1
|
Feng Y, Mei W, Chen Q, Chen X, Ni Y, Lei M, Liu J. Probiotic Supplementation Alleviates Corticosterone-Induced Fatty Liver Disease by Regulating Hepatic Lipogenesis and Increasing Gut Microbiota Diversity in Broilers. Microorganisms 2025; 13:200. [PMID: 39858968 PMCID: PMC11767375 DOI: 10.3390/microorganisms13010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/19/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Emerging evidence indicates a close relationship between gut microbiota and fatty liver disease. It has been suggested that gut microbiota modulation with probiotics ameliorates fatty liver disease in rodents and humans, yet it remains unclear whether the same results will also be obtained in poultry. The aim of this study was to investigate whether a mixture of probiotics supplemented after hatching can prevent CORT-induced fatty liver disease in broilers, and to determine how such effects, if any, are associated with hepatic de novo lipogenesis and gut microbiota composition. Ninety-six one-day-old green-legged chickens were divided into a control group (CON) and probiotic group (PB). At 28 days of age, fatty liver was induced in 16 broilers that were randomly selected from the CON or PB group. At the end of the experiment, broilers from four groups, (i) the control group (CON), (ii) corticosterone group (CORT), (iii) probiotic group (PB), and (iv) PB plus CORT group (CORT&PB), were slaughtered for sampling and analysis. The results showed that probiotic administration significantly prevented CORT-induced body weight loss (p < 0.05) but did not alleviate the weight loss of immune organs caused by CORT. Compared to CON, the broilers in the CORT group exhibited a significant increase in triglyceride (TG) levels in plasma and liver (p < 0.01), as well as severe hepatocytic steatosis and hepatocellular ballooning, which was accompanied by the upregulation of hepatic lipogenesis gene expression. However, probiotic supplementation markedly decreased the intrahepatic lipid accumulation and steatosis histological score, which was associated with the downregulation of sterol regulatory element-binding protein-1 (SREBP1) and acetyl-CoA carboxylase (ACC) mRNA (p < 0.05) and the expression of its protein (p = 0.06). The cecal microbiota composition was determined by 16S rRNA high-throughput sequencing. The results showed that CORT treatment induced distinct gut microbiota alterations with a decrease in microbial diversity and an increase in Proteobacteria abundance (p < 0.05). In contrast, probiotic supplementation increased the beta diversity, the community richness, and the diversity index (p > 0.05), as well as the abundance of Intestinimonas (p < 0.05). Our results indicate that CORT treatment induced severe fatty liver disease and altered the gut microbiota composition in broilers. However, post-hatching probiotic supplementation had a beneficial effect on alleviating fatty liver disease by regulating lipogenic gene expression and increasing gut microbiota diversity and the abundance of beneficial bacteria. We demonstrate for the first time that the supplementation of probiotics to chicks had a beneficial effect on preventing fatty liver disease through regulating lipogenic gene expression and improving the gut microbial balance. Thus, our results indicate that probiotics are a potential nutritional agent for preventing fatty liver disease in chickens.
Collapse
Affiliation(s)
- Yuyan Feng
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing 210094, China; (Y.F.); (X.C.)
- Key Laboratory of Animal Physiologic and Biochemistry, College of Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210094, China; (W.M.); (Q.C.); (Y.N.)
| | - Wenqing Mei
- Key Laboratory of Animal Physiologic and Biochemistry, College of Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210094, China; (W.M.); (Q.C.); (Y.N.)
| | - Qu Chen
- Key Laboratory of Animal Physiologic and Biochemistry, College of Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210094, China; (W.M.); (Q.C.); (Y.N.)
| | - Xiaojing Chen
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing 210094, China; (Y.F.); (X.C.)
- Key Laboratory of Animal Physiologic and Biochemistry, College of Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210094, China; (W.M.); (Q.C.); (Y.N.)
| | - Yingdong Ni
- Key Laboratory of Animal Physiologic and Biochemistry, College of Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210094, China; (W.M.); (Q.C.); (Y.N.)
| | - Mingming Lei
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing 210094, China; (Y.F.); (X.C.)
| | - Jie Liu
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing 210094, China; (Y.F.); (X.C.)
| |
Collapse
|
2
|
Shang K, Guan J, An T, Zhao H, Bai Q, Li H, Sha Q, Jiang M, Zhang X, Luo X. Effects of perinatal nutrition supplementation and early weaning on serum biochemistry, metabolomics, and reproduction in yaks. Front Vet Sci 2024; 11:1443856. [PMID: 39748870 PMCID: PMC11694451 DOI: 10.3389/fvets.2024.1443856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/07/2024] [Indexed: 01/04/2025] Open
Abstract
The transition period is a crucial stage in the reproductive cycle for dams and is linked closely with postpartum recovery, reproduction performance, and health. The confronting problem in the yak industry is that transition yaks under a conventional grazing feeding regime endure nutritional deficiency since this period is in late winter and early spring of the Qinghai-Tibet Plateau with the lack of grass on natural pasture. Therefore, this study aimed to investigate the effects of perinatal nutritional supplementation and early weaning on serum biochemistry, reproductive performance, and metabolomics in transition yaks. Eighteen healthy yaks in late pregnancy (233.9 ± 18.3 kg, 2-4 parity) were randomly assigned to three groups: conventional grazing feeding (GF, n = 6), additional nutrition supplementation (SF, n = 6), and additional nutrition supplementation with early weaning (SW, n = 6). Yaks in the GF, SF, and SW groups were free grazing on the same pasture in the daytime from -30 to 90 d relative to parturition. Yaks in SF and SW groups received total mixed ration supplementation in the barn during the night throughout the trial. Calves in the SW group were early weaned and separated from the dam at 60 d postpartum. Maternal body weight was measured at -30 and 90 d, and serum samples were collected to analyze serum biochemistry, hormones, and metabolomics at -15, 30, and 90 d relative to calving. In the SF and SW groups, yaks showed significantly higher body weight gain, serum glucose, globulin, and total protein concentrations. Lipid transportation molecules apolipoprotein B100 and very low-density lipoprotein of SF and SW yaks were significantly increased along with the decreased lipid mobilization products non-esterified fatty acid and β-hydroxybutyric acid when compared to GF yaks at -15 and 30 d. At 90 d, serum non-esterified fatty acid and β-hydroxybutyric acid levels were significantly lower in SW yaks than in SF ones, while apolipoprotein B100 and very low-density lipoprotein levels were significantly higher in SW yaks than in GF yaks. The serum levels of metabolic regulatory hormones, including insulin, leptin, and insulin-like growth factor I were significantly increased, and glucagon was significantly reduced in the SF and SW groups than in the GF group at -15 and 30 d. Among serum reproductive hormones, SF and SW yaks had significantly higher estradiol and progesterone concentrations than GF ones at -15 and 30 d. Follicle-stimulating and luteinizing hormone levels were increased in SW group than in SF and GF ones at 90 d. The calving rates in the following year were 0% (GF), 16.7% (SF), and 83.3% (SW), respectively. The serum metabolomics analysis revealed 848 metabolites in positive mode and 350 in negative mode. With the perinatal nutritional supplementation, the lipid and energy metabolism of transition yaks were improved, meanwhile, lipid mobilization and estrogen production-related pathways were down-regulated. These data suggest that perinatal nutrition supplementation reduces body weight loss, improves glucose and lipid metabolic adaptation to the transition period, and improves yaks' reproductive performance. Additionally, the combination of early weaning and nutritional supplementation results in lower lipid mobilization and up-regulation of lipid transportation and reproductive hormone secretion, which may further contribute to postpartum recovery and acceleration of the reproductive cycle.
Collapse
Affiliation(s)
- Kaiyuan Shang
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Tianwu An
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Hongwen Zhao
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Qin Bai
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Huade Li
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Quan Sha
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Mingfeng Jiang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | | | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu, China
| |
Collapse
|
3
|
Li W, Yang Z, Yan C, Chen S, Zhao X. The relationship between mitochondrial DNA haplotype and its copy number on body weight and morphological traits of Wuliangshan black-bone chickens. PeerJ 2024; 12:e17989. [PMID: 39703908 PMCID: PMC11657187 DOI: 10.7717/peerj.17989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/07/2024] [Indexed: 12/21/2024] Open
Abstract
Mitochondria play a pivotal role as carriers of genetic information through their circular DNA molecules. The rapid evolution of the D-loop region in mitochondria makes it an ideal molecular marker for exploring genetic differentiation among individuals within species and populations with close kinship. However, the influence of mtDNA D-loop region haplotypes and mtDNA copy numbers on phenotypic traits, particularly production traits in chickens, remains poorly understood. In this comprehensive study, we conducted D-loop region amplification and sequencing in the blood mitochondria of 232 female Wuliangshan black-bone chickens. Our investigation identified a total of 38 haplotypes, with a focus on 10 haplotypes that included more than five individuals. We meticulously analyzed the correlations between these haplotypes and a range of traits, encompassing body weight, tibial length, tibial circumference, body oblique length, chest width, and chest depth. The results unveiled significant disparities in specific tested traits across different haplotypes, indicating a tangible association between mtDNA haplotypes and traits in chickens. These findings underscore the potential impact of mitochondrial DNA variations on energy metabolism, ultimately leading to divergent chicken phenotypes. Furthermore, our examination revealed positive correlations between mtDNA copy numbers and tested traits for select haplotypes, while other haplotypes exhibited non-uniform relationships between traits and mtDNA copy numbers. In addition, phylogenetic analysis disclosed the involvement of two subspecies of red jungle chicken in the origin of Wuliangshan black-bone chickens. Consequently, our research contributes novel insights into mitochondrial genomic selection, augments comprehension of the roles played by haplotypes and mtDNA copy numbers in chicken population genetics and phylogenetic analysis, and furnishes fundamental data crucial for the preservation and provenance determination of black-bone chickens.
