1
|
Pramana A, Firmanda A, Arnata IW, Sartika D, Sari EO. Reduction of biofilm and pathogenic microorganisms using curcumin-mediated photodynamic inactivation to prolong food shelf-life. Int J Food Microbiol 2024; 425:110866. [PMID: 39146626 DOI: 10.1016/j.ijfoodmicro.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Pathogenic microbial contamination (bacteria and fungi) in food products during production poses a significant global health risk, leading to food waste, greenhouse gas emissions, and aesthetic and financial losses. Bacteria and fungi, by forming solid biofilms, enhance their resistance to antimicrobial agents, thereby increasing the potential for cross-contamination of food products. Curcumin molecule-mediated photodynamic inactivation (Cur-m-PDI) technology has shown promising results in sterilizing microbial contaminants and their biofilms, significantly contributing to food preservation without compromising quality. Photosensitizers (curcumin) absorb light, leading to a chemical reaction with oxygen and producing reactive oxygen species (ROS) that effectively reduce bacteria, fungi, and biofilms. The mechanism of microorganism inhibition is caused by exposure to ROS generated via the type 1 pathway involving electron transfer (such as O2•-, H2O2, -OH•, and other radicals), the type 2 pathway involving energy transfer (such as 1O2), secondary ROS, and weakening of antioxidant enzymes. The effectiveness of the inactivation of microorganisms is influenced by the concentration of curcumin, light (source type and energy density), oxygen availability, and duration of exposure. This article reviews the mechanism of reducing microbial food contamination and inhibiting their biofilms through Cur-m-PDI. It also highlights future directions, challenges, and considerations related to the effects of ROS in oxidizing food, the toxicity of PDI to living cells and tissues, conditions/types of food products, and the stability and degradation of curcumin.
Collapse
Affiliation(s)
- Angga Pramana
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru 28292, Indonesia.
| | - Afrinal Firmanda
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - I Wayan Arnata
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung, Bali, Indonesia
| | - Dewi Sartika
- Faculty of Agriculture, Muhammadiyah University of Makassar, Makassar, South Sulawesi, Indonesia
| | - Esty Octiana Sari
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
2
|
Shah DD, Chorawala MR, Mansuri MKA, Parekh PS, Singh S, Prajapati BG. Biogenic metallic nanoparticles: from green synthesis to clinical translation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8603-8631. [PMID: 38935128 DOI: 10.1007/s00210-024-03236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Biogenic metallic nanoparticles (NPs) have garnered significant attention in recent years due to their unique properties and various applications in different fields. NPs, including gold, silver, zinc oxide, copper, titanium, and magnesium oxide NPs, have attracted considerable interest. Green synthesis approaches, utilizing natural products, offer advantages such as sustainability and environmental friendliness. The theranostics applications of these NPs hold immense significance in the fields of medicine and diagnostics. The review explores intricate cellular uptake pathways, internalization dynamics, reactive oxygen species generation, and ensuing inflammatory responses, shedding light on the intricate mechanisms governing their behaviour at a molecular level. Intriguingly, biogenic metallic NPs exhibit a wide array of applications in medicine, including but not limited to anti-inflammatory, anticancer, anti-diabetic, anti-plasmodial, antiviral properties and radical scavenging efficacy. Their potential in personalized medicine stands out, with a focus on tailoring treatments to individual patients based on these NPs' unique attributes and targeted delivery capabilities. The article culminates in emphasizing the role of biogenic metallic NPs in shaping the landscape of personalized medicine. Harnessing their unique properties for tailored therapeutics, diagnostics and targeted interventions, these NPs pave the way for a paradigm shift in healthcare, promising enhanced efficacy and reduced adverse effects.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Mohammad Kaif A Mansuri
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
3
|
Ibrahim FM, El-Liethy MA, Abouzeid R, Youssef AM, Mahdy SZA, El Habbasha ES. Preparation and characterization of pectin/hydroxyethyl cellulose/clay/TiO 2 bionanocomposite films for microbial pathogen removal from contaminated water. Int J Biol Macromol 2024; 274:133511. [PMID: 38944095 DOI: 10.1016/j.ijbiomac.2024.133511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Some of conventional wastewater disinfectants can have a harmful influence on the environment as well as human health. The aim of this investigation was synthesis and characterizes ecofriendly pectin/hydroxyethyl cellulose (HEC)/clay and pectin/HEC/clay incorporated with titanium dioxide nanoparticles (TiO2NPs) and use the prepared bionanocomposite as microbial disinfectants for real wastewater. Pectin/HEC/clay and pectin/HEC/clay/TiO2 bionanocomposite were characterized by various methods including X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA). Mechanical properties and water vapor permeability (WVP) were carried out. The results of SEM showed that, the prepared bionanocomposite had a smooth surface. Additionally, TiO2 nanoparticles to the pectin/HEC/clay composites may lead to changes in the FTIR spectrum. The intensity of XRD peaks indicated that, TiO2NPs was small size crystallite. TGA illustrated that pectin has moderate thermal stability, while HEC generally exhibits good thermal stability. The TEM showed that, TiO2 nanoparticles have diameters <25 nm. On the other hand, antimicrobial activities of pectin/HEC/clay against Escherichia coli (E. coli), Staphylococcus aureus and Candida albicans have been enhanced by adding TiO2NPs. The minimum inhibitory concentration (MIC) of pectin/HEC/clay/TiO2 against E. coli was 200 mg/mL. Moreover, complete eradication of E. coli, Salmonella and Candida spp. from real wastewater was observed by using pectin/HEC/clay/TiO2 bionanocomposite. Finally, it can be concluded that, the synthesized bionanocomposite is environmentally friendly and considered an excellent disinfectant matter for removal of the microbial pathogens from wastewater to safely reuse.
Collapse
Affiliation(s)
- Faten Mohamed Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, P.O. Box 12622, Cairo, Egypt
| | - Mohamed Azab El-Liethy
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, Dokki, 12622 Giza, Egypt.
| | - Ragab Abouzeid
- Cellulose and Paper Department, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed M Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Sara Z A Mahdy
- Chemistry Department, Faculty of Science, Benha University, Cairo, Egypt
| | - El Sayed El Habbasha
- Field crops Research Department, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
4
|
El-Beltagi HS, Ragab M, Osman A, El-Masry RA, Alwutayd KM, Althagafi H, Alqahtani LS, Alazragi RS, Alhajri AS, El-Saber MM. Biosynthesis of zinc oxide nanoparticles via neem extract and their anticancer and antibacterial activities. PeerJ 2024; 12:e17588. [PMID: 38948224 PMCID: PMC11212640 DOI: 10.7717/peerj.17588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized using neem leaf aqueous extracts and characterized using transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-Vis), and dynamic light scattering (DLS). Then compare its efficacy as anticancer and antibacterial agents with chemically synthesized ZnO-NPs and the neem leaf extract used for the green synthesis of ZnO-NPs. The TEM, UV-vis, and particle size confirmed that the developed ZnO-NPs are nanoscale. The chemically and greenly synthesized ZnO-NPs showed their optical absorbance at 328 nm and 380 nm, respectively, and were observed as spherical particles with a size of about 85 nm and 62.5 nm, respectively. HPLC and GC-MS were utilized to identify the bioactive components in the neem leaf aqueous extract employed for the eco-friendly production of ZnO-NPs. The HPLC analysis revealed that the aqueous extract of neem leaf contains 19 phenolic component fractions. The GC-MS analysis revealed the existence of 21 bioactive compounds. The antiproliferative effect of green ZnO-NPs was observed at different concentrations (31.25 µg/mL-1000 µg/mL) on Hct 116 and A 549 cancer cells, with an IC50 value of 111 µg/mL for A 549 and 118 µg/mL for Hct 116. On the other hand, the antibacterial activity against gram-positive and gram-negative bacteria was estimated. The antibacterial result showed that the MIC of green synthesized ZnO-NPs against gram-positive and gram-negative bacteria were 5, and 1 µg/mL. Hence, they could be utilized as effective antibacterial and antiproliferative agents.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Marwa Ragab
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ragab A. El-Masry
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hind Althagafi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Reem S. Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahlam Saleh Alhajri
- Food Science and Nutrition Department, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud M. El-Saber
- Biochemistry Unit, Genetic Resources Department, Desert Research Center, Cairo, Egypt
| |
Collapse
|
5
|
Vitasovic T, Caniglia G, Eghtesadi N, Ceccato M, Bo Jesen ED, Gosewinkel U, Neusser G, Rupp U, Walther P, Kranz C, Ferapontova EE. Antibacterial Action of Zn 2+ Ions Driven by the In Vivo Formed ZnO Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30847-30859. [PMID: 38853353 DOI: 10.1021/acsami.4c04682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Antibacterial formulations based on zinc oxide nanoparticles (ZnO NPs) are widely used for antibiotic replacement in veterinary medicine and animal nutrition. However, the undesired environmental impact of ZnO NPs triggers a search for alternative, environmentally safer solutions. Here, we show that Zn2+ in its ionic form is a more eco-friendly antibacterial, and its biocidal action rivals that of ZnO NPs (<100 nm size), with a minimal biocidal concentration being 41(82) μg mL-1 vs 5 μg mL-1 of ZnO NPs, as determined for 103(106) CFU mL-1 E. coli. We demonstrate that the biocidal activity of Zn2+ ions is primarily associated with their uptake by E. coli and spontaneous in vivo transformation into insoluble ZnO nanocomposites at an internal bacterial pH of 7.7. Formed in vivo nanocomposite then damages E. coli membrane and intracellular components from the inside, by forming insoluble biocomposites, whose formation can also trigger ZnO characteristic reactions damaging the cells (e.g., by generation of high-potential reactive oxygen species). Our study defines a special route in which Zn2+ metal ions induce the death of bacterial cells, which might be common to other metal ions capable of forming semiconductor oxides and insoluble hydroxides at a slightly alkaline intracellular pH of some bacteria.
Collapse
Affiliation(s)
- Toni Vitasovic
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 1590-14, 8000 Aarhus C, Denmark
- Aarhus University Center for Water Technology (WATEC), Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Giada Caniglia
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein Allee 11, 89081 Ulm, Germany
| | - Neda Eghtesadi
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 1590-14, 8000 Aarhus C, Denmark
- Chemical Engineering Department, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 01000, Kazakhstan
| | - Marcel Ceccato
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 1590-14, 8000 Aarhus C, Denmark
| | - Espen Drath Bo Jesen
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 1590-14, 8000 Aarhus C, Denmark
| | - Ulrich Gosewinkel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Gregor Neusser
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein Allee 11, 89081 Ulm, Germany
| | - Ulrich Rupp
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein Allee 11, 89081 Ulm, Germany
| | - Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 1590-14, 8000 Aarhus C, Denmark
- Aarhus University Center for Water Technology (WATEC), Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Metryka O, Wasilkowski D, Dulski M, Adamczyk-Habrajska M, Augustyniak M, Mrozik A. Metallic nanoparticle actions on the outer layer structure and properties of Bacillus cereus and Staphylococcus epidermidis. CHEMOSPHERE 2024; 354:141691. [PMID: 38484999 DOI: 10.1016/j.chemosphere.2024.141691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Although the antimicrobial activity of nanoparticles (NPs) penetrating inside the cell is widely recognised, the toxicity of large NPs (>10 nm) that cannot be translocated across bacterial membranes remains unclear. Therefore, this study was performed to elucidate the direct effects of Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs on relative membrane potential, permeability, hydrophobicity, structural changes within chemical compounds at the molecular level and the distribution of NPs on the surfaces of the bacteria Bacillus cereus and Staphylococcus epidermidis. Overall analysis of the results indicated the different impacts of individual NPs on the measured parameters in both strains depending on their type and concentration. B. cereus proved to be more resistant to the action of NPs than S. epidermidis. Generally, Cu-NPs showed the most substantial toxic effect on both strains; however, Ag-NPs exhibited negligible toxicity. All NPs had a strong affinity for cell surfaces and showed strain-dependent characteristic dispersion. ATR-FTIR analysis explained the distinctive interactions of NPs with bacterial functional groups, leading to macromolecular structural modifications. The results presented provide new and solid evidence for the current understanding of the interactions of metallic NPs with bacterial membranes.
