1
|
Maffei ME, Balestrini R, Costantino P, Lanfranco L, Morgante M, Battistelli A, Del Bianco M. The physiology of plants in the context of space exploration. Commun Biol 2024; 7:1311. [PMID: 39394270 PMCID: PMC11470014 DOI: 10.1038/s42003-024-06989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
The stress that the space environment can induce on plant physiology is of both abiotic and biotic nature. The abiotic space environment is characterized by ionizing radiation and altered gravity, geomagnetic field (GMF), pressure, and light conditions. Biotic interactions include both pathogenic and beneficial interactions. Here, we provide an overall picture of the effects of abiotic and biotic space-related factors on plant physiology. The knowledge required for the success of future space missions will lead to a better understanding of fundamental aspects of plant physiological responses, thus providing useful tools for plant breeding and agricultural practices on Earth.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/a, 10135, Turin, Italy
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, Via Amendola 165/A, 70126, Bari, Italy
| | - Paolo Costantino
- Department of Biology and Biotechnology "C. Darwin", University of Rome "Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Michele Morgante
- Institute of Applied Genomics, University of Udine, Via Jacopo Linussio 51, 33100, Udine, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council, Viale Guglielmo Marconi 2, 05010, Porano, Italy
| | - Marta Del Bianco
- Italian Space Agency, Viale del Politecnico s.n.c., 00133, Rome, Italy.
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161, Roma, Italy.
| |
Collapse
|
2
|
Oliveri H, Moulton DE, Harrington HA, Goriely A. Active shape control by plants in dynamic environments. Phys Rev E 2024; 110:014405. [PMID: 39160906 DOI: 10.1103/physreve.110.014405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/06/2024] [Indexed: 08/21/2024]
Abstract
Plants are a paradigm for active shape control in response to stimuli. For instance, it is well known that a tilted plant will eventually straighten vertically, demonstrating the influence of both an external stimulus, gravity, and an internal stimulus, proprioception. These effects can be modulated when a potted plant is additionally rotated along the plant's axis, as in a rotating clinostat, leading to intricate shapes. We use a previously derived rod model to study the response of a growing plant and the joint effects of both stimuli at all rotation speeds. In the absence of rotation, we identify a universal planar shape towards which all shoots eventually converge. With rotation, we demonstrate the existence of a stable family of three-dimensional dynamic equilibria where the plant axis is fixed in space. Further, the effect of axial growth is to induce steady behaviors, such as solitary waves. Overall, this study offers insight into the complex out-of-equilibrium dynamics of a plant in three dimensions and further establishes that internal stimuli in active materials are key for robust shape control.
Collapse
Affiliation(s)
- Hadrien Oliveri
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
- Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden 01307, Germany
- Center for Systems Biology Dresden, Dresden 01307, Germany
- Fakultät Mathematik, Technische Universität Dresden, Dresden 01062, Germany
| | | | - Heather A Harrington
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
- Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden 01307, Germany
- Center for Systems Biology Dresden, Dresden 01307, Germany
- Fakultät Mathematik, Technische Universität Dresden, Dresden 01062, Germany
| | | |
Collapse
|
3
|
Li X, Zhao R, Liu J, Li Z, Chen A, Xu S, Sheng X. Dynamic changes in calcium signals during root gravitropism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108481. [PMID: 38447424 DOI: 10.1016/j.plaphy.2024.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Gravitropism is a vital mechanism through which plants adapt to their environment. Previous studies indicated that Ca2+ may play an important role in plant gravitropism. However, our understanding of the calcium signals in root gravitropism is still largely limited. Using a vertical stage confocal and transgenic Arabidopsis R-GECO1, our data showed that gravity stimulation enhances the occurrence of calcium spikes and increases the Ca2+ concentration in the lower side of the root cap. Furthermore, a close correlation was observed in the asymmetry of calcium signals with the inclination angles at which the roots were oriented. The frequency of calcium spikes on the lower side of 90°-rotated root decreases rapidly over time, whereas the asymmetric distribution of auxin readily strengthens for up to 3 h, indicating that the calcium spikes, promoted by gravity stimulation, may precede auxin as one of the early signals. In addition, the root gravitropism of starchless mutants is severely impaired. Correspondingly, no significant increase in calcium spike occurrence was observed in the root caps of these mutants within 15 min following a 90° rotation, indicating the involvement of starch grains in the formation of calcium spikes. However, between 30 and 45 min after a 90° rotation, asymmetric calcium spikes were indeed observed in the root of starchless mutants, suggesting that starch grains are not indispensable for the formation of calcium spikes. Besides, co-localization analysis suggests that the ER may function as calcium stores during the occurrence of calcium spikes. These findings provide further insights into plant gravitropism.
Collapse
Affiliation(s)
- Xinyu Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruoxin Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jiahui Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ziwei Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ai Chen
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shi Xu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xianyong Sheng
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
4
|
Del Dottore E, Mondini A, Rowe N, Mazzolai B. A growing soft robot with climbing plant-inspired adaptive behaviors for navigation in unstructured environments. Sci Robot 2024; 9:eadi5908. [PMID: 38232147 DOI: 10.1126/scirobotics.adi5908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Self-growing robots are an emerging solution in soft robotics for navigating, exploring, and colonizing unstructured environments. However, their ability to grow and move in heterogeneous three-dimensional (3D) spaces, comparable with real-world conditions, is still developing. We present an autonomous growing robot that draws inspiration from the behavioral adaptive strategies of climbing plants to navigate unstructured environments. The robot mimics climbing plants' apical shoot to sense and coordinate additive adaptive growth via an embedded additive manufacturing mechanism and a sensorized tip. Growth orientation, comparable with tropisms in real plants, is dictated by external stimuli, including gravity, light, and shade. These are incorporated within a vector field method to implement the preferred adaptive behavior for a given environment and task, such as growth toward light and/or against gravity. We demonstrate the robot's ability to navigate through growth in relation to voids, potential supports, and thoroughfares in otherwise complex habitats. Adaptive twining around vertical supports can provide an escape from mechanical stress due to self-support, reduce energy expenditure for construction costs, and develop an anchorage point to support further growth and crossing gaps. The robot adapts its material printing parameters to develop a light body and fast growth to twine on supports or a tougher body to enable self-support and cross gaps. These features, typical of climbing plants, highlight a potential for adaptive robots and their on-demand manufacturing. They are especially promising for applications in exploring, monitoring, and interacting with unstructured environments or in the autonomous construction of complex infrastructures.
Collapse
Affiliation(s)
- Emanuela Del Dottore
- Bioinspired Soft Robotics Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessio Mondini
- Bioinspired Soft Robotics Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Nick Rowe
- AMAP Laboratory, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Barbara Mazzolai
- Bioinspired Soft Robotics Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
5
|
Porat A, Rivière M, Meroz Y. A quantitative model for spatio-temporal dynamics of root gravitropism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:620-630. [PMID: 37869982 PMCID: PMC10773994 DOI: 10.1093/jxb/erad383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023]
Abstract
Plant organs adapt their morphology according to environmental signals through growth-driven processes called tropisms. While much effort has been directed towards the development of mathematical models describing the tropic dynamics of aerial organs, these cannot provide a good description of roots due to intrinsic physiological differences. Here we present a mathematical model informed by gravitropic experiments on Arabidopsis thaliana roots, assuming a subapical growth profile and apical sensing. The model quantitatively recovers the full spatio-temporal dynamics observed in experiments. An analytical solution of the model enables us to evaluate the gravitropic and proprioceptive sensitivities of roots, while also allowing us to corroborate the requirement for proprioception in describing root dynamics. Lastly, we find that the dynamics are analogous to a damped harmonic oscillator, providing intuition regarding the source of the observed oscillatory behavior and the importance of proprioception for efficient gravitropic control. In all, the model provides not only a quantitative description of root tropic dynamics, but also a mathematical framework for the future investigation of roots in complex media.
Collapse
Affiliation(s)
- Amir Porat
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mathieu Rivière
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yasmine Meroz
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Totsline N, Kniel KE, Sabagyanam C, Bais HP. Simulated microgravity facilitates stomatal ingression by Salmonella in lettuce and suppresses a biocontrol agent. Sci Rep 2024; 14:898. [PMID: 38195662 PMCID: PMC10776768 DOI: 10.1038/s41598-024-51573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/07/2024] [Indexed: 01/11/2024] Open
Abstract
As human spaceflight increases in duration, cultivation of crops in spaceflight is crucial to protecting human health under microgravity and elevated oxidative stress. Foodborne pathogens (e.g., Salmonella enterica) carried by leafy green vegetables are a significant cause of human disease. Our previous work showed that Salmonella enterica serovar Typhimurium suppresses defensive closure of foliar stomata in lettuce (Lactuca sativa L.) to ingress interior tissues of leaves. While there are no reported occurrences of foodborne disease in spaceflight to date, known foodborne pathogens persist aboard the International Space Station and space-grown lettuce has been colonized by a diverse microbiome including bacterial genera known to contain human pathogens. Interactions between leafy green vegetables and human bacterial pathogens under microgravity conditions present in spaceflight are unknown. Additionally, stomatal dynamics under microgravity conditions need further elucidation. Here, we employ a slow-rotating 2-D clinostat to simulate microgravity upon in-vitro lettuce plants following a foliar inoculation with S. enterica Typhimurium and use confocal microscopy to measure stomatal width in fixed leaf tissue. Our results reveal significant differences in average stomatal aperture width between an unrotated vertical control, plants rotated at 2 revolutions per minute (2 RPM), and 4 RPM, with and without the presence of S. typhimurium. Interestingly, we found stomatal aperture width in the presence of S. typhimurium to be increased under rotation as compared to unrotated inoculated plants. Using confocal Z-stacking, we observed greater average depth of stomatal ingression by S. typhimurium in lettuce under rotation at 4 RPM compared to unrotated and inoculated plants, along with greater in planta populations of S. typhimurium in lettuce rotated at 4 RPM using serial dilution plating of homogenized surface sterilized leaves. Given these findings, we tested the ability of the plant growth-promoting rhizobacteria (PGPR) Bacillus subtilis strain UD1022 to transiently restrict stomatal apertures of lettuce both alone and co-inoculated with S. typhimurium under rotated and unrotated conditions as a means of potentially reducing stomatal ingression by S. typhimurium under simulated microgravity. Surprisingly, rotation at 4 RPM strongly inhibited the ability of UD1022 alone to restrict stomatal apertures and attenuated its efficacy as a biocontrol following co-inoculation with S. typhimurium. Our results highlight potential spaceflight food safety issues unique to production of crops in microgravity conditions and suggest microgravity may dramatically reduce the ability of PGPRs to restrict stomatal apertures.