Collapse
Affiliation(s)
- Wenpeng Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhen Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chao Yan
- Agricultural Genomics Institute, Chinese Academy of Agricultural Science, Shenzhen, China
| | - Siyu Chen
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Xingbo Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Zhang W, Geng Y, Yang K, Hu Y, Xue M, Cui X, Zhang L, Wang S, Li T, Luo X, Hu Y. 1,25-dihydroxyvitamin D 3 enhances the expression of phosphorus transporters via vitamin D receptor in ligated duodenal loops of Arbor Acres male broilers. Poult Sci 2024; 103:104503. [PMID: 39522346 PMCID: PMC11585697 DOI: 10.1016/j.psj.2024.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] could promote phosphorus (P) absorption in the duodenum of broilers. The vitamin D receptor (VDR) mediates the action of 1,25-(OH)2D3. However, it remains unknown whether and how VDR is involved in promoting P absorption in the duodenum of broilers by 1,25-(OH)2D3. The objective of the current study was to investigate the effect of added 1,25-(OH)2D3 levels on P absorption, mRNA or protein expression levels of VDR, retinoid X receptor (RXR), type IIb sodium-phosphate cotransporter (NaPi-IIb), inorganic phosphate transporter (PiT) 1 and PiT-2, and the enrichments of VDR bound to DNA promoters of the above P transporters in the ligated duodenal loops of Arbor Acres male broilers. The duodenal loops were perfused with solutions (pH = 6.0) containing 0 (control), 12.5, or 25.0 ng/L of 1,25-(OH)2D3 for up to 40 min. The results indicated that the addition of either 12.5 or 25.0 ng/L 1,25-(OH)2D3 to the perfusates increased (P < 0.04) P absorption percentage and rate, as well as the mRNA expression levels of VDR, RXR, NaPi-IIb, and PiT-2, alongside protein expression levels of VDR, NaPi-IIb, and PiT-2, whereas it did not affect (P > 0.10) PiT-1 mRNA and protein expression levels. Moreover, 1,25-(OH)2D3 administration increased (P < 0.01) the enrichments of VDR bound to NaPi-IIb and PiT-2 DNA promoter regions in the ligated duodenal loops of broilers, which were in line with their mRNA expression levels. These findings suggest that 1,25-(OH)2D3 increased P absorption possibly through VDR-mediated transactivation of NaPi-IIb and PiT-2 genes in the duodenum of Arbor Acres male broilers.
Collapse
Affiliation(s)
- Weiyun Zhang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Yanqiang Geng
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Ke Yang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Yangyang Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Mengxiao Xue
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Liyang Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengchen Wang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|
5
|
Stoccoro A, Lari M, Migliore L, Coppedè F. Associations between Circulating Biomarkers of One-Carbon Metabolism and Mitochondrial D-Loop Region Methylation Levels. EPIGENOMES 2024; 8:38. [PMID: 39449362 PMCID: PMC11503383 DOI: 10.3390/epigenomes8040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES One-carbon metabolism is a critical pathway for epigenetic mechanisms. Circulating biomarkers of one-carbon metabolism have been associated with changes in nuclear DNA methylation levels in individuals affected by age-related diseases. More and more studies are showing that even mitochondrial DNA (mtDNA) could be methylated. In particular, methylation of the mitochondrial displacement (D-loop) region modulates the gene expression and replication of mtDNA and, when altered, can contribute to the development of human illnesses. However, no study until now has demonstrated an association between circulating biomarkers of one-carbon metabolism and D-loop methylation levels. METHODS In the study presented herein, we searched for associations between circulating one-carbon metabolism biomarkers, including folate, homocysteine, and vitamin B12, and the methylation levels of the D-loop region in DNA obtained from the peripheral blood of 94 elderly voluntary subjects. RESULTS We observed a positive correlation between D-loop methylation and vitamin B12 (r = 0.21; p = 0.03), while no significant correlation was observed with folate (r = 0.02; p = 0.80) or homocysteine levels (r = 0.02; p = 0.82). Moreover, D-loop methylation was increased in individuals with high vitamin B12 levels compared to those with normal vitamin B12 levels (p = 0.04). CONCLUSIONS This is the first study suggesting an association between vitamin B12 circulating levels and mtDNA methylation in human subjects. Given the potential implications of altered one-carbon metabolism and mitochondrial epigenetics in human diseases, a deeper understanding of their interaction could inspire novel interventions with beneficial effects for human health.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
| | - Martina Lari
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
| | - Lucia Migliore
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
6
|
El-Shater SN, Abo-El-Sooud K, Tolba A, Gamal M, Awad MA, Ibrahim M, Tayeh M, Swielim GA. Effect of in-ovo inoculation of betaine on hatchability, serum antioxidant levels, muscle gene expression and intestinal development of broiler chicks. J Anim Physiol Anim Nutr (Berl) 2024; 108:883-890. [PMID: 38353323 DOI: 10.1111/jpn.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 07/09/2024]
Abstract
This study investigated the effects of in-ovo inoculation of betaine on hatchability, hatching weight, and intestinal development, as well as serum and expression levels of some antioxidants in the posthatched chicks. A total of 350 fertile eggs of Hubbard efficiency plus breeder's flock were incubated at normal incubation temperature (37.5°C) and randomly assembled into 3 groups with 4 replicates, and 25 eggs per each. The experimental groups were allocated as noninjected control group (CN), diluent-injected group (CP, 0.1 mL saline), and betaine-injected group (B, 2.5 mg in 0.1 mL saline). The injections were performed in the air cells of the eggs on the 12th day of the embryonic phase. Hatchability percentage, hatching weight, serum-reduced glutathione (GSH), and superoxide dismutase (SOD) were estimated in 7-day-old chicks. Moreover, expression levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and SOD were determined in the breast skeletal muscles of chicks. Jejunum histo-morphometric analysis was assessed with computerised morphometric measurements. The results revealed that the hatchability percentage was not influenced by in-ovo injection of betaine or vehicle while betaine significantly increased the hatchling's weight of chicks. Moreover, there were a significant increase in SOD and Nrf2 mRNA expression levels. In-ovo injection of betaine significantly induced positive effects on intestinal morphometry by ameliorating the jejunal villus length, the ratio of villus height to villus width, and absorptive surface area.
Collapse
Affiliation(s)
- Saad N El-Shater
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khaled Abo-El-Sooud
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ayman Tolba
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mahmoud Gamal
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed A Awad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Moataz Ibrahim
- R&D Department, Feed Division, Cairo Poultry Company, Giza, Egypt
| | - Mahmoud Tayeh
- Danisco Animal Nutrition & Health, IFF, Leiden, Netherlands
| | - Gamal A Swielim
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Wu Y, Zhang M, Meng F, Ren K, Li D, Luo X, Hu Y. Betaine supplementation alleviates corticosterone-induced hepatic cholesterol accumulation through epigenetic modulation of HMGCR and CYP7A1 genes in laying hens. Poult Sci 2024; 103:103435. [PMID: 38232620 PMCID: PMC10827596 DOI: 10.1016/j.psj.2024.103435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Excessive corticosterone (CORT) exposure could cause hepatic cholesterol accumulation in chickens and maternal betaine supplementation could decrease hepatic cholesterol deposition through epigenetic modifications in offspring chickens. Nevertheless, it remains uncertain whether providing betaine to laying hens could protect CORT-induced hepatic cholesterol accumulation via epigenetic mechanisms. This study aimed to examine the effects of dietary betaine on plasma and hepatic cholesterol contents, expression of cholesterol metabolic genes, as well as DNA methylation on their promoters in the liver of laying hens exposed to CORT. A total of 72 laying hens at 130 d of age were randomly divided into 3 groups: control (CON), CORT, and CORT+betaine (CORT+BET) groups. The experiment lasted for 35 d. Chickens in CON and CORT groups were fed a basal diet, whereas the CORT+BET group chickens were fed the basal diet supplemented with 0.1% betaine for 35 d. On d 28 of the experiment, chickens in CORT and CORT+BET groups received daily subcutaneous injections of CORT (4.0 mg/kg body weight), whereas the CON group chickens were injected with an equal volume of solvent for 7 d. The results showed that CORT administration led to a significant increase (P < 0.05) in the contents of cholesterol in plasma and liver, associated with activation (P < 0.05) of sterol regulatory element binding transcription factor 2 (SREBP2), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), lecithin-cholesterol acyltransferase (LCAT) and low-density lipoprotein receptor (LDLR) genes expression, and inhibition of cholesterol-7-alpha hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) genes expression in the liver compared to the CON. In contrast, CORT-induced up-regulation of HMGCR mRNA and protein abundances and downregulation of CYP7A1 mRNA and protein abundances were completely normalized (P < 0.05) by betaine supplementation. Besides, CORT injection led to significant hypomethylation (P < 0.05) on HMGCR promoter and hypermethylation (P < 0.05) on CYP7A1 promoter. Moreover, dietary betaine rescued (P < 0.05) CORT-induced changes in methylation status of HMGCR and CYP7A1 genes promoters. These results indicate that dietary betaine addition protects laying hens from CORT-induced hepatic cholesterol accumulation via epigenetic modulation of HMGCR and CYP7A1 genes.