Collapse
Affiliation(s)
- Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032, Katowice, Poland.
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Mateusz Dulski
- Institute of Materials Science, Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500, Chorzów, Poland
| | - Małgorzata Adamczyk-Habrajska
- Institute of Materials Science, Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500, Chorzów, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
7
|
Ouyang B, Wei D, Wu B, Yan L, Gang H, Cao Y, Chen P, Zhang T, Wang H. In the View of Electrons Transfer and Energy Conversion: The Antimicrobial Activity and Cytotoxicity of Metal-Based Nanomaterials and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303153. [PMID: 37721195 DOI: 10.1002/smll.202303153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/28/2023] [Indexed: 09/19/2023]
Abstract
The global pandemic and excessive use of antibiotics have raised concerns about environmental health, and efforts are being made to develop alternative bactericidal agents for disinfection. Metal-based nanomaterials and their derivatives have emerged as promising candidates for antibacterial agents due to their broad-spectrum antibacterial activity, environmental friendliness, and excellent biocompatibility. However, the reported antibacterial mechanisms of these materials are complex and lack a comprehensive understanding from a coherent perspective. To address this issue, a new perspective is proposed in this review to demonstrate the toxic mechanisms and antibacterial activities of metal-based nanomaterials in terms of energy conversion and electron transfer. First, the antimicrobial mechanisms of different metal-based nanomaterials are discussed, and advanced research progresses are summarized. Then, the biological intelligence applications of these materials, such as biomedical implants, stimuli-responsive electronic devices, and biological monitoring, are concluded based on trappable electrical signals from electron transfer. Finally, current improvement strategies, future challenges, and possible resolutions are outlined to provide new insights into understanding the antimicrobial behaviors of metal-based materials and offer valuable inspiration and instructional suggestions for building future intelligent environmental health.
Collapse
Affiliation(s)
- Baixue Ouyang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Dun Wei
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Gang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yiyun Cao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Peng Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Tingzheng Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
- School of Metallurgy and Environment and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South, University, Changsha, 410083, China
| |
Collapse
|
8
|
Rychtowski P, Paszkiewicz O, Markowska-Szczupak A, Leniec G, Tryba B. Sulphated TiO 2 Reduced by Ammonia and Hydrogen as an Excellent Photocatalyst for Bacteria Inactivation. MATERIALS (BASEL, SWITZERLAND) 2023; 17:66. [PMID: 38203920 PMCID: PMC10779939 DOI: 10.3390/ma17010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
This study presents a relatively low-cost method for modifying TiO2-based materials for photocatalytic bacterial inactivation. The photocatalytic inactivation of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus epidermidis) bacteria using modified sulphated TiO2 was studied. The modification focused on the reduction of TiO2 by ammonia agents and hydrogen at 400-450 °C. The results showed a high impact of sulphate species on the inactivation of E. coli. The presence of these species generated acid sites on TiO2, which shifted the pH of the reacted titania slurry solution to lower values, around 4.6. At such a low pH, TiO2 was positively charged. The ammonia solution caused the removal of sulphate species from TiO2. On the other hand, hydrogen and ammonia molecules accelerated the removal of sulphur species from TiO2, as did heating it to 450 °C. Total inactivation of E. coli was obtained within 30 min of simulated solar light irradiation on TiO2 heat-treated at 400 °C in an atmosphere of Ar or NH3. The S. epidermidis strain was more resistant to photocatalytic oxidation. The contact of these bacteria with the active titania surface is important, but a higher oxidation force is necessary to destroy their cell membrane walls because of their thicker cell wall than E. coli. Therefore, the ability of a photocatalyst to produce ROS (reactive oxidative species) will determine its ability to inactivate S. epidermidis. An additional advantage of the studies presented is the inactivation of bacteria after a relatively short irradiation time (30 min), which does not often happen with photocatalysts not modified with noble metals. The modification methods presented represent a robust and inexpensive alternative to photocatalytic inactivation of bacteria.
Collapse
Affiliation(s)
- Piotr Rychtowski
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland;
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastów 42, 71-065 Szczecin, Poland; (O.P.); (A.M.-S.)
| | - Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastów 42, 71-065 Szczecin, Poland; (O.P.); (A.M.-S.)
| | - Grzegorz Leniec
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów 42, 71-065 Szczecin, Poland;
| | - Beata Tryba
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland;
| |
Collapse
|
9
|
Eid AM, Sayed OM, Hozayen W, Dishisha T. Mechanistic study of copper oxide, zinc oxide, cadmium oxide, and silver nanoparticles-mediated toxicity on the probiotic Lactobacillus reuteri. Drug Chem Toxicol 2023; 46:825-840. [PMID: 35930385 DOI: 10.1080/01480545.2022.2104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/07/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
The use of metal/metal oxide nanoparticles (NPs) in consumer products has increased dramatically. Accordingly, human exposure to these NPs has increased. Lactobacillus reuteri, a member of the beneficial gut microbiota, is essential for human health. In the present study, the toxic effect of three metal oxides (CuO, ZnO, and CdO) and one metal (Ag) NPs on L. reuteri were investigated in vitro. L. reuteri was susceptible to all the prepared NPs in a dose-dependent manner, visualized as an increase in the zones of inhibition and a significant reduction in the maximum specific growth rates (µmax). The minimal inhibitory concentrations were 5.8, 26, 560, and 560 µg/mL for CdO-, Ag-, ZnO-, and CuO-NPs, respectively, and the respective minimal bactericidal concentrations were 60, 70, 1500, and 1500 µg/mL. Electron microscopic examinations revealed the adsorption of the prepared NPs on L. reuteri cell surface, causing cell wall disruption and morphological changes. These changes were accompanied by significant leakage of cellular protein content by 214%, 191%, 112%, and 101% versus the untreated control when L. reuteri was treated with CdO-, Ag-, CuO-, and ZnO-NPs, respectively. NPs also induced oxidative damage, where the malondialdehyde level was significantly increased, and glutathione content was significantly decreased. Quantifying the DNA damage using comet assay showed that CuONPs had the maximum DNA tail length (8.2 px vs. 2.1 px for the control). While CdONPs showed the maximum percentage of DNA in tail (15.5% vs. 3.1%). This study provides a mechanistic evaluation of the NPs-mediated toxicity to a beneficial microorganism.
Collapse
Affiliation(s)
- Aya M Eid
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Osama M Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University Qantra, Ismailia, Egypt
| | - Walaa Hozayen
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Tarek Dishisha
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
10
|
Qi R, Cui Y, Liu J, Wang X, Yuan H. Recent Advances of Composite Nanomaterials for Antibiofilm Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2725. [PMID: 37836366 PMCID: PMC10574477 DOI: 10.3390/nano13192725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
A biofilm is a microbial community formed by bacteria that adsorb on the surface of tissues or materials and is wrapped in extracellular polymeric substances (EPS) such as polysaccharides, proteins and nucleic acids. As a protective barrier, the EPS can not only prevent the penetration of antibiotics and other antibacterial agents into the biofilm, but also protect the bacteria in the biofilm from the attacks of the human immune system, making it difficult to eradicate biofilm-related infections and posing a serious threat to public health. Therefore, there is an urgent need to develop new and efficient antibiofilm drugs. Although natural enzymes (lysozyme, peroxidase, etc.) and antimicrobial peptides have excellent bactericidal activity, their low stability in the physiological environment and poor permeability in biofilms limit their application in antibiofilms. With the development of materials science, more and more nanomaterials are being designed to be utilized for antimicrobial and antibiofilm applications. Nanomaterials have great application prospects in antibiofilm because of their good biocompati-bility, unique physical and chemical properties, adjustable nanostructure, high permeability and non-proneness to induce bacterial resistance. In this review, with the application of composite nanomaterials in antibiofilms as the theme, we summarize the research progress of three types of composite nanomaterials, including organic composite materials, inorganic materials and organic-inorganic hybrid materials, used as antibiofilms with non-phototherapy and phototherapy modes of action. At the same time, the challenges and development directions of these composite nanomaterials in antibiofilm therapy are also discussed. It is expected we will provide new ideas for the design of safe and efficient antibiofilm materials.
Collapse
Affiliation(s)
- Ruilian Qi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (R.Q.); (Y.C.)
| | - Yuanyuan Cui
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (R.Q.); (Y.C.)
| | - Jian Liu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100090, China;
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (R.Q.); (Y.C.)
| |
Collapse
|
11
|
Kumar R, Venardi V, Helal Y, Song C, Katz A. Uniform titania-supported Ce(iii) carbonate cluster catalysts for degradation of reactive oxygen species. RSC Adv 2023; 13:23030-23037. [PMID: 37529356 PMCID: PMC10388160 DOI: 10.1039/d3ra03801g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
We report the synthesis of uniform 2.5 ± 0.4 nm diameter Ce(iii) carbonate clusters deposited on the surface of TiO2 nanoparticles and characterize them using HAADF-STEM and EELS, as well as UV-Vis and FTIR spectroscopies. This material is a highly proficient catalytic antioxidant for the degradation of photocatalytically generated reactive oxygen species (ROS). We observed an unusual U-shaped pH-dependence in its photoprotection catalytic activity, with an optimum function in the near-neutral pH range of 7.7 ± 0.7. This sharp pH dependence is not observed in previously reported bulk Ce(iii) carbonate materials, and it is also not a consequence of Ce(iii) carbonate cluster decomposition. However, it is consistent with a tandem reaction sequence consisting of a biomimetic superoxide dismutase and catalase function, which is dependent on a balance of protons and hydroxide anions for function. Our dissolution-deposition approach for synthesizing nanoscale Ce(iii) carbonate clusters on TiO2 should be generalizable to other carbonates and metal-oxide supports.
Collapse
Affiliation(s)
- Ram Kumar
- Department of Chemical and Biomolecular Engineering, University of California Berkeley California 94720-1462 USA
| | - V Venardi
- Department of Chemical and Biomolecular Engineering, University of California Berkeley California 94720-1462 USA
| | - Y Helal
- Department of Chemical and Biomolecular Engineering, University of California Berkeley California 94720-1462 USA
| | - Chengyu Song
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering, University of California Berkeley California 94720-1462 USA
| |
Collapse
|
12
|
Habib S, Rashid F, Tahir H, Liaqat I, Latif AA, Naseem S, Khalid A, Haider N, Hani U, Dawoud RA, Modafer Y, Bibi A, Jefri OA. Antibacterial and Cytotoxic Effects of Biosynthesized Zinc Oxide and Titanium Dioxide Nanoparticles. Microorganisms 2023; 11:1363. [PMID: 37374866 DOI: 10.3390/microorganisms11061363] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Nanotechnology is a rapidly developing field of research that studies materials having dimensions of less than 100 nanometers. It is applicable in many areas of life sciences and medicine including skin care and personal hygiene, as these materials are the essential components of various cosmetics and sunscreens. The aim of the present study was to synthesize Zinc oxide (ZnO) and Titanium dioxide (TiO2) nanoparticles (NPs) by using Calotropis procera (C. procera) leaf extract. Green synthesized NPs were characterized by UV spectroscopy, Fourier transform infrared (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) to investigate their structure, size, and physical properties. The antibacterial and synergistic effects of ZnO and TiO2 NPs along with antibiotics were also observed against bacterial isolates. The antioxidant activity of synthesized NPs was analyzed by their α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity. In vivo toxic effects of the synthesized NPs were evaluated in albino mice at different doses (100, 200, and 300 mg/kg body weight) of ZnO and TiO2 NPs administered orally for 7, 14, and 21 days. The antibacterial results showed that the zone of inhibition (ZOI) was increased in a concentration-dependent manner. Among the bacterial strains, Staphylococcus aureus showed the highest ZOI, i.e., 17 and 14 mm against ZnO and TiO2 NPs, respectively, while Escherichia coli showed the lowest ZOI, i.e., 12 and 10 mm, respectively. Therefore, ZnO NPs are potent antibacterial agents compared to TiO2 NPs. Both NPs showed synergistic effects with antibiotics (ciprofloxacin and imipenem). Moreover, the DPPH activity showed that ZnO and TiO2 NPs have significantly (p > 0.05) higher antioxidant activity, i.e., 53% and 58.7%, respectively, which indicated that TiO2 has good antioxidant potential compared to ZnO NPs. However, the histological changes after exposure to different doses of ZnO and TiO2 NPs showed toxicity-related changes in the structure of the kidney compared to the control group. The current study provided valuable information about the antibacterial, antioxidant, and toxicity impacts of green synthesized ZnO and TiO2 NPs, which can be influential in the further study of their eco-toxicological effects.
