1
|
Graham D, Mathew S, Marsden J, Smith AD, Smerdon G, Hall SD. Characterising the anxiogenic network from functional connectivity analysis of the CO 2 challenge model. Sci Rep 2024; 14:29294. [PMID: 39592811 PMCID: PMC11599608 DOI: 10.1038/s41598-024-80901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
The CO2 challenge model (CCM) is a gas inhalation paradigm that provides precisely controlled anxiety induction in experimental settings. Despite its potential as an experimental model of anxiety, our understanding of the neural effects of the CCM is incomplete. This study employs resting-state functional magnetic resonance imaging (rs-fMRI) to explore functional connectivity (FC) changes underlying the CCM. Following a preliminary CO2 tolerance assessment, participants completed an MRI session that included three rs-fMRI scans: during inhalation of control air (pre and post), and during a 6% CCM exposure. Here, we confirm that 6% CCM is a tolerable anxiogenic model in the MRI setting. We demonstrate that a transient CCM-induced increase in subjective anxiety is associated with an increase in FC within limbic and anxiety-related regions, with the insula emerging as a central node in this altered connectivity pattern. Further analysis revealed a significant correlation between the levels of subjective anxiety and enhanced FC between the brainstem and medial frontal cortex, highlighting the dynamic role of the brainstem in response to CO2-induced anxiety. These findings underscore the value of combining CCM and rs-fMRI to characterise the neural mechanisms of anxiety, with important implications for evaluating potential therapeutic interventions.
Collapse
Affiliation(s)
- Daniel Graham
- University of Plymouth, Plymouth, UK.
- DDRC Healthcare, Plymouth, UK.
- Brain Research & Imaging Centre, University of Plymouth, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, UK.
| | | | | | | | | | | |
Collapse
|
2
|
Abrams KB, Folger IT, Cullen NA, Wichlinski LJ. Biochemical challenges for testing novel anti-panic drugs in humans. Pharmacol Biochem Behav 2024; 242:173825. [PMID: 39009088 DOI: 10.1016/j.pbb.2024.173825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Current medications for panic disorder each carry significant limitations that indicate the need for novel anxiolytics. The high costs and low success rates of drug development demand that testing trials be efficient. Lab panicogenic challenges in humans allow for the rapid biochemical induction of panic symptoms and hence an efficient means of testing potential anti-panic drugs. This paper describes ideal characteristics of lab panicogens, reviews the validity and utility of various biochemical panicogenic agents, identifies key outcome measures for studies of novel anti-panic drugs, and makes broad recommendations for labs wishing to perform such studies. We conclude by presenting a four-tiered hierarchy of panicogens that matches each against ideal characteristics and reflects our recommendations for their laboratory use.
Collapse
Affiliation(s)
- Kenneth B Abrams
- Department of Psychology, Carleton College, United States of America.
| | - Isabel T Folger
- Department of Psychology, Carleton College, United States of America
| | - Nancy A Cullen
- Department of Psychology, Carleton College, United States of America
| | | |
Collapse
|
3
|
Ripamonte GC, Fonseca EM, Frias AT, Patrone LGA, Vilela-Costa HH, Silva KSC, Szawka RE, Bícego KC, Zangrossi H, Plummer NW, Jensen P, Gargaglioni LH. Locus coeruleus noradrenaline depletion and its differential impact on CO 2-induced panic and hyperventilation in male and female mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111063. [PMID: 38908504 PMCID: PMC11323958 DOI: 10.1016/j.pnpbp.2024.111063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/11/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
CO2 exposure has been used to investigate the panicogenic response in patients with panic disorder. These patients are more sensitive to CO2, and more likely to experience the "false suffocation alarm" which triggers panic attacks. Imbalances in locus coeruleus noradrenergic (LC-NA) neurotransmission are responsible for psychiatric disorders, including panic disorder. These neurons are sensitive to changes in CO2/pH. Therefore, we investigated if LC-NA neurons are differentially activated after severe hypercapnia in mice. Further, we evaluated the participation of LC-NA neurons in ventilatory and panic-like escape responses induced by 20% CO2 in male and female wild type mice and two mouse models of altered LC-NA synthesis. Hypercapnia activates the LC-NA neurons, with males presenting a heightened level of activation. Mutant males lacking or with reduced LC-NA synthesis showed hypoventilation, while animals lacking LC noradrenaline present an increased metabolic rate compared to wild type in normocapnia. When exposed to CO2, males lacking LC noradrenaline showed a lower respiratory frequency compared to control animals. On the other hand, females lacking LC noradrenaline presented a higher tidal volume. Nevertheless, no change in ventilation was observed in either sex. CO2 evoked an active escape response. Mice lacking LC noradrenaline had a blunted jumping response and an increased freezing duration compared to the other groups. They also presented fewer racing episodes compared to wild type animals, but not different from mice with reduced LC noradrenaline. These findings suggest that LC-NA has an important role in ventilatory and panic-like escape responses elicited by CO2 exposure in mice.