Collapse
Affiliation(s)
- Noah Totsline
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19713, USA.
- Delaware Biotechnology Institute, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE, 19713, USA.
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19713, USA
| | - Chandran Sabagyanam
- Delaware Biotechnology Institute, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Harsh P Bais
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19713, USA.
- Delaware Biotechnology Institute, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
7
|
Rivière M, Meroz Y. Plants sum and subtract stimuli over different timescales. Proc Natl Acad Sci U S A 2023; 120:e2306655120. [PMID: 37816057 PMCID: PMC10589710 DOI: 10.1073/pnas.2306655120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/03/2023] [Indexed: 10/12/2023] Open
Abstract
Mounting evidence suggests that plants engage complex computational processes to quantify and integrate sensory information over time, enabling remarkable adaptive growth strategies. However, quantitative understanding of these computational processes is limited. We report experiments probing the dependence of gravitropic responses of wheat coleoptiles on previous stimuli. First, building on a mathematical model that identifies this dependence as a form of memory, or a filter, we use experimental observations to reveal the mathematical principles of how coleoptiles integrate multiple stimuli over time. Next, we perform two-stimulus experiments, informed by model predictions, to reveal fundamental computational processes. We quantitatively show that coleoptiles respond not only to sums but also to differences between stimuli over different timescales, constituting evidence that plants can compare stimuli-crucial for search and regulation processes. These timescales also coincide with oscillations observed in gravitropic responses of wheat coleoptiles, suggesting shoots may combine memory and movement in order to enhance posture control and sensing capabilities.
Collapse
Affiliation(s)
- Mathieu Rivière
- Faculty of Life Sciences, School of Plant Science and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| | - Yasmine Meroz
- Faculty of Life Sciences, School of Plant Science and Food Security, Tel Aviv University, Tel Aviv6997801, Israel
| |
Collapse
|
8
|
Nishimura T, Mori S, Shikata H, Nakamura M, Hashiguchi Y, Abe Y, Hagihara T, Yoshikawa HY, Toyota M, Higaki T, Morita MT. Cell polarity linked to gravity sensing is generated by LZY translocation from statoliths to the plasma membrane. Science 2023; 381:1006-1010. [PMID: 37561884 DOI: 10.1126/science.adh9978] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Organisms have evolved under gravitational force, and many sense the direction of gravity by means of statoliths in specialized cells. In flowering plants, starch-accumulating plastids, known as amyloplasts, act as statoliths to facilitate downstream gravitropism. The gravity-sensing mechanism has long been considered a mechanosensing process by which amyloplasts transmit forces to intracellular structures, but the molecular mechanism underlying this has not been elucidated. We show here that LAZY1-LIKE (LZY) family proteins involved in statocyte gravity signaling associate with amyloplasts and the proximal plasma membrane. This results in polar localization according to the direction of gravity. We propose a gravity-sensing mechanism by which LZY translocation to the plasma membrane signals the direction of gravity by transmitting information on the position of amyloplasts.
Collapse
Affiliation(s)
- Takeshi Nishimura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Course for Basic Biology, The Graduate Institute for Advanced Studies, SOKENDAI, Hayama 240-0115, Japan
| | - Shogo Mori
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Hiromasa Shikata
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Course for Basic Biology, The Graduate Institute for Advanced Studies, SOKENDAI, Hayama 240-0115, Japan
| | - Moritaka Nakamura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yasuko Hashiguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshinori Abe
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
| | - Takuma Hagihara
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
| | | | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Course for Basic Biology, The Graduate Institute for Advanced Studies, SOKENDAI, Hayama 240-0115, Japan
| |
Collapse
|
9
|
Roy S, Bhattacharya B, Bandyopadhyay S, Bal B, Dewanji A, Ghosh K. Understanding the role of starch sheath layer in graviception of Alternanthera philoxeroides: a biophysical and microscopical study. JOURNAL OF PLANT RESEARCH 2023; 136:265-276. [PMID: 36680680 DOI: 10.1007/s10265-023-01434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Plants' ability to sense and respond to gravity is a unique and fundamental process. When a plant organ is tilted, it adjusts its growth orientation relative to gravity direction, which is achieved by a curvature of the organ. In higher, multicellular plants, it is thought that the relative directional change of gravity is detected by starch-filled organelles that occur inside specialized cells called statocytes, and this is followed by signal conversion from physical information to physiological information within the statocytes. The classic starch statolith hypothesis, i.e., the starch accumulating amyloplasts movement along the gravity vector within gravity-sensing cells (statocytes) is the probable trigger of subsequent intracellular signaling, is widely accepted. Acharya Jagadish Chandra Bose through his pioneering research had investigated whether the fundamental reaction of geocurvature is contractile or expansive and whether the geo-sensing cells are diffusedly distributed in the organ or are present in the form of a definite layer. In this backdrop, a microscopy based experimental study was undertaken to understand the distribution pattern of the gravisensing layer, along the length (node-node) of the model plant Alternanthera philoxeroides and to study the microrheological property of the mobile starch-filled statocytes following inclination-induced graviception in the stem of the model plant. The study indicated a prominent difference in the pattern of distribution of the gravisensing layer along the length of the model plant. The study also indicated that upon changing the orientation of the plant from vertical position to horizontal position there was a characteristic change in orientation of the mobile starch granules within the statocytes. In the present study for the analysis of the microscopic images of the stem tissue cross sections, a specialized and modified microscopic illumination setup was developed in the laboratory in order to enhance the resolution and contrast of the starch granules.
Collapse
Affiliation(s)
- Shibsankar Roy
- Laboratory for Cognitive Systems and Cybernetics Research, Center for Soft Computing Research, Indian Statistical Institute, Kolkata, 700 108, India
- Agriculture and Ecological Research Unit, Indian Statistical Institute, Kolkata, India
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Barnini Bhattacharya
- Laboratory for Cognitive Systems and Cybernetics Research, Center for Soft Computing Research, Indian Statistical Institute, Kolkata, 700 108, India
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Sanmoy Bandyopadhyay
- Laboratory for Cognitive Systems and Cybernetics Research, Center for Soft Computing Research, Indian Statistical Institute, Kolkata, 700 108, India
| | - Bijay Bal
- Saha Institute of Nuclear Physics (Retired), Kolkata, India
| | - Anjana Dewanji
- Agriculture and Ecological Research Unit, Indian Statistical Institute, Kolkata, India
| | - Kuntal Ghosh
- Laboratory for Cognitive Systems and Cybernetics Research, Center for Soft Computing Research, Indian Statistical Institute, Kolkata, 700 108, India.
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India.
| |
Collapse
|
10
|
Su SH, Moen A, Groskopf RM, Baldwin KL, Vesperman B, Masson PH. Low-Speed Clinorotation of Brachypodium distachyon and Arabidopsis thaliana Seedlings Triggers Root Tip Curvatures That Are Reminiscent of Gravitropism. Int J Mol Sci 2023; 24:1540. [PMID: 36675054 PMCID: PMC9861679 DOI: 10.3390/ijms24021540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Clinostats are instruments that continuously rotate biological specimens along an axis, thereby averaging their orientation relative to gravity over time. Our previous experiments indicated that low-speed clinorotation may itself trigger directional root tip curvature. In this project, we have investigated the root curvature response to low-speed clinorotation using Arabidopsis thaliana and Brachypodium distachyon seedlings as models. We show that low-speed clinorotation triggers root tip curvature in which direction is dictated by gravitropism during the first half-turn of clinorotation. We also show that the angle of root tip curvature is modulated by the speed of clinorotation. Arabidopsis mutations affecting gravity susception (pgm) or gravity signal transduction (arg1, toc132) are shown to affect the root tip curvature response to low-speed clinorotation. Furthermore, low-speed vertical clinorotation triggers relocalization of the PIN3 auxin efflux facilitator to the lateral membrane of Arabidopsis root cap statocytes, and creates a lateral gradient of auxin across the root tip. Together, these observations support a role for gravitropism in modulating root curvature responses to clinorotation. Interestingly, distinct Brachypodium distachyon accessions display different abilities to develop root tip curvature responses to low-speed vertical clinorotation, suggesting the possibility of using genome-wide association studies to further investigate this process.