Collapse
Affiliation(s)
- Samrin Habib
- Department of Zoology, Lahore College for Women University, Lahore 54000, Pakistan
| | - Farzana Rashid
- Department of Zoology, Lahore College for Women University, Lahore 54000, Pakistan
| | - Hunaiza Tahir
- Department of Zoology, Lahore College for Women University, Lahore 54000, Pakistan
| | - Iram Liaqat
- Microbiology Laboratory, Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Asma Abdul Latif
- Department of Zoology, Lahore College for Women University, Lahore 54000, Pakistan
| | - Sajida Naseem
- Department of Zoology, University of Education, Lower Mall Campus, Lahore 54000, Pakistan
| | - Awais Khalid
- Department of Physics, Hazara University, Mansehra 21300, Pakistan
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Rehab A Dawoud
- Department of Biology, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Yosra Modafer
- Department of Biology, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Asia Bibi
- Department of Zoology, The Women University, Multan 66000, Pakistan
| | - Ohoud A Jefri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Marin-Silva DA, Romano N, Damonte L, Giannuzzi L, Pinotti A. Hybrid materials based on chitosan functionalized with green synthesized copper nanoparticles: Physico-chemical and antimicrobial analysis. Int J Biol Macromol 2023; 242:124898. [PMID: 37207748 DOI: 10.1016/j.ijbiomac.2023.124898] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Recently, the development of materials with antimicrobial properties has become a challenge under scrutiny. The incorporation of copper nanoparticles (NpCu) into a chitosan matrix appears to represent a viable strategy to contain the particles and prevent their oxidation. Regarding the physical properties, the nanocomposite films (CHCu) showed a decrease in the elongation at break (5 %) and an increase in the tensile strength of 10 % concerning chitosan films (control). They also showed solubility values lower than 5 % while the swelling diminished by 50 %, on average. The dynamical mechanical analysis (DMA) of nanocomposites revealed two thermal events located at 113° and 178 °C, which matched the glass transitions of the CH-enriched phase and nanoparticles-enriched phase, respectively. In addition, the thermogravimetric analysis (TGA) detected a greater stability of the nanocomposites. Chitosan films and the NpCu-loaded nanocomposites demonstrated excellent antibacterial capacity against Gram-negative and Gram-positive bacteria, proved through diffusion disc, zeta potential, and ATR-FTIR techniques. Additionally, the penetration of individual NpCu particles into bacterial cells and the leakage of cell content were verified by TEM. The mechanism of the antibacterial activity of the nanocomposites involved the interaction of chitosan with the bacterial outer membrane or cell wall and the diffusion of the NpCu through the cells. These materials could be applied in diverse fields of biology, medicine, or food packaging.
Collapse
Affiliation(s)
- Diego Alejandro Marin-Silva
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, UNLP, CICPBA), 47 y 116 S/N, 1900 La Plata, Argentina
| | - Nelson Romano
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, UNLP, CICPBA), 47 y 116 S/N, 1900 La Plata, Argentina
| | - Laura Damonte
- Dto. de Física, UNLP-IFLP, CCT-CONICET La Plata, Argentina; Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Leda Giannuzzi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, UNLP, CICPBA), 47 y 116 S/N, 1900 La Plata, Argentina; Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Adriana Pinotti
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CCT-CONICET La Plata, UNLP, CICPBA), 47 y 116 S/N, 1900 La Plata, Argentina; Facultad de Ingeniería, UNLP, La Plata, Argentina.
| |
Collapse
|
14
|
Liauw CM, Vaidya M, Slate AJ, Hickey NA, Ryder S, Martínez-Periñán E, McBain AJ, Banks CE, Whitehead KA. Analysis of Cellular Damage Resulting from Exposure of Bacteria to Graphene Oxide and Hybrids Using Fourier Transform Infrared Spectroscopy. Antibiotics (Basel) 2023; 12:antibiotics12040776. [PMID: 37107138 PMCID: PMC10135141 DOI: 10.3390/antibiotics12040776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
With the increase in antimicrobial resistance, there is an urgent need to find new antimicrobials. Four particulate antimicrobial compounds, graphite (G), graphene oxide (GO), silver-graphene oxide (Ag-GO) and zinc oxide-graphene oxide (ZnO-GO) were tested against Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The antimicrobial effects on the cellular ultrastructure were determined using Fourier transform infrared spectroscopy (FTIR), and selected FTIR spectral metrics correlated with cell damage and death arising from exposure to the GO hybrids. Ag-GO caused the most severe damage to the cellular ultrastructure, whilst GO caused intermediate damage. Graphite exposure caused unexpectedly high levels of damage to E. coli, whereas ZnO-GO exposure led to relatively low levels of damage. The Gram-negative bacteria demonstrated a stronger correlation between FTIR metrics, indicated by the perturbation index and the minimal bactericidal concentration (MBC). The blue shift of the combined ester carbonyl and amide I band was stronger for the Gram-negative varieties. FTIR metrics tended to provide a better assessment of cell damage based on correlation with cellular imaging and indicated that damage to the lipopolysaccharide, peptidoglycan and phospholipid bilayers had occurred. Further investigations into the cell damage caused by the GO-based materials will allow the development of this type of carbon-based multimode antimicrobials.
Collapse
Affiliation(s)
- Christopher M Liauw
- Microbiology at Interfaces Group, School of Healthcare Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Misha Vaidya
- Microbiology at Interfaces Group, School of Healthcare Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Anthony J Slate
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Niall A Hickey
- Microbiology at Interfaces Group, School of Healthcare Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Steven Ryder
- Microbiology at Interfaces Group, School of Healthcare Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Emiliano Martínez-Periñán
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Andrew J McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Kathryn A Whitehead
- Microbiology at Interfaces Group, School of Healthcare Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| |
Collapse
|
15
|
Ma Y, Zhang J, Yu N, Shi J, Zhang Y, Chen Z, Jia G. Effect of Nanomaterials on Gut Microbiota. TOXICS 2023; 11:384. [PMID: 37112611 PMCID: PMC10144479 DOI: 10.3390/toxics11040384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 06/19/2023]
Abstract
Nanomaterials are widely employed in everyday life, including food and engineering. Food additives on a nanoscale can enter the body via the digestive tract. The human gut microbiota is a dynamically balanced ecosystem composed of a multitude of microorganisms that play a crucial role in maintaining the proper physiological function of the digestive tract and the body's endocrine coordination. While the antibacterial capabilities of nanomaterials have received much interest in recent years, their impacts on gut microbiota ought to be cautioned about and explored. Nanomaterials exhibit good antibacterial capabilities in vitro. Animal studies have revealed that oral exposure to nanomaterials inhibits probiotic reproduction, stimulates the inflammatory response of the gut immune system, increases opportunistic infections, and changes the composition and structure of the gut microbiota. This article provides an overview of the impacts of nanomaterials, particularly titanium dioxide nanoparticles (TiO2 NPs), on the gut microbiota. It advances nanomaterial safety research and offers a scientific foundation for the prevention, control, and treatment of illnesses associated with gut microbiota abnormalities.
Collapse
Affiliation(s)
- Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Jiahe Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Nairui Yu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
16
|
S A, Kavitha HP. Magnesium Oxide Nanoparticles: Effective Antilarvicidal and Antibacterial Agents. ACS OMEGA 2023; 8:5225-5233. [PMID: 36816696 PMCID: PMC9933234 DOI: 10.1021/acsomega.2c01450] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 12/14/2022] [Indexed: 05/27/2023]
Abstract
People are vulnerable to mosquito-borne infections in tropical and subtropical climate countries. Due to resistive issues, vector control is an immediate concern in today's environment. The current study describes the synthesis of magnesium oxide by four different approaches including green, microwave, sol-gel, and hydrothermal methods. The synthesized magnesium oxide (MgO) nanoparticles were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM), and energy-dispersive X-ray analysis (EDAX) techniques. The FT-IR studies reveal the presence of functional groups in the synthesized nanoparticles. The structural and morphological studies were investigated using XRD and HRSEM. EDAX reveals the presence of Mg and O in the prepared samples. The synthesized MgO NPs were screened for antibacterial studies against Gram-positive strains, Enterococcus faecalis and Staphylococcus aureus, two Gram-negative cultures, Escherichia coli and Klebsiella pneumoniae, using different concentrations. The results indicated excellent antibacterial activity against both Gram-positive and Gram-negative bacteria at 50 mg/mL hydrothermally produced MgO nanoparticles, with a maximal zone of inhibition (ZOI) of 5 mm for S. aureus, 7 mm for E. faecalis, and 6 mm for K. pneumoniae. The ZOI of E. coli was found to be the greatest at 9 mm when 50 mg/mL sol-gel-produced MgO nanoparticles were used. The synthesized MgO nanostructures were tested against fourth-instar larvae of Aedes aegypti and Aedes albopictus, and the hydrothermally synthesized MgO nanostructures exhibited better results when compared with other methods of synthesis. The reports show that A. aegypti and A. albopictus mortality rates were reported to be the lowest with green-manufactured MgO nanoparticles (7.5 g mL-1) and the highest with hydrothermally synthesized MgO nanoparticles (120 g mL-1). The research indicates that MgO nanostructures are promising drugs for antibacterial and mosquitocidal larvae control properties.
Collapse
Affiliation(s)
- Abinaya S
- SRM Institute of Science and Technology, Ramapuram, Chennai 600089, India, https://renuwit.org/contact/
| | - Helen P. Kavitha
- SRM Institute of Science and Technology, Ramapuram, Chennai 600089, India, https://renuwit.org/contact/
| |
Collapse
|
17
|
Yan Z, Liu C, Liu Y, Tan X, Li X, Shi Y, Ding C. The interaction of ZnO nanoparticles, Cr(VI), and microorganisms triggers a novel ROS scavenging strategy to inhibit microbial Cr(VI) reduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130375. [PMID: 36444067 DOI: 10.1016/j.jhazmat.2022.130375] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Cr(VI) contaminated water usually contains other contaminants like engineered nanomaterials (ENMs). During the process of microbial treatment, the inevitable interaction of Cr(VI), ENMs, and microorganisms probably determines the efficiency of Cr(VI) biotransformation, however, the corresponding information remains elusive. This study investigated the interaction of ZnO nanoparticles (NPs), Cr(VI), and Pannonibacter phragmitetus BB (hereafter BB), which changed the process of microbial Cr(VI) reduction. ZnO NPs inhibited Cr(VI) reduction, but had no effect on bacterial viability. In particular, Cr(VI) induced BB to produce organic acids and to drive Zn2+ dissolution from ZnO NPs inside and outside of cells. The dissolved Zn2+ not only promoted Cr(VI) reduction to Cr(V)/Cr(IV) by strengthening sugar metabolism and inducing increase in NAD(P)H production, but also hindered Cr(V)/Cr(IV) transformation to Cr(III) through down-regulating Cr(VI) reductase genes. A novel bacterial driven ROS scavenging mechanism leading to the inhibition of Cr(VI) reduction was elucidated. Specifically, the accumulated Cr(VI) and Cr(V)/Cr(IV) formed a redox dynamic equilibrium, which triggered the disproportionation of superoxide radicals mimicking superoxide dismutase through the flip-flop of Cr(VI) and Cr(V)/Cr(IV) in bacterial cells. This study provided a realistic insight into design the applicability of biological remediation technology for Cr(VI) contaminant and evaluating environmental risks of ENMs.