Collapse
Affiliation(s)
- Gabriel C Ripamonte
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Elisa M Fonseca
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alana T Frias
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Heloísa H Vilela-Costa
- Department of Biochemistry, Pharmacology and Physiology, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Kaoma S C Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto CEP:14049-900, Brazil
| | - Nicholas W Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human Services, Durham, NC, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human Services, Durham, NC, USA
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil.
| |
Collapse
|
4
|
Guan X, Cao P. Brain Mechanisms Underlying Panic Attack and Panic Disorder. Neurosci Bull 2024; 40:795-814. [PMID: 37477800 PMCID: PMC11178723 DOI: 10.1007/s12264-023-01088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/23/2023] [Indexed: 07/22/2023] Open
Abstract
Panic disorder is a psychiatric disorder characterized by recurrent panic attacks, with a prevalence of ~ 4% in the general population, causing heavy personal and socioeconomic burdens. The similarities of animal defense responses to clinical panic attack symptoms in humans make it possible to translate neuroanatomical pathways identified in animal studies to panic disorder in humans. Therefore, in this review we first present a basic overview of panic disorder in humans including the main subtypes, models commonly used to trigger panic attacks, related hypotheses, the neurotransmitter systems that may be involved, and the current clinical treatments to give the reader a comprehensive understanding of panic disorder. The animal section introduces the models that trigger panic-like behavior in animals and the brain regions that may be involved, providing insights for future elucidation of the neural circuit mechanisms behind panic attacks.
Collapse
Affiliation(s)
- Xuyan Guan
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.
| | - Peng Cao
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| |
Collapse
|
5
|
Ahlbrand R, Wilson A, Woller P, Sachdeva Y, Lai J, Davis N, Wiggins J, Sah R. Sex-specific threat responding and neuronal engagement in carbon dioxide associated fear and extinction: Noradrenergic involvement in female mice. Neurobiol Stress 2024; 30:100617. [PMID: 38433995 PMCID: PMC10907837 DOI: 10.1016/j.ynstr.2024.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Difficulty in appropriately responding to threats is a key feature of psychiatric disorders, especially fear-related conditions such as panic disorder (PD) and posttraumatic stress disorder (PTSD). Most prior work on threat and fear regulation involves exposure to external threatful cues. However, fear can also be triggered by aversive, within-the-body, sensations. This interoceptive signaling of fear is highly relevant to PD and PTSD but is not well understood, especially in the context of sex. Using female and male mice, the current study investigated fear-associated spontaneous and conditioned behaviors to carbon dioxide (CO2) inhalation, a potent interoceptive threat that induces fear and panic. We also investigated whether behavioral sensitivity to CO2 is associated with delayed PTSD-relevant behaviors. CO2 evoked heterogenous freezing behaviors in both male and female animals. However, active, rearing behavior was significantly reduced in CO2-exposed male but not female mice. Interestingly, behavioral sensitivity to CO2 was associated with compromised fear extinction, independent of sex. However, in comparison to CO2-exposed males, females elicited less freezing and higher rearing during extinction suggesting an engagement of active versus passive defensive coping. Persistent neuronal activation marker ΔFosB immuno-mapping revealed attenuated engagement of infralimbic-prefrontal areas in both sexes but higher activation of brain stem locus coeruleus (LC) area in females. Inter-regional co-activation mapping revealed sex-independent disruptions in the infralimbic-amygdala associations but altered LC associations only in CO2-exposed female mice. Lastly, dopamine β hydroxylase positive (DβH + ve) noradrenergic neuronal cell counts in the LC correlated with freezing and rearing behaviors during CO2 inhalation and extinction only in female but not male mice. Collectively, these data provide evidence for higher active defensive responding to interoceptive threat CO2-associated fear in females that may stem from increased recruitment of the brainstem noradrenergic system. Our findings reveal distinct contributory mechanisms that may promote sex differences in fear and panic associated pathologies.