Collapse
Affiliation(s)
- Yulin Wu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, P. R. China
| | - Mengwei Zhang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, P. R. China
| | - Fanchi Meng
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, P. R. China
| | - Kunpeng Ren
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, P. R. China
| | - Ding Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, P. R. China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, P. R. China
| | - Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, P. R. China.
| |
Collapse
|
8
|
Ma S, Wang Y, Chen L, Wang W, Zhuang X, Liu Y, Zhao R. Parental betaine supplementation promotes gosling growth with epigenetic modulation of IGF gene family in the liver. J Anim Sci 2024; 102:skae065. [PMID: 38483185 PMCID: PMC10980284 DOI: 10.1093/jas/skae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Betaine is widely used as a feed additive in the chicken industry to promote laying performance and growth performance, yet it is unknown whether betaine can be used in geese to improve the laying performance of goose breeders and the growth traits of offspring goslings. In this study, laying goose breeders at 39 wk of age were fed basal (Control, CON) or betaine-supplemented diets at low (2.5 g/kg, LBT) or high (5 g/kg, HBT) levels for 7 wk, and the breeder eggs laid in the last week were collected for incubation. Offspring goslings were examined at 35 and 63 d of age. The laying rate tended to be increased (P = 0.065), and the feed efficiency of the breeders was improved by betaine supplementation, while the average daily gain of the offspring goslings was significantly increased (P < 0.05). Concentrations of insulin-like growth factor 2 (IGF-2) in serum and liver were significantly increased in the HBT group (P < 0.05), with age-dependent alterations of serum T3 levels. Concurrently, hepatic mRNA expression of the IGF gene family was significantly increased in goslings derived from betaine-treated breeders (P < 0.05). A higher ratio of proliferating cell nuclear antigen (PCNA)-immunopositive nuclei was found in the liver sections of the HBT group, which was confirmed by significantly upregulated hepatic expression of PCNA mRNA and protein (P < 0.05). Moreover, hepatic expression of thyroxine deiodinase type 1 (Dio1) and thyroid hormone receptor β (TRβ) was also significantly upregulated in goslings of the HBT group (P < 0.05). These changes were associated with significantly higher levels of global DNA 5-mC methylation, together with increased expression of methyl transfer genes (P < 0.05), including betaine-homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT), and DNA (cytosine-5-)-methyltransferase 1 (DNMT1). The promoter regions of IGF-2 genes, as well as the predicted TRβ binding site on the IGF-2 gene, were significantly hypomethylated (P < 0.05). These results indicate that gosling growth can be improved by dietary betaine supplementation in goose breeders via epigenetic modulation of the IGF gene family, especially IGF-2, in the liver.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Wang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liang Chen
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenzheng Wang
- Jiangsu Lihua Animal Husbandry Co., Ltd., Changzhou, Jiangsu 213168, China
| | - Xinjuan Zhuang
- Jiangsu Lihua Animal Husbandry Co., Ltd., Changzhou, Jiangsu 213168, China
| | - Yuelong Liu
- Jiangsu Lihua Animal Husbandry Co., Ltd., Changzhou, Jiangsu 213168, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, PR China
| |
Collapse
|
9
|
Liu J, Zhang K, Zhao M, Chen L, Chen H, Zhao Y, Zhao R. Dietary bile acids alleviate corticosterone-induced fatty liver and hepatic glucocorticoid receptor suppression in broiler chickens. J Anim Sci 2024; 102:skae338. [PMID: 39492782 PMCID: PMC11604113 DOI: 10.1093/jas/skae338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/02/2024] [Indexed: 11/05/2024] Open
Abstract
The aim of this study was to investigate the alleviating effects and mechanisms of bile acids (BA) on corticosterone-induced fatty liver in broiler chickens. Male Arbor Acres chickens were randomly divided into 3 groups: control group (CON), stress model group (CORT), and BA-treated group (CORT-BA). The CORT-BA group received a diet with 250 mg/kg BA from 21 d of age. From days 36 to 43, both the CORT and CORT-BA groups received subcutaneous injections of corticosterone to simulate chronic stress. The results indicated that BA significantly mitigated the body weight loss, liver enlargement, and hepatic lipid deposition caused by corticosterone (P < 0.05). Liver RNA-seq analysis showed that BA alleviated corticosterone-induced fatty liver by inhibiting lipid metabolism pathways, including fatty acid biosynthesis, triglyceride biosynthesis, and fatty acid transport. Additionally, BA improved corticosterone-induced downregulation of glucocorticoid receptor (GR) expression (P < 0.05). Molecular docking and cellular thermal shift assays revealed that hyodeoxycholic acid (HDCA), a major component of compound BA, could bind to GR and enhance its stability. In conclusion, BA alleviated corticosterone-induced fatty liver in broilers by inhibiting lipid synthesis pathways and mitigating the suppression of hepatic GR expression.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mindie Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Chen
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huimin Chen
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulan Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing, 210095, China
| |
Collapse
|
10
|
Cong W, Han W, Liu J, Zhao R, Wu L. Embryonic thermal manipulation leads growth inhibition and reduced hepatic insulin-like growth factor1 expression due to promoter DNA hypermethylation in broilers. Poult Sci 2023; 102:102562. [PMID: 36878101 PMCID: PMC10006857 DOI: 10.1016/j.psj.2023.102562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
When broilers cannot adapt to a high-temperature environment through self-regulation, it will cause heat stress, resulting in a large number of deaths and substantial economic losses. Studies have shown that thermal manipulation (TM) during the embryonic stage can improve broilers' ability to resist heat stress later. However, different TM strategies produce different results on broilers' growth. In this study, yellow-feathered broiler eggs were selected and randomly divided into 2 groups between E10 and E18, which the control group was incubated at 37.8°C with 56% humidity, and the TM group was subjected to 39°C with 65% humidity. After hatching, all broilers were reared normally until slaughtered at 12 d of age (D12). During D1 to D12, body weight, feed intake, and body temperature were recorded. The results showed that TM significantly decreased (P < 0.05) the final body weight, weight gain, and average daily feed intake of broilers. Meanwhile, the serum levels of Triiodothyronine (T3) and free T3 were significantly decreased in the TM group (P < 0.05). The expressions of hepatic growth regulation-associated genes, growth hormone receptor (GHR), insulin-like growth factor1, and 2 (IGF1 and IGF2) were significantly down-regulated in the TM group (P < 0.05). In addition, TM altered hepatic DNA methylation, resulting in a significant increase (P < 0.05) in the methylation of the IGF1 and GHR promoter regions. The above results indicated that TM during the embryonic stage decreased the serum thyroid hormone level and increased the methylation level of the IGF1 and GHR promoter regions to down-regulate the expression of growth-related genes, resulting in early growth inhibition of broilers.