Collapse
Affiliation(s)
- Zhiyan Yan
- School of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Chenrui Liu
- School of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yun Liu
- School of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Xiaoqian Tan
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| | - Xinyue Li
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| | - Yan Shi
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083 Changsha, China.
| | - Chunlian Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
18
|
Kamat S, Kumari M. Emergence of microbial resistance against nanoparticles: Mechanisms and strategies. Front Microbiol 2023; 14:1102615. [PMID: 36778867 PMCID: PMC9909277 DOI: 10.3389/fmicb.2023.1102615] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Antimicrobial nanoparticles have gained the status of a new generation of drugs that can kill bacterial pathogens by multiple means; however, nanoparticle resistance acquired by some bacterial pathogens has evoked a cause of concern. Several reports suggested that bacteria can develop nanoparticles, specifically metal nanoparticle resistance, by mechanisms: nanoparticle transformation-induced oxidative stress, membrane alterations, reversible adaptive resistance, irreversible modifications to cell division, and a change in bacterial motility and resistance. Surface properties, concentration and aggregation of nanoparticles, biofilm forming and metal exclusion capacity, and R plasmid and flagellin synthesis by bacteria are crucial factors in the development of nanoparticle resistance in bacteria. Studies reported the resistance reversal by modifying the surface corona of nanoparticles or inhibiting flagellin production by bacterial pathogens. Furthermore, strict regulation regarding the use and disposal of nano-waste across the globe, the firm knowledge of microbe-nanoparticle interaction, and the regulated disposal of nanoparticles in soil and water is required to prevent microbes from developing nanoparticle resistance.
Collapse
|
19
|
Sreelatha S, Kumar N, Rajani S. Biological effects of Thymol loaded chitosan nanoparticles (TCNPs) on bacterial plant pathogen Xanthomonas campestris pv. campestris. Front Microbiol 2022; 13:1085113. [PMID: 36620059 PMCID: PMC9815552 DOI: 10.3389/fmicb.2022.1085113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Engineered nanomaterials can provide eco-friendly alternatives for crop disease management. Chitosan based nanoparticles has shown beneficial applications in sustainable agricultural practices and effective healthcare. Previously we demonstrated that Thymol loaded chitosan nanoparticles (TCNPs) showed bactericidal activity against Xanthomonas campestris pv campestris (Xcc), a bacterium that causes black rot disease in brassica crops. Despite the progress in assessing the antibacterial action of TCNPs, the knowledge about the molecular response of Xcc when exposed to TCNPs is yet to be explored. In the present study, we combined physiological, spectroscopic and untargeted metabolomics studies to investigate the response mechanisms in Xcc induced by TCNPs. Cell proliferation and membrane potential assays of Xcc cells exposed to sub-lethal concentration of TCNPs showed that TCNPs affects the cell proliferation rate and damages the cell membrane altering the membrane potential. FTIR spectroscopy in conjunction with untargeted metabolite profiling using mass spectrometry of TCNPs treated Xcc cells revealed alterations in amino acids, lipids, nucleotides, fatty acids and antioxidant metabolites. Mass spectroscopy analysis revealed a 10-25% increase in nucleic acid, fatty acids and antioxidant metabolites and a 20% increase in lipid metabolites while a decrease of 10-20% in amino acids and carbohydrates was seen in in TCNP treated Xcc cells. Overall, our results demonstrate that the major metabolic perturbations induced by TCNPs in Xcc are associated with membrane damage and oxidative stress, thus providing information on the mechanism of TCNPs mediated cytotoxicity. This will aid towards the development of nano- based agrochemicals as an alternative to chemical pesticides in future.
Collapse
|
20
|
Rychtowski P, Paszkiewicz O, Román-Martínez MC, Lillo-Ródenas MÁ, Markowska-Szczupak A, Tryba B. Impact of TiO 2 Reduction and Cu Doping on Bacteria Inactivation under Artificial Solar Light Irradiation. Molecules 2022; 27:molecules27249032. [PMID: 36558165 PMCID: PMC9784163 DOI: 10.3390/molecules27249032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Preparation of TiO2 using the hydrothermal treatment in NH4OH solution and subsequent thermal heating at 500-700 °C in Ar was performed in order to introduce some titania surface defects. The highest amount of oxygen vacancies and Ti3+ surface defects were observed for a sample heat-treated at 500 °C. The presence of these surface defects enhanced photocatalytic properties of titania towards the deactivation of two bacteria species, E. coli and S. epidermidis, under artificial solar lamp irradiation. Further modification of TiO2 was targeted towards the doping of Cu species. Cu doping was realized through the impregnation of the titania surface by Cu species supplied from various copper salts in an aqueous solution and the subsequent heating at 500 °C in Ar. The following precursors were used as a source of Cu: CuSO4, CuNO3 or Cu(CH3COO)2. Cu doping was performed for raw TiO2 after a hydrothermal process with and without NH4OH addition. The obtained results indicate that Cu species were deposited on the titania surface defects in the case of reduced TiO2, but on the TiO2 without NH4OH modification, Cu species were attached through the titania adsorbed hydroxyl groups. Cu doping on TiO2 increased the absorption of light in the visible range. Rapid inactivation of E. coli within 30 min was obtained for the ammonia-reduced TiO2 heated at 500 °C and TiO2 doped with Cu from CuSO4 solution. Photocatalytic deactivation of S. epidermidis was greatly enhanced through Cu doping on TiO2. Impregnation of TiO2 with CuSO4 was the most effective for inactivation of both E. coli and S. epidermidis.
Collapse
Affiliation(s)
- Piotr Rychtowski
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70–322 Szczecin, Poland
- Correspondence:
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, Piastów 42, 71–065 Szczecin, Poland
| | - Maria Carmen Román-Martínez
- Department of Inorganic Chemistry and Materials Institute (IUMA), Faculty of Sciences, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 Alicante, Spain
| | - Maria Ángeles Lillo-Ródenas
- Department of Inorganic Chemistry and Materials Institute (IUMA), Faculty of Sciences, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 Alicante, Spain
| | - Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology, Piastów 42, 71–065 Szczecin, Poland
| | - Beata Tryba
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70–322 Szczecin, Poland
| |
Collapse
|
21
|
Antibacterial Effects of ZnO Nanodisks: Shape Effect of the Nanostructure on the Lethality in Escherichia coli. Appl Biochem Biotechnol 2022; 195:3067-3095. [PMID: 36520354 DOI: 10.1007/s12010-022-04265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
The role of the shape of the nanostructure on the antibacterial effects of ZnO nanodisks has been investigated by detailed mass spectrometry-based proteomics along with other spectroscopic and microscopic studies on E. coli. The primary interaction study of the E. coli cells in the presence of ZnO nanodisks showed rigorous cell surface damage disrupting the cell wall/membrane components detected by microscopic and ATR-FTIR studies. Protein profiling of whole-cell extracts in the presence and absence of ZnO nanodisks identified several proteins that are upregulated and downregulated under the stress of the nanodisks. This suggests that the bacterial response to the primary stress leads to a secondary impact of ZnO nanodisk toxicity via regulation of the expression of specific proteins. Results showed that the ZnO nanodisks lead to the over-expression of peptidyl-dipeptidase Dcp, Transketolase-1, etc., which are important to maintaining the osmotic balance in the cell. The abrupt change in osmotic pressure leads to mechanical injury to the membrane, and nutritional starvation conditions, which is revealed from the expression of the key proteins involved in membrane-protein assembly, maintaining membrane integrity, cell division processes, etc. Thus, indicating a deleterious effect of ZnO nanodisk on the protective layer of E. coli. ZnO nanodisks seem to primarily affect the protective membrane layer, inducing cell death via the development of osmotic shock conditions, as one of the possible reasons for cell death. These results unravel a unique behavior of the disk-shaped ZnO nanostructure in executing lethality in E. coli, which has not been reported for other known shapes or morphologies of ZnO nanoforms.
Collapse
|
22
|
|
23
|
Ammendolia MG, De Berardis B. Nanoparticle Impact on the Bacterial Adaptation: Focus on Nano-Titania. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3616. [PMID: 36296806 PMCID: PMC9609019 DOI: 10.3390/nano12203616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Titanium dioxide nanoparticles (nano-titania/TiO2 NPs) are used in different fields and applications. However, the release of TiO2 NPs into the environment has raised concerns about their biosafety and biosecurity. In light of the evidence that TiO2 NPs could be used to counteract antibiotic resistance, they have been investigated for their antibacterial activity. Studies reported so far indicate a good performance of TiO2 NPs against bacteria, alone or in combination with antibiotics. However, bacteria are able to invoke multiple response mechanisms in an attempt to adapt to TiO2 NPs. Bacterial adaption arises from global changes in metabolic pathways via the modulation of regulatory networks and can be related to single-cell or multicellular communities. This review describes how the impact of TiO2 NPs on bacteria leads to several changes in microorganisms, mainly during long-term exposure, that can evolve towards adaptation and/or increased virulence. Strategies employed by bacteria to cope with TiO2 NPs suggest that their use as an antibacterial agent has still to be extensively investigated from the point of view of the risk of adaptation, to prevent the development of resistance. At the same time, possible effects on increased virulence following bacterial target modifications by TiO2 NPs on cells or tissues have to be considered.
Collapse
|
24
|
Nhu VTT, Dat ND, Tam LM, Phuong NH. Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1108-1119. [PMID: 36262177 PMCID: PMC9551207 DOI: 10.3762/bjnano.13.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) were successfully synthesized by a green method using rosin and zinc chloride as salt precursors. The phase structure, morphology, and particle size of ZnO were determined by X-ray powder diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy. The fabricated ZnO NP samples are crystalline with a grain size of 30-100 nm. The ZnO NPs were used as catalysts for the photodegradation of methylene blue (MB) and methyl orange (MO) under visible and UV light. The results indicate that the prepared ZnO material excellently removed MB and MO (c initial = 10 mg/L) with efficiencies of 100% and 82.78%, respectively, after 210 min under UV radiation with a ZnO NP dose of 2 g/L. The photocatalyst activity of the synthesized material was also tested under visible light radiation with the same conditions; however, it achieved lower efficiencies. In addition, ZnO NPs were also tested regarding their antibacterial activity, and the results showed that the prepared ZnO samples had the highest (i.e., 100%) antibacterial efficiency against E. coli.
Collapse
Affiliation(s)
- Vo Thi Thu Nhu
- Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Duy Dat
- Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Le-Minh Tam
- Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Nguyen Hoang Phuong
- HUTECH University, 475A Dien Bien Phu Street, Binh Thanh District, Ho Chi Minh City, Vietnam
| |
Collapse
|
25
|
Wasa A, Aitken J, Jun H, Bishop C, Krumdieck S, Godsoe W, Heinemann JA. Copper and nanostructured anatase rutile and carbon coatings induce adaptive antibiotic resistance. AMB Express 2022; 12:117. [PMID: 36070162 PMCID: PMC9452618 DOI: 10.1186/s13568-022-01457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Contaminated surfaces are vehicles for the spread of infectious disease-causing microorganisms. A strategy to prevent their spread is applying antimicrobial coatings to surfaces. Both nanostructured anatase rutile and carbon (NsARC), a TiO2 formulation, and copper are examples of antimicrobial agents that are used in making or coating door handles and similar surfaces, to reduce microbial loads. Antimicrobial surfaces have been extensively tested for antimicrobial activity but not sublethal effects, such as exposure-associated multiple antibiotic resistance phenotypes usually caused by induction of efflux pump genes. The possibility of NsARC and copper inducing indicative efflux pump pathways was investigated by monitoring the expression of mScarlet fluorescent protein (FP) in two reporter strains of Escherichia coli. There was an increase in the expression of FP in the reporter strains exposed to NsARC and copper relative to the inert control composed of stainless steel. Furthermore we tested E. coli and Staphylococcus aureus following 8 h of exposure to NsARC for changes in resistance to selected antibiotics. E. coli that were exposed to NsARC became more susceptible to kanamycin but there was no significant change in susceptibility of S. aureus to any tested antibiotics. These findings suggests that even though NsARC and copper are antimicrobial, they also have some potential to cause unintended phenotypes. New antimicrobial material NsARC based on TiO2 compared to
copper. Both NsARC and copper induce efflux pump gene transcription. Species-specific changes in antibiotic resistance from exposure to
antimicrobial surface coatings.