Collapse
Affiliation(s)
- Shih-Heng Su
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | - Alexander Moen
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | - Rien M. Groskopf
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| | | | - Brian Vesperman
- Kate Baldwin LLC, Analytical Design, Cross Plains, WI 53528, USA
| | - Patrick H. Masson
- Laboratory of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706, USA
| |
Collapse
|
11
|
Hosamani R, Swamy BK, Dsouza A, Sathasivam M. Plant responses to hypergravity: a comprehensive review. PLANTA 2022; 257:17. [PMID: 36534189 DOI: 10.1007/s00425-022-04051-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Hypergravity is an effective novel stimulus to elucidate plant gravitational and mechanobiological behaviour. Here, we review the current understanding of phenotypic, physio-biochemical, and molecular plant responses to simulated hypergravity. Plants readily respond to altered gravity conditions, such as microgravity or hypergravity. Hypergravity-a gravitational force higher than that on the Earth's surface (> 1g)-can be simulated using centrifuges. Exposing seeds, seedlings, or plant cell cultures to hypergravity elicits characteristic morphological, physio-biochemical, and molecular changes. While several studies have provided insights into plant responses and underlying mechanisms, much is still elusive, including the interplay of hypergravity with gravitropism. Moreover, hypergravity is of great significance for mechano- and space/gravitational biologists to elucidate fundamental plant behaviour. In this review, we provide an overview of the phenotypic, physiological, biochemical, and molecular responses of plants to hypergravity. We then discuss the involvement of hypergravity in plant gravitropism-the directional growth along the gravity vector. Finally, we highlight future research directions to expand our understanding of hypergravity in plant biology.
Collapse
Affiliation(s)
- Ravikumar Hosamani
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, 580005, India.
| | - Basavalingayya K Swamy
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, 580005, India
| | - Ajwal Dsouza
- Controlled Environment Systems Research Facility, School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Malarvizhi Sathasivam
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, 580005, India
- College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
12
|
Zhao F, Long Y. Mechanosensing, from forces to structures. FRONTIERS IN PLANT SCIENCE 2022; 13:1060018. [PMID: 36531357 PMCID: PMC9751800 DOI: 10.3389/fpls.2022.1060018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Sessile plants evolve diverse structures in response to complex environmental cues. These factors, in essence, involve mechanical stimuli, which must be sensed and coordinated properly by the plants to ensure effective growth and development. While we have accumulated substantial knowledge on plant mechanobiology, how plants translate mechanical information into three-dimensional structures is still an open question. In this review, we summarize our current understanding of plant mechanosensing at different levels, particularly using Arabidopsis as a model plant system. We also attempt to abstract the mechanosensing process and link the gaps from mechanical cues to the generation of complex plant structures. Here we review the recent advancements on mechanical response and transduction in plant morphogenesis, and we also raise several questions that interest us in different sections.
Collapse
Affiliation(s)
- Feng Zhao
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Yuchen Long
- Department of Biological Sciences, The National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, The National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Kawamoto N, Morita MT. Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle. THE NEW PHYTOLOGIST 2022; 236:1637-1654. [PMID: 36089891 PMCID: PMC9828789 DOI: 10.1111/nph.18474] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Gravity is one of the fundamental environmental cues that affect plant development. Indeed, the plant architecture in the shoots and roots is modulated by gravity. Stems grow vertically upward, whereas lateral organs, such as the lateral branches in shoots, tend to grow at a specific angle according to a gravity vector known as the gravitropic setpoint angle (GSA). During this process, gravity is sensed in specialised gravity-sensing cells named statocytes, which convert gravity information into biochemical signals, leading to asymmetric auxin distribution and driving asymmetric cell division/expansion in the organs to achieve gravitropism. As a hypothetical offset mechanism against gravitropism to determine the GSA, the anti-gravitropic offset (AGO) has been proposed. According to this concept, the GSA is a balance of two antagonistic growth components, that is gravitropism and the AGO. Although the nature of the AGO has not been clarified, studies have suggested that gravitropism and the AGO share a common gravity-sensing mechanism in statocytes. This review discusses the molecular mechanisms underlying gravitropism as well as the hypothetical AGO in the control of the GSA.
Collapse
Affiliation(s)
- Nozomi Kawamoto
- Division of Plant Environmental ResponsesNational Institute for Basic BiologyMyodaijiOkazaki444‐8556Japan
| | - Miyo Terao Morita
- Division of Plant Environmental ResponsesNational Institute for Basic BiologyMyodaijiOkazaki444‐8556Japan
| |
Collapse
|
14
|
Moulia B, Badel E, Bastien R, Duchemin L, Eloy C. The shaping of plant axes and crowns through tropisms and elasticity: an example of morphogenetic plasticity beyond the shoot apical meristem. THE NEW PHYTOLOGIST 2022; 233:2354-2379. [PMID: 34890051 DOI: 10.1111/nph.17913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Shoot morphogenetic plasticity is crucial to the adaptation of plants to their fluctuating environments. Major insights into shoot morphogenesis have been compiled studying meristems, especially the shoot apical meristem (SAM), through a methodological effort in multiscale systems biology and biophysics. However, morphogenesis at the SAM is robust to environmental changes. Plasticity emerges later on during post-SAM development. The purpose of this review is to show that multiscale systems biology and biophysics is insightful for the shaping of the whole plant as well. More specifically, we review the shaping of axes and crowns through tropisms and elasticity, combining the recent advances in morphogenetic control using physical cues and by genes. We focus mostly on land angiosperms, but with growth habits ranging from small herbs to big trees. We show that generic (universal) morphogenetic processes have been identified, revealing feedforward and feedback effects of global shape on the local morphogenetic process. In parallel, major advances have been made in the analysis of the major genes involved in shaping axes and crowns, revealing conserved genic networks among angiosperms. Then, we show that these two approaches are now starting to converge, revealing exciting perspectives.
Collapse
Affiliation(s)
- Bruno Moulia
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - Eric Badel
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - Renaud Bastien
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
- INSERM U1284, Center for Research and Interdisciplinarity (CRI), Université de Paris, F-75004, Paris, France
| | - Laurent Duchemin
- Physique et Mécanique des Milieux Hétérogenes, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, F-75005, Paris, France
| | - Christophe Eloy
- Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, F-13013, Marseille, France
| |
Collapse
|
15
|
de Mello Gallep C, Robert D. Are cyclic plant and animal behaviours driven by gravimetric mechanical forces? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1093-1103. [PMID: 34727177 PMCID: PMC8866634 DOI: 10.1093/jxb/erab462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 05/13/2023]
Abstract
The celestial mechanics of the Sun, Moon, and Earth dominate the variations in gravitational force that all matter, live or inert, experiences on Earth. Expressed as gravimetric tides, these variations are pervasive and have forever been part of the physical ecology with which organisms evolved. Here, we first offer a brief review of previously proposed explanations that gravimetric tides constitute a tangible and potent force shaping the rhythmic activities of organisms. Through meta-analysis, we then interrogate data from three study cases and show the close association between the omnipresent gravimetric tides and cyclic activity. As exemplified by free-running cyclic locomotor activity in isopods, reproductive effort in coral, and modulation of growth in seedlings, biological rhythms coincide with temporal patterns of the local gravimetric tide. These data reveal that, in the presumed absence of rhythmic cues such as light and temperature, local gravimetric tide is sufficient to entrain cyclic behaviour. The present evidence thus questions the phenomenological significance of so-called free-run experiments.
Collapse
Affiliation(s)
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
16
|
Gall GEC, Pereira TD, Jordan A, Meroz Y. Fast estimation of plant growth dynamics using deep neural networks. PLANT METHODS 2022; 18:21. [PMID: 35184723 PMCID: PMC8858456 DOI: 10.1186/s13007-022-00851-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In recent years, there has been an increase of interest in plant behaviour as represented by growth-driven responses. These are generally classified into nastic (internally driven) and tropic (environmentally driven) movements. Nastic movements include circumnutations, a circular movement of plant organs commonly associated with search and exploration, while tropisms refer to the directed growth of plant organs toward or away from environmental stimuli, such as light and gravity. Tracking these movements is therefore fundamental for the study of plant behaviour. Convolutional neural networks, as used for human and animal pose estimation, offer an interesting avenue for plant tracking. Here we adopted the Social LEAP Estimates Animal Poses (SLEAP) framework for plant tracking. We evaluated it on time-lapse videos of cases spanning a variety of parameters, such as: (i) organ types and imaging angles (e.g., top-view crown leaves vs. side-view shoots and roots), (ii) lighting conditions (full spectrum vs. IR), (iii) plant morphologies and scales (100 μm-scale Arabidopsis seedlings vs. cm-scale sunflowers and beans), and (iv) movement types (circumnutations, tropisms and twining). RESULTS Overall, we found SLEAP to be accurate in tracking side views of shoots and roots, requiring only a low number of user-labelled frames for training. Top views of plant crowns made up of multiple leaves were found to be more challenging, due to the changing 2D morphology of leaves, and the occlusions of overlapping leaves. This required a larger number of labelled frames, and the choice of labelling "skeleton" had great impact on prediction accuracy, i.e., a more complex skeleton with fewer individuals (tracking individual plants) provided better results than a simpler skeleton with more individuals (tracking individual leaves). CONCLUSIONS In all, these results suggest SLEAP is a robust and versatile tool for high-throughput automated tracking of plants, presenting a new avenue for research focusing on plant dynamics.