Collapse
Affiliation(s)
- Rebecca Ahlbrand
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
- Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Allison Wilson
- Neuroscience Undergraduate Program, University of Cincinnati, USA
| | - Patrick Woller
- Neuroscience Graduate Program, University of Cincinnati, USA
| | - Yuv Sachdeva
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
| | - Jayden Lai
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
| | - Nikki Davis
- Neuroscience Undergraduate Program, University of Cincinnati, USA
| | - James Wiggins
- Neuroscience Undergraduate Program, University of Cincinnati, USA
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
- Neuroscience Graduate Program, University of Cincinnati, USA
- Veterans Affairs Medical Center, Cincinnati, OH, USA
| |
Collapse
|
6
|
Kang SJ, Kim JH, Kim DI, Roberts BZ, Han S. A pontomesencephalic PACAPergic pathway underlying panic-like behavioral and somatic symptoms in mice. Nat Neurosci 2024; 27:90-101. [PMID: 38177337 PMCID: PMC11195305 DOI: 10.1038/s41593-023-01504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/19/2023] [Indexed: 01/06/2024]
Abstract
Panic disorder is characterized by uncontrollable fear accompanied by somatic symptoms that distinguish it from other anxiety disorders. Neural mechanisms underlying these unique symptoms are not completely understood. Here, we report that the pituitary adenylate cyclase-activating polypeptide (PACAP)-expressing neurons in the lateral parabrachial nucleus projecting to the dorsal raphe are crucial for panic-like behavioral and physiological alterations. These neurons are activated by panicogenic stimuli but inhibited in conditioned fear and anxiogenic conditions. Activating these neurons elicits strong defensive behaviors and rapid cardiorespiratory increase without creating aversive memory, whereas inhibiting them attenuates panic-associated symptoms. Chemogenetic or pharmacological inhibition of downstream PACAP receptor-expressing dorsal raphe neurons abolishes panic-like symptoms. The pontomesencephalic PACAPergic pathway is therefore a likely mediator of panicogenesis, and may be a promising therapeutic target for treating panic disorder.
Collapse
Affiliation(s)
- Sukjae J Kang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Hyun Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Dong-Il Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Benjamin Z Roberts
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, USA.
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
7
|
Conde SV, Polotsky VY, Joseph V, Kinkead R. On the origins of sleep disordered breathing, cardiorespiratory and metabolic dysfunction: which came first, the chicken or the egg? J Physiol 2023; 601:5509-5525. [PMID: 36988138 PMCID: PMC10539476 DOI: 10.1113/jp284113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Sleep disordered breathing (SDB) is a complex, sex specific and highly heterogeneous group of respiratory disorders. Nevertheless, sleep fragmentation and repeated fluctuations of arterial blood gases for several hours per night are at the core of the problem; together, they impose significant stress to the organism with deleterious consequences on physical and mental health. SDB increases the risk of obesity, diabetes, depression and anxiety disorders; however, the same health issues are risk factors for SDB. So, which came first, the chicken or the egg? What causes the appearance of the first significant apnoeic events during sleep? These are important questions because although moderate to severe SDB affects ∼500 million adults globally, we still have a poor understanding of the origins of the disease, and the main treatments (and animal models) focus on the symptoms rather than the cause. Because obesity, metabolic dysfunction and stress-related neurological disorders generally appear progressively, we discuss how the development of these diseases can lead to specific anatomical and non-anatomical traits of SDB in males and females while considering the impacts of sex steroids. In light of the growing evidence indicating that the carotid bodies are important sensors of key metabolic and endocrine signals associated with stress and dysmetabolism, we propose that these organs play a key role in the process.