Collapse
Affiliation(s)
- Alibe Wasa
- School of Biological Sciences, University of Canterbury, Canterbury, New Zealand
| | - Jack Aitken
- School of Biological Sciences, University of Canterbury, Canterbury, New Zealand
| | - Hyunwoo Jun
- School of Biological Sciences, University of Canterbury, Canterbury, New Zealand
| | - Catherine Bishop
- Department of Mechanical Engineering, University of Canterbury, Canterbury, New Zealand
| | - Susan Krumdieck
- Department of Mechanical Engineering, University of Canterbury, Canterbury, New Zealand.,School of Energy, Geoscience, Infrastructure and Society, Heriot Watt University, EH14 4AS, Edinburgh, UK
| | - William Godsoe
- Bio-Protection Centre, Lincoln University, Canterbury, New Zealand
| | - Jack A Heinemann
- School of Biological Sciences, University of Canterbury, Canterbury, New Zealand.
| |
Collapse
|
26
|
Sharma P, Kumari R, Yadav M, Lal R. Evaluation of TiO 2 Nanoparticles Physicochemical Parameters Associated with their Antimicrobial Applications. Indian J Microbiol 2022; 62:338-350. [PMID: 35974921 PMCID: PMC9375816 DOI: 10.1007/s12088-022-01018-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) usage is increasing in everyday consumer products, hence, assessing their toxic impacts on living organisms and environment is essential. Various studies have revealed the significant role of TiO2NPs physicochemical properties on their toxicity. However, TiO2NPs are still poorly characterized with respect to their physicochemical properties, and environmental factors influencing their toxicity are either ignored or are too complex to be assessed under laboratory conditions. The outcomes of these studies are diverse and inconsistent due to lack of standard protocols. TiO2NPs toxicity also differs for in vivo and in vitro systems, which must also be considered during standardization of protocols to maintain uniformity and reproducibility of results. This review critically evaluates impact of different physicochemical parameters of TiO2NPs and other experimental conditions, employed in different laboratories in determining their toxicity towards bacteria. These important observations may be helpful in evaluation of environmental risks posed by these nanoparticles and this can further assist regulatory bodies in policymaking.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Zoology, Gargi College, University of Delhi, New Delhi, 110049 India
| | - Rekha Kumari
- Molecular Microbiology and Bioinformatics Laboratory, Department of Zoology, University of Delhi, Miranda House, Delhi, 110007 India
| | - Meena Yadav
- Department of Zoology, Maitreyi College, University of Delhi, New Delhi, India
| | - Rup Lal
- The Energy and Resources Institute, IHC Complex, Lodhi Road, New Delhi, 110003 India
| |
Collapse
|
27
|
Villa K, Sopha H, Zelenka J, Motola M, Dekanovsky L, Beketova DC, Macak JM, Ruml T, Pumera M. Enzyme-Photocatalyst Tandem Microrobot Powered by Urea for Escherichia coli Biofilm Eradication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106612. [PMID: 35122470 DOI: 10.1002/smll.202106612] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Urinary-based infections affect millions of people worldwide. Such bacterial infections are mainly caused by Escherichia coli (E. coli) biofilm formation in the bladder and/or urinary catheters. Herein, the authors present a hybrid enzyme/photocatalytic microrobot, based on urease-immobilized TiO2 /CdS nanotube bundles, that can swim in urea as a biocompatible fuel and respond to visible light. Upon illumination for 2 h, these microrobots are able to remove almost 90% of bacterial biofilm, due to the generation of reactive radicals, while bare TiO2 /CdS photocatalysts (non-motile) or urease-coated microrobots in the dark do not show any toxic effect. These results indicate a synergistic effect between the self-propulsion provided by the enzyme and the photocatalytic activity induced under light stimuli. This work provides a photo-biocatalytic approach for the design of efficient light-driven microrobots with promising applications in microbiology and biomedicine.
Collapse
Affiliation(s)
- Katherine Villa
- Center for Advanced Functional Nanorobots Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
| | - Hanna Sopha
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Náměstí čs, Legií 565, Pardubice, 530 02, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
| | - Martin Motola
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Náměstí čs, Legií 565, Pardubice, 530 02, Czech Republic
| | - Lukas Dekanovsky
- Center for Advanced Functional Nanorobots Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
| | - Darya Chylii Beketova
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Náměstí čs, Legií 565, Pardubice, 530 02, Czech Republic
| | - Jan M Macak
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Náměstí čs, Legií 565, Pardubice, 530 02, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague, 166 28, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 612 00, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
28
|
Chubenko EB, Baglov AV, Dudchik NV, Drozdova EV, Yemelyanova OA, Borisenko VE. Estimation of the Integral Toxicity of Photocatalysts Based on Graphitic Carbon Nitride in a Luminescent Test. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s002315842202001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Metryka O, Wasilkowski D, Mrozik A. Evaluation of the Effects of Ag, Cu, ZnO and TiO 2 Nanoparticles on the Expression Level of Oxidative Stress-Related Genes and the Activity of Antioxidant Enzymes in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. Int J Mol Sci 2022; 23:4966. [PMID: 35563357 PMCID: PMC9103769 DOI: 10.3390/ijms23094966] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022] Open
Abstract
Although the molecular response of bacteria exposed to metal nanoparticles (NPs) is intensively studied, many phenomena related to their survival, metal uptake, gene expression and protein production are not fully understood. Therefore, this work aimed to study Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs-induced alterations in the expression level of selected oxidative stress-related genes in connection with the activity of antioxidant enzymes: catalase (CAT), peroxidase (PER) and superoxide dismutase (SOD) in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. The methodology used included: the extraction of total RNA and cDNA synthesis, the preparation of primers for selected housekeeping and oxidative stress genes, RT-qPCR reaction and the measurements of CAT, PER and SOD activities. It was established that the treatment of E. coli and S. epidermidis with NPs resulted mainly in the down-regulation of targeted genes, whilst the up-regulation of genes was confirmed in B. cereus. The greatest differences in the relative expression levels of tested genes occurred in B. cereus and S. epidermidis treated with TiO2-NPs, while in E. coli, they were observed under ZnO-NPs exposure. The changes found were mostly related to the expression of genes encoding proteins with PER and CAT-like activity. Among NPs, ZnO-NPs and Cu-NPs increased the activity of antioxidants in E. coli and B. cereus. In turn, TiO2-NPs had a major effect on enzymes activity in S. epidermidis. Considering all of the collected results for tested bacteria, it can be emphasised that the impact of NPs on the antioxidant system functioning was dependent on their type and concentration.
Collapse
Affiliation(s)
- Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| |
Collapse
|
30
|
Raha S, Ahmaruzzaman M. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. NANOSCALE ADVANCES 2022; 4:1868-1925. [PMID: 36133407 PMCID: PMC9419838 DOI: 10.1039/d1na00880c] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/07/2022] [Indexed: 05/22/2023]
Abstract
Extensive research in nanotechnology has been conducted to investigate new behaviours and properties of materials with nanoscale dimensions. ZnO NPs owing to their distinct physical and chemical properties have gained considerable importance and are hence investigated to a detailed degree for exploitation of these properties. This communication, at the outset, elaborates the various chemical methods of preparation of ZnO NPs, viz., the mechanochemical process, controlled precipitation, sol-gel method, vapour transport method, solvothermal and hydrothermal methods, and methods using emulsion and micro-emulsion environments. The paper further describes the green methods employing the use of plant extracts, in particular, for the synthesis of ZnO NPs. The modifications of ZnO with organic (carboxylic acid, silanes) and inorganic (metal oxides) compounds and polymer matrices have then been described. The multitudinous applications of ZnO NPs across a variety of fields such as the rubber industry, pharmaceutical industry, cosmetics, textile industry, opto-electronics and agriculture have been presented. Elaborative narratives on the photocatalytic and a variety of biomedical applications of ZnO have also been included. The ecotoxic impacts of ZnO NPs have additionally been briefly highlighted. Finally, efforts have been made to examine the current challenges and future scope of the synthetic modes and applications of ZnO NPs.
Collapse
Affiliation(s)
- Sauvik Raha
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
31
|
Ozdal M, Gurkok S. Recent advances in nanoparticles as antibacterial agent. ADMET AND DMPK 2022; 10:115-129. [PMID: 35350114 PMCID: PMC8957245 DOI: 10.5599/admet.1172] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Recently, the rapid increase in antibiotic-resistant pathogens has caused serious health problems. Researchers are searching for alternative antimicrobial substances to control or prevent infections caused by pathogens. Different strategies are used to develop effective antibacterial agents, and in this respect, nanoparticles are undoubtedly promising materials. Nanoparticles act by bypassing drug resistance mechanisms in bacteria and inhibiting biofilm formation or other important processes related to their virulence potential. Nanoparticles can penetrate the cell wall and membrane of bacteria and act by disrupting important molecular mechanisms. In combination with appropriate antibiotics, NPs may show synergy and help prevent the developing global bacterial resistance crisis. Furthermore, due to characteristics such as enhanced biocompatibility and biodegradability, polymer-based nanoparticles enable the development of a wide range of medical products. Antibacterial applications of nanoparticles range from antimicrobial synthetic textiles to biomedical and surgical devices when nanoparticles are embedded/loaded/coated into different materials. In this review, the antibacterial mechanisms of nanoparticles and their potential for use in the medical field are discussed.
Collapse
Affiliation(s)
- Murat Ozdal
- Department of Biology, Science Faculty, Ataturk University, 25240 Erzurum, Turkey
| | | |
Collapse
|
32
|
Naskar A, Cho H, Lee S, Kim KS. Biomimetic Nanoparticles Coated with Bacterial Outer Membrane Vesicles as a New-Generation Platform for Biomedical Applications. Pharmaceutics 2021; 13:pharmaceutics13111887. [PMID: 34834302 PMCID: PMC8618801 DOI: 10.3390/pharmaceutics13111887] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
The biomedical field is currently reaping the benefits of research on biomimetic nanoparticles (NPs), which are synthetic nanoparticles fabricated with natural cellular materials for nature-inspired biomedical applications. These camouflage NPs are capable of retaining not only the physiochemical properties of synthetic nanoparticles but also the original biological functions of the cellular materials. Accordingly, NPs coated with cell-derived membrane components have achieved remarkable growth as prospective biomedical materials. Particularly, bacterial outer membrane vesicle (OMV), which is a cell membrane coating material for NPs, is regarded as an important molecule that can be employed in several biomedical applications, including immune response activation, cancer therapeutics, and treatment for bacterial infections with photothermal activity. The currently available cell membrane-coated NPs are summarized in this review. Furthermore, the general features of bacterial OMVs and several multifunctional NPs that could serve as inner core materials in the coating strategy are presented, and several methods that can be used to prepare OMV-coated NPs (OMV-NPs) and their characterization are highlighted. Finally, some perspectives of OMV-NPs in various biomedical applications for future potential breakthrough are discussed. This in-depth review, which includes potential challenges, will encourage researchers to fabricate innovative and improvised, new-generation biomimetic materials through future biomedical applications.
