously unrecognized microvascular ceramide-staining pattern and markedly enhanced apoptosis. In COVID-19 plasma and lungs, the C16-ceramide/C24-ceramide ratios were increased and reversed, respectively, consistent with increased risk of vascular injury. Indeed, exposure of primary human lung microvascular endothelial cell monolayers to C16:0-ceramide-rich plasma lipid extracts from COVID-19, but not healthy, individuals led to a significant decrease in endothelial barrier function. This effect was phenocopied by spiking healthy plasma lipid extracts with synthetic C16:0-ceramide and was inhibited by treatment with ceramide-neutralizing monoclonal antibody or single-chain variable fragment. These results indicate that C16:0-ceramide may be implicated in the vascular injury associated with COVID-19.
Collapse
Affiliation(s)
- Irina Petrache
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Elisabet Pujadas
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aditya Ganju
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Karina A. Serban
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Alexander Borowiec
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
| | - Beatrice Babbs
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
| | - Irina A. Bronova
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
| | - Nicholas Egersdorf
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
| | - Patrick S. Hume
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Khushboo Goel
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - William J. Janssen
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Evgeny V. Berdyshev
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Richard Kolesnick
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
15
|
Kotlyarov S. The Role of Smoking in the Mechanisms of Development of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2023; 24:8725. [PMID: 37240069 PMCID: PMC10217854 DOI: 10.3390/ijms24108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Tobacco smoking is a major cause of chronic obstructive pulmonary disease (COPD) and atherosclerotic cardiovascular disease (ASCVD). These diseases share common pathogenesis and significantly influence each other's clinical presentation and prognosis. There is increasing evidence that the mechanisms underlying the comorbidity of COPD and ASCVD are complex and multifactorial. Smoking-induced systemic inflammation, impaired endothelial function and oxidative stress may contribute to the development and progression of both diseases. The components present in tobacco smoke can have adverse effects on various cellular functions, including macrophages and endothelial cells. Smoking may also affect the innate immune system, impair apoptosis, and promote oxidative stress in the respiratory and vascular systems. The purpose of this review is to discuss the importance of smoking in the mechanisms underlying the comorbid course of COPD and ASCVD.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
16
|
Di Mambro T, Pellielo G, Agyapong ED, Carinci M, Chianese D, Giorgi C, Morciano G, Patergnani S, Pinton P, Rimessi A. The Tricky Connection between Extracellular Vesicles and Mitochondria in Inflammatory-Related Diseases. Int J Mol Sci 2023; 24:8181. [PMID: 37175888 PMCID: PMC10179665 DOI: 10.3390/ijms24098181] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria are organelles present in almost all eukaryotic cells, where they represent the main site of energy production. Mitochondria are involved in several important cell processes, such as calcium homeostasis, OXPHOS, autophagy, and apoptosis. Moreover, they play a pivotal role also in inflammation through the inter-organelle and inter-cellular communications, mediated by the release of mitochondrial damage-associated molecular patterns (mtDAMPs). It is currently well-documented that in addition to traditional endocrine and paracrine communication, the cells converse via extracellular vesicles (EVs). These small membrane-bound particles are released from cells in the extracellular milieu under physio-pathological conditions. Importantly, EVs have gained much attention for their crucial role in inter-cellular communication, translating inflammatory signals into recipient cells. EVs cargo includes plasma membrane and endosomal proteins, but EVs also contain material from other cellular compartments, including mitochondria. Studies have shown that EVs may transport mitochondrial portions, proteins, and/or mtDAMPs to modulate the metabolic and inflammatory responses of recipient cells. Overall, the relationship between EVs and mitochondria in inflammation is an active area of research, although further studies are needed to fully understand the mechanisms involved and how they may be targeted for therapeutic purposes. Here, we have reported and discussed the latest studies focused on this fascinating and recent area of research, discussing of tricky connection between mitochondria and EVs in inflammatory-related diseases.
Collapse
Affiliation(s)
- Tommaso Di Mambro
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Giulia Pellielo
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Esther Densu Agyapong
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Diego Chianese
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Giampaolo Morciano
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Simone Patergnani
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy; (T.D.M.); (G.P.); (E.D.A.); (M.C.); (D.C.); (C.G.); (G.M.); (S.P.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
17
|
Torralba EJV, Singh S, Short RF, Rapp CM, Henkels KM, Sahu RP, Travers JB. Radiation therapy produces microvesicle particle release in HaCaT keratinocytes. Skin Res Technol 2023; 29:e13332. [PMID: 37231923 PMCID: PMC10316468 DOI: 10.1111/srt.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/27/2023]
Affiliation(s)
- Ericson John V. Torralba
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOhioUSA
| | - Shikshita Singh
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOhioUSA
| | - Robert F. Short
- Department of Diagnostic and Therapeutic ImagingDayton Veterans Administration Medical CenterDaytonOhioUSA
| | - Christine M. Rapp
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOhioUSA
| | - Karen M. Henkels
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOhioUSA
| | - Ravi P. Sahu
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOhioUSA
| | - Jeffrey B. Travers
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOhioUSA
- Department of MedicineDayton Veterans Administration Medical CenterDaytonOhioUSA
- Department of DermatologyBoonshoft School of MedicineWright State UniversityDaytonOhioUSA
| |
Collapse
|
18
|
Thyagarajan A, Rapp CM, Schneider L, Lund A, Travers JB, Sahu RP. Exposure to diesel exhaust particulates and desert sand dust generates microvesicle particles and platelet-activating factor agonists. Skin Res Technol 2023; 29:e13312. [PMID: 37113092 PMCID: PMC10234165 DOI: 10.1111/srt.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023]
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and ToxicologyBoonshoft School of Medicine Wright State UniversityDaytonOhioUSA
| | - Christine M. Rapp
- Department of Pharmacology and ToxicologyBoonshoft School of Medicine Wright State UniversityDaytonOhioUSA
| | | | - Amie Lund
- Department of Biological Sciences Environmental ToxicologyUniversity of North TexasDentonTexasUSA
| | - Jeffrey B. Travers
- Department of Pharmacology and ToxicologyBoonshoft School of Medicine Wright State UniversityDaytonOhioUSA
- Department of DermatologyBoonshoft School of Medicine Wright State UniversityDaytonOhioUSA
- Department of MedicineDayton Veterans Administration Medical CenterDaytonOhioUSA
| | - Ravi P. Sahu
- Department of Pharmacology and ToxicologyBoonshoft School of Medicine Wright State UniversityDaytonOhioUSA
| |
Collapse
|
19
|
Mistlberger-Reiner A, Sterneder S, Reipert S, Wolske S, Somoza V. Extracellular Vesicles and Particles Modulate Proton Secretion in a Model of Human Parietal Cells. ACS OMEGA 2023; 8:2213-2226. [PMID: 36687051 PMCID: PMC9850724 DOI: 10.1021/acsomega.2c06442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The secretion of extracellular vesicles and particles (EVPs) is an important mechanism of cellular communication. In this work, we demonstrate a functional role of EVPs in mechanisms regulating gastric acid secretion. HGT-1 cells were used as a model system to assess proton secretion. First, in order to prove EVP secretion by HGT-1 cells, EVPs were isolated by size exclusion chromatography and characterized by nanoparticle tracking analysis, Western blot, and cryo transmission electron microscopy. For examination of the potential role of EVPs in proton secretion, HGT-1 cells were treated with pharmacological EV-inhibitors, resulting in a reduction of histamine-induced proton secretion. To demonstrate the functional role of EVPs in the mechanism of proton secretion, EVP-conditioned supernatant was collected after stimulation of HGT-1 cells with histamine, fractionated, and subjected to an activity screening. The results revealed constituents of the HGT-1-derived secretome with an MW of >100 kDa (including EVPs) to modulate proton secretion, while smaller constituents had no effect. Finally, a dose-dependent modulatory effect on proton secretion of HGT-1 cells was demonstrated by isolated HGT-1-derived EVPs. Hence, this study presents first results on the potential function of EVPs as a previously undiscovered mechanism of regulation of gastric acid secretion by parietal cells.