Collapse
Affiliation(s)
- Silvia V. Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Vsevolod Y Polotsky
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Vincent Joseph
- Département de Pédiatrie, Université Laval & Research Center of the Québec Heart and Lung Institute, Québec, QC. Canada
| | - Richard Kinkead
- Département de Pédiatrie, Université Laval & Research Center of the Québec Heart and Lung Institute, Québec, QC. Canada
| |
Collapse
|
8
|
Hernandes PM, Batistela MF, Nascimento-Silva JM, Frias AT, Matthiesen M, Campos AC, Lovick TA, Zangrossi H. Sex and estrous cycle-linked differences in the effect of cannabidiol on panic-like responding in rats and mice. Behav Brain Res 2023; 455:114663. [PMID: 37703950 DOI: 10.1016/j.bbr.2023.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Clinical and preclinical studies point towards anxiolytic actions of cannabidiol (CBD), but its effect in panic disorder has been less explored and few studies consider effects in females. We here compared the effect of CBD on the response of male and female rats and mice to a panicogenic challenge; exposure to low O2 (rats) or high CO2 (mice) paying attention in females to possible effects of estrous cycle phase. Male and female Sprague-Dawley rats and C57BL/6 J mice were exposed to 7% O2 for 5 min (rats) or 20% CO2 (mice) and escape behaviour, which has been associated with panic attacks, was quantified as undirected jumps towards the gas chamber's ceiling. The effect of pretreatment with CBD (1-10 mg kg-1 i.p. in rats or 10-60 mg kg-1 i.p. in mice) was tested. The results showed that low O2 (rats) or high CO2 (mice) evoked escape in both sexes. In female rats the response was estrous cycle-sensitive: females in late diestrus made significantly more jumps than females in proestrus. In female mice escape was not influenced by estrous cycle phase and CBD was panicolytic. In female rats CBD attenuated escape behaviour in late diestrus phase but not in proestrus. In male rats and mice CBD had no effect on escape behaviour. Therefore, CBD is panicolytic in female rats and mice but not in males. In rats the effect is estrous cycle-sensitive: rats were most responsive to CBD in late diestrus. In mice higher doses were required to elicit effects and estrous cycle had no effect.