Collapse
|
33
|
Yi X, Li W, Liu Y, Yang K, Wu M, Zhou H. Effect of Polystyrene Microplastics of Different Sizes to Escherichia coli and Bacillus cereus. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:626-632. [PMID: 33864099 DOI: 10.1007/s00128-021-03215-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of polystyrene (PS) particles of different sizes was investigated using Gram-negative Escherichia coli and Gram-positive Bacillus cereus. PS particles could inhibit the cell growth of E. coli but promote the cell growth of B. cereus, and this difference might be attributed to different composition in their cell walls and the different interactions between the two bacteria and PS particles. Direct adhesion of E. coli cells on the surface of 5 μm PS microbeads by flagella was observed, indicating the putative role of E. coli on biofilm formation of plastisphere. The regulations of malondialdehyde, lactate dehydrogenase and glutathione were similar between the two bacteria, so the difference in the toxicity effect of PS between the two bacteria was not caused by the antioxidant activity. The overall results of the present study could help to understand the responses of different bacteria to microplastic exposure.
Collapse
Affiliation(s)
- Xianliang Yi
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Wentao Li
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Yang Liu
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Kaiming Yang
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Minghuo Wu
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Hao Zhou
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
34
|
Ansari MA, Akhtar S, Rauf MA, Alomary MN, AlYahya S, Alghamdi S, Almessiere MA, Baykal A, Khan F, Adil SF, Khan M, Hatshan MR. Sol-Gel Synthesis of Dy-Substituted Ni 0.4Cu 0.2Zn 0.4(Fe 2-xDy x)O 4 Nano Spinel Ferrites and Evaluation of Their Antibacterial, Antifungal, Antibiofilm and Anticancer Potentialities for Biomedical Application. Int J Nanomedicine 2021; 16:5633-5650. [PMID: 34434046 PMCID: PMC8381027 DOI: 10.2147/ijn.s316471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 01/21/2023] Open
Abstract
Background The constant rise of microbial biofilm formation and drug resistance to existing antimicrobial drugs poses a significant threat to community health around the world because it reduces the efficacy and efficiency of treatments, increasing morbidity, mortality, and health-care expenditures. As a result, there is an urgent need to develop novel antimicrobial agents that inhibit microbial biofilm formation. Methods The [Ni0.4Cu0.2Zn0.4](Fe2-xDyx)O4(x≤0.04) (Ni-Cu-Zn) nano spinel ferrites (NSFs) have been synthesized by the sol–gel auto-combustion process and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray (EDX) and transmission electron microscopy (TEM). The antimicrobial, antibiofilm and antiproliferative activities of Ni-Cu-Zn NSFs were also examined. Results The XRD pattern confirms the secondary phase DyFeO3 and Fe2O3 for substituted Dy3+ samples, and the crystallite size ranged from 10 to 19 nm. TEM analysis of NSFs revealed that the particles were cube-shaped and 15nm in size. NSFs exhibited significant antimicrobial, antibiofilm and antiproliferative activity. At concentration of 1 mg/mL, it was found that the NSFs (ie, x=0.0, x=0.01, x=0.02, x=0.03 and x=0.04) inhibit biofilm formation by 27.6, 26.2, 58.5, 33.3 and 25% for methicillin-resistant Staphylococcus aureus (MRSA) and 47.5, 43.5, 48.6, 58.3 and 26.6% for Candida albicans, respectively. SEM images demonstrate that treating MRSA and C. albicans biofilms with NSFs significantly reduces cell adhesion, colonization and destruction of biofilm architecture and extracellular polymeric substances matrices. Additionally, SEM and TEM examination revealed that NSFs extensively damaged the cell walls and membranes of MRSA and C. albicans. Huge ultrastructural alteration such as deformation, disintegration and separation of cell wall and membrane from the cells was observed, indicating significant loss of membrane integrity, which eventually led to cell death. Furthermore, it was observed that NSF inhibited the cancer cell growth and proliferation of HCT-116 in a dose-dependent manner. Conclusion The current study demonstrated that the synthesized Ni-Cu-Zn NSFs could be used to develop potential antimicrobial surface coatings agents for a varieties of biomedical-related materials and devices in order to prevent the biofilms formation and their colonization. Furthermore, the enhanced antiproliferative properties of manufactured SNFs suggest a wide range of biomedical applications.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research & Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Sami AlYahya
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - M A Almessiere
- Department of Biophysics, Institute for Research & Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia.,Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Abdulhadi Baykal
- Department of Nanomedicine Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Firdos Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Alabresm A, Chandler SL, Benicewicz BC, Decho AW. Nanotargeting of Resistant Infections with a Special Emphasis on the Biofilm Landscape. Bioconjug Chem 2021; 32:1411-1430. [PMID: 34319073 PMCID: PMC8527872 DOI: 10.1021/acs.bioconjchem.1c00116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacterial resistance to antimicrobial compounds is a growing concern in medical and public health circles. Overcoming the adaptable and duplicative resistance mechanisms of bacteria requires chemistry-based approaches. Engineered nanoparticles (NPs) now offer unique advantages toward this effort. However, most in situ infections (in humans) occur as attached biofilms enveloped in a protective surrounding matrix of extracellular polymers, where survival of microbial cells is enhanced. This presents special considerations in the design and deployment of antimicrobials. Here, we review recent efforts to combat resistant bacterial strains using NPs and, then, explore how NP surfaces may be specifically engineered to enhance the potency and delivery of antimicrobial compounds. Special NP-engineering challenges in the design of NPs must be overcome to penetrate the inherent protective barriers of the biofilm and to successfully deliver antimicrobials to bacterial cells. Future challenges are discussed in the development of new antibiotics and their mechanisms of action and targeted delivery via NPs.
Collapse
Affiliation(s)
- Amjed Alabresm
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Biological Development of Shatt Al-Arab & N. Arabian Gulf, Marine Science Centre, University of Basrah, Basrah, Iraq
| | - Savannah L Chandler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- USC NanoCenter, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
36
|
Non-Woven Fabrics Based on Nanocomposite Nylon 6/ZnO Obtained by Ultrasound-Assisted Extrusion for Improved Antimicrobial and Adsorption Methylene Blue Dye Properties. Polymers (Basel) 2021; 13:polym13111888. [PMID: 34204165 PMCID: PMC8201166 DOI: 10.3390/polym13111888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Approximately 200,000 tons of water contaminated with dyes are discharged into effluents annually, which in addition to infectious diseases constitute problems that afflict the population worldwide. This study evaluated the mechanical properties, surface structure, antimicrobial performance, and methylene blue dye-contaminant adsorption using the non-woven fabrics manufactured by melt-blowing. The non-woven fabrics are composed of nylon 6 (Ny 6) and zinc oxide nanoparticles (ZnO NPs). The polymer nanocomposites were previously fabricated using variable frequency ultrasound assisted-melt-extrusion to be used in melt-blowing. Energy dispersion spectroscopy (SEM-EDS) images showed a homogeneous dispersion of the ZnO nanoparticles in nylon 6. The mechanical properties of the composites increased by adding ZnO compared to the nylon 6 matrix, and sample Ny/ZnO 0.5 showed the best mechanical performance. All fabric samples exhibited antimicrobial activity against S. aureus and fungus C. albicans, and the incorporation of ZnO nanoparticles significantly improved this property compared to pure nylon 6. The absorption efficiency of methylene blue (MB), during 60 min, for the samples Ny/ZnO 0.05 and Ny/ZnO 0.25 wt%, were 93% and 65%, respectively. The adsorption equilibrium data obeyed the Langmuir isotherm.
Collapse
|
37
|
Pagnout C, Razafitianamaharavo A, Sohm B, Caillet C, Beaussart A, Delatour E, Bihannic I, Offroy M, Duval JFL. Osmotic stress and vesiculation as key mechanisms controlling bacterial sensitivity and resistance to TiO 2 nanoparticles. Commun Biol 2021; 4:678. [PMID: 34083706 PMCID: PMC8175758 DOI: 10.1038/s42003-021-02213-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/11/2021] [Indexed: 02/04/2023] Open
Abstract
Toxicity mechanisms of metal oxide nanoparticles towards bacteria and underlying roles of membrane composition are still debated. Herein, the response of lipopolysaccharide-truncated Escherichia coli K12 mutants to TiO2 nanoparticles (TiO2NPs, exposure in dark) is addressed at the molecular, single cell, and population levels by transcriptomics, fluorescence assays, cell nanomechanics and electrohydrodynamics. We show that outer core-free lipopolysaccharides featuring intact inner core increase cell sensitivity to TiO2NPs. TiO2NPs operate as membrane strippers, which induce osmotic stress, inactivate cell osmoregulation and initiate lipid peroxidation, which ultimately leads to genesis of membrane vesicles. In itself, truncation of lipopolysaccharide inner core triggers membrane permeabilization/depolarization, lipid peroxidation and hypervesiculation. In turn, it favors the regulation of TiO2NP-mediated changes in cell Turgor stress and leads to efficient vesicle-facilitated release of damaged membrane components. Remarkably, vesicles further act as electrostatic baits for TiO2NPs, thereby mitigating TiO2NPs toxicity. Altogether, we highlight antagonistic lipopolysaccharide-dependent bacterial responses to nanoparticles and we show that the destabilized membrane can generate unexpected resistance phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | - Eva Delatour
- Université de Lorraine, CNRS, LIEC, Metz, France
| | | | - Marc Offroy
- Université de Lorraine, CNRS, LIEC, Nancy, France
| | | |
Collapse
|
38
|
Kubacka A, Rojo D, Muñoz-Batista MJ, Barbas C, Fernández-García M, Ferrer M. Metabolomics reveals synergy between Ag and g-C 3N 4 in Ag/g-C 3N 4 composite photocatalysts: a unique feature among Ag-doped biocidal materials. Metabolomics 2021; 17:53. [PMID: 34061256 DOI: 10.1007/s11306-021-01804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The silver/graphitic carbon nitride (Ag/g-C3N4) composite system exerts biocidal activity against the pathogenic bacterium Escherichia coli 1337-H that is stronger than that of well-known silver and titanium oxide (TiO2)-based composites. However, whether the Ag/g-C3N4 composite system has biocidal properties that the parent components do or do not have as separate chemical entities and whether they differ from those in Ag/TiO2 composite photocatalysts have not been clarified. OBJECTIVE We investigated the chemical (cooperative charge handling and electronic properties) and biological (metabolic) effects exerted by the addition of Ag to g-C3N4 and to TiO2. METHODS In this work, we undertook metabolome-wide analysis by liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry to compare the metabolite profiles of untreated E. coli 1337-H cells or those subjected to disinfection with Ag, g-C3N4, 2Ag/g-C3N4, TiO2 and 2Ag/TiO2. RESULTS While Ag or g-C3N4 moderately affected microbial metabolism according to the mean of the altered metabolites, multiple cell systems contributing to rapid cell death were immediately affected by the light-triggered radical species produced when Ag and g-C3N4 were as xAg/g-C3N4. The effects include drastically reduced production of small metabolites essential for detoxifying reactive oxygen species and those that regulate DNA replication fidelity, cell morphology and energy status. These biological consequences were different from those caused by Ag/TiO2-based biocides, demonstrating the uniqueness of the Ag/g-C3N4 system. CONCLUSIONS Our results support the idea that the unique Ag/g-C3N4 biocidal properties are based on synergistic action and reveal new directions for designing future photocatalysts for use in disinfection and microbial control.