Collapse
Affiliation(s)
- Wei Cong
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wanwan Han
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Liu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lei Wu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
11
|
Sécula A, Bluy LE, Chapuis H, Bonnet A, Collin A, Gress L, Cornuez A, Martin X, Bodin L, Bonnefont CMD, Morisson M. Maternal dietary methionine restriction alters hepatic expression of one-carbon metabolism and epigenetic mechanism genes in the ducklings. BMC Genomics 2022; 23:823. [PMID: 36510146 PMCID: PMC9746021 DOI: 10.1186/s12864-022-09066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Embryonic and fetal development is very susceptible to the availability of nutrients that can interfere with the setting of epigenomes, thus modifying the main metabolic pathways and impacting the health and phenotypes of the future individual. We have previously reported that a 38% reduction of the methyl donor methionine in the diet of 30 female ducks reduced the body weight of their 180 mule ducklings compared to that of 190 ducklings from 30 control females. The maternal methionine-restricted diet also altered plasmatic parameters in 30 of their ducklings when compared to that of 30 ducklings from the control group. Thus, their plasma glucose and triglyceride concentrations were higher while their free fatty acid level and alanine transaminase activity were decreased. Moreover, the hepatic transcript level of 16 genes involved in pathways related to energy metabolism was significantly different between the two groups of ducklings. In the present work, we continued studying the liver of these newly hatched ducklings to explore the impact of the maternal dietary methionine restriction on the hepatic transcript level of 70 genes mostly involved in one-carbon metabolism and epigenetic mechanisms. RESULTS Among the 12 genes (SHMT1, GART, ATIC, FTCD, MSRA, CBS, CTH, AHCYL1, HSBP1, DNMT3, HDAC9 and EZH2) identified as differentially expressed between the two maternal diet groups (p-value < 0.05), 3 of them were involved in epigenetic mechanisms. Ten other studied genes (MTR, GLRX, MTHFR, AHCY, ADK, PRDM2, EEF1A1, ESR1, PLAGL1, and WNT11) tended to be differently expressed (0.05 < p-value < 0.10). Moreover, the maternal dietary methionine restriction altered the number and nature of correlations between expression levels of differential genes for one-carbon metabolism and epigenetic mechanisms, expression levels of differential genes for energy metabolism, and phenotypic traits of ducklings. CONCLUSION This avian model showed that the maternal dietary methionine restriction impacted both the mRNA abundance of 22 genes involved in one-carbon metabolism or epigenetic mechanisms and the mRNA abundance of 16 genes involved in energy metabolism in the liver of the newly hatched offspring, in line with the previously observed changes in their phenotypic traits.
Collapse
Affiliation(s)
- Aurélie Sécula
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Lisa E. Bluy
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Hervé Chapuis
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Agnès Bonnet
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Anne Collin
- grid.511104.0INRAE, Université de Tours, BOA, 37380 Nouzilly, France
| | - Laure Gress
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Alexis Cornuez
- UEPFG INRA Bordeaux-Aquitaine (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d’Artiguères 1076, route de Haut Mauco, F-40280 Benquet, France
| | - Xavier Martin
- UEPFG INRA Bordeaux-Aquitaine (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d’Artiguères 1076, route de Haut Mauco, F-40280 Benquet, France
| | - Loys Bodin
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Cécile M. D. Bonnefont
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Mireille Morisson
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| |
Collapse
|
12
|
Yang Z, Xu C, Ma S, Zhao RQ, Yang HM, Wang ZY. Effects of betaine supplementation on reproductive performance of breeding geese. Br Poult Sci 2022; 64:283-288. [PMID: 36164766 DOI: 10.1080/00071668.2022.2128988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. An experiment feeding three concentrations of betaine was conducted using breeding geese to analyse the reproductive performance, serum biochemical indexes, egg quality and intestinal immunity.2. A total of 450 female and 90 male Jiangnan White breeding geese were divided into three treatments, with five pen replicates each containing 30 female geese and 6 male geese.3. The results showed that there was no significant effect on the reproductive performance, serum biochemical indexes or jejunal villi goblet cells of geese with different levels of betaine in the diet (P>0.05). Compared with the control group, the addition of 2.5 g/kg betaine to the diet showed a tendency to increase egg mass (P>0.05) the betaine content in the yolk (P<0.05). Feeding betaine significantly increased the height of jejunal villi and egg yolk total cholesterol content in female geese (P<0.05).4. In conclusion, adding betaine to the goose diet was effective in its ability to improve intestinal structures and increase egg production. Adding 2.5 g/kg betaine to feed significantly increased the content of TCHOL and betaine in goose eggs.
Collapse
Affiliation(s)
- Z Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - C Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - S Ma
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - R Q Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - H M Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Z Y Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| |
Collapse
|
13
|
Sécula A, Chapuis H, Collin A, Bluy LE, Bonnet A, Bodin L, Gress L, Cornuez A, Martin X, Bonnefont CMD, Morisson M. Maternal dietary methionine restriction alters the expression of energy metabolism genes in the duckling liver. BMC Genomics 2022; 23:407. [PMID: 35637448 PMCID: PMC9150296 DOI: 10.1186/s12864-022-08634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background In mammals, the nutritional status experienced during embryonic development shapes key metabolic pathways and influences the health and phenotype of the future individual, a phenomenon known as nutritional programming. In farmed birds as well, the quantity and quality of feed offered to the dam can impact the phenotype of the offspring. We have previously reported that a 38% reduction in the intake of the methyl donor methionine in the diet of 30 female ducks during the growing and laying periods - from 10 to 51 weeks of age - reduced the body weight of their 180 mule ducklings compared to that of 190 ducklings from 30 control females. The maternal dietary methionine restriction also altered the hepatic energy metabolism studied in 30 of their ducklings. Thus, their plasma glucose and triglyceride concentrations were higher while their plasma free fatty acid level was lower than those measured in the plasma of 30 ducklings from the control group. The objective of this new study was to better understand how maternal dietary methionine restriction affected the livers of their newly hatched male and female ducklings by investigating the hepatic expression levels of 100 genes primarily targeting energy metabolism, amino acid transport, oxidative stress, apoptotic activity and susceptibility to liver injury. Results Sixteen of the genes studied were differentially expressed between the ducklings from the two groups. Maternal dietary methionine restriction affected the mRNA levels of genes involved in different pathways related to energy metabolism such as glycolysis, lipogenesis or electron transport. Moreover, the mRNA levels of the nuclear receptors PPARGC1B, PPARG and RXRA were also affected. Conclusions Our results show that the 38% reduction in methionine intake in the diet of female ducks during the growing and egg-laying periods impacted the liver transcriptome of their offspring, which may explain the previously observed differences in their liver energy metabolism. These changes in mRNA levels, together with the observed phenotypic data, suggest an early modulation in the establishment of metabolic pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08634-1.
Collapse
Affiliation(s)
- Aurélie Sécula
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France.,Present Address: IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Hervé Chapuis
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Anne Collin
- INRAE, Université de Tours, BOA, 37380, Nouzilly, France
| | - Lisa E Bluy
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Agnès Bonnet
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Loys Bodin
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Laure Gress
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Alexis Cornuez
- UEPFG INRAE Bordeaux-Aquitaine (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d'Artiguères 1076, route de Haut Mauco, F-40280, Benquet, France
| | - Xavier Martin
- UEPFG INRAE Bordeaux-Aquitaine (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d'Artiguères 1076, route de Haut Mauco, F-40280, Benquet, France
| | - Cécile M D Bonnefont
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France
| | - Mireille Morisson
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France.
| |
Collapse
|
14
|
Feng Y, Li Y, Jiang W, Hu Y, Jia Y, Zhao R. GR-mediated transcriptional regulation of m 6A metabolic genes contributes to diet-induced fatty liver in hens. J Anim Sci Biotechnol 2021; 12:117. [PMID: 34872591 PMCID: PMC8650238 DOI: 10.1186/s40104-021-00642-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/03/2021] [Indexed: 12/22/2022] Open
Abstract
Background Glucocorticoid receptor (GR) mediated corticosterone-induced fatty liver syndrome (FLS) in the chicken by transactivation of Fat mass and obesity associated gene (FTO), leading to demethylation of N6-methyladenosine (m6A) and post-transcriptional activation of lipogenic genes. Nutrition is considered the main cause of FLS in the modern poultry industry. Therefore, this study was aimed to investigate whether GR and m6A modification are involved in high-energy and low protein (HELP) diet-induced FLS in laying hens, and if true, what specific m6A sites of lipogenic genes are modified and how GR mediates m6A-dependent lipogenic gene activation in HELP diet-induced FLS in the chicken. Results Laying hens fed HELP diet exhibit excess (P < 0.05) lipid accumulation and lipogenic genes activation in the liver, which is associated with significantly increased (P < 0.05) GR expression that coincided with global m6A demethylation. Concurrently, the m6A demethylase FTO is upregulated (P < 0.05), whereas the m6A reader YTHDF2 is downregulated (P < 0.05) in the liver of FLS chickens. Further analysis identifies site-specific demethylation (P < 0.05) of m6A in the mRNA of lipogenic genes, including FASN, SREBP1 and SCD. Moreover, GR binding to the promoter of FTO gene is highly enriched (P < 0.05), while GR binding to the promoter of YTHDF2 gene is diminished (P < 0.05). Conclusions These results implicate a possible role of GR-mediated transcriptional regulation of m6A metabolic genes on m6A-depenent post-transcriptional activation of lipogenic genes and shed new light in the molecular mechanism of FLS etiology in the chicken.