Collapse
Affiliation(s)
- Agnes Mistlberger-Reiner
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Sonja Sterneder
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Siegfried Reipert
- Core
Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna 1030, Austria
| | - Sara Wolske
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Veronika Somoza
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Freising 85354, Germany
- Nutritional
Systems Biology, Technical University of
Munich, Freising 85354, Germany
| |
Collapse
|
20
|
Extracellular Vesicles' Role in the Pathophysiology and as Biomarkers in Cystic Fibrosis and COPD. Int J Mol Sci 2022; 24:ijms24010228. [PMID: 36613669 PMCID: PMC9820204 DOI: 10.3390/ijms24010228] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
In keeping with the extraordinary interest and advancement of extracellular vesicles (EVs) in pathogenesis and diagnosis fields, we herein present an update to the knowledge about their role in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Although CF and COPD stem from a different origin, one genetic and the other acquired, they share a similar pathophysiology, being the CF transmembrane conductance regulator (CFTR) protein implied in both disorders. Various subsets of EVs, comprised mainly of microvesicles (MVs) and exosomes (EXOs), are secreted by various cell types that are either resident or attracted in the airways during the onset and progression of CF and COPD lung disease, representing a vehicle for metabolites, proteins and RNAs (especially microRNAs), that in turn lead to events as such neutrophil influx, the overwhelming of proteases (elastase, metalloproteases), oxidative stress, myofibroblast activation and collagen deposition. Eventually, all of these pathomechanisms lead to chronic inflammation, mucus overproduction, remodeling of the airways, and fibrosis, thus operating a complex interplay among cells and tissues. The detection of MVs and EXOs in blood and biological fluids coming from the airways (bronchoalveolar lavage fluid and sputum) allows the consideration of EVs and their cargoes as promising biomarkers for CF and COPD, although clinical expectations have yet to be fulfilled.
Collapse
|
21
|
Goel K, Egersdorf N, Gill A, Cao D, Collum SD, Jyothula SS, Huang HJ, Sauler M, Lee PJ, Majka S, Karmouty-Quintana H, Petrache I. Characterization of pulmonary vascular remodeling and MicroRNA-126-targets in COPD-pulmonary hypertension. Respir Res 2022; 23:349. [PMID: 36522710 PMCID: PMC9756782 DOI: 10.1186/s12931-022-02267-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite causing increased morbidity and mortality, pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) patients (COPD-PH) lacks treatment, due to incomplete understanding of its pathogenesis. Hypertrophy of pulmonary arterial walls and pruning of the microvasculature with loss of capillary beds are known features of pulmonary vascular remodeling in COPD. The remodeling features of pulmonary medium- and smaller vessels in COPD-PH lungs are less well described and may be linked to maladaptation of endothelial cells to chronic cigarette smoking (CS). MicroRNA-126 (miR126), a master regulator of endothelial cell fate, has divergent functions that are vessel-size specific, supporting the survival of large vessel endothelial cells and inhibiting the proliferation of microvascular endothelial cells. Since CS decreases miR126 in microvascular lung endothelial cells, we set out to characterize the remodeling by pulmonary vascular size in COPD-PH and its relationship with miR126 in COPD and COPD-PH lungs. METHODS Deidentified lung tissue was obtained from individuals with COPD with and without PH and from non-diseased non-smokers and smokers. Pulmonary artery remodeling was assessed by ⍺-smooth muscle actin (SMA) abundance via immunohistochemistry and analyzed by pulmonary artery size. miR126 and miR126-target abundance were quantified by qPCR. The expression levels of ceramide, ADAM9, and endothelial cell marker CD31 were assessed by immunofluorescence. RESULTS Pulmonary arteries from COPD and COPD-PH lungs had significantly increased SMA abundance compared to non-COPD lungs, especially in small pulmonary arteries and the lung microvasculature. This was accompanied by significantly fewer endothelial cell markers and increased pro-apoptotic ceramide abundance. miR126 expression was significantly decreased in lungs of COPD individuals. Of the targets tested (SPRED1, VEGF, LAT1, ADAM9), lung miR126 most significantly inversely correlated with ADAM9 expression. Compared to controls, ADAM9 was significantly increased in COPD and COPD-PH lungs, predominantly in small pulmonary arteries and lung microvasculature. CONCLUSION Both COPD and COPD-PH lungs exhibited significant remodeling of the pulmonary vascular bed of small and microvascular size, suggesting these changes may occur before or independent of the clinical development of PH. Decreased miR126 expression with reciprocal increase in ADAM9 may regulate endothelial cell survival and vascular remodeling in small pulmonary arteries and lung microvasculature in COPD and COPD-PH.
Collapse
Affiliation(s)
- Khushboo Goel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care, University of Colorado, Aurora, USA
| | - Nicholas Egersdorf
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, USA
| | - Amar Gill
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, USA
- Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Danting Cao
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, USA
| | - Scott D Collum
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center Houston, Houston, USA
| | - Soma S Jyothula
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, USA
| | - Howard J Huang
- Division of Pulmonary Critical Care, Transplant Pulmonology, Houston Methodist Hospital, Houston, USA
| | - Maor Sauler
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Yale School of Medicine , New Haven, USA
| | - Patty J Lee
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Durham, USA
| | - Susan Majka
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care, University of Colorado, Aurora, USA
| | - Harry Karmouty-Quintana
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, and Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA
| | - Irina Petrache
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, USA.
- Department of Medicine, Division of Pulmonary Sciences and Critical Care, University of Colorado, Aurora, USA.
| |
Collapse
|
22
|
Liang ZF, Zhang Y, Guo W, Chen B, Fang S, Qian H. Gastric cancer stem cell-derived exosomes promoted tobacco smoke-triggered development of gastric cancer by inducing the expression of circ670. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:24. [PMID: 36454423 DOI: 10.1007/s12032-022-01906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
As one of the most common malignant cancers in the world, gastric cancer is caused by mang factors among which tobacco smoke is an important risk factor. Gastric cancer stem cells (GCSCs) and the derived exosomes play a key role in the occurrence and development of gastric cancer, and exosomal circRNA is considered as a new regulatory factor in the development of gastric cancer. However, it is unclear whether tobacco smoke can affect exosomes and their transport circRNAs to promote the development of gastric cancer. Herein, we provided a new insight into tobacco smoke promoting the progression of gastric cancer. In the present study, we demonstrated that tobacco smoke-induced exosomes promoted the spheroidizing ability, stemness genes expression, and epithelial-mesenchymal transition (EMT) process of GCSCs. We further found that hsa-circRNA-000670 (circ670) was up-regulated in tissues of gastric cancer patients with smoking history, tobacco smoke-induced GCSCs, and their exosomes. Functional assays have shown that circ670 knockdown inhibited the stemness and EMT process of GCSCs, whereas circ670 overexpression appeared to have an opposite effect. Our findings indicated that exosomal circ670 promotes the development of tobacco smoke-induced gastric cancer, which may provide insight into the mechanism of tobacco smoke promoting the progression of gastric cancer.
Collapse
Affiliation(s)
- Zhao Feng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| | - Yue Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Wenhao Guo
- Department of Laboratory, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taichang, Suzhou, 215400, Jiangsu, People's Republic of China
| | - Bei Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Suzhou Science and Technology Town Hospital, Suzhou, 215153, Jiangsu, People's Republic of China
| | - Shikun Fang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| |
Collapse
|
23
|
Soccio P, Moriondo G, Lacedonia D, Tondo P, Quarato CMI, Foschino Barbaro MP, Scioscia G. EVs-miRNA: The New Molecular Markers for Chronic Respiratory Diseases. Life (Basel) 2022; 12:1544. [PMID: 36294979 PMCID: PMC9605003 DOI: 10.3390/life12101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), asthma and sleep disorders are chronic respiratory diseases that affect the airways, compromising lung function over time. These diseases affect hundreds of millions of people around the world and their frequency seems to be increasing every year. Extracellular vesicles (EVs) are small-sized vesicles released by every cell in the body. They are present in most body fluids and contain various biomolecules including proteins, lipids, mRNA and non-coding RNA (micro-RNA). The EVs can release their cargo, specifically micro-RNAs (miRNAs), to both neighboring and/or distal cells, playing a fundamental role in cell-cell communication. Recent studies have shown their possible role in the pathogenesis of various chronic respiratory diseases. The expression of miRNAs and, in particular, of miRNAs contained within the extracellular vesicles seems to be a good starting point in order to identify new potential biomarkers of disease, allowing a non-invasive clinical diagnosis. In this review we summarize some studies, present in the literature, about the functions of extracellular vesicles and miRNAs contained in extracellular vesicles in chronic respiratory diseases and we discuss the potential clinical applications of EVs and EVs-miRNAs for their possible use such as future biomarkers.