Collapse
Affiliation(s)
- Anna Kubacka
- Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas, c/Marie Curie 2, 28049, Madrid, Spain
| | - David Rojo
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Mario J Muñoz-Batista
- Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas, c/Marie Curie 2, 28049, Madrid, Spain
- Department of Chemical Engineering, University of Granada, Av. de La Fuente Nueva S/N, 18071, Granada, Spain
| | - Coral Barbas
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Marcos Fernández-García
- Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas, c/Marie Curie 2, 28049, Madrid, Spain.
| | - Manuel Ferrer
- Institute of Catalysis and Petrochemistry, Consejo Superior de Investigaciones Científicas, c/Marie Curie 2, 28049, Madrid, Spain.
| |
Collapse
|
39
|
Meena M, Zehra A, Swapnil P, Harish, Marwal A, Yadav G, Sonigra P. Endophytic Nanotechnology: An Approach to Study Scope and Potential Applications. Front Chem 2021; 9:613343. [PMID: 34113600 PMCID: PMC8185355 DOI: 10.3389/fchem.2021.613343] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Nanotechnology has become a very advanced and popular form of technology with huge potentials. Nanotechnology has been very well explored in the fields of electronics, automobiles, construction, medicine, and cosmetics, but the exploration of nanotecnology's use in agriculture is still limited. Due to climate change, each year around 40% of crops face abiotic and biotic stress; with the global demand for food increasing, nanotechnology is seen as the best method to mitigate challenges in disease management in crops by reducing the use of chemical inputs such as herbicides, pesticides, and fungicides. The use of these toxic chemicals is potentially harmful to humans and the environment. Therefore, using NPs as fungicides/ bactericides or as nanofertilizers, due to their small size and high surface area with high reactivity, reduces the problems in plant disease management. There are several methods that have been used to synthesize NPs, such as physical and chemical methods. Specially, we need ecofriendly and nontoxic methods for the synthesis of NPs. Some biological organisms like plants, algae, yeast, bacteria, actinomycetes, and fungi have emerged as superlative candidates for the biological synthesis of NPs (also considered as green synthesis). Among these biological methods, endophytic microorganisms have been widely used to synthesize NPs with low metallic ions, which opens a new possibility on the edge of biological nanotechnology. In this review, we will have discussed the different methods of synthesis of NPs, such as top-down, bottom-up, and green synthesis (specially including endophytic microorganisms) methods, their mechanisms, different forms of NPs, such as magnesium oxide nanoparticles (MgO-NPs), copper nanoparticles (Cu-NPs), chitosan nanoparticles (CS-NPs), β-d-glucan nanoparticles (GNPs), and engineered nanoparticles (quantum dots, metalloids, nonmetals, carbon nanomaterials, dendrimers, and liposomes), and their molecular approaches in various aspects. At the molecular level, nanoparticles, such as mesoporous silica nanoparticles (MSN) and RNA-interference molecules, can also be used as molecular tools to carry genetic material during genetic engineering of plants. In plant disease management, NPs can be used as biosensors to diagnose the disease.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Botany, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan, Mohanlal Sukhadia University, Udaipur, India
| | - Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
40
|
Yuan W, Wei Y, Zhang Y, Riaz L, Yang Q, Wang Q, Wang R. Resistance of multidrug resistant Escherichia coli to environmental nanoscale TiO 2 and ZnO. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144303. [PMID: 33360128 DOI: 10.1016/j.scitotenv.2020.144303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Excessive production and utilization of nanoparticles (NPs) at industrial and household levels releases substantial quantities of NPs into the environment. These can be harmful to different types of organisms and cause adverse effects on ecosystems. Purchased TiO2 and ZnO NPs were characterized via XRD, XPS, FESEM, and Zeta potential. This study elucidates how multidrug resistant Escherichia coli LM13, which was recovered from livestock manure, counteracts the antibacterial activities of TiO2 and ZnO NPs to survive in the environment. E. coli ATCC25922, which is susceptible to antibiotics, was used as control. A dose-response experiment showed that the antibacterial activity of TiO2 was lower than that of ZnO NPs and, LM13 was more resistant to NPs than ATCC25922. An AcrAB-TolC efflux pump along with its regulation genes helped LM13 to minimize NP toxicity. Flow cytometry findings also indicated that the intensity of the side-scatter light parameter increased with TiO2 and ZnO NPs in a dose dependent manner, suggesting NP uptake by the both strains. The generation of reactive oxygen species in LM13 was several-fold lower than in ATCC25922, suggesting that reactive oxygen species mainly contribute to the toxicity mechanism. These results illustrate the necessity to evaluate the impacts of NPs on the survival capacity of bacteria and on the resistance genes in bacteria with higher NP resistance than NP susceptible bacteria.
Collapse
Affiliation(s)
- Wei Yuan
- School of Environment, Henan Normal University, Xinxiang 453007, China; School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China
| | - Yixuan Wei
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| | - Yongli Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Luqman Riaz
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China.
| | - Qiang Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| | - Ruifei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
41
|
Vihodceva S, Šutka A, Sihtmäe M, Rosenberg M, Otsus M, Kurvet I, Smits K, Bikse L, Kahru A, Kasemets K. Antibacterial Activity of Positively and Negatively Charged Hematite ( α-Fe 2O 3) Nanoparticles to Escherichia coli, Staphylococcus aureus and Vibrio fischeri. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:652. [PMID: 33800165 PMCID: PMC7999532 DOI: 10.3390/nano11030652] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023]
Abstract
In the current study, the antibacterial activity of positively and negatively charged spherical hematite (α-Fe2O3) nanoparticles (NPs) with primary size of 45 and 70 nm was evaluated against clinically relevant bacteria Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) as well as against naturally bioluminescent bacteria Vibrio fischeri (an ecotoxicological model organism). α-Fe2O3 NPs were synthesized using a simple green hydrothermal method and the surface charge was altered via citrate coating. To minimize the interference of testing environment with NP's physic-chemical properties, E. coli and S. aureus were exposed to NPs in deionized water for 30 min and 24 h, covering concentrations from 1 to 1000 mg/L. The growth inhibition was evaluated following the postexposure colony-forming ability of bacteria on toxicant-free agar plates. The positively charged α-Fe2O3 at concentrations from 100 mg/L upwards showed inhibitory activity towards E. coli already after 30 min of contact. Extending the exposure to 24 h caused total inhibition of growth at 100 mg/L. Bactericidal activity of positively charged hematite NPs against S. aureus was not observed up to 1000 mg/L. Differently from positively charged hematite NPs, negatively charged citrate-coated α-Fe2O3 NPs did not exhibit any antibacterial activity against E. coli and S. aureus even at 1000 mg/L. Confocal laser scanning microscopy and flow cytometer analysis showed that bacteria were more tightly associated with positively charged α-Fe2O3 NPs than with negatively charged citrate-coated α-Fe2O3 NPs. Moreover, the observed associations were more evident in the case of E. coli than S. aureus, being coherent with the toxicity results. Vibrio fischeri bioluminescence inhibition assays (exposure medium 2% NaCl) and colony forming ability on agar plates showed no (eco)toxicity of α-Fe2O3 (EC50 and MBC > 1000 mg/L).
Collapse
Affiliation(s)
- Svetlana Vihodceva
- Research Laboratory of Functional Materials Technologies, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia;
| | - Andris Šutka
- Research Laboratory of Functional Materials Technologies, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia;
| | - Mariliis Sihtmäe
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
| | - Merilin Rosenberg
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
- Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Maarja Otsus
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
| | - Imbi Kurvet
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
| | - Krisjanis Smits
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia; (K.S.); (L.B.)
| | - Liga Bikse
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia; (K.S.); (L.B.)
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.S.); (M.R.); (M.O.); (I.K.); (K.K.)
| |
Collapse
|
42
|
Garcia IM, Balhaddad AA, Ibrahim MS, Weir MD, Xu HH, Collares FM, Melo MAS. Antibacterial response of oral microcosm biofilm to nano-zinc oxide in adhesive resin. Dent Mater 2021; 37:e182-e193. [DOI: 10.1016/j.dental.2020.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 11/26/2020] [Indexed: 01/30/2023]
|
43
|
Zhang X, Zhang Z, Wu W, Yang J, Yang Q. Preparation and characterization of chitosan/Nano-ZnO composite film with antimicrobial activity. Bioprocess Biosyst Eng 2021; 44:1193-1199. [PMID: 33590334 DOI: 10.1007/s00449-021-02521-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
Chitosan is promising material for making food packaging film with antimicrobial activity. However, chitosan film usually has limited mechanical and antimicrobial properties and higher water solubility. To improve the performance of chitosan film, in this work, chitosan composite films were prepared by incorporating different sizes of zinc oxide particles of 5 μm, 100 nm, and 50 nm. The films were characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and mechanical analysis. Antimicrobial assay of the chitosan and CTS/nano-ZnO composite films against Escherichia coli and Staphylococcus aureus show that the composite chitosan films have better antibacterial activity. The film containing 0.3% of 50 nm zinc oxide particles showed the best inhibition rate, suggesting that smaller sizes of nano-ZnO particles have better bacteriostatic activity and potent application as an antibacterial additive ingredient.
Collapse
Affiliation(s)
- Xiyue Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Zheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenyi Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China. .,Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
44
|
Multiscale Metal Oxide Particles to Enhance Photocatalytic Antimicrobial Activity against Escherichia coli and M13 Bacteriophage under Dual Ultraviolet Irradiation. Pharmaceutics 2021; 13:pharmaceutics13020222. [PMID: 33561936 PMCID: PMC7914579 DOI: 10.3390/pharmaceutics13020222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial activity of multiscale metal oxide (MO) particles against Escherichia coli (E. coli) and M13 bacteriophage (phage) was investigated under dual ultraviolet (UV) irradiation. Zinc oxide (ZnO), magnesium oxide (MgO), cuprous oxide (Cu2O), and cupric oxide (CuO) were selected as photocatalytic antimicrobials in MO particles. Physicochemical properties including morphology, particle size/particle size distribution, atomic composition, crystallinity, and porosity were evaluated. Under UV-A and UV-C irradiation with differential UV-C intensities, the antimicrobial activity of MO particles was monitored in E. coli and phage. MO particles had nano-, micro- and nano- to microscale sizes with irregular shapes, composed of atoms as ratios of chemical formulae and presented crystallinity as pure materials. They had wide-range specific surface area levels of 0.40–46.34 m2/g. MO particles themselves showed antibacterial activity against E. coli, which was the highest among the ZnO particles. However, no viral inactivation by MO particles occurred in phage. Under dual UV irradiation, multiscale ZnO and CuO particles had superior antimicrobial activities against E. coli and phage, as mixtures of nano- and microparticles for enhanced photocatalytic antimicrobials. The results showed that the dual UV-multiscale MO particle hybrids exhibit enhanced antibiotic potentials. It can also be applied as a next-generation antibiotic tool in industrial and clinical fields.
Collapse
|
45
|
Metryka O, Wasilkowski D, Nowak A, Adamczyk-Habrajska M, Mrozik A. Impact of an Engineered Copper-Titanium Dioxide Nanocomposite and Parent Substrates on the Bacteria Viability, Antioxidant Enzymes and Fatty Acid Profiling. Int J Mol Sci 2020; 21:E9089. [PMID: 33260385 PMCID: PMC7731063 DOI: 10.3390/ijms21239089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022] Open
Abstract
Due to the systematic increase in the production of nanomaterials (NMs) and their applications in many areas of life, issues associated with their toxicity are inevitable. In particular, the performance of heterogeneous NMs, such as nanocomposites (NCs), is unpredictable as they may inherit the properties of their individual components. Therefore, the purpose of this work was to assess the biological activity of newly synthesized Cu/TiO2-NC and the parent nanoparticle substrates Cu-NPs and TiO2-NPs on the bacterial viability, antioxidant potential and fatty acid composition of the reference Escherichia coli and Bacillus subtilis strains. Based on the toxicological parameters, it was found that B. subtilis was more sensitive to NMs than E. coli. Furthermore, Cu/TiO2-NC and Cu-NPs had an opposite effect on both strains, while TiO2-NPs had a comparable mode of action. Simultaneously, the tested strains exhibited varied responses of the antioxidant enzymes after exposure to the NMs, with Cu-NPs having the strongest impact on their activity. The most considerable alternations in the fatty acid profiles were found after the bacteria were exposed to Cu/TiO2-NC and Cu-NPs. Microscopic images indicated distinct interactions of the NMs with the bacterial outer layers, especially in regard to B. subtilis. Cu/TiO2-NC generally proved to have less distinctive antimicrobial properties on B. subtilis than E. coli compared to its parent components. Presumably, the biocidal effects of the tested NMs can be attributed to the induction of oxidative stress, the release of metal ions and specific electrochemical interactions with the bacterial cells.