Collapse
Affiliation(s)
- Gabriella E C Gall
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
- Zukunftskolleg, Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany.
| | - Talmo D Pereira
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computational Neurobiology Lab, Salk Institute for Biological Studies, La Jolla, USA
| | - Alex Jordan
- Centre for the Advanced Study of Collective Behaviour, Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Yasmine Meroz
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Radin I, Haswell ES. Looking at mechanobiology through an evolutionary lens. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102112. [PMID: 34628340 DOI: 10.1016/j.pbi.2021.102112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Mechanical forces were arguably among the first stimuli to be perceived by cells, and they continue to shape the evolution of all organisms. Great strides have been made in recent years in the field of plant cell and molecular mechanobiology, in part owing to focused efforts on key model systems. Here, we propose to enrich such work through evolutionary mechanobiology, or 'evo-mechano', and describe three major themes that could drive research in this area. We use plastid evo-mechano as a case study, describing how plastids from different lineages perceive their mechanical environments, how their mechanical properties vary across lineages, and their distinct roles in graviperception. Finally, we argue that future research into the biomechanical properties and mechanobiological signaling mechanisms that have been elaborated by green species over the past 1.5 billion years will help us understand both the universal and the unique adaptations of plants to their physical environment.
Collapse
Affiliation(s)
- Ivan Radin
- Department of Biology, MSC 1137-154-314, Washington University, 1 Brookings Drive, St. Louis, MO, 63130-489, United States; NSF Center for Engineering Mechanobiology, United States
| | - Elizabeth S Haswell
- Department of Biology, MSC 1137-154-314, Washington University, 1 Brookings Drive, St. Louis, MO, 63130-489, United States; NSF Center for Engineering Mechanobiology, United States.
| |
Collapse
|
18
|
Du M, Bou Daher F, Liu Y, Steward A, Tillmann M, Zhang X, Wong JH, Ren H, Cohen JD, Li C, Gray WM. Biphasic control of cell expansion by auxin coordinates etiolated seedling development. SCIENCE ADVANCES 2022; 8:eabj1570. [PMID: 35020423 PMCID: PMC8754305 DOI: 10.1126/sciadv.abj1570] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Seedling emergence is critical for food security. It requires rapid hypocotyl elongation and apical hook formation, both of which are mediated by regulated cell expansion. How these events are coordinated in etiolated seedlings is unclear. Here, we show that biphasic control of cell expansion by the phytohormone auxin underlies this process. Shortly after germination, high auxin levels restrain elongation. This provides a temporal window for apical hook formation, involving a gravity-induced auxin maximum on the eventual concave side of the hook. This auxin maximum induces PP2C.D1 expression, leading to asymmetrical H+-ATPase activity across the hypocotyl that contributes to the differential cell elongation underlying hook development. Subsequently, auxin concentrations decline acropetally and switch from restraining to promoting elongation, thereby driving hypocotyl elongation. Our findings demonstrate how differential auxin concentrations throughout the hypocotyl coordinate etiolated development, leading to successful soil emergence.
Collapse
Affiliation(s)
- Minmin Du
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Firas Bou Daher
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Yuanyuan Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Andrew Steward
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Molly Tillmann
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Xiaoyue Zhang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Hong Ren
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Jerry D. Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author. (C.L.); (W.M.G.)
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
- Corresponding author. (C.L.); (W.M.G.)
| |
Collapse
|
19
|
Methods for a Quantitative Comparison of Gravitropism and Posture Control Over a Wide Range of Herbaceous and Woody Species. Methods Mol Biol 2022; 2368:117-131. [PMID: 34647253 DOI: 10.1007/978-1-0716-1677-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Quantitative measurements of plant gravitropic response are challenging. Differences in growth rates between species and environmental conditions make it difficult to compare the intrinsic gravitropic responses of different plants. In addition, the bending movement associated with gravitropism is competing with the tendency of plants to grow straight, through a mechanism called proprioception (ability to sense its own shape). Disentangling these two tendencies is not trivial. Here, we use a combination of modeling, experiment and image analysis to estimate the intrinsic gravitropic and proprioceptive sensitivities of stems, using Arabidopsis as an example.
Collapse
|
20
|
Olovnikov AM. Role of the Earth's Motions in Plant Orientation - Planetary Mechanism. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1388-1394. [PMID: 34906043 DOI: 10.1134/s0006297921110031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/14/2023]
Abstract
According to the proposed theory, the starch-rich particles (statoliths) help the plant to convert the signals from Earth's motions into the signals necessary for the plant to perceive its orientation relative to the gravity vector while moving freely because of inertia in the sensory cells (statocytes) of roots and stems. Motions of the Earth are never constant, which, in particular, refers to the so-called polar motions and oscillations of the planet's rotation axis. Statoliths at any given moment move in the cytoplasmic liquid of statocytes due to inertial motion initiated by the action of the Earth's movements, maintaining the trajectory set by the previous movement of the oscillating planet. Unlike statoliths, the walls of a statocyte move in space along with the entire plant and with the Earth, in strict accordance with the current direction of motion of the planet's axis. This leads to the inevitable collision of statoliths with the statocytic wall/membrane. Cytoplasmic liquid, as a substance that is not able to maintain its shape, does not interfere with the inertial motions of the statoliths and collision with the wall of the statocyte. By striking the membrane, statoliths cause the release of ions and other factors at the impact site, which further participate in the gravitropic process. Pressure of the sediment of statoliths at the bottom of the statocyte, as well as position of this sediment, are not the defining factors of gravitropism.
Collapse
Affiliation(s)
- Alexey M Olovnikov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
21
|
Moulia B, Douady S, Hamant O. Fluctuations shape plants through proprioception. Science 2021; 372:372/6540/eabc6868. [PMID: 33888615 DOI: 10.1126/science.abc6868] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Plants constantly experience fluctuating internal and external mechanical cues, ranging from nanoscale deformation of wall components, cell growth variability, nutating stems, and fluttering leaves to stem flexion under tree weight and wind drag. Developing plants use such fluctuations to monitor and channel their own shape and growth through a form of proprioception. Fluctuations in mechanical cues may also be actively enhanced, producing oscillating behaviors in tissues. For example, proprioception through leaf nastic movements may promote organ flattening. We propose that fluctuation-enhanced proprioception allows plant organs to sense their own shapes and behave like active materials with adaptable outputs to face variable environments, whether internal or external. Because certain shapes are more amenable to fluctuations, proprioception may also help plant shapes to reach self-organized criticality to support such adaptability.
Collapse
Affiliation(s)
- Bruno Moulia
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France.
| | - Stéphane Douady
- Laboratoire Matières et Systèmes Complexes (MSC), Université de Paris, CNRS, 75205 Paris Cedex 13, France.
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69007 Lyon, France.
| |
Collapse
|
22
|
Dümmer M, Spasić SZ, Feil M, Michalski C, Forreiter C, Galland P. Tangent algorithm for photogravitropic balance in plants and Phycomyces blakesleeanus: Roles for EHB1 and NPH3 of Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2021; 260:153396. [PMID: 33713940 DOI: 10.1016/j.jplph.2021.153396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Plant organs that are exposed to continuous unilateral light reach in the steady-state a photogravitropic bending angle that results from the mutual antagonism between the photo- and gravitropic responses. To characterize the interaction between the two tropisms and their quantitative relationship we irradiated seedlings of Arabidopsis thaliana that were inclined at various angles and determined the fluence rates of unilateral blue light required to compensate the gravitropism of the inclined hypocotyls. We found the compensating fluence rates to increase with the tangent of the inclination angles (0° < γ < 90° or max. 120°) and decrease with the cotangent (90°< γ < 180° or max. 120°of the inclination angles. The tangent dependence became also evident from analysis of previous data obtained with Avena sativa and the phycomycete fungus, Phycomyces blakesleeanus. By using loss-of function mutant lines of Arabidopsis, we identified EHB1 (enhanced bending 1) as an essential element for the generation of the tangent and cotangent relationships. Because EHB1 possesses a C2-domain with two putative calcium binding sites, we propose that the ubiquitous calcium dependence of gravi- and phototropism is in part mediated by Ca2+-bound EHB1. Based on a yeast-two-hybrid analysis we found evidence that EHB1 does physically interact with the ARF-GAP protein AGD12. Both proteins were reported to affect gravi- and phototropism antagonistically. We further showed that only AGD12, but not EHB1, interacts with its corresponding ARF-protein. Evidence is provided that AGD12 is able to form homodimers as well as heterodimers with EHB1. On the basis of these data we present a model for a mechanism of early tropism events, in which Ca2+-activated EHB1 emerges as the central processor-like element that links the gravi- and phototropic transduction chains and that generates in coordination with NPH3 and AGD12 the tangent / cotangent algorithm governing photogravitropic equilibrium.