Collapse
Affiliation(s)
- Piera Soccio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giorgia Moriondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Carla Maria Irene Quarato
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Maria Pia Foschino Barbaro
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| |
Collapse
|
24
|
Eckhardt CM, Baccarelli AA, Wu H. Environmental Exposures and Extracellular Vesicles: Indicators of Systemic Effects and Human Disease. Curr Environ Health Rep 2022; 9:465-476. [PMID: 35449498 PMCID: PMC9395256 DOI: 10.1007/s40572-022-00357-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Environmental pollutants contribute to the pathogenesis of numerous diseases including chronic cardiovascular, respiratory, and neurodegenerative diseases, among others. Emerging evidence suggests that extracellular vesicles (EVs) may mediate the association of environmental exposures with chronic diseases. The purpose of this review is to describe the impact of common environmental exposures on EVs and their role in linking environmental pollutants to the pathogenesis of chronic systemic diseases. RECENT FINDINGS Common environmental pollutants including particulate matter, tobacco smoke, and chemical pollutants trigger the release of EVs from multiple systems in the body. Existing research has focused primarily on air pollutants, which alter EV production and release in the lungs and systemic circulation. Air pollutants also impact the selective loading of EV cargo including microRNA and proteins, which modify the cellular function in recipient cells. As a result, pollutant-induced EVs often contribute to a pro-inflammatory and pro-thrombotic milieu, which increases the risk of pollutant-related diseases including obstructive lung diseases, cardiovascular disease, neurodegenerative diseases, and lung cancer. Common environmental exposures are associated with multifaceted changes in EVs that lead to functional alterations in recipient cells and contribute to the pathogenesis of chronic systemic diseases. EVs may represent emerging targets for the prevention and treatment of diseases that stem from environmental exposures. However, novel research is required to expand our knowledge of the biological action of EV cargo, elucidate determinants of EV release, and fully understand the impact of environmental pollutants on human health.
Collapse
Affiliation(s)
- Christina M Eckhardt
- Division of Pulmonary, Allergy and Critical, Care Medicine, Department of Medicine, Columbia University Irving Medical Center, 630 West 168th Street, Floor 8, Suite 101, New York, NY, 10032, USA
| | - Andrea A Baccarelli
- Environmental Health Sciences Department, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY, 10032, USA
| | - Haotian Wu
- Environmental Health Sciences Department, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY, 10032, USA.
| |
Collapse
|
25
|
HHcy Induces Pyroptosis and Atherosclerosis via the Lipid Raft-Mediated NOX-ROS-NLRP3 Inflammasome Pathway in apoE -/- Mice. Cells 2022; 11:cells11152438. [PMID: 35954287 PMCID: PMC9368640 DOI: 10.3390/cells11152438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Lipid rafts play important roles in signal transduction, particularly in responses to inflammatory processes. The current study aimed to identify whether lipid raft-mediated inflammation contributes to hyperhomocysteinemia (HHcy)-accelerated atherosclerosis (AS), and to investigate the underlying mechanisms. THP-1-derived macrophages were used for in vitro experiments. ApoE−/− mice were fed a high-fat diet for 12 weeks to establish an AS model, and a high-fat plus high-methionine diet was used to induce HHcy. We found that homocysteine (Hcy) increased the expression of p22phox and p67phox and promoted their recruitment into lipid rafts (indicating the assembly of the NOX complex), thereby increasing ROS generation and NOX activity, NLRP3 inflammasome activation, and pyroptosis. Mechanistically, Hcy activated the NOX-ROS-NLRP3 inflammasome pathway and induced pyroptosis by increasing the expression of acid sphingomyelinase (ASM) to promote the formation of lipid raft clustering. Importantly, lipid raft-mediated pyroptosis was confirmed in HHcy mice, and HHcy-promoted macrophage recruitment in atherosclerotic lesions and HHcy-aggravated AS were blocked by the lipid raft disruptor methyl-β-cyclodextrin. The study findings indicate that Hcy promotes lipid raft clustering via the upregulation of ASM, which mediates the assembly of the NOX complex, causing an increase in ROS generation, NLRP3 inflammasome activation, and pyroptosis, and contributes to HHcy-induced AS.
Collapse
|
26
|
Gao J, Zhang X, Jiang L, Li Y, Zheng Q. Tumor endothelial cell-derived extracellular vesicles contribute to tumor microenvironment remodeling. Cell Commun Signal 2022; 20:97. [PMID: 35752798 PMCID: PMC9233793 DOI: 10.1186/s12964-022-00904-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/22/2022] [Indexed: 11/12/2022] Open
Abstract
Cancer progression involves several biological steps where angiogenesis is a key tumorigenic phenomenon. Extracellular vesicles (EVs) derived from tumor cells and other cells in the tumor microenvironment (TME) help modulate and maintain favorable microenvironments for tumors. Endothelial cells (ECs) activated by cancer-derived EVs have important roles in tumor angiogenesis. Interestingly, EVs from ECs activate tumor cells, i.e. extracellular matrix (ECM) remodeling and provide more supplements for tumor cells. Thus, EV communications between cancer cells and ECs may be effective therapeutic targets for controlling cancer progression. In this review, we describe the current knowledge on EVs derived from ECs and we examine how these EVs affect TME remodeling. Video abstract
Collapse
Affiliation(s)
- Jian Gao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, China.,Science Experiment Center of China Medical University, Shenyang, 110122, China
| | - Xiaodong Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100000, China.,National Clinical Research Center for Digestive Diseases, Beijing, 100000, China
| | - Lei Jiang
- Department of General Surgery, Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Yan Li
- Department of Radiotherapy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China.
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
27
|
Gomez N, James V, Onion D, Fairclough LC. Extracellular vesicles and chronic obstructive pulmonary disease (COPD): a systematic review. Respir Res 2022; 23:82. [PMID: 35382831 PMCID: PMC8985325 DOI: 10.1186/s12931-022-01984-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/12/2022] [Indexed: 12/15/2022] Open
Abstract
Background Chronic Obstructive Pulmonary Disease (COPD) is a common inflammatory disease of the airways characterized by irreversible airflow limitation, ranking the third highest cause of death worldwide. Extracellular vesicles (EVs) are important intercellular communication mediators released by cells into their extracellular environment with the capacity to transfer biological signals. EVs involved in COPD hold great potential to understand disease pathogenesis and identify important biomarkers. This systematic review aims to examine all available research on EVs in the pathogenesis and diagnosis of COPD to identify existing knowledge and support further research within the field. Methods Publications were searched using PubMed and EMBASE with the search terms (Exosomes or extracellular vesicles or microvesicles or microparticles or ectosomes) AND (chronic obstructive pulmonary disease or COPD or emphysema or bronchitis). Results Initial search yielded 512 papers of which 142 were manually selected for review and 43 were eligible for analyses. The studies were divided into groups according to the role of EVs in pathogenesis, EV origin and cargo, their role in COPD exacerbations and their diagnostic utility. EVs were found to be involved in the mechanism of pathogenesis of COPD, derived from various cell types, as well as containing modified levels of miRNAs. EVs also varied according to the pathophysiological status of disease, therefore presenting a possible method for COPD diagnosis and progress monitoring. Conclusion The current findings show the limited but good quality research looking at the role of EVs in COPD, demonstrating the need for more studies to better define and provide further insight into the functional characteristics of EV in COPD pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01984-0.