Collapse
Affiliation(s)
- Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| | - Anna Nowak
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland;
| | - Małgorzata Adamczyk-Habrajska
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia, Żytnia 12, 41-200 Sosnowiec, Poland;
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| |
Collapse
|
46
|
Li Y, Liao C, Tjong SC. Recent Advances in Zinc Oxide Nanostructures with Antimicrobial Activities. Int J Mol Sci 2020; 21:E8836. [PMID: 33266476 PMCID: PMC7700383 DOI: 10.3390/ijms21228836] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
This article reviews the recent developments in the synthesis, antibacterial activity, and visible-light photocatalytic bacterial inactivation of nano-zinc oxide. Polycrystalline wurtzite ZnO nanostructures with a hexagonal lattice having different shapes can be synthesized by means of vapor-, liquid-, and solid-phase processing techniques. Among these, ZnO hierarchical nanostructures prepared from the liquid phase route are commonly used for antimicrobial activity. In particular, plant extract-mediated biosynthesis is a single step process for preparing nano-ZnO without using surfactants and toxic chemicals. The phytochemical molecules of natural plant extracts are attractive agents for reducing and stabilizing zinc ions of zinc salt precursors to form green ZnO nanostructures. The peel extracts of certain citrus fruits like grapefruits, lemons and oranges, acting as excellent chelating agents for zinc ions. Furthermore, phytochemicals of the plant extracts capped on ZnO nanomaterials are very effective for killing various bacterial strains, leading to low minimum inhibitory concentration (MIC) values. Bioactive phytocompounds from green ZnO also inhibit hemolysis of Staphylococcus aureus infected red blood cells and inflammatory activity of mammalian immune system. In general, three mechanisms have been adopted to explain bactericidal activity of ZnO nanomaterials, including direct contact killing, reactive oxygen species (ROS) production, and released zinc ion inactivation. These toxic effects lead to the destruction of bacterial membrane, denaturation of enzyme, inhibition of cellular respiration and deoxyribonucleic acid replication, causing leakage of the cytoplasmic content and eventual cell death. Meanwhile, antimicrobial activity of doped and modified ZnO nanomaterials under visible light can be attributed to photogeneration of ROS on their surfaces. Thus particular attention is paid to the design and synthesis of visible light-activated ZnO photocatalysts with antibacterial properties.
Collapse
Affiliation(s)
- Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China;
| | - Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
47
|
Markowska-Szczupak A, Endo-Kimura M, Paszkiewicz O, Kowalska E. Are Titania Photocatalysts and Titanium Implants Safe? Review on the Toxicity of Titanium Compounds. NANOMATERIALS 2020; 10:nano10102065. [PMID: 33086609 PMCID: PMC7603142 DOI: 10.3390/nano10102065] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Titanium and its compounds are broadly used in both industrial and domestic products, including jet engines, missiles, prostheses, implants, pigments, cosmetics, food, and photocatalysts for environmental purification and solar energy conversion. Although titanium/titania-containing materials are usually safe for human, animals and environment, increasing concerns on their negative impacts have been postulated. Accordingly, this review covers current knowledge on the toxicity of titania and titanium, in which the behaviour, bioavailability, mechanisms of action, and environmental impacts have been discussed in detail, considering both light and dark conditions. Consequently, the following conclusions have been drawn: (i) titania photocatalysts rarely cause health and environmental problems; (ii) despite the lack of proof, the possible carcinogenicity of titania powders to humans is considered by some authorities; (iii) titanium alloys, commonly applied as implant materials, possess a relatively low health risk; (iv) titania microparticles are less toxic than nanoparticles, independent of the means of exposure; (v) excessive accumulation of titanium in the environment cannot be ignored; (vi) titanium/titania-containing products should be clearly marked with health warning labels, especially for pregnant women and young children; (vi) a key knowledge gap is the lack of comprehensive data about the environmental content and the influence of titania/titanium on biodiversity and the ecological functioning of terrestrial and aquatic ecosystems.
Collapse
Affiliation(s)
- Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland;
- Correspondence: (A.M.-S.); (E.K.)
| | - Maya Endo-Kimura
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan;
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland;
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan;
- Correspondence: (A.M.-S.); (E.K.)
| |
Collapse
|
48
|
Zinc-based particle with ionic liquid as a hybrid filler for dental adhesive resin. J Dent 2020; 102:103477. [PMID: 32950630 DOI: 10.1016/j.jdent.2020.103477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the effect of a zinc-based particle with ionic liquid as filler for an experimental adhesive resin. METHODS The ionic liquid 1-n-butyl-3-methylimidazolium chloride (BMI.Cl) and zinc chloride (ZnCl2) were used to synthesize 1-n-butyl-3-methylimidazolium trichlorozincate (BMI.ZnCl3), which was hydrolyzed under basic conditions to produce the simonkolleite (SKT) particles. SKT was analyzed by scanning electron microscopy and transmission electron microscopy. An experimental adhesive resin was formulated and SKT was incorporated at 1, 2.5, or 5 wt.% in the adhesive. One group without SKT was a control group. The antibacterial activity against Streptococcus mutans, cytotoxicity, degree of conversion (DC), ultimate tensile strength (UTS), softening in solvent, and microtensile bond strength (μ-TBS) were investigated. RESULTS SKT prepared from the ionic liquid BMI.ZnCl3 presented a hexagonal shape in the micrometer scale. SKT addition provided antibacterial activity against biofilm formation of S.mutans and planktonic bacteria (p < 0.05). There were no differences in pulp cells' viability (p > 0.05). The DC ranged from 62.18 (±0.83)% for control group to 64.44 (±1.55)% for 2.5 wt.% (p > 0.05). There was no statistically significant difference among groups for UTS (p > 0.05), softening in solvent (p > 0.05), and 24 h or 6 months μ-TBS (p > 0.05). CONCLUSIONS The physicochemical properties of adhesives were not affected by SKT incorporation, and the filler provided antibacterial activity against S. mutans without changes in the pulp cells' viability. This hybrid zinc-based particle with ionic liquid coating may be a promising filler to improve dental restorations. CLINICAL RELEVANCE A filler based on a zinc-derived material coated with ionic liquid was synthesized and added in dental adhesives, showing antibacterial activity and maintaining the other properties analyzed. SKT may be a promising filler to decrease the biofilm formation around resin-based restorative materials.
Collapse
|
49
|
Das S, Barman S, Teron R, Bhattacharya SS, Kim KH. Secondary metabolites and anti-microbial/anti-oxidant profiles in Ocimum spp.: Role of soil physico-chemical characteristics as eliciting factors. ENVIRONMENTAL RESEARCH 2020; 188:109749. [PMID: 32531524 DOI: 10.1016/j.envres.2020.109749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/23/2020] [Accepted: 05/26/2020] [Indexed: 05/27/2023]
Abstract
Ocimum has long been used as a medicinal plant, although little information is available about its bioactive ingredients, and the influence of soil properties on modulation of secondary metabolites in Ocimum has yet to be ascertained. In this study, we present a thorough survey of all potential metabolic compounds in O. sanctum and O. basilicum. In both species, certain compounds (e.g., quercetin, kaempferol, catechin, and S-adenosyl homocysteine) were detected coincidently. In the case of O. basilicum, other vital phenolic acids (e.g., ursolic, vanilic, coumaric, and syringic acids) were identified. The aqueous extracts (AEs) of Ocimum recorded decrease of 6-94% in the proliferation of pathogenic bacteria (e.g., Listeria monocytogenes, Staphylococcus sp., Salmonella sp., and Bacillus sp.). The AEs also showed effective antioxidant activity by reducing free radicals by a factor of 1.04-1.13. Root-zone soil samples of both Ocimum spp. were collected from strategic locations with varying levels of key soil attributes (e.g., soil organic carbon (SOC), microbial biomass carbon (MBC), urease, and phosphatase). At high levels of SOC, MBC, and soil enzymes, the bioactivity of Ocimum spp. was observed to be promoted, especially with respect to secondary metabolite expression, anti-pathogenic activity, and anti-oxidant properties. As such, the findings of strong correlations between secondary metabolite concentrations and bioactivity attributes in Ocimum suggest the potent role of soil quality in eliciting the production of secondary metabolite in association with bioactivity in Ocimum spp.
Collapse
Affiliation(s)
- Subhasish Das
- Department of Environmental Science, Pachhunga University College, Mizoram University, Aizawl, 796001, India.
| | - Soma Barman
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur, 784 028, India
| | - Rangbamon Teron
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur, 784 028, India
| | - Satya Sundar Bhattacharya
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur, 784 028, India.
| | - Ki-Hyun Kim
- Dept. of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| |
Collapse
|
50
|
Moreno-Andrés J, Rueda-Márquez JJ, Homola T, Vielma J, Moríñigo MÁ, Mikola A, Sillanpää M, Acevedo-Merino A, Nebot E, Levchuk I. A comparison of photolytic, photochemical and photocatalytic processes for disinfection of recirculation aquaculture systems (RAS) streams. WATER RESEARCH 2020; 181:115928. [PMID: 32504908 DOI: 10.1016/j.watres.2020.115928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The development of technologically advanced recirculation aquaculture systems (RAS) implies the reuse of water in a high recirculation rate (>90%). One of the most important phases for water management in RAS involves water disinfection in order to avoid proliferation of potential pathogens and related fish diseases. Accordingly, different approaches have been assessed in this study by performing a comparison of photolytic (UV-LEDs) at different wavelengths (λ = 262, 268 and 262 + 268 nm), photochemical (UV-LEDs/H2O2, UV-LEDs/HSO5- and UV-LEDs/S2O82-) and photocatalytic (TiO2/SiO2/UV-LEDs and ZnO/SiO2/UV-LEDs) processes for the disinfection of water in RAS streams. Different laboratory tests were performed in batch scale with real RAS stream water and naturally occurring bacteria (Aeromonas hydrophyla and Citrobacter gillenii) as target microorganisms. Regarding photolytic processes, higher inactivation rates were obtained by combining λ262+268 in front of single wavelengths. Photochemical processes showed higher efficiencies by comparison with a single UV-C process, especially at 10 mg L-1 of initial oxidant dose. The inactivation kinetic rate constant was improved in the range of 15-38%, with major efficiency for UV/H2O2 ∼ UV/HSO5- > UV/S2O82-. According to photocatalytic tests, higher efficiencies were obtained by improving the inactivation kinetic rate constant up to 55% in comparison with a single UV-C process. Preliminary cost estimation was conducted for all tested disinfection methods. Those results suggest the potential application of UV-LEDs as promoter of different photochemical and photocatalytic processes, which are able to enhance disinfection in particular cases, such as the aquaculture industry.
Collapse
Affiliation(s)
- Javier Moreno-Andrés
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea, University of Cadiz, Spain; Grupo de Procesos de Oxidación Avanzada, Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València, Campus de Alcoy, Alcoy, Spain.
| | - Juan José Rueda-Márquez
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Sammonkatu 12, 50130 Mikkeli, Finland
| | - Tomáš Homola
- R&D Center for Low-Cost Plasma and Nanotechnology Surface Modifications (CEPLANT), Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Jouni Vielma
- Natural Resources Institute Finland, Survontie 9A, 40500, Jyväskylä, Finland
| | | | - Anna Mikola
- Water and Wastewater Engineering Research Group, School of Engineering, Aalto University, PO Box 15200, FI-00076, Aalto, Finland
| | - Mika Sillanpää
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350 QLD, Australia; Institute of Research and Development, Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Asunción Acevedo-Merino
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea, University of Cadiz, Spain
| | - Enrique Nebot
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea, University of Cadiz, Spain
| | - Irina Levchuk
- Water and Wastewater Engineering Research Group, School of Engineering, Aalto University, PO Box 15200, FI-00076, Aalto, Finland
| |
Collapse
|