Collapse
Affiliation(s)
- Michaela Dümmer
- Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, D-35032, Marburg, Germany.
| | - Sladjana Z Spasić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, Belgrade, Serbia; Singidunum University, Danijelova 32, Belgrade, Serbia.
| | - Martin Feil
- Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, D-35032, Marburg, Germany.
| | - Christian Michalski
- Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, D-35032, Marburg, Germany.
| | - Christoph Forreiter
- Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, D-35032, Marburg, Germany; Institut für Biologie, Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Adolf-Reichwein Str. 2, D-57068, Siegen, Germany.
| | - Paul Galland
- Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, D-35032, Marburg, Germany.
| |
Collapse
|
23
|
Zhdanov O, Blatt MR, Zare-Behtash H, Busse A. Wind-evoked anemotropism affects the morphology and mechanical properties of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1906-1918. [PMID: 33206167 DOI: 10.1093/jxb/eraa541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Plants are known to exhibit a thigmomorphogenetic response to mechanical stimuli by altering their morphology and mechanical properties. Wind is widely perceived as mechanical stress and in many experiments its influence is simulated by applying mechanical perturbations. However, it is known that wind-induced effects on plants can differ and at times occur even in the opposite direction compared with those induced by mechanical perturbations. In the present study, the long-term response of Arabidopsis thaliana to a constant unidirectional wind was investigated. We found that exposure to wind resulted in a positive anemotropic response and in significant alterations to Arabidopsis morphology, mechanical properties, and anatomical tissue organization that were associated with the plant's strategy of acclimation to a windy environment. Overall, the observed response of Arabidopsis to wind differs significantly from previously reported responses of Arabidopsis to mechanical perturbations. The presented results suggest that the response of Arabidopsis is sensitive to the type of mechanical stimulus applied, and that it is not always straightforward to simulate one type of perturbation by another.
Collapse
Affiliation(s)
- Oleksandr Zhdanov
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, UK
| | | | - Angela Busse
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| |
Collapse
|
24
|
Abstract
Gravity determines shape of body tissue and affects the functions of life, both in plants and animals. The cellular response to gravity is an active process of mechanotransduction. Although plants and animals share some common mechanisms of gravity sensing in spite of their distant phylogenetic origin, each species has its own mechanism to sense and respond to gravity. In this review, we discuss current understanding regarding the mechanisms of cellular gravity sensing in plants and animals. Understanding gravisensing also contributes to life on Earth, e.g., understanding osteoporosis and muscle atrophy. Furthermore, in the current age of Mars exploration, understanding cellular responses to gravity will form the foundation of living in space.
Collapse
|
25
|
Levernier N, Pouliquen O, Forterre Y. An Integrative Model of Plant Gravitropism Linking Statoliths Position and Auxin Transport. FRONTIERS IN PLANT SCIENCE 2021; 12:651928. [PMID: 33854523 PMCID: PMC8039511 DOI: 10.3389/fpls.2021.651928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/03/2021] [Indexed: 05/10/2023]
Abstract
Gravity is a major cue for the proper growth and development of plants. The response of plants to gravity implies starch-filled plastids, the statoliths, which sediments at the bottom of the gravisensing cells, the statocytes. Statoliths are assumed to modify the transport of the growth hormone, auxin, by acting on specific auxin transporters, PIN proteins. However, the complete gravitropic signaling pathway from the intracellular signal associated to statoliths to the plant bending is still not well-understood. In this article, we build on recent experimental results showing that statoliths do not act as gravitational force sensor, but as position sensor, to develop a bottom-up theory of plant gravitropism. The main hypothesis of the model is that the presence of statoliths modifies PIN trafficking close to the cell membrane. This basic assumption, coupled with auxin transport and growth in an idealized tissue made of a one-dimensional array of cells, recovers several major features of the gravitropic response of plants. First, the model provides a new interpretation for the response of a plant to a steady stimulus, the so-called sine-law of plant gravitropism. Second, it predicts the existence of a gravity-independent memory process as observed recently in experiments studying the response to transient stimulus. The model suggests that the timescale of this process is associated to PIN turnover, calling for new experimental studies.
Collapse
|
26
|
Advantages and Limitations of Current Microgravity Platforms for Space Biology Research. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010068] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human Space exploration has created new challenges and new opportunities for science. Reaching beyond the Earth’s surface has raised the issue of the importance of gravity for the development and the physiology of biological systems, while giving scientists the tools to study the mechanisms of response and adaptation to the microgravity environment. As life has evolved under the constant influence of gravity, gravity affects biological systems at a very fundamental level. Owing to limited access to spaceflight platforms, scientists rely heavily on on-ground facilities that reproduce, to a different extent, microgravity or its effects. However, the technical constraints of counterbalancing the gravitational force on Earth add complexity to data interpretation. In-flight experiments are also not without their challenges, including additional stressors, such as cosmic radiation and lack of convection. It is thus extremely important in Space biology to design experiments in a way that maximizes the scientific return and takes into consideration all the variables of the chosen setup, both on-ground or on orbit. This review provides a critical analysis of current ground-based and spaceflight facilities. In particular, the focus was given to experimental design to offer the reader the tools to select the appropriate setup and to appropriately interpret the results.
Collapse
|
27
|
Moulton DE, Oliveri H, Goriely A. Multiscale integration of environmental stimuli in plant tropism produces complex behaviors. Proc Natl Acad Sci U S A 2020; 117:32226-32237. [PMID: 33273121 PMCID: PMC7768784 DOI: 10.1073/pnas.2016025117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Plant tropism refers to the directed movement of an organ or organism in response to external stimuli. Typically, these stimuli induce hormone transport that triggers cell growth or deformation. In turn, these local cellular changes create mechanical forces on the plant tissue that are balanced by an overall deformation of the organ, hence changing its orientation with respect to the stimuli. This complex feedback mechanism takes place in a three-dimensional growing plant with varying stimuli depending on the environment. We model this multiscale process in filamentary organs for an arbitrary stimulus by explicitly linking hormone transport to local tissue deformation leading to the generation of mechanical forces and the deformation of the organ in three dimensions. We show, as examples, that the gravitropic, phototropic, nutational, and thigmotropic dynamic responses can be easily captured by this framework. Further, the integration of evolving stimuli and/or multiple contradictory stimuli can lead to complex behavior such as sun following, canopy escape, and plant twining.
Collapse
Affiliation(s)
- Derek E Moulton
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Hadrien Oliveri
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| |
Collapse
|
28
|
Rivière M, Corre Y, Peaucelle A, Derr J, Douady S. The hook shape of growing leaves results from an active regulatory process. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6408-6417. [PMID: 32816036 DOI: 10.1093/jxb/eraa378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
The rachis of most growing compound leaves observed in nature exhibits a stereotypical hook shape. In this study, we focus on the canonical case of Averrhoa carambola. Combining kinematics and mechanical investigation, we characterize this hook shape and shed light on its establishment and maintenance. We show quantitatively that the hook shape is a conserved bent zone propagating at constant velocity and constant distance from the apex throughout development. A simple mechanical test reveals non-zero intrinsic curvature profiles for the rachis during its growth, indicating that the hook shape is actively regulated. We show a robust spatial organization of growth, curvature, rigidity, and lignification, and their interplay. Regulatory processes appear to be specifically localized: in particular, differential growth occurs where the elongation rate drops. Finally, impairing the graviception of the leaf on a clinostat led to reduced hook curvature but not to its loss. Altogether, our results suggest a role for proprioception in the regulation of the leaf hook shape, likely mediated via mechanical strain.
Collapse
Affiliation(s)
- Mathieu Rivière
- Laboratoire Matière & Systèmes Complexes UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, CNRS, Paris Cedex, France
| | - Yoann Corre
- Laboratoire Matière & Systèmes Complexes UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, CNRS, Paris Cedex, France
| | - Alexis Peaucelle
- Laboratoire Matière & Systèmes Complexes UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, CNRS, Paris Cedex, France
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, Versailles Cedex, France
| | - Julien Derr
- Laboratoire Matière & Systèmes Complexes UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, CNRS, Paris Cedex, France
| | - Stéphane Douady
- Laboratoire Matière & Systèmes Complexes UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, CNRS, Paris Cedex, France
| |
Collapse
|
29
|
Su SH, Keith MA, Masson PH. Gravity Signaling in Flowering Plant Roots. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1290. [PMID: 33003550 PMCID: PMC7601833 DOI: 10.3390/plants9101290] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/28/2022]
Abstract
Roots typically grow downward into the soil where they anchor the plant and take up water and nutrients necessary for plant growth and development. While the primary roots usually grow vertically downward, laterals often follow a gravity set point angle that allows them to explore the surrounding environment. These responses can be modified by developmental and environmental cues. This review discusses the molecular mechanisms that govern root gravitropism in flowering plant roots. In this system, the primary site of gravity sensing within the root cap is physically separated from the site of curvature response at the elongation zone. Gravity sensing involves the sedimentation of starch-filled plastids (statoliths) within the columella cells of the root cap (the statocytes), which triggers a relocalization of plasma membrane-associated PIN auxin efflux facilitators to the lower side of the cell. This process is associated with the recruitment of RLD regulators of vesicular trafficking to the lower membrane by LAZY proteins. PIN relocalization leads to the formation of a lateral gradient of auxin across the root cap. Upon transmission to the elongation zone, this auxin gradient triggers a downward curvature. We review the molecular mechanisms that control this process in primary roots and discuss recent insights into the regulation of oblique growth in lateral roots and its impact on root-system architecture, soil exploration and plant adaptation to stressful environments.