Collapse
Affiliation(s)
- Yue Feng
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China
| | - Yanlin Li
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China
| | - Wenduo Jiang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China
| | - Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China
| | - Yimin Jia
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China.,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China. .,Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China.
| |
Collapse
|
15
|
Brown CLJ, Zaytsoff SJM, Montina T, Inglis GD. Corticosterone-Mediated Physiological Stress Alters Liver, Kidney, and Breast Muscle Metabolomic Profiles in Chickens. Animals (Basel) 2021; 11:3056. [PMID: 34827788 PMCID: PMC8614290 DOI: 10.3390/ani11113056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
The impact of physiological stress on the metabolomes of liver, kidney, and breast muscle was investigated in chickens. To incite a stress response, birds were continuously administered corticosterone (CORT) in their drinking water at three doses (0, 10, and 30 mg L-1), and they were sampled 1, 5, and 12 days after the start of the CORT administration. To solubilize CORT, it was first dissolved in ethanol and then added to water. The administration of ethanol alone significantly altered branched chain amino acid metabolism in both the liver and the kidney, and amino acid and nitrogen metabolism in breast muscle. CORT significantly altered sugar and amino acid metabolism in all three tissues, but to a much greater degree than ethanol alone. In this regard, CORT administration significantly altered 11, 46, and 14 unique metabolites in liver, kidney, and breast muscle, respectively. Many of the metabolites that were affected by CORT administration, such as mannose and glucose, were previously linked to increases in glycosylation and gluconeogenesis in chickens under conditions of production stress. Moreover, several of these metabolites, such as dimethylglycine, galactose, and carnosine were also previously linked to reduced quality meat. In summary, the administration of CORT in chickens significantly modulated host metabolism. Moreover, results indicated that energy potentials are diverted from muscle anabolism to muscle catabolism and gluconeogenesis during periods of stress.
Collapse
Affiliation(s)
- Catherine L. J. Brown
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (C.L.J.B.); (S.J.M.Z.)
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Sarah J. M. Zaytsoff
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (C.L.J.B.); (S.J.M.Z.)
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Science Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (C.L.J.B.); (S.J.M.Z.)
| |
Collapse
|
16
|
De Haas EN, Newberry RC, Edgar J, Riber AB, Estevez I, Ferrante V, Hernandez CE, Kjaer JB, Ozkan S, Dimitrov I, Rodenburg TB, Janczak AM. Prenatal and Early Postnatal Behavioural Programming in Laying Hens, With Possible Implications for the Development of Injurious Pecking. Front Vet Sci 2021; 8:678500. [PMID: 34336975 PMCID: PMC8323009 DOI: 10.3389/fvets.2021.678500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022] Open
Abstract
Injurious pecking (IP) represents a serious concern for the welfare of laying hens (Gallus gallus domesticus). The risk of IP among hens with intact beaks in cage-free housing prompts a need for solutions based on an understanding of underlying mechanisms. In this review, we explore how behavioural programming via prenatal and early postnatal environmental conditions could influence the development of IP in laying hens. The possible roles of early life adversity and mismatch between early life programming and subsequent environmental conditions are considered. We review the role of maternal stress, egg conditions, incubation settings (temperature, light, sound, odour) and chick brooding conditions on behavioural programming that could be linked to IP. Brain and behavioural development can be programmed by prenatal and postnatal environmental conditions, which if suboptimal could lead to a tendency to develop IP later in life, as we illustrate with a Jenga tower that could fall over if not built solidly. If so, steps taken to optimise the environmental conditions of previous generations and incubation conditions, reduce stress around hatching, and guide the early learning of chicks will aid in prevention of IP in commercial laying hen flocks.
Collapse
Affiliation(s)
- Elske N De Haas
- Division of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Flanders Research Institute for Agriculture, Fisheries, and Food, Melle, Belgium
| | - Ruth C Newberry
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Joanne Edgar
- Bristol Veterinary School, University of Bristol, Langford, United Kingdom
| | - Anja B Riber
- Aarhus University, Department of Animal Science, Tjele, Denmark
| | - Inma Estevez
- Department of Animal Production, Neiker, Vitoria-Gasteiz, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Valentina Ferrante
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Carlos E Hernandez
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Joergen B Kjaer
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Sezen Ozkan
- Department of Animal Science, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - Ivan Dimitrov
- Agricultural Institute - Stara Zagora, Stara Zagora, Bulgaria
| | - T Bas Rodenburg
- Division of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Andrew M Janczak
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
17
|
Lee I. Regulation of Cytochrome c Oxidase by Natural Compounds Resveratrol, (-)-Epicatechin, and Betaine. Cells 2021; 10:cells10061346. [PMID: 34072396 PMCID: PMC8229178 DOI: 10.3390/cells10061346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Numerous naturally occurring molecules have been studied for their beneficial health effects. Many compounds have received considerable attention for their potential medical uses. Among them, several substances have been found to improve mitochondrial function. This review focuses on resveratrol, (–)-epicatechin, and betaine and summarizes the published data pertaining to their effects on cytochrome c oxidase (COX) which is the terminal enzyme of the mitochondrial electron transport chain and is considered to play an important role in the regulation of mitochondrial respiration. In a variety of experimental model systems, these compounds have been shown to improve mitochondrial biogenesis in addition to increased COX amount and/or its enzymatic activity. Given that they are inexpensive, safe in a wide range of concentrations, and effectively improve mitochondrial and COX function, these compounds could be attractive enough for possible therapeutic or health improvement strategies.
Collapse
Affiliation(s)
- Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Korea
| |
Collapse
|
18
|
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) poses a growing challenge in terms of its prevention and treatment. The 'multiple hits' hypothesis of multiple insults, such as dietary fat intake, de novo lipogenesis, insulin resistance, oxidative stress, mitochondrial dysfunction, gut dysbiosis and hepatic inflammation, can provide a more accurate explanation of the pathogenesis of NAFLD. Betaine plays important roles in regulating the genes associated with NAFLD through anti-inflammatory effects, increased free fatty oxidation, anti-lipogenic effects and improved insulin resistance and mitochondrial function; however, the mechanism of betaine remains elusive.
Collapse
|
19
|
Wang M, Ibeagha-Awemu EM. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. Front Genet 2021; 11:613636. [PMID: 33708235 PMCID: PMC7942785 DOI: 10.3389/fgene.2020.613636] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
The dynamic changes in the epigenome resulting from the intricate interactions of genetic and environmental factors play crucial roles in individual growth and development. Numerous studies in plants, rodents, and humans have provided evidence of the regulatory roles of epigenetic processes in health and disease. There is increasing pressure to increase livestock production in light of increasing food needs of an expanding human population and environment challenges, but there is limited related epigenetic data on livestock to complement genomic information and support advances in improvement breeding and health management. This review examines the recent discoveries on epigenetic processes due to DNA methylation, histone modification, and chromatin remodeling and their impacts on health and production traits in farm animals, including bovine, swine, sheep, goat, and poultry species. Most of the reports focused on epigenome profiling at the genome-wide or specific genic regions in response to developmental processes, environmental stressors, nutrition, and disease pathogens. The bulk of available data mainly characterized the epigenetic markers in tissues/organs or in relation to traits and detection of epigenetic regulatory mechanisms underlying livestock phenotype diversity. However, available data is inadequate to support gainful exploitation of epigenetic processes for improved animal health and productivity management. Increased research effort, which is vital to elucidate how epigenetic mechanisms affect the health and productivity of livestock, is currently limited due to several factors including lack of adequate analytical tools. In this review, we (1) summarize available evidence of the impacts of epigenetic processes on livestock production and health traits, (2) discuss the application of epigenetics data in livestock production, and (3) present gaps in livestock epigenetics research. Knowledge of the epigenetic factors influencing livestock health and productivity is vital for the management and improvement of livestock productivity.
Collapse
Affiliation(s)
- Mengqi Wang
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
- Department of Animal Science, Laval University, Quebec, QC, Canada
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
20
|
Chen W, Zhang X, Xu M, Jiang L, Zhou M, Liu W, Chen Z, Wang Y, Zou Q, Wang L. Betaine prevented high-fat diet-induced NAFLD by regulating the FGF10/AMPK signaling pathway in ApoE -/- mice. Eur J Nutr 2020; 60:1655-1668. [PMID: 32808060 DOI: 10.1007/s00394-020-02362-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Nonalcoholic fatty liver disease (NAFLD) is currently the leading cause of chronic liver disease in developing countries. The pathogenesis is complex, and there is currently no effective treatment. Betaine is an essential intermediate in choline catabolism and an important component of the methionine cycle. Betaine deficiency is associated with NAFLD severity, and its mechanism needs to be further elaborated. METHODS In this study, an NAFLD mouse model was established by feeding ApoE-/- mice a high-fat diet. The effects of betaine on NAFLD were investigated, including its mechanism. RESULTS In this study, after treatment with betaine, blood lipid levels and liver damage were significantly decreased in the NAFLD mouse model. The fat infiltration of the liver tissues of high-fat diet (HFD)-fed mice after betaine administration was significantly improved. Betaine treatment significantly upregulated AMP-activated protein kinase (AMPK), fibroblast growth factor 10 (FGF10), and adipose triglyceride lipase (ATGL) protein levels both in vivo and in vitro and suppressed lipid metabolism-related genes. Furthermore, the overexpression of FGF10 increased the protein level of AMPK and decreased lipid accumulation in HepG2 cells. CONCLUSION Taken together, the data strongly suggest that betaine significantly prevents high-fat diet-induced NAFLD through the FGF10/AMPK signaling pathway in ApoE-/- mice.