Collapse
Affiliation(s)
- Nancy Gomez
- School of Life Sciences, The University of Nottingham, Life Sciences Building, Nottingham, NG7 2RD, UK
| | - Victoria James
- School of Veterinary Medicine and Science, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - David Onion
- School of Life Sciences, The University of Nottingham, Life Sciences Building, Nottingham, NG7 2RD, UK
| | - Lucy C Fairclough
- School of Life Sciences, The University of Nottingham, Life Sciences Building, Nottingham, NG7 2RD, UK.
| |
Collapse
|
28
|
Mahmoudi A, Moadab F, Safdarian E, Navashenaq JG, Rezaee M, Gheibihayat SM. MicroRNAs and Efferocytosis: Implications for Diagnosis and Therapy. Mini Rev Med Chem 2022; 22:2641-2660. [PMID: 35362375 DOI: 10.2174/1389557522666220330150937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/24/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
About 10-100 billion cells are generated in the human body in a day, and accordingly, 10-100 billion cells predominantly die for maintaining homeostasis. Dead cells generated by apoptosis are also rapidly engulfed by macrophages (Mθs) to be degraded. In case of the inefficient engulfment of apoptotic cells (ACs) via Mθs, they experience secondary necrosis and thus release intracellular materials, which display damage-associated molecular patterns (DAMPs) and result in diseases. Over the last decades, researchers have also reflected on the significant contribution of microRNAs (miRNAs) to autoimmune diseases through the regulation of Mθs functions. Moreover, miRNAs have shown intricate involvement with completely adjusting basic Mθs functions, such as phagocytosis, inflammation, efferocytosis, tumor promotion, and tissue repair. In this review, the mechanism of efferocytosis containing "Find-Me", "Eat-Me", and "Digest-Me" signals is summarized and the biogenesis of miRNAs is briefly described. Finally, the role of miRNAs in efferocytosis is discussed. It is concluded that miRNAs represent promising treatments and diagnostic targets in impaired phagocytic clearance, which leads to different diseases.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of medical biotechnology and nanotechnology, faculty of medicine, Mashhad University of Medical science, Iran
| | - Fatemeh Moadab
- Medical student, Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Esmat Safdarian
- Legal Medicine Research Center, Legal Medicine Organization, Tehran Iran
| | | | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran;
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
29
|
Cerón-Pisa N, Iglesias A, Shafiek H, Martín-Medina A, Esteva-Socias M, Muncunill J, Fleischer A, Verdú J, Cosío BG, Sauleda J. Hsa-Mir-320c, Hsa-Mir-200c-3p, and Hsa-Mir-449c-5p as Potential Specific miRNA Biomarkers of COPD: A Pilot Study. PATHOPHYSIOLOGY 2022; 29:143-156. [PMID: 35466228 PMCID: PMC9036303 DOI: 10.3390/pathophysiology29020013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease commonly induced by cigarette smoke. The expression of miRNAs can be altered in patients with COPD and could be used as a biomarker. We aimed to identify a panel of miRNAs in bronchoalveolar lavage (BAL) to differentiate COPD patients from smokers and non-smokers with normal lung function. Accordingly, forty-five subjects classified as COPD, smokers, and non-smokers (n = 15 per group) underwent clinical, functional characterization and bronchoscopy with BAL. The mean age of the studied population was 61.61 ± 12.95 years, BMI 25.72 ± 3.82 Kg/m2, FEV1/FVC 68.37 ± 12.00%, and FEV1 80.07 ± 23.63% predicted. According to microarray analysis, three miRNAs of the most upregulated were chosen: miR-320c, miR-200c-3p, and miR-449c-5p. These miRNAs were validated by qPCR and were shown to be differently expressed in COPD patients. ROC analysis showed that these three miRNAs together had an area under the curve of 0.89 in differentiating COPD from controls. Moreover, in silico analysis of candidate miRNAs by DIANA-miRPath showed potential involvement in the EGFR and Hippo pathways. These results suggest a specific 3-miRNA signature that could be potentially used as a biomarker to distinguish COPD patients from smokers and non-smoker subjects.
Collapse
Affiliation(s)
- Noemi Cerón-Pisa
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Amanda Iglesias
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | - Hanaa Shafiek
- Chest Diseases Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Aina Martín-Medina
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Margalida Esteva-Socias
- Department of Molecular Biology, Wallenberg Centre for Molecular Medicine, Umea University, 90187 Umea, Sweden
| | - Josep Muncunill
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Aarne Fleischer
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Javier Verdú
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Borja G Cosío
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Jaume Sauleda
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
30
|
Finicelli M, Digilio FA, Galderisi U, Peluso G. The Emerging Role of Macrophages in Chronic Obstructive Pulmonary Disease: The Potential Impact of Oxidative Stress and Extracellular Vesicle on Macrophage Polarization and Function. Antioxidants (Basel) 2022; 11:antiox11030464. [PMID: 35326114 PMCID: PMC8944669 DOI: 10.3390/antiox11030464] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common airway diseases, and it is considered a major global health problem. Macrophages are the most representative immune cells in the respiratory tract, given their role in surveying airways, removing cellular debris, immune surveillance, and resolving inflammation. Macrophages exert their functions by adopting phenotypical changes based on the stimuli they receive from the surrounding tissue. This plasticity is described as M1/M2 macrophage polarization, which consists of a strictly coordinated process leading to a difference in the expression of surface markers, the production of specific factors, and the execution of biological activities. This review focuses on the role played by macrophages in COPD and their implication in inflammatory and oxidative stress processes. Particular attention is on macrophage polarization, given macrophage plasticity is a key feature in COPD. We also discuss the regulatory influence of extracellular vesicles (EVs) in cell-to-cell communications. EV composition and cargo may influence many COPD-related aspects, including inflammation, tissue remodeling, and macrophage dysfunctions. These findings could be useful for better addressing the role of macrophages in the complex pathogenesis and outcomes of COPD.
Collapse
Affiliation(s)
- Mauro Finicelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
- Correspondence: (M.F.); (G.P.); Tel.: +39-0816132553 (M.F.); +39-0816132280 (G.P.)
| | - Filomena Anna Digilio
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy;
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
- Correspondence: (M.F.); (G.P.); Tel.: +39-0816132553 (M.F.); +39-0816132280 (G.P.)
| |
Collapse
|
31
|
Qiu G, Fan J, Zheng G, He J, Lin F, Ge M, Huang L, Wang J, Xia J, Huang R, Shu Q, Xu J. Diagnostic Potential of Plasma Extracellular Vesicle miR-483-3p and Let-7d-3p for Sepsis. Front Mol Biosci 2022; 9:814240. [PMID: 35187084 PMCID: PMC8847446 DOI: 10.3389/fmolb.2022.814240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: microRNAs (miRNAs) from circulating extracellular vesicles (EVs) have been reported as disease biomarkers. This study aimed to identify the diagnostic value of plasma EV-miRNAs in sepsis.Methods: EVs were separated from the plasma of sepsis patients at admission and healthy controls. The expression of EV-miRNAs was evaluated by microarray and qRT-PCR.Results: A preliminary miRNA microarray of plasma EVs from a discovery cohort of 3 sepsis patients at admission and three healthy controls identified 11 miRNAs with over 2-fold upregulation in sepsis group. Based on this finding, EV samples from a validation cohort of 37 sepsis patients at admission and 25 healthy controls were evaluated for the expression of the 6 miRNAs relating injury and inflammation via qRT-PCR. Elevated expression of miR-483-3p and let-7d-3p was validated in sepsis patients and corroborated in a mouse model of sepsis. miR-483-3p and let-7d-3p levels positively correlated with the disease severity. Additionally, a combination of miR-483-3p and let-7d-3p had diagnostic value for sepsis. Furthermore, bioinformatic analysis and experimental validation showed that miR-483-3p and let-7d-3p target pathways regulating immune response and endothelial function.Conclusion: The present study reveals the potential role of plasma EV-miRNAs in the pathogenesis of sepsis and the utility of combining miR-483-3p and let-7d-3p as biomarkers for early sepsis diagnosis.