Collapse
Affiliation(s)
| | | | - Patrick H. Masson
- Laboratory of Genetics, University of Wisconsin-Madison, 425G Henry Mall, Madison, WI 53706, USA; (S.-H.S.); (M.A.K.)
| |
Collapse
|
30
|
Porat A, Tedone F, Palladino M, Marcati P, Meroz Y. A General 3D Model for Growth Dynamics of Sensory-Growth Systems: From Plants to Robotics. Front Robot AI 2020; 7:89. [PMID: 33501256 PMCID: PMC7806001 DOI: 10.3389/frobt.2020.00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/03/2020] [Indexed: 12/31/2022] Open
Abstract
In recent years, there has been a rise in interest in the development of self-growing robotics inspired by the moving-by-growing paradigm of plants. In particular, climbing plants capitalize on their slender structures to successfully negotiate unstructured environments while employing a combination of two classes of growth-driven movements: tropic responses, growing toward or away from an external stimulus, and inherent nastic movements, such as periodic circumnutations, which promote exploration. In order to emulate these complex growth dynamics in a 3D environment, a general and rigorous mathematical framework is required. Here, we develop a general 3D model for rod-like organs adopting the Frenet-Serret frame, providing a useful framework from the standpoint of robotics control. Differential growth drives the dynamics of the organ, governed by both internal and external cues while neglecting elastic responses. We describe the numerical method required to implement this model and perform numerical simulations of a number of key scenarios, showcasing the applicability of our model. In the case of responses to external stimuli, we consider a distant stimulus (such as sunlight and gravity), a point stimulus (a point light source), and a line stimulus that emulates twining of a climbing plant around a support. We also simulate circumnutations, the response to an internal oscillatory cue, associated with search processes. Lastly, we also demonstrate the superposition of the response to an external stimulus and circumnutations. In addition, we consider a simple example illustrating the possible use of an optimal control approach in order to recover tropic dynamics in a way that may be relevant for robotics use. In all, the model presented here is general and robust, paving the way for a deeper understanding of plant response dynamics and also for novel control systems for newly developed self-growing robots.
Collapse
Affiliation(s)
- Amir Porat
- Faculty of Exact Sciences, School of Physics, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | - Yasmine Meroz
- Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
31
|
Yang Z, Guo G, Yang N, Pun SS, Ho TKL, Ji L, Hu I, Zhang J, Burlingame AL, Li N. The change of gravity vector induces short-term phosphoproteomic alterations in Arabidopsis. J Proteomics 2020; 218:103720. [PMID: 32120044 DOI: 10.1016/j.jprot.2020.103720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 01/15/2023]
Abstract
Plants can sense the gravitational force. When plants perceive a change in this natural force, they tend to reorient their organs with respect to the direction of the gravity vector, i.e., the shoot stem curves up. In the present study, we performed a 4C quantitative phosphoproteomics to identify those altered protein phosphosites resulting from 150 s of reorientation of Arabidopsis plants on earth. A total of 5556 phosphopeptides were identified from the gravistimulated Arabidopsis. Quantification based on the 15N-stable isotope labeling in Arabidopsis (SILIA) and computational analysis of the extracted ion chromatogram (XIC) of phosphopeptides showed eight and five unique PTM peptide arrays (UPAs) being up- and down-regulated, respectively, by gravistimulation. Among the 13 plant reorientation-responsive protein groups, many are related to the cytoskeleton dynamic and plastid movement. Interestingly, the most gravistimulation-responsive phosphosites are three serine residues, S350, S376, and S410, of a blue light receptor Phototropin 1 (PHOT1). The immunoblots experiment confirmed that the change of gravity vector indeed affected the phosphorylation level of S410 in PHOT1. The functional role of PHOT1 in gravitropic response was further validated with gravicurvature measurement in the darkness of both the loss-of-function double mutant phot1phot2 and its complementary transgenic plant PHOT1/phot1phot2. SIGNIFICANCE: The organs of sessile organisms, plants, are able to move in response to environmental stimuli, such as gravity vector, touch, light, water, or nutrients, which is termed tropism. For instance, the bending of plant shoots to the light source is called phototropism. Since all plants growing on earth are continuously exposed to the gravitational field, plants receive the mechanical signal elicited by the gravity vector change and convert it into plant morphogenesis, growth, and development. Past studies have resulted in various hypotheses for gravisensing, but our knowledge about how the signal of gravity force is transduced in plant cells is still minimal. In the present study, we performed a SILIA-based 4C quantitative phosphoproteomics on 150-s gravistimulated Arabidopsis seedlings to explore the phosphoproteins involved in the gravitropic response. Our data demonstrated that such a short-term reorientation of Arabidopsis caused changes in phosphorylation of cytoskeleton structural proteins like Chloroplast Unusual Positioning1 (CHUP1), Patellin3 (PATL3), and Plastid Movement Impaired2 (PMI2), as well as the blue light receptor Phototropin1 (PHOT1). These results suggested that protein phosphorylation plays a crucial role in gravisignaling, and two primary tropic responses of plants, gravitropism and phototropism, may share some common components and signaling pathways. We expect that the phosphoproteins detected from this study will facilitate the subsequent molecular and cellular studies on the mechanism underlying the signal transduction in plant gravitropic response.
Collapse
Affiliation(s)
- Zhu Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region; HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Guangyu Guo
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Nan Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Sunny Sing Pun
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Timothy Ka Leung Ho
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Ling Ji
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Inch Hu
- Department of ISOM and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region.; School of Life Sciences, State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region; HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
32
|
Roué J, Chauvet H, Brunel-Michac N, Bizet F, Moulia B, Badel E, Legué V. Root cap size and shape influence responses to the physical strength of the growth medium in Arabidopsis thaliana primary roots. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:126-137. [PMID: 31682268 DOI: 10.1093/jxb/erz418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
During the progression of root in soil, root cap cells are the first to encounter obstacles and are known to sense environmental cues, thus making the root cap a potential mechanosensing site. In this study, a two-layered growth medium system was developed in order to study root responses to variations in the physical strength of the medium and the importance of the root cap in the establishment of these responses. Root growth and trajectory of primary roots of Arabidopsis seedlings were investigated using in vivo image analysis. After contact with the harder layer of the medium, the root either penetrated it or underwent rapid curvature, thus enabling reorientation of growth. We initially hypothesized that the root-cap structure would affect apex penetration and reorientation, with pointed caps facilitating and domed caps impeding root penetration. This hypothesis was investigated by analysing the responses of Arabidopsis mutants with altered root caps. The primary root of lines of the fez-2 mutant, which has fewer root-cap cell layers and a more pointed root cap than wild-type roots, showed impaired penetration ability. Conversely, smb-3 roots, which display a rectangular-shaped cap, showed enhanced penetration abilities. These results, which contradict our original hypothesis, reveal a role for resistance to buckling in determining root penetration abilities.
Collapse
Affiliation(s)
- J Roué
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - H Chauvet
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - N Brunel-Michac
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - F Bizet
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - B Moulia
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - E Badel
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - V Legué
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| |
Collapse
|
33
|
Su SH, Masson PH. A new wrinkle in our understanding of the role played by auxin in root gravitropism. THE NEW PHYTOLOGIST 2019; 224:543-546. [PMID: 31545888 DOI: 10.1111/nph.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Shih-Heng Su
- Laboratory of Genetics, University of Wisconsin-Madison, 425 G Henry Mall, Madison, WI, 53706, USA
| | - Patrick H Masson
- Laboratory of Genetics, University of Wisconsin-Madison, 425 G Henry Mall, Madison, WI, 53706, USA
| |
Collapse
|
34
|
Zhang Y, He P, Ma X, Yang Z, Pang C, Yu J, Wang G, Friml J, Xiao G. Auxin-mediated statolith production for root gravitropism. THE NEW PHYTOLOGIST 2019; 224:761-774. [PMID: 31111487 DOI: 10.1111/nph.15932] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/11/2019] [Indexed: 05/11/2023]
Abstract
Root gravitropism is one of the most important processes allowing plant adaptation to the land environment. Auxin plays a central role in mediating root gravitropism, but how auxin contributes to gravitational perception and the subsequent response are still unclear. Here, we showed that the local auxin maximum/gradient within the root apex, which is generated by the PIN directional auxin transporters, regulates the expression of three key starch granule synthesis genes, SS4, PGM and ADG1, which in turn influence the accumulation of starch granules that serve as a statolith perceiving gravity. Moreover, using the cvxIAA-ccvTIR1 system, we also showed that TIR1-mediated auxin signaling is required for starch granule formation and gravitropic response within root tips. In addition, axr3 mutants showed reduced auxin-mediated starch granule accumulation and disruption of gravitropism within the root apex. Our results indicate that auxin-mediated statolith production relies on the TIR1/AFB-AXR3-mediated auxin signaling pathway. In summary, we propose a dual role for auxin in gravitropism: the regulation of both gravity perception and response.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, China
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria
| | - Peng He
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, China
| | - Xiongfeng Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, China
- Cotton Research Institute, Chinese Academy of Agricultural Sciences, No. 38 Yellow River Avenue, Anyang, 455000, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, China
- Cotton Research Institute, Chinese Academy of Agricultural Sciences, No. 38 Yellow River Avenue, Anyang, 455000, China
| | - Chaoyou Pang
- Cotton Research Institute, Chinese Academy of Agricultural Sciences, No. 38 Yellow River Avenue, Anyang, 455000, China
| | - Jianing Yu
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, China
| | - Guodong Wang
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, China
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria
| | - Guanghui Xiao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, 710119, China
| |
Collapse
|
35
|
Duchemin L, Eloy C, Badel E, Moulia B. Tree crowns grow into self-similar shapes controlled by gravity and light sensing. J R Soc Interface 2019; 15:rsif.2017.0976. [PMID: 29743270 DOI: 10.1098/rsif.2017.0976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/19/2018] [Indexed: 01/18/2023] Open
Abstract
Plants have developed different tropisms: in particular, they reorient the growth of their branches towards the light (phototropism) or upwards (gravitropism). How these tropisms affect the shape of a tree crown remains unanswered. We address this question by developing a propagating front model of tree growth. Being length-free, this model leads to self-similar solutions after a long period of time, which are independent of the initial conditions. Varying the intensities of each tropism, different self-similar shapes emerge, including singular ones. Interestingly, these shapes bear similarities to existing tree species. It is concluded that the core of specific crown shapes in trees relies on the balance between tropisms.