Collapse
Affiliation(s)
- Weiqiang Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular DiseasesMinistry of Education, Gannan Medical University, Ganzhou, 341000, China
- KingMed Diagnostics, Guangzhou, 510320, China
| | - Xiaoli Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular DiseasesMinistry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Minwen Xu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Lixia Jiang
- First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Min Zhou
- Undergraduate of Biotechnology, Gannan Medical University, Ganzhou, 341000, China
| | - Wenjun Liu
- Undergraduate of Biotechnology, Gannan Medical University, Ganzhou, 341000, China
| | - Zhijun Chen
- Undergraduate of Biotechnology, Gannan Medical University, Ganzhou, 341000, China
| | - Yucai Wang
- Jiangxi Xi Di Biological Science and Technology Co., Ltd., Ganzhou, 341000, China
| | - Qingyan Zou
- Jiangxi Xi Di Biological Science and Technology Co., Ltd., Ganzhou, 341000, China
| | - Liefeng Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular DiseasesMinistry of Education, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
21
|
Strillacci MG, Marelli SP, Martinez-Velazquez G. Hybrid Versus Autochthonous Turkey Populations: Homozygous Genomic Regions Occurrences Due to Artificial and Natural Selection. Animals (Basel) 2020; 10:ani10081318. [PMID: 32751760 PMCID: PMC7460020 DOI: 10.3390/ani10081318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary In this study we investigate the genomic differentiation of traditional Mexican turkey breeds and commercial hybrid strains. The analysis aimed to identify the effects of different types of selection on the birds’ genome structure. Mexican turkeys are characterized by an adaptive selection to their specific original environment; on the other hand, commercial hybrid strains are directionally selected to maximize productive traits and to reduce production costs. The Mexican turkeys were grouped in two geographic subpopulations, while high genomic homogeneity was found in hybrid birds. Traditional breeds and commercial strains are clearly differentiated from a genetic point of view. Inbreeding coefficients were here calculated with different approaches. A clear effect of selection for productive traits was recorded. Abstract The Mexican turkey population is considered to be the descendant of the original domesticated wild turkey and it is distinct from hybrid strains obtained by the intense artificial selection activity that has occurred during the last 40 years. In this study 30 Mexican turkeys were genomically compared to 38 commercial hybrids using 327,342 SNP markers in order to elucidate the differences in genome variability resulting from different types of selection, i.e., only adaptive for Mexican turkey, and strongly directional for hybrids. Runs of homozygosity (ROH) were detected and the two inbreeding coefficients (F and FROH) based on genomic information were calculated. Principal component and admixture analyses revealed two different clusters for Mexican turkeys (MEX_cl_1 and MEX_cl_2) showing genetic differentiation from hybrids (HYB) (FST equal 0.168 and 0.167, respectively). A total of 3602 ROH were found in the genome of the all turkeys populations. ROH resulted mainly short in length and the ROH_island identified in HYB (n = 9), MEX_cl_1 (n = 1), and MEX_cl_2 (n = 2) include annotated genes related to production traits: abdominal fat (percentage and weight) and egg characteristics (egg shell color and yolk weight). F and FROH resulted correlated to each other only for Mexican populations. Mexican turkey genomic variability allows us to separate the birds into two subgroups according to the geographical origin of samples, while the genomic homogeneity of hybrid birds reflected the strong directional selection occurring in this population.
Collapse
Affiliation(s)
- Maria Giuseppina Strillacci
- Department of Veterinary Medicine, University of Milan, Via Festa del Perdono, 7, 20122 Milano, Italy;
- Correspondence: ; Tel.: +39-025-033-4582
| | - Stefano Paolo Marelli
- Department of Veterinary Medicine, University of Milan, Via Festa del Perdono, 7, 20122 Milano, Italy;
| | | |
Collapse
|
22
|
Mei W, Hao Y, Xie H, Ni Y, Zhao R. Hepatic Inflammatory Response to Exogenous LPS Challenge is Exacerbated in Broilers with Fatty Liver Disease. Animals (Basel) 2020; 10:ani10030514. [PMID: 32204385 PMCID: PMC7143745 DOI: 10.3390/ani10030514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
This study aimed to examine hepatic function and inflammatory response in broilers with fatty livers, following acute lipopolysaccharide (LPS) challenge. One-day-old Lihua yellow broilers were fed a basal diet. Broilers were divided into four groups: control (CON), corticosterone treatment (CORT), LPS treatment (LPS), and LPS and CORT treatment (LPS&CORT). Results show that CORT induced an increase in plasma and liver triglycerides (TGs), which were accompanied by severe hepatic steatosis. The LPS group showed hepatocyte necrosis with inflammatory cell infiltration. Total liver damage score in the LPS&CORT group was significantly higher than that in the LPS group (p < 0.05). Activity levels of plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were similar in the CON and CORT groups, but higher in the LPS group. Gene expression upregulation of the proinflammatory cytokines (NF-κB, IL-1β, IL-6, IFN-γ, and iNOS) was also noted in the LPS group (p < 0.05). In particular, LPS injection exacerbated the gene expression of these proinflammatory cytokines, even when accompanied by CORT injections (p < 0.05). In summary, our results indicate that broilers suffering from fatty liver disease are more susceptible to the negative effects of LPS, showing inflammatory response activation and more severe damages to the liver.
Collapse
Affiliation(s)
| | | | | | - Yingdong Ni
- Correspondence: ; Tel.: +86-25-84399020; Fax: +86-25-84398669
| | | |
Collapse
|
23
|
Hu Y, Feng Y, Zhang L, Jia Y, Cai D, Qian SB, Du M, Zhao R. GR-mediated FTO transactivation induces lipid accumulation in hepatocytes via demethylation of m 6A on lipogenic mRNAs. RNA Biol 2020; 17:930-942. [PMID: 32116145 DOI: 10.1080/15476286.2020.1736868] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic stress or excessive exposure to glucocorticoids (GC) contributes to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Glucocorticoid receptor (GR) mediates the action of GC, but its downstream signalling is not fully understood. Fat mass and obesity associated (FTO) protein and its demethylation substrate N6-methyladenosine (m6A) are both reported to participate in the regulation of lipid metabolism, yet it remains unknown whether they are involved in GC-induced hepatic lipid accumulation as new components of GR signalling. In this study, we use both in vivo and in vitro models of GC-induced hepatic lipid accumulation and demonstrate that the activation of lipogenic genes and accumulation of lipid in liver cells are mediated by GR-dependent FTO transactivation and m6A demethylation on mRNA of lipogenic genes. Targeted mutation of m6A methylation sites and FTO knockdown further validated the role of m6A on 3'UTR of sterol regulatory element-binding transcription factor 1 and stearoyl-CoA desaturase mRNAs. Finally, FTO knockdown significantly alleviated dexamethasone-induced fatty liver in mice. These results demonstrate a role of GR-mediated FTO transactivation and m6A demethylation in the pathogenesis of NAFLD and provide new insight into GR signalling in the regulation of fat metablism in the liver.