Collapse
Affiliation(s)
| | - Jiajie Fan
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | | | | | | | - Menghua Ge
- Shaoxing Second Hospital, Shaoxing, China
| | | | - Jiangmei Wang
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Xia
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Ruoqiong Huang
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Qiang Shu, ; Jianguo Xu,
| | - Jianguo Xu
- Department of Thoracic and Cardiovascular Surgery, Children’s Hospital of Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Qiang Shu, ; Jianguo Xu,
| |
Collapse
|
32
|
Ma Y, He X, Liu X, Long Y, Chen Y. Endothelial Microparticles Derived from Primary Pulmonary Microvascular Endothelial Cells Mediate Lung Inflammation in Chronic Obstructive Pulmonary Disease by Transferring microRNA-126. J Inflamm Res 2022; 15:1399-1411. [PMID: 35250291 PMCID: PMC8896043 DOI: 10.2147/jir.s349818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/12/2022] [Indexed: 12/14/2022] Open
Abstract
Background Extracellular vesicles (EVs) are considered to new types of intercellular communication media, and microRNA is one of the most common transferring components of EVs. This study aimed to explore the potential role of endothelial microparticles (EMPs) derived from primary pulmonary microvascular endothelial cells in regulating lung inflammation of chronic obstructive pulmonary disease (COPD) through transferring microRNA-126 (miR-126). Methods EMPs generated from primary pulmonary microvascular endothelial cells were isolated by gradient centrifugation and characterized by transmission electron microscopy, flow cytometry and Western blotting. EMPs were treated to in vitro and in vivo COPD models induced by cigarette smoke extract (CSE). miR-126 mimics or inhibitors were transfected into EMPs by calcium chloride. Pathological changes of lung tissue, mRNA and protein levels of inflammation-related factors were measured to explore the effect of EMPs transferring miR-126 on CSE-induced inflammation. Results Both in vitro and in vivo studies demonstrated that mRNA and protein levels of inflammation-related factors were significantly increased in COPD group, while EMPs could dramatically reverse these increases. In vitro, overexpression of miR-126 in EMPs decreased HMGB1 expression and magnified the decreasing effect of EMPs on inflammation-related factors. Conclusion The present study reveals that EMPs are capable of alleviating lung inflammation and transferring miR-126 can magnify the anti-inflammatory effect of EMPs, which may provide a novel therapeutic alternative for COPD.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xue He
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Yingjiao Long
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Correspondence: Yan Chen; Yingjiao Long, Email ;
| |
Collapse
|
33
|
Awoyemi AA, Borchers C, Liu L, Chen Y, Rapp CM, Brewer CA, Elased R, Travers JB. Acute ethanol exposure stimulates microvesicle particle generation in keratinocytes. Toxicol Lett 2022; 355:100-105. [PMID: 34801640 PMCID: PMC8702459 DOI: 10.1016/j.toxlet.2021.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Ethanol has been demonstrated to exert profound effects upon cells and tissues via multiple mechanisms. One recently appreciated means by which cells can communicate with other cells is via the production and release of extracellular vesicles. Though smaller exosomes have been demonstrated to be released in response to ethanol exposure, the ability of ethanol to modulate the generation and release of larger microvesicle particles (MVP) is lesser studied. The present studies examined the ability of exogenous ethanol to generate MVP with a focus on skin cells. Acute ethanol exposure resulted in augmented MVP release in keratinocytes and in the skin and blood of mice. Unlike other stimuli such as ultraviolet B radiation or thermal burn injury, ethanol-mediated MVP release was independent of the Platelet-activating Factor receptor (PAFR). However, ethanol pretreatment was found to augment thermal burn injury-induced MVP in a PAFR-dependent manner. These studies provide a novel mechanism for ethanol-mediated effects, that could be relevant in the significant toxicity associated with thermal burn injury in the setting of alcohol intoxication.
Collapse
Affiliation(s)
- Azeezat A. Awoyemi
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Christina Borchers
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Langni Liu
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Yanfang Chen
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Christine M. Rapp
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Chad A. Brewer
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Ramzi Elased
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Jeffrey B. Travers
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435,Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435,The Dayton V.A. Medical Center, Dayton, OH 45428.,Corresponding author: Jeffrey B. Travers, M.D., Ph.D., Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, 3640 Col Glenn Hwy, Dayton, OH 46435,
| |
Collapse
|
34
|
Avci E, Sarvari P, Savai R, Seeger W, Pullamsetti SS. Epigenetic Mechanisms in Parenchymal Lung Diseases: Bystanders or Therapeutic Targets? Int J Mol Sci 2022; 23:ijms23010546. [PMID: 35008971 PMCID: PMC8745712 DOI: 10.3390/ijms23010546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Epigenetic responses due to environmental changes alter chromatin structure, which in turn modifies the phenotype, gene expression profile, and activity of each cell type that has a role in the pathophysiology of a disease. Pulmonary diseases are one of the major causes of death in the world, including lung cancer, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung tuberculosis, pulmonary embolism, and asthma. Several lines of evidence indicate that epigenetic modifications may be one of the main factors to explain the increasing incidence and prevalence of lung diseases including IPF and COPD. Interestingly, isolated fibroblasts and smooth muscle cells from patients with pulmonary diseases such as IPF and PH that were cultured ex vivo maintained the disease phenotype. The cells often show a hyper-proliferative, apoptosis-resistant phenotype with increased expression of extracellular matrix (ECM) and activated focal adhesions suggesting the presence of an epigenetically imprinted phenotype. Moreover, many abnormalities observed in molecular processes in IPF patients are shown to be epigenetically regulated, such as innate immunity, cellular senescence, and apoptotic cell death. DNA methylation, histone modification, and microRNA regulation constitute the most common epigenetic modification mechanisms.
Collapse
MESH Headings
- Animals
- Biomarkers
- Combined Modality Therapy
- DNA Methylation
- Diagnosis, Differential
- Disease Management
- Disease Susceptibility
- Epigenesis, Genetic
- Gene Expression Regulation
- Histones/metabolism
- Humans
- Idiopathic Pulmonary Fibrosis/diagnosis
- Idiopathic Pulmonary Fibrosis/etiology
- Idiopathic Pulmonary Fibrosis/metabolism
- Idiopathic Pulmonary Fibrosis/therapy
- Lung Diseases, Interstitial/diagnosis
- Lung Diseases, Interstitial/etiology
- Lung Diseases, Interstitial/metabolism
- Lung Diseases, Interstitial/therapy
- Pulmonary Disease, Chronic Obstructive/diagnosis
- Pulmonary Disease, Chronic Obstructive/etiology
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/therapy
- Treatment Outcome
Collapse
Affiliation(s)
- Edibe Avci
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
| | - Pouya Sarvari
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Soni S. Pullamsetti
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-603-270-5380; Fax: +49-603-270-5385
| |
Collapse
|
35
|
Jiang J, Ouyang H, Zhou Q, Tang S, Fang P, Xie G, Yang J, Sun G. LPS induces pulmonary microvascular endothelial cell barrier dysfunction by upregulating ceramide production. Cell Signal 2022; 92:110250. [DOI: 10.1016/j.cellsig.2022.110250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/22/2022]
|
36
|
MIR-548ar-3p increases cigarette smoke extractinduced chronic obstructive pulmonary disease (COPD) injury through solute carrier family 17 member 9 (SLC17A9). ARCH BIOL SCI 2022. [DOI: 10.2298/abs220201008z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study investigated the effect of microRNA mir-548ar-3p on cigarette
smoke extract (CSE)-induced chronic obstructive pulmonary disease (COPD).