Collapse
Affiliation(s)
- Laurent Duchemin
- Aix-Marseille University, CNRS, Centrale Marseille, IRPHE, Marseille, France
| | - Christophe Eloy
- Aix-Marseille University, CNRS, Centrale Marseille, IRPHE, Marseille, France
| | - Eric Badel
- UCA, INRA, UMR PIAF, 63000 Clermont-Ferrand, France
| | - Bruno Moulia
- UCA, INRA, UMR PIAF, 63000 Clermont-Ferrand, France
| |
Collapse
|
36
|
Bastien R, Porat A, Meroz Y. Towards a framework for collective behavior in growth-driven systems, based on plant-inspired allotropic pairwise interactions. BIOINSPIRATION & BIOMIMETICS 2019; 14:055004. [PMID: 31292284 DOI: 10.1088/1748-3190/ab30d3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A variety of biological systems are not motile, but sessile in nature, relying on growth as the main driver of their movement. Groups of such growing organisms can form complex structures, such as the functional architecture of growing axons, or the adaptive structure of plant root systems. These processes are not yet understood, however the decentralized growth dynamics bear similarities to the collective behavior observed in groups of motile organisms, such as flocks of birds or schools of fish. Equivalent growth mechanisms make these systems amenable to a theoretical framework inspired by tropic responses of plants, where growth is considered implicitly as the driver of the observed bending towards a stimulus. We introduce two new concepts related to plant tropisms: point tropism, the response of a plant to a nearby point signal source, and allotropism, the growth-driven response of plant organs to neighboring plants. We first analytically and numerically investigate the 2D dynamics of single organs responding to point signals fixed in space. Building on this we study pairs of organs interacting via allotropism, i.e. each organ senses signals emitted at the tip of their neighbor and responds accordingly. In the case of local sensing we find a rich state-space. We describe the different states, as well as the sharp transitions between them. We also find that the form of the state-space depends on initial conditions. This work sets the stage towards a theoretical framework for the investigation and understanding of systems of interacting growth-driven individuals.
Collapse
Affiliation(s)
- Renaud Bastien
- Department of Collective Behaviour, Max Planck Institute for Ornithology and Department of Biology, University of Konstanz, 78464 Konstanz, Germany. These two authors contributed equally
| | | | | |
Collapse
|
37
|
Ajala C, Hasenstein KH. Augmentation of root gravitropism by hypocotyl curvature in Brassica rapa seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:214-223. [PMID: 31203886 DOI: 10.1016/j.plantsci.2019.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Main Conclusion Root gravitropism of primary roots is assisted by curvature of the hypocotyl base. Root gravitropism is typically described as the sequence of signal perception, signal processing, and response that causes differential elongation and the establishment of a new gravitropic set-point angle. We describe two components of the graviresponse of Brassica seedlings that comprise a primary curvature of the root tip and a later onset but stronger curvature that occurs at the base of the hypocotyl. This second curvature is preceded by straightening of the tip region but leads to the completion of the alignment of the root axis. Curvature in both regions require a minimum displacement of 20 deg. The rate of tip curvature is a function of root length. After horizontal reorientation, tip curvature of five mm long roots curved twice as fast as 10 mm long roots (33.6 ± 3.3 vs. 14.3 ± 1.5 deg hr-1). The onset of curvature at the hypocotyl base is correlated with root length, but the rate of this curvature is independent of seedling length. Decapping of roots prevented tip curvature but the curvature at base of hypocotyl was unaffected. Endodermal cells at the root shoot junction show numerous, large and sedimenting amyloplasts, which likely serve as gravity sensors (statoliths). The amyloplasts at the hypocotyl were 3-4 μm in diameter, similar in size to those in the root cap, and twice the size of starch grains in the cortical layers of hypocotyl or elsewhere in the root. These data indicate that the root shoot reorientation of young seedlings is not limited to the root tip but includes more than one gravitropically responsive region.
Collapse
Affiliation(s)
- Chitra Ajala
- Biology Department, University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-43602, United States
| | - Karl H Hasenstein
- Biology Department, University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-43602, United States.
| |
Collapse
|
38
|
Nakamura M, Nishimura T, Morita MT. Gravity sensing and signal conversion in plant gravitropism. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3495-3506. [PMID: 30976802 DOI: 10.1093/jxb/erz158] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/08/2019] [Indexed: 05/17/2023]
Abstract
Plant organs control their growth orientation in response to gravity. Within gravity-sensing cells, the input (gravity sensing) and signal conversion (gravity signalling) progress sequentially. The cells contain a number of high-density, starch-accumulating amyloplasts, which sense gravity when they reposition themselves by sedimentation to the bottom of the cell when the plant organ is re-orientated. This triggers the next step of gravity signalling, when the physical signal generated by the sedimentation of the amyloplasts is converted into a biochemical signal, which redirects auxin transport towards the lower flank of the plant organ. This review focuses on recent advances in our knowledge of the regulatory mechanisms that underlie amyloplast sedimentation and the system by which this is perceived, and on recent progress in characterising the factors that play significant roles in gravity signalling by which the sedimentation is linked to the regulation of directional auxin transport. Finally, we discuss the contribution of gravity signalling factors to the mechanisms that control the gravitropic set-point angle.
Collapse
Affiliation(s)
- Moritaka Nakamura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, Japan
| | - Takeshi Nishimura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
39
|
Moulia B, Bastien R, Chauvet-Thiry H, Leblanc-Fournier N. Posture control in land plants: growth, position sensing, proprioception, balance, and elasticity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3467-3494. [PMID: 31305901 DOI: 10.1093/jxb/erz278] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
The colonization of the atmosphere by land plants was a major evolutionary step. The mechanisms that allow for vertical growth through air and the establishment and control of a stable erect habit are just starting to be understood. A key mechanism was found to be continuous posture control to counterbalance the mechanical and developmental challenges of maintaining a growing upright structure. An interdisciplinary systems biology approach was invaluable in understanding the underlying principles and in designing pertinent experiments. Since this discovery previously held views of gravitropic perception had to be reexamined and this has led to the description of proprioception in plants. In this review, we take a purposefully pedagogical approach to present the dynamics involved from the cellular to whole-plant level. We show how the textbook model of how plants sense gravitational force has been replaced by a model of position sensing, a clinometer mechanism that involves both passive avalanches and active motion of statoliths, granular starch-filled plastids, in statocytes. Moreover, there is a transmission of information between statocytes and other specialized cells that sense the degree of organ curvature and reset asymmetric growth to straighten and realign the structure. We give an overview of how plants have used the interplay of active posture control and elastic sagging to generate a whole range of spatial displays during their life cycles. Finally, a position-integrating mechanism has been discovered that prevents directional plant growth from being disrupted by wind-induced oscillations.
Collapse
Affiliation(s)
- Bruno Moulia
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Renaud Bastien
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
- Department of Collective Behaviour, Max Planck Institute for Ornithology and Department of Biology, University of Konstanz, Konstanz, Germany
| | - Hugo Chauvet-Thiry
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
- Aix-Marseille Université, CNRS, IUSTI, Marseille, France
| | | |
Collapse
|
40
|
Goudenhooft C, Bourmaud A, Baley C. Flax ( Linum usitatissimum L.) Fibers for Composite Reinforcement: Exploring the Link Between Plant Growth, Cell Walls Development, and Fiber Properties. FRONTIERS IN PLANT SCIENCE 2019; 10:411. [PMID: 31001310 PMCID: PMC6456768 DOI: 10.3389/fpls.2019.00411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 03/19/2019] [Indexed: 05/13/2023]
Abstract
Due to the combination of high mechanical performances and plant-based origin, flax fibers are interesting reinforcement for environmentally friendly composite materials. An increasing amount of research articles and reviews focuses on the processing and properties of flax-based products, without taking into account the original key role of flax fibers, namely, reinforcement elements of the flax stem (Linum usitatissimum L.). The ontogeny of the plant, scattering of fiber properties along the plant, or the plant growth conditions are rarely considered. Conversely, exploring the development of flax fibers and parameters influencing the plant mechanical properties (at the whole plant or fiber scale) could be an interesting way to control and/or optimize fiber performances, and to a greater extent, flax fiber-based products. The first part of the present review synthesized the general knowledge about the growth stages of flax plants and the internal organization of the stem biological tissues. Additionally, key findings regarding the development of its fibers, from elongation to thickening, are reviewed to offer a piece of explanation of the uncommon morphological properties of flax fibers. Then, the slenderness of flax is illustrated by comparison of data given in scientific research on herbaceous plants and woody ones. In the second section, a state of the art of the varietal selection of several main industrial crops is given. This section includes the different selection criteria as well as an overview of their impact on plant characteristics. A particular interest is given to the lodging resistance and the understanding of this undesired phenomenon. The third section reviews the influence of the cultural conditions, including seedling rate and its relation with the wind in a plant canopy, as well as the impact of main tropisms (namely, thigmotropism, seismotropism, and gravitropism) on the stem and fiber characteristics. This section illustrates the mechanisms of plant adaptation, and how the environment can modify the plant biomechanical properties. Finally, this review asks botanists, breeders, and farmers' knowledge toward the selection of potential flax varieties dedicated to composite applications, through optimized fiber performances. All along the paper, both fibers morphology and mechanical properties are discussed, in constant link with their use for composite materials reinforcement.