Collapse
Affiliation(s)
- Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University , Nanjing, Jiangsu, China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University , Nanjing, Jiangsu, China.,College of Animal Science and Technology, Yangzhou University , Yangzhou, China
| | - Yue Feng
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University , Nanjing, Jiangsu, China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University , Nanjing, Jiangsu, China
| | - Luchu Zhang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University , Nanjing, Jiangsu, China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University , Nanjing, Jiangsu, China
| | - Yimin Jia
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University , Nanjing, Jiangsu, China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University , Nanjing, Jiangsu, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University , Yangzhou, China
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University , Ithaca, NY, USA
| | - Min Du
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University , Pullman, WA, USA
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University , Nanjing, Jiangsu, China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University , Nanjing, Jiangsu, China
| |
Collapse
|
24
|
Developmental changes in hepatic lipid metabolism of chicks during the embryonic periods and the first week of posthatch. Poult Sci 2020; 99:1655-1662. [PMID: 32111330 PMCID: PMC7587903 DOI: 10.1016/j.psj.2019.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
The liver is the main site of de novo lipogenesis in poultry, and hepatic lipid metabolism disorder will lead to excessive abdominal fat deposition or fatty liver disease, finally causing huge economic loss. The present study was conducted to investigate developmental changes in hepatic lipid metabolism of chicks from embryonic periods to the first week after hatching. Liver samples were collected from embryonic day 11 (E11) to the age of day 7 posthatch (D7) for lipid metabolism analysis. Hematoxylin–eosin and Oil Red O staining analysis showed that hepatic lipids increased gradually during embryonic period and declined posthatch; The sum of hepatic triglycerides and cholesterol reached the peak at E19 and D1 by ELISA analysis (P < 0.05). Acetyl-CoA carboxylase, fatty acid synthase, and acyl-CoA desaturase 1 mRNA expression in the liver were higher from E17 to D1 with the peak at E19 when compared with those at E13 and E15 (P < 0.05). Hepatic elongase of very long-chain fatty acids 6 and microsomal triglyceride transfer protein mRNA abundance were lower during embryonic periods but reached relative higher level after hatching (P < 0.05). On the contrary, hepatic carbohydrate response element binding protein (ChREBP), carnitine palmitoyltransferase 1, and peroxisome proliferators–activated receptor α expression were higher during embryonic periods but decreased posthatch (P < 0.05). The mRNA abundance of sterol-regulatory element binding protein 1c was the lowest at E13 and E15, then increased gradually from E17 to D1, while decreased from D3 to D7 little by little (P < 0.05). In summary, hepatic lipogenesis genes have different expression patterns during the embryonic periods and the first week of posthatch, which might be activated by ChREBP during embryonic periods; fatty acid oxidation was enhanced around the hatched day but declined posthatch. These findings will broaden the understanding of physiological characteristics and dynamic pattern about hepatic lipid metabolism in chicks.
Collapse
|
25
|
Feng Y, Hu Y, Hou Z, Sun Q, Jia Y, Zhao R. Chronic corticosterone exposure induces liver inflammation and fibrosis in association with m 6A-linked post-transcriptional suppression of heat shock proteins in chicken. Cell Stress Chaperones 2020; 25:47-56. [PMID: 31745845 PMCID: PMC6985306 DOI: 10.1007/s12192-019-01034-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Our previous study had shown that chronic corticosterone (CORT) exposure causes excessive fat deposition in chicken liver, yet it remains unknown whether it is associated with inflammation and fibrosis. In general, heat shock proteins (HSPs) are activated in response to acute stress to play a cytoprotective role, and this activation is associated with m6A-mediated post-transcriptional regulation. However, changes of HSPs and the m6A methylation on their mRNAs in response to chronic CORT treatment in chicken liver have not been reported. In this study, chronic CORT exposure induced inflammation and fibrosis in chicken liver, associated with significantly modulated expression of HSPs that was significantly upregulated at mRNA level yet downregulated at protein level. Concurrently, m6A methyltransferases METTL3 content was upregulated together with the level of m6A methylation on HSPs transcripts. The m6A-seq analysis revealed 2-6 significantly (P < 0.05) hypermethylated m6A peaks in the mRNA of 4 different species of HSPs in CORT-treated chicken liver. HSP90B1 transcript had 6 differentially methylated m6A peaks among which peaks on exon 16 and exon 17 showed 3.14- and 4.72-fold of increase, respectively. Mutation of the 8 predicted m6A sites on exon 16 and exon 17 resulted in a significant (P < 0.05) increase in eGFP-fused content of HSP90B1 exon 16 and exon 17 fragment in 293 T cells, indicating a possible role of m6A in post-transcriptional regulation of HSPs. In conclusion, chronic CORT exposure induces inflammation and fibrosis in chicken liver along with an increase in the levels and m6A methylation of several HSPs mRNAs; HSPs levels were however reduced under the indicated conditions. Results presented suggest that the reduction in HSPs levels may be associated with m6A methylation in CORT-exposed chickens.
Collapse
Affiliation(s)
- Yue Feng
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhen Hou
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qinwei Sun
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yimin Jia
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Nanjing, 210095, People's Republic of China.
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Nanjing, 210095, People's Republic of China
| |
Collapse
|
26
|
Abobaker H, Hu Y, Omer NA, Hou Z, Idriss AA, Zhao R. Maternal betaine suppresses adrenal expression of cholesterol trafficking genes and decreases plasma corticosterone concentration in offspring pullets. J Anim Sci Biotechnol 2019; 10:87. [PMID: 31827786 PMCID: PMC6862747 DOI: 10.1186/s40104-019-0396-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 11/30/2022] Open
Abstract
Background Laying hens supplemented with betaine demonstrate activated adrenal steroidogenesis and deposit higher corticosterone (CORT) in the egg yolk. Here we further investigate the effect of maternal betaine on the plasma CORT concentration and adrenal expression of steroidogenic genes in offspring pullets. Results Maternal betaine significantly reduced (P < 0.05) plasma CORT concentration and the adrenal expression of vimentin that is involved in trafficking cholesterol to the mitochondria for utilization in offspring pullets. Concurrently, voltage-dependent anion channel 1 and steroidogenic acute regulatory protein, the two mitochondrial proteins involved in cholesterol influx, were both down-regulated at mRNA and protein levels. However, enzymes responsible for steroid syntheses, such as cytochrome P450 family 11 subfamily A member 1 and cytochrome P450 family 21 subfamily A member 2, were significantly (P < 0.05) up-regulated at mRNA or protein levels in the adrenal gland of pullets derived from betaine-supplemented hens. Furthermore, expression of transcription factors, such as steroidogenic factor-1, sterol regulatory element-binding protein 1 and cAMP response element-binding protein, was significantly (P < 0.05) enhanced, together with their downstream target genes, such as 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, LDL receptor and sterol regulatory element-binding protein cleavage-activating protein. The promoter regions of most steroidogenic genes were significantly (P < 0.05) hypomethylated, although methyl transfer enzymes, such as AHCYL, GNMT1 and BHMT were up-regulated. Conclusions These results indicate that the reduced plasma CORT in betaine-supplemented offspring pullets is linked to suppressed cholesterol trafficking into the mitochondria, despite the activation of cholesterol and corticosteroid synthetic genes associated with promoter hypomethylation.
Collapse
Affiliation(s)
- Halima Abobaker
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Yun Hu
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Nagmeldin A Omer
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,3College of Allied Medical Sciences, University of Nyala, 155 Nyala, Sudan
| | - Zhen Hou
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Abdulrahman A Idriss
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Ruqian Zhao
- 1MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China.,2Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| |
Collapse
|
27
|
A Discovery of Relevant Hepatoprotective Effects and Underlying Mechanisms of Dietary Clostridium butyricum Against Corticosterone-Induced Liver Injury in Pekin Ducks. Microorganisms 2019; 7:microorganisms7090358. [PMID: 31527489 PMCID: PMC6780423 DOI: 10.3390/microorganisms7090358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Clostridium butyricum (C. butyricum) can attenuate oxidative stress, inflammation, and hepatic fatty deposition in poultry, however, the underlying mechanisms for this in Pekin ducks remain unclear. This study evaluated these hepatoprotective effects and the underlying mechanisms in a corticosterone (CORT)-induced liver injury model in Pekin ducks fed a C. butyricum intervention diet. A total of 500 Pekin ducks were randomly divided into five groups: one group (CON group) was only provided with a basal diet, three groups were provided a basal diet with 200 mg/kg (LCB group), 400 mg/kg (MCB group), or 600 mg/kg (HCB group) C. butyricum, respectively, and one group was provided a basal diet with 150 mg/kg aureomycin (ANT group) for 42 d. At 37 days-old, all ducks received daily intraperitoneal injections of CORT for five days to establish a liver injury model. C. butyricum intervention alleviated liver injury by decreasing the liver organ indices, hepatic steatosis and hepatocyte necrosis, and improving liver function, antioxidant capacity, and inflammatory factors. Hepatic RNA-seq revealed 365 differentially expressed genes (DEGs) between the MCB and CON groups, with 229 up- and 136 down-regulated DEGs in the MCB group. Between the MCB and ANT groups, 407 DEGs were identified, including 299 up- and 108 down-regulated genes in MCB group. Some DEGs in the MCB group related to oxidative stress and inflammatory responses such as Sod3, Tlr2a/b, and Il10, which were up-regulated, while Apoa1, Cyp7a1, Acsl1/5, Fasn, Ppar-γ, and Scd, which are involved in lipid metabolism, were down-regulated, indicating that these genes were responsive to dietary C. butyricum for the alleviation of corticosterone-induced hepatic injury. Toll-like receptor signaling, PI3K-Akt signaling pathway, cytokine-cytokine receptor interaction, peroxisome proliferator-activated receptor (PPAR) signaling pathway, adipocytokine and glycerophospholipid metabolism signaling pathway were significantly enriched in the MCB group. These findings indicate that C. butyricum intervention can protect Pekin ducks from corticosterone-induced liver injury by the modulation of immunoregulatory- and lipid metabolism-related genes and pathways.