High-throughput sequencing was performed on peripheral blood from smoking
COPD patients and non-smoking individuals with normal pulmonary function,
and mir-548ar-3p RNA, possessing large differential expression was selected.
Experimental groups were divided into control, experimental model (EM),
EM+mimic miRNA, negative control (NC) and EM+miR-548ar-3p groups; an empty
vector or miR-548ar-3p mimic was transfected into human bronchial epithelial
(HBE) cells. A COPD model was established by treating HBE cells with CSE.
Cell viability, apoptosis and solute carrier family 17 member 9 (SLC17A9)
protein expression were examined by cell counting kit-8, flow cytometry and
Western blotting, respectively. Cell viability in the EM+miR-548ar-3p group
decreased significantly, and the apoptosis rate and SLC17A9 protein
expression increased significantly compared with the control (P<0.05, all
groups). In smoking COPD patients, interferon (IFN)-? and interleukin
(IL)-17? expression detected by ELISA was significantly higher than in
normal individuals. miR-548ar-3p expression was significantly lower (P<0.05,
all groups). These findings suggest that miR-548ar-3p was expressed at a
lower level in COPD patients. miR-548ar-3p may increase the extent of
CSE-induced COPD injury through SLC17A9.
Collapse
|
37
|
Zietzer A, Jahnel AL, Bulic M, Gutbrod K, Düsing P, Hosen MR, Dörmann P, Werner N, Nickenig G, Jansen F. Activation of neutral sphingomyelinase 2 through hyperglycemia contributes to endothelial apoptosis via vesicle-bound intercellular transfer of ceramides. Cell Mol Life Sci 2021; 79:48. [PMID: 34951654 PMCID: PMC8739297 DOI: 10.1007/s00018-021-04049-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Background Pro-apoptotic and pro-inflammatory ceramides are crucially involved in atherosclerotic plaque development. Local cellular ceramide accumulation mediates endothelial apoptosis, especially in type 2 diabetes mellitus, which is a major cardiovascular risk factor. In recent years, large extracellular vesicles (lEVs) have been identified as an important means of intercellular communication and as regulators of cardiovascular health and disease. A potential role for lEVs as vehicles for ceramide transfer and inductors of diabetes-associated endothelial apoptosis has never been investigated. Methods and Results A mass-spectrometric analysis of human coronary artery endothelial cells (HCAECs) and their lEVs revealed C16 ceramide (d18:1–16:0) to be the most abundant ceramide in lEVs and to be significantly increased in lEVs after hyperglycemic injury to HCAECs. The increased packaging of ceramide into lEVs after hyperglycemic injury was shown to be dependent on neutral sphingomyelinase 2 (nSMase2), which was upregulated in glucose-treated HCAECs. lEVs from hyperglycemic HCAECs induced apoptosis in the recipient HCAECs compared to native lEVs from untreated HCAECs. Similarly, lEVs from hyperglycemic mice after streptozotocin injection induced higher rates of apoptosis in murine endothelial cells compared to lEVs from normoglycemic mice. To generate lEVs with high levels of C16 ceramide, ceramide was applied exogenously and shown to be effectively packaged into the lEVs, which then induced apoptosis in lEV-recipient HCAECs via activation of caspase 3. Intercellular transfer of ceramide through lEVs was confirmed by use of a fluorescently labeled ceramide analogue. Treatment of HCAECs with a pharmacological inhibitor of nSMases (GW4869) or siRNA-mediated downregulation of nSMase2 abrogated the glucose-mediated effect on apoptosis in lEV-recipient cells. In contrast, for small EVs (sEVs), hyperglycemic injury or GW4869 treatment had no effect on apoptosis induction in sEV-recipient cells. Conclusion lEVs mediate the induction of apoptosis in endothelial cells in response to hyperglycemic injury through intercellular transfer of ceramides. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00018-021-04049-5.
Collapse
Affiliation(s)
- Andreas Zietzer
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Alina Lisann Jahnel
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Marko Bulic
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Katharina Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany
| | - Philip Düsing
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Mohammed Rabiul Hosen
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany
| | - Nikos Werner
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Krankenhaus der Barmherzigen Brüder Trier, Nordallee 1, 54292, Trier, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Felix Jansen
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
38
|
Reid LV, Spalluto CM, Watson A, Staples KJ, Wilkinson TMA. The Role of Extracellular Vesicles as a Shared Disease Mechanism Contributing to Multimorbidity in Patients With COPD. Front Immunol 2021; 12:754004. [PMID: 34925327 PMCID: PMC8675939 DOI: 10.3389/fimmu.2021.754004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/04/2021] [Indexed: 01/27/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide. Individuals with COPD typically experience a progressive, debilitating decline in lung function as well as systemic manifestations of the disease. Multimorbidity, is common in COPD patients and increases the risk of hospitalisation and mortality. Central to the genesis of multimorbidity in COPD patients is a self-perpetuating, abnormal immune and inflammatory response driven by factors including ageing, pollutant inhalation (including smoking) and infection. As many patients with COPD have multiple concurrent chronic conditions, which require an integrative management approach, there is a need to greater understand the shared disease mechanisms contributing to multimorbidity. The intercellular transfer of extracellular vesicles (EVs) has recently been proposed as an important method of local and distal cell-to-cell communication mediating both homeostatic and pathological conditions. EVs have been identified in many biological fluids and provide a stable capsule for the transfer of cargo including proteins, lipids and nucleic acids. Of these cargo, microRNAs (miRNAs), which are short 17-24 nucleotide non-coding RNA molecules, have been amongst the most extensively studied. There is evidence to support that miRNA are selectively packaged into EVs and can regulate recipient cell gene expression including major pathways involved in inflammation, apoptosis and fibrosis. Furthermore changes in EV cargo including miRNA have been reported in many chronic diseases and in response to risk factors including respiratory infections, noxious stimuli and ageing. In this review, we discuss the potential of EVs and EV-associated miRNA to modulate shared pathological processes in chronic diseases. Further delineating these may lead to the identification of novel biomarkers and therapeutic targets for patients with COPD and multimorbidities.
Collapse
Affiliation(s)
- Laura V Reid
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - C Mirella Spalluto
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom.,Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Karl J Staples
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
39
|
Tajbakhsh A, Gheibihayat SM, Mortazavi D, Medhati P, Rostami B, Savardashtaki A, Momtazi-Borojeni AA. The Effect of Cigarette Smoke Exposure on Efferocytosis in Chronic Obstructive Pulmonary Disease; Molecular Mechanisms and Treatment Opportunities. COPD 2021; 18:723-736. [PMID: 34865568 DOI: 10.1080/15412555.2021.1978419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cigarette smoking-related inflammation, cellular stresses, and tissue destruction play a key role in lung disease, such as chronic obstructive pulmonary disease (COPD). Notably, augmented apoptosis and impaired clearance of apoptotic cells, efferocytosis, contribute to the chronic inflammatory response and tissue destruction in patients with COPD. Of note, exposure to cigarette smoke can impair alveolar macrophages efferocytosis activity, which leads to secondary necrosis formation and tissue inflammation. A better understanding of the processes behind the effect of cigarette smoke on efferocytosis concerning lung disorders can help to design more efficient treatment approaches and also delay the development of lung disease, such as COPD. To this end, we aimed to seek mechanisms underlying the impairing effect of cigarette smoke on macrophages-mediated efferocytosis in COPD. Further, available therapeutic opportunities for restoring efferocytosis activity and ameliorating respiratory tract inflammation in smokers with COPD were also discussed.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Deniz Mortazavi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Pourya Medhati
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrouz Rostami
- Health & Treatment Center of Rostam, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Iran's National Elites Foundation, Tehran, Iran
| |
Collapse
|
40
|
Dow R, Ridger V. Neutrophil microvesicles and their role in disease. Int J Biochem Cell Biol 2021; 141:106097. [PMID: 34655813 DOI: 10.1016/j.biocel.2021.106097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
Microvesicles are formed through shedding from the plasma membrane, a process shared by almost all human cells. Microvesicles are highly abundant and have been detected in blood, urine, cerebrospinal fluid, and saliva. They contain a library of cargo derived from their parental cell during formation, including proteases, micro-RNAs and lipids and delivery of this parental cell-derived cargo to other cells can alter target cell function and drive disease. Cell specific molecules on the surface of microvesicles, obtained during microvesicle formation, allows their parental cell to be identified and populations of microvesicles to be investigated for roles in the pathogenesis of various diseases. For instance, recent work by our group has identified a role for neutrophil microvesicles in atherosclerosis. Microvesicle profiles could in future be associated with certain diseases and act as a biomarker to allow for earlier diagnosis. This short review will discuss some of the processes central to all microvesicles before focusing on neutrophil microvesicles, their potential role in cardiovascular disease and the mechanisms that may underpin this.