Collapse
Affiliation(s)
| | - Alain Bourmaud
- IRDL, UMR CNRS 6027, Université de Bretagne Sud, Lorient, France
| | | |
Collapse
|
41
|
Chauvet H, Moulia B, Legué V, Forterre Y, Pouliquen O. Revealing the hierarchy of processes and time-scales that control the tropic response of shoots to gravi-stimulations. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1955-1967. [PMID: 30916341 PMCID: PMC6436155 DOI: 10.1093/jxb/erz027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/10/2019] [Indexed: 05/02/2023]
Abstract
Gravity is a major abiotic cue for plant growth. However, little is known about the responses of plants to various patterns of gravi-stimulation, with apparent contradictions being observed between the dose-like responses recorded under transient stimuli in microgravity environments and the responses under steady-state inclinations recorded on earth. Of particular importance is how the gravitropic response of an organ is affected by the temporal dynamics of downstream processes in the signalling pathway, such as statolith motion in statocytes or the redistribution of auxin transporters. Here, we used a combination of experiments on the whole-plant scale and live-cell imaging techniques on wheat coleoptiles in centrifuge devices to investigate both the kinematics of shoot-bending induced by transient inclination, and the motion of the statoliths in response to cell inclination. Unlike previous observations in microgravity, the response of shoots to transient inclinations appears to be independent of the level of gravity, with a response time much longer than the duration of statolith sedimentation. This reveals the existence of a memory process in the gravitropic signalling pathway, independent of statolith dynamics. By combining this memory process with statolith motion, a mathematical model is built that unifies the different laws found in the literature and that predicts the early bending response of shoots to arbitrary gravi-stimulations.
Collapse
Affiliation(s)
- Hugo Chauvet
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
- Aix Marseille University, CNRS, IUSTI, Marseille, France
| | - Bruno Moulia
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Valérie Legué
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Yoël Forterre
- Aix Marseille University, CNRS, IUSTI, Marseille, France
| | | |
Collapse
|
42
|
Bizet F, Pereda-Loth V, Chauvet H, Gérard J, Eche B, Girousse C, Courtade M, Perbal G, Legué V. Both gravistimulation onset and removal trigger an increase of cytoplasmic free calcium in statocytes of roots grown in microgravity. Sci Rep 2018; 8:11442. [PMID: 30061667 PMCID: PMC6065396 DOI: 10.1038/s41598-018-29788-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 07/16/2018] [Indexed: 11/08/2022] Open
Abstract
Gravity is a permanent environmental signal guiding plant growth and development. Gravity sensing in plants starts with the displacement of starch-filled plastids called statoliths, ultimately leading to auxin redistribution and organ curvature. While the involvement in gravity sensing of several actors such as calcium is known, the effect of statolith displacement on calcium changes remains enigmatic. Microgravity is a unique environmental condition offering the opportunity to decipher this link. In this study, roots of Brassica napus were grown aboard the International Space Station (ISS) either in microgravity or in a centrifuge simulating Earth gravity. The impact of short simulated gravity onset and removal was measured on statolith positioning and intracellular free calcium was assessed using pyroantimonate precipitates as cytosolic calcium markers. Our findings show that a ten-minute onset or removal of gravity induces very low statolith displacement, but which is, nevertheless, associated with an increase of the number of pyroantimonate precipitates. These results highlight that a change in the cytosolic calcium distribution is triggered in absence of a significant statolith displacement.
Collapse
Affiliation(s)
- François Bizet
- Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France
| | | | - Hugo Chauvet
- Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France
| | - Joëlle Gérard
- UMR IAM, INRA, Université de Lorraine, 54280, Champenoux, France
- UMR EEF, INRA, Université de Lorraine, 54280, Champenoux, France
| | - Brigitte Eche
- GSBMS, AMIS5288, University of Toulouse III, Toulouse, France
| | - Christine Girousse
- Université Clermont Auvergne, INRA, GDEC, F- 63000, Clermont-Ferrand, France
| | | | - Gérald Perbal
- Université Pierre et Marie Curie, 75005, Paris, France
| | - Valérie Legué
- Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France.
- UMR IAM, INRA, Université de Lorraine, 54280, Champenoux, France.
| |
Collapse
|
43
|
Bérut A, Chauvet H, Legué V, Moulia B, Pouliquen O, Forterre Y. Gravisensors in plant cells behave like an active granular liquid. Proc Natl Acad Sci U S A 2018; 115:5123-5128. [PMID: 29712863 PMCID: PMC5960325 DOI: 10.1073/pnas.1801895115] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants are able to sense and respond to minute tilt from the vertical direction of the gravity, which is key to maintain their upright posture during development. However, gravisensing in plants relies on a peculiar sensor made of microsize starch-filled grains (statoliths) that sediment and form tiny granular piles at the bottom of the cell. How such a sensor can detect inclination is unclear, as granular materials like sand are known to display flow threshold and finite avalanche angle due to friction and interparticle jamming. Here, we address this issue by combining direct visualization of statolith avalanches in plant cells and experiments in biomimetic cells made of microfluidic cavities filled with a suspension of heavy Brownian particles. We show that, despite their granular nature, statoliths move and respond to the weakest angle, as a liquid clinometer would do. Comparison between the biological and biomimetic systems reveals that this liquid-like behavior comes from the cell activity, which agitates statoliths with an apparent temperature one order of magnitude larger than actual temperature. Our results shed light on the key role of active fluctuations of statoliths for explaining the remarkable sensitivity of plants to inclination. Our study also provides support to a recent scenario of gravity perception in plants, by bridging the active granular rheology of statoliths at the microscopic level to the macroscopic gravitropic response of the plant.
Collapse
Affiliation(s)
- Antoine Bérut
- Aix-Marseille Univ, CNRS, IUSTI (Institut Universitaire des Systèmes Thermiques Industriels), 13013 Marseille, France
| | - Hugo Chauvet
- Aix-Marseille Univ, CNRS, IUSTI (Institut Universitaire des Systèmes Thermiques Industriels), 13013 Marseille, France
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| | - Valérie Legué
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| | - Bruno Moulia
- Université Clermont Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
| | - Olivier Pouliquen
- Aix-Marseille Univ, CNRS, IUSTI (Institut Universitaire des Systèmes Thermiques Industriels), 13013 Marseille, France
| | - Yoël Forterre
- Aix-Marseille Univ, CNRS, IUSTI (Institut Universitaire des Systèmes Thermiques Industriels), 13013 Marseille, France;
| |
Collapse
|
44
|
Harmer SL, Brooks CJ. Growth-mediated plant movements: hidden in plain sight. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:89-94. [PMID: 29107827 PMCID: PMC5826749 DOI: 10.1016/j.pbi.2017.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 05/18/2023]
Abstract
While fast plant movements are spectacular but rare, almost all plants exhibit relatively slow, growth-mediated tropic movements that are key to their survival in the natural world. In this brief review, we discuss recent insights into the molecular mechanisms underlying phototropism, gravitropism, hydrotropism, and autostraightening. Careful molecular genetic and physiological studies have helped confirm the importance of lateral auxin gradients in gravitropic and phototropic responses. However, auxin signaling does not explain all tropisms: recent work has shown that abscisic acid signaling mediates root hydrotropism and has implicated mechanosensing in autostraightening, the organ straightening process recently modeled as a proprioceptive response. The interactions between distinct tropic signaling pathways and other internal and external sensory processes are also now being untangled.
Collapse
Affiliation(s)
- Stacey L Harmer
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Christopher J Brooks
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
45
|
Pouliquen O, Forterre Y, Bérut A, Chauvet H, Bizet F, Legué V, Moulia B. A new scenario for gravity detection in plants: the position sensor hypothesis. Phys Biol 2017; 14:035005. [PMID: 28535150 DOI: 10.1088/1478-3975/aa6876] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The detection of gravity plays a fundamental role during the growth and evolution of plants. Although progress has been made in our understanding of the molecular, cellular and physical mechanisms involved in the gravity detection, a coherent scenario consistent with all the observations is still lacking. In this special issue article, we discuss recent experiments showing that the response to inclination of shoots is independent of the gravity intensity, meaning that the gravity sensor detects an inclination and not a force. This result questions some of the commonly accepted hypotheses and leads to propose a new 'position sensor hypothesis'. The implications of this new scenario are discussed in light of the different observations available in the literature.
Collapse
Affiliation(s)
- O Pouliquen
- Aix Marseille University, CNRS, IUSTI, Marseille, France
| | | | | | | | | | | | | |
Collapse
|