Collapse
|
28
|
Effect of In Ovo Injection of L-Arginine in Different Chicken Embryonic Development Stages on Post-Hatchability, Immune Response, and Myo-D and Myogenin Proteins. Animals (Basel) 2019; 9:ani9060357. [PMID: 31207968 PMCID: PMC6617498 DOI: 10.3390/ani9060357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/26/2023] Open
Abstract
Simple Summary In the current study, we hypothesized that the in ovo injection of L-arginine (L-Arg) at different stages of embryonic development, which would have positive effects on the survival rate, hatching rate, immunoglobulin M (IgM) levels, heat shock proteins (HSPs) such as HSP-47, HSP-60, and HSP-70, and muscle development markers as well: Mainly, myoblast determination protein (myoD) and myogenin in pectoral muscles. As indicated, the in ovo injection of L-Arg resulted in an increased hatch rate and weight, survival rate, higher levels of IgM, and myogenin and MyoD expression in the muscles. At the same time, a decrease in the level of HSP-47, HSP-60, and HSP-70 expressions in the tissues was observed on the 14th day of injection compared to the eighth and 18th day of the injection period. In addition, the in ovo injection of L-Arg decreased the serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) concentration in serum as well micronuclei and nuclear abnormality in the blood on the 14th day of the incubation period. Hence, the 14th day would be a suitable day for the injection of L-Arg to promote the hatching rate and muscle growth of broiler chickens. Abstract The aim of this study was to evaluate the effect of in ovo injection with different ratios of L-arginine (L-Arg) into Ross broiler eggs at three different embryonic developmental stages (eighth day (d), 14th day, and 18th day) on the survival, hatchability, and body weight (BW) of one-day-old hatched chicks. Additionally, we have analyzed the levels of serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT), the protein expression of heat shock proteins (HSPs), and we have also determined micronuclei (MN) and nuclear abnormality (NA). In addition, the genotoxic effect was observed in peripheral blood cells such as the presence of micronuclei and nuclear abnormalities in the experimental groups. The results showed that survival and hatching rates as well as body weight were increased on the 14th day of incubation compared to the eighth and 18th day of incubation at lower concentrations of L-Arg. Moreover, the levels of SGOT and SGPT were also significantly (p < 0.05) increased on the 14th day of incubation at the same concentration (100 μg/μL/egg) of injection. In addition, immunoglobulin (IgM) levels were increased on the 14th day of incubation compared to other days. The protein expressions of HSP-47, HSP-60, and HSP-70 in the liver were significantly down-regulated, whereas the expression of myogenin and myoblast determination protein (MyoD) were significantly up-regulated on the 14th day after incubation when treated with all different doses such as 100 μg, 1000 μg, and 2500 μg/μL/egg, namely 3T1, 3T2, and 3T3, respectively. However, the treatment with low doses of L-Arg down-regulated the expression levels of those proteins on the 14th day of incubation. Histopathology of the liver by hematoxylin and eosin (H&E) staining showed that the majority of liver damage, specifically intracytoplasmic vacuoles, were observed in the 3T1, 3T2, and 3T3 groups. The minimum dose of 100 μg/mL/egg on the 14th day of incubation significantly prevented intracytoplasmic vacuole damages. These results demonstrate that in ovo administration of L-Arg at (100 μg/μL/egg) may be an effective method to increase chick BW, hatch rate, muscle growth-related proteins, and promote the immune response through increasing IgM on the 14th day of the incubation period.
Collapse
|
29
|
Liu Y, Shen J, Yang X, Sun Q, Yang X. Folic Acid Reduced Triglycerides Deposition in Primary Chicken Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13162-13172. [PMID: 30484310 DOI: 10.1021/acs.jafc.8b05193] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Abdominal fat or fatty liver cause huge economic losses in the poultry industry, and nonalcoholic fatty liver disease (NAFLD) is also a global health issue in humans. More than 90% of de novo lipogenesis in humans and chickens is undertaken by the liver, which is proved to be full of lipids in new-born chickens. Folic acid was thought to have correlation with lipid metabolism. Primary hepatocytes from new-born chickens were employed as a natural model of early stage fatty liver in vitro and further to explore whether folic acid could prevent fatty liver in the current study. We found that folic acid addition reduced triglyceride deposition by suppressing de novo fatty acid synthesis and coordinately promoting triglyceride hydrolysis and exportation in primary chicken hepatocytes from new-born chickens. In addition, lipogenesis suppression was through the PI3K/AKT/SREBP pathway mediated by weakening insulin/IGF signal. Our data suggested that folic acid may be considered as a precautionary strategy for abdominal fat deposition in broilers or fatty liver in laying hens and humans. In addition, mechanism regulation also implied that an IGF2 inhibitor and PI3K inhibitor may be used for the NAFLD precautionary measure to reduce TG deposition.
Collapse
Affiliation(s)
- Yanli Liu
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Jing Shen
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Xin Yang
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Qingzhu Sun
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Xiaojun Yang
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| |
Collapse
|
30
|
Hu Y, Sun Q, Hu Y, Hou Z, Zong Y, Omer NA, Abobaker H, Zhao R. Corticosterone-Induced Lipogenesis Activation and Lipophagy Inhibition in Chicken Liver Are Alleviated by Maternal Betaine Supplementation. J Nutr 2018; 148:316-325. [PMID: 29546310 DOI: 10.1093/jn/nxx073] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022] Open
Abstract
Background We have shown previously that in ovo betaine injection can prevent nonalcoholic fatty liver induced by glucocorticoid exposure in chickens; yet it remains unknown whether feeding betaine to laying hens may exert similar effects in their progeny. Objective In this study, we fed laying hens a betaine-supplemented diet, and the progeny were later exposed chronically to corticosterone (CORT) to test hepatoprotective effects and further elucidate underlying mechanisms. Methods Rugao yellow-feathered laying hens (n = 120) were fed a basal (control, C) diet or a 0.5% betaine-supplemented (B) diet for 28 d before their eggs were collected for incubation. At 49 d of age, male chickens selected from each group were daily injected subcutaneously with solvent (15% ethanol; vehicle, VEH) or CORT (4.0 mg/kg body mass) for 7 d to establish a fatty liver model. Chickens in the 4 groups (C-VEH, C-CORT, B-VEH, and B-CORT) were killed at day 57. Plasma and hepatic triglyceride (TG) concentrations, as well as the hepatic expression of genes involved in lipogenesis and lipophagy, were determined. Results CORT induced a 1.6-fold increase in the plasma TG concentration (P < 0.05) and a 1.8-fold increment in the hepatic TG concentration (P < 0.05), associated with activation of lipogenic genes (70-780%). In contrast, lipophagy and mitochondrial β-oxidation genes were inhibited by 30-60% (P < 0.05) in CORT-treated chickens. These CORT-induced changes were completely normalized by maternal betaine supplementation or were partially normalized to intermediate values that were significantly different from those in the C-VEH and C-CORT groups. These effects were accompanied by modifications in CpG methylation and glucocorticoid receptor binding to the promoters of major lipogenic and lipophagic genes (P < 0.05). Conclusions These results indicate that maternal betaine supplementation protects male juvenile chickens from CORT-induced TG accumulation in the liver via epigenetic modulation of lipogenic and lipophagic genes.
Collapse
Affiliation(s)
- Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qinwei Sun
- MOE Joint International Research Laboratory of Animal Health & Food Safety
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yan Hu
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, China
| | - Zhen Hou
- MOE Joint International Research Laboratory of Animal Health & Food Safety
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yibo Zong
- MOE Joint International Research Laboratory of Animal Health & Food Safety
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Nagmeldin A Omer
- MOE Joint International Research Laboratory of Animal Health & Food Safety
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Halima Abobaker
- MOE Joint International Research Laboratory of Animal Health & Food Safety
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
31
|
Abobaker H, Hu Y, Hou Z, Sun Q, Idriss AA, Omer NA, Zong Y, Zhao R. Dietary betaine supplementation increases adrenal expression of steroidogenic acute regulatory protein and yolk deposition of corticosterone in laying hens. Poult Sci 2017; 96:4389-4398. [DOI: 10.3382/ps/pex241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/09/2017] [Indexed: 01/16/2023] Open
|
32
|
Saeed M, Babazadeh D, Naveed M, Arain MA, Hassan FU, Chao S. Reconsidering betaine as a natural anti-heat stress agent in poultry industry: a review. Trop Anim Health Prod 2017; 49:1329-1338. [DOI: 10.1007/s11250-017-1355-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/03/2017] [Indexed: 11/28/2022]
|