Collapse
Affiliation(s)
- Reece Dow
- Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Victoria Ridger
- Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
| |
Collapse
|
41
|
Kumar S, Kumar P, Kodidela S, Duhart B, Cernasev A, Nookala A, Kumar A, Singh UP, Bissler J. Racial Health Disparity and COVID-19. J Neuroimmune Pharmacol 2021; 16:729-742. [PMID: 34499313 PMCID: PMC8426163 DOI: 10.1007/s11481-021-10014-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
The infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and resultant coronavirus diseases-19 (COVID-19) disproportionally affects minorities, especially African Americans (AA) compared to the Caucasian population. The AA population is disproportionally affected by COVID-19, in part, because they have high prevalence of underlying conditions such as obesity, diabetes, and hypertension, which are known to exacerbate not only kidney diseases, but also COVID-19. Further, a decreased adherence to COVID-19 guidelines among tobacco smokers could result in increased infection, inflammation, reduced immune response, and lungs damage, leading to more severe form of COVID-19. As a result of high prevalence of underlying conditions that cause kidney diseases in the AA population coupled with tobacco smoking make the AA population vulnerable to severe form of both COVID-19 and kidney diseases. In this review, we describe how tobacco smoking interact with SARS-CoV-2 and exacerbates SARS-CoV-2-induced kidney diseases including renal failure, especially in the AA population. We also explore the role of extracellular vesicles (EVs) in COVID-19 patients who smoke tobacco. EVs, which play important role in tobacco-mediated pathogenesis in infectious diseases, have also shown to be important in COVID-19 pathogenesis and organ injuries including kidney. Further, we explore the potential role of EVs in biomarker discovery and therapeutics, which may help to develop early diagnosis and treatment of tobacco-induced renal injury in COVID-19 patients, respectively.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Prashant Kumar
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Benjamin Duhart
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Alina Cernasev
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Sciences Center, Nashville, TN, USA
| | | | - Asit Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - John Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, USA.
| |
Collapse
|
42
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
43
|
Kotlyarov S, Bulgakov A. Lipid Metabolism Disorders in the Comorbid Course of Nonalcoholic Fatty Liver Disease and Chronic Obstructive Pulmonary Disease. Cells 2021; 10:2978. [PMID: 34831201 PMCID: PMC8616072 DOI: 10.3390/cells10112978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently among the most common liver diseases. Unfavorable data on the epidemiology of metabolic syndrome and obesity have increased the attention of clinicians and researchers to the problem of NAFLD. The research results allow us to emphasize the systemicity and multifactoriality of the pathogenesis of liver parenchyma lesion. At the same time, many aspects of its classification, etiology, and pathogenesis remain controversial. Local and systemic metabolic disorders are also a part of the pathogenesis of chronic obstructive pulmonary disease and can influence its course. The present article analyzes the metabolic pathways mediating the links of impaired lipid metabolism in NAFLD and chronic obstructive pulmonary disease (COPD). Free fatty acids, cholesterol, and ceramides are involved in key metabolic and inflammatory pathways underlying the pathogenesis of both diseases. Moreover, inflammation and lipid metabolism demonstrate close links in the comorbid course of NAFLD and COPD.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia;
| | | |
Collapse
|
44
|
Kotlyarov S. Diversity of Lipid Function in Atherogenesis: A Focus on Endothelial Mechanobiology. Int J Mol Sci 2021; 22:11545. [PMID: 34768974 PMCID: PMC8584259 DOI: 10.3390/ijms222111545] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is one of the most important problems in modern medicine. Its high prevalence and social significance determine the need for a better understanding of the mechanisms of the disease's development and progression. Lipid metabolism and its disorders are one of the key links in the pathogenesis of atherosclerosis. Lipids are involved in many processes, including those related to the mechanoreception of endothelial cells. The multifaceted role of lipids in endothelial mechanobiology and mechanisms of atherogenesis are discussed in this review. Endothelium is involved in ensuring adequate vascular hemodynamics, and changes in blood flow characteristics are detected by endothelial cells and affect their structure and function.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
45
|
Purghè B, Manfredi M, Ragnoli B, Baldanzi G, Malerba M. Exosomes in chronic respiratory diseases. Biomed Pharmacother 2021; 144:112270. [PMID: 34678722 DOI: 10.1016/j.biopha.2021.112270] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nano-sized vesicles released by almost all cell types, with a central role as mediators of intercellular communication. In addition to physiological conditions, these extracellular vesicles seem to play a pivotal role in inflammatory processes. This assumption offers the opportunity to study exosomes as promising biomarkers and therapeutic tools for chronic respiratory disorders. Indeed, although it is well-known that at the basis of conditions like asthma, chronic obstructive pulmonary disease, alpha-1 antitrypsin deficiency and idiopathic pulmonary fibrosis there is a dysregulated inflammatory process, an unequivocal correlation between different phenotypes and their pathophysiological mechanisms has not been established yet. In this review, we report and discuss some of the most significant studies on exosomes from body fluids of subjects affected by airway diseases. Furthermore, the most widespread techniques for exosome isolation and characterization are described. Further studies are needed to answer the unresolved questions about the functional link between exosomes and chronic respiratory diseases.
Collapse
Affiliation(s)
- Beatrice Purghè
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy.
| | | | - Gianluca Baldanzi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Mario Malerba
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; Respiratory Unit, Sant'Andrea Hospital, 13100 Vercelli, Italy
| |
Collapse
|
46
|
Carnino JM, Hao Kwok Z, Jin Y. Extracellular Vesicles: A Novel Opportunity for Precision Medicine in Respiratory Diseases. Front Med (Lausanne) 2021; 8:661679. [PMID: 34368181 PMCID: PMC8342920 DOI: 10.3389/fmed.2021.661679] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Extracellular vesicles are membrane-bound nanoparticles secreted by cells which play a well-known role in cell to cell communication. The most update to date nomenclature categorizes extracellular vesicles based on their relative size, protein markers, and/or the cell type of origin. Extracellular vesicles can be isolated from biological fluids using a variety of methods, including but not limited to, ultrafiltration, size-exclusion chromatography, differential ultracentrifugation, density gradient centrifugation, precipitation-based methods, and immunoaffinity capture. These nanovesicles carry distinct “cargo,” made up of biomolecules such as nucleic acids, lipids, and protein, which is delivered to nearby target cells. The “cargo” profile carried by extracellular vesicles is critical in their role of communication and resembles the physiological status of the cell they originated from. For the purpose of this review, we will focus on the miRNA cargo. Extracellular vesicle-miRNA profiles hold the potential to be used in diagnostic panels for a variety of diseases through a novel method known as “liquid biopsy.” In addition to this, extracellular vesicles may serve as a potential method to deliver drugs to specific cells within the body. This mini-review provides background into what extracellular vesicles are, methods of isolating these nanoparticles, their potential use as a biomarker and drug delivery system for precision medicine, and a summary of the current literature covering the role of some extracellular vesicle-cargo's in various pulmonary diseases.
Collapse
Affiliation(s)
- Jonathan M Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, United States
| | - Zhi Hao Kwok
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, United States
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, United States
| |
Collapse
|
47
|
Green CE, Clarke J, Bicknell R, Turner AM. Pulmonary MicroRNA Changes Alter Angiogenesis in Chronic Obstructive Pulmonary Disease and Lung Cancer. Biomedicines 2021; 9:830. [PMID: 34356894 PMCID: PMC8301412 DOI: 10.3390/biomedicines9070830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
The pulmonary endothelium is dysfunctional in chronic obstructive pulmonary disease (COPD), a known risk factor for lung cancer. The pulmonary endothelium is altered in emphysema, which is disproportionately affected by cancers. Gene and microRNA expression differs between COPD and non-COPD lung. We hypothesised that the alteration in microRNA expression in the pulmonary endothelium contributes to its dysfunction. A total of 28 patients undergoing pulmonary resection were recruited and endothelial cells were isolated from healthy lung and tumour. MicroRNA expression was compared between COPD and non-COPD patients. Positive findings were confirmed by quantitative polymerase chain reaction (qPCR). Assays assessing angiogenesis and cellular migration were conducted in Human Umbilical Vein Endothelial Cells (n = 3-4) transfected with microRNA mimics and compared to cells transfected with negative control RNA. Expression of miR-181b-3p, miR-429 and miR-23c (all p < 0.05) was increased in COPD. Over-expression of miR-181b-3p was associated with reduced endothelial sprouting (p < 0.05). miR-429 was overexpressed in lung cancer as well and exhibited a reduction in tubular formation. MicroRNA-driven changes in the pulmonary endothelium thus represent a novel mechanism driving emphysema. These processes warrant further study to determine if they may be therapeutic targets in COPD and lung cancer.
Collapse
Affiliation(s)
- Clara E. Green
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joseph Clarke
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.C.); (R.B.)
| | - Roy Bicknell
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (J.C.); (R.B.)
| | - Alice M. Turner
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| |
Collapse
|
48
|
Bhat OM, Yuan X, Kukreja RC, Li PL. Regulatory role of mammalian target of rapamycin signaling in exosome secretion and osteogenic changes in smooth muscle cells lacking acid ceramidase gene. FASEB J 2021; 35:e21732. [PMID: 34143450 DOI: 10.1096/fj.202100385r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022]
Abstract
Acid ceramidase (murine gene code: Asah1) (50 kDa) belongs to N-terminal nucleophile hydrolase family. This enzyme is located in the lysosome, which mediates conversion of ceramide (CER) into sphingosine and free fatty acids at acidic pH. CER plays an important role in intracellular sphingolipid metabolism and its increase causes inflammation. The mammalian target of rapamycin complex 1 (mTORC1) signaling on late endosomes (LEs)/lysosomes may control cargo selection, membrane biogenesis, and exosome secretion, which may be fine controlled by lysosomal sphingolipids such as CER. This lysosomal-CER-mTOR signaling may be a crucial molecular mechanism responsible for development of arterial medial calcification (AMC). Torin-1 (5 mg/kg/day), an mTOR inhibitor, significantly decreased aortic medial calcification accompanied with decreased expression of osteogenic markers like osteopontin (OSP) and runt-related transcription factor 2 (RUNX2) and upregulation of smooth muscle 22α (SM22-α) in mice receiving high dose of Vitamin D (500 000 IU/kg/day). Asah1fl/fl /SMCre mice had markedly increased co-localization of mTORC1 with lysosome-associated membrane protein-1 (Lamp-1) (lysosome marker) and decreased co-localization of vacuolar protein sorting-associated protein 16 (VPS16) (a multivesicular bodies [MVBs] marker) with Lamp-1, suggesting mTOR activation caused reduced MVBs interaction with lysosomes. Torin-1 significantly reduced the co-localization of mTOR vs Lamp-1, increased lysosome-MVB interaction which was associated with reduced accumulation of CD63 and annexin 2 (exosome markers) in the coronary arterial wall of mice. Using coronary artery smooth muscle cells (CASMCs), Pi -stimulation significantly increased p-mTOR expression in Asah1fl/fl /SMCre CASMCs as compared to WT/WT cells associated with increased calcium deposition and mineralization. Torin-1 blocked Pi -induced calcium deposition and mineralization. siRNA mTOR and Torin-1 significantly reduce co-localization of mTORC1 with Lamp-1, increased VPS16 vs Lamp-1 co-localization in Pi -stimulated CASMCs, associated with decreased exosome release. Functionally, Torin-1 significantly reduces arterial stiffening as shown by restoration from increased pulse wave velocity and decreased elastin breaks. These results suggest that lysosomal CER-mTOR signaling may play a critical role for the control of lysosome-MVB interaction, exosome secretion and arterial stiffening during AMC.
Collapse
Affiliation(s)
- Owais M Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Rakesh C Kukreja
- VCU Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
49
|
Xia X, Yuan P, Liu Y, Wang Y, Cao W, Zheng JC. Emerging roles of extracellular vesicles in COVID-19, a double-edged sword? Immunology 2021; 163:416-430. [PMID: 33742451 PMCID: PMC8251486 DOI: 10.1111/imm.13329] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 01/08/2023] Open
Abstract
The sudden outbreak of SARS‐CoV‐2‐infected disease (COVID‐19), initiated from Wuhan, China, has rapidly grown into a global pandemic. Emerging evidence has implicated extracellular vesicles (EVs), a key intercellular communicator, in the pathogenesis and treatment of COVID‐19. In the pathogenesis of COVID‐19, cells that express ACE2 and CD9 can transfer these viral receptors to other cells via EVs, making recipient cells more susceptible for SARS‐CoV‐2 infection. Once infected, cells release EVs packaged with viral particles that further facilitate viral spreading and immune evasion, aggravating COVID‐19 and its complications. In contrast, EVs derived from stem cells, especially mesenchymal stromal/stem cells, alleviate severe inflammation (cytokine storm) and repair damaged lung cells in COVID‐19 by delivery of anti‐inflammatory molecules. These therapeutic beneficial EVs can also be engineered into drug delivery platforms or vaccines to fight against COVID‐19. Therefore, EVs from diverse sources exhibit distinct effects in regulating viral infection, immune response, and tissue damage/repair, functioning as a double‐edged sword in COVID‐19. Here, we summarize the recent progress in understanding the pathological roles of EVs in COVID‐19. A comprehensive discussion of the therapeutic effects/potentials of EVs is also provided.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihan Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Weijun Cao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
50
|
Abreu SC, Lopes-Pacheco M, Weiss DJ, Rocco PRM. Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Perspectives. Front Cell Dev Biol 2021; 9:600711. [PMID: 33659247 PMCID: PMC7917181 DOI: 10.3389/fcell.2021.600711] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have emerged as a potential therapy for several diseases. These plasma membrane-derived fragments are released constitutively by virtually all cell types-including mesenchymal stromal cells (MSCs)-under stimulation or following cell-to-cell interaction, which leads to activation or inhibition of distinct signaling pathways. Based on their size, intracellular origin, and secretion pathway, EVs have been grouped into three main populations: exosomes, microvesicles (or microparticles), and apoptotic bodies. Several molecules can be found inside MSC-derived EVs, including proteins, lipids, mRNA, microRNAs, DNAs, as well as organelles that can be transferred to damaged recipient cells, thus contributing to the reparative process and promoting relevant anti-inflammatory/resolutive actions. Indeed, the paracrine/endocrine actions induced by MSC-derived EVs have demonstrated therapeutic potential to mitigate or even reverse tissue damage, thus raising interest in the regenerative medicine field, particularly for lung diseases. In this review, we summarize the main features of EVs and the current understanding of the mechanisms of action of MSC-derived EVs in several lung diseases, such as chronic obstructive pulmonary disease (COPD), pulmonary infections [including coronavirus disease 2019 (COVID-19)], asthma, acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), and cystic fibrosis (CF), among others. Finally, we list a number of limitations associated with this therapeutic strategy that must be overcome in order to translate effective EV-based therapies into clinical practice.
Collapse
Affiliation(s)
- Soraia C. Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Daniel J. Weiss
- Department of Medicine, College of Medicine, University of Vermont Larner, Burlington, VT, United States
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|