Collapse
Affiliation(s)
- Paloma Molina Hernandes
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Matheus Fitipaldi Batistela
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Alana Tercino Frias
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Melina Matthiesen
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alline Cristina Campos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Helio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
9
|
Allgire E, Ahlbrand RA, Nawreen N, Ajmani A, Hoover C, McAlees JW, Lewkowich IP, Sah R. Altered Fear Behavior in Aeroallergen House Dust Mite Exposed C57Bl/6 Mice: A Model of Th2-skewed Airway Inflammation. Neuroscience 2023; 528:75-88. [PMID: 37516435 PMCID: PMC10530159 DOI: 10.1016/j.neuroscience.2023.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/05/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
There is a growing interest for studying the impact of chronic inflammation, particularly lung inflammation, on the brain and behavior. This includes asthma, a chronic inflammatory condition, that has been associated with psychiatric conditions such as posttraumatic stress disorder (PTSD). Although asthma is driven by elevated production of Th2 cytokines (IL-4, IL-5 and IL-13), which drive asthma symptomology, recent work demonstrates that concomitant Th1 or Th17 cytokine production can worsen asthma severity. We previously demonstrated a detrimental link between PTSD-relevant fear behavior and allergen-induced lung inflammation associated with a mixed Th2/Th17-inflammatory profile in mice. However, the behavioral effects of Th2-skewed airway inflammation, typical to mild/moderate asthma, are unknown. Therefore, we investigated fear conditioning/extinction in allergen house dust mite (HDM)-exposed C57Bl/6 mice, a model of Th2-skewed allergic asthma. Behaviors relevant to panic, anxiety, and depression were also assessed. Furthermore, we investigated the accumulation of Th2/Th17-cytokine-expressing cells in lung and brain, and the neuronal activation marker, ΔFosB, in fear regulatory brain areas. HDM-exposed mice elicited lower freezing during fear extinction with no effects on acquisition and conditioned fear. No HDM effect on panic, anxiety or depression-relevant behaviors was observed. While HDM evoked a Th2-skewed immune response in lung tissue, no significant alterations in brain Th cell subsets were observed. Significantly reduced ΔFosB+ cells in the basolateral amygdala of HDM mice were observed post extinction. Our data indicate that allergen-driven Th2-skewed responses may induce fear extinction promoting effects, highlighting beneficial interactions of Th2-associated immune mediators with fear regulatory circuits.
Collapse
Affiliation(s)
- E Allgire
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - R A Ahlbrand
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States
| | - N Nawreen
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - A Ajmani
- Neuroscience Undergraduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - C Hoover
- Neuroscience Undergraduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - J W McAlees
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH 45220, United States
| | - I P Lewkowich
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH 45220, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45220, United States
| | - R Sah
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States; VA Medical Center, Cincinnati, OH 45220, United States.
| |
Collapse
|
10
|
Caldirola D, Daccò S, Grassi M, Alciati A, Sbabo WM, De Donatis D, Martinotti G, De Berardis D, Perna G. Cardiorespiratory Assessments in Panic Disorder Facilitated by Wearable Devices: A Systematic Review and Brief Comparison of the Wearable Zephyr BioPatch with the Quark-b2 Stationary Testing System. Brain Sci 2023; 13:brainsci13030502. [PMID: 36979312 PMCID: PMC10046237 DOI: 10.3390/brainsci13030502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Abnormalities in cardiorespiratory measurements have repeatedly been found in patients with panic disorder (PD) during laboratory-based assessments. However, recordings performed outside laboratory settings are required to test the ecological validity of these findings. Wearable devices, such as sensor-imbedded garments, biopatches, and smartwatches, are promising tools for this purpose. We systematically reviewed the evidence for wearables-based cardiorespiratory assessments in PD by searching for publications on the PubMed, PsycINFO, and Embase databases, from inception to 30 July 2022. After the screening of two-hundred and twenty records, eight studies were included. The limited number of available studies and critical aspects related to the uncertain reliability of wearables-based assessments, especially concerning respiration, prevented us from drawing conclusions about the cardiorespiratory function of patients with PD in daily life. We also present preliminary data on a pilot study conducted on volunteers at the Villa San Benedetto Menni Hospital for evaluating the accuracy of heart rate (HR) and breathing rate (BR) measurements by the wearable Zephyr BioPatch compared with the Quark-b2 stationary testing system. Our exploratory results suggested possible BR and HR misestimation by the wearable Zephyr BioPatch compared with the Quark-b2 system. Challenges of wearables-based cardiorespiratory assessment and possible solutions to improve their reliability and optimize their significant potential for the study of PD pathophysiology are presented.
Collapse
Affiliation(s)
- Daniela Caldirola
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
- Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Via Roma 16, 22032 Albese con Cassano, Italy
- Humanitas San Pio X, Personalized Medicine Center for Anxiety and Panic Disorders, Via Francesco Nava 31, 20159 Milan, Italy
| | - Silvia Daccò
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
- Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Via Roma 16, 22032 Albese con Cassano, Italy
| | - Massimiliano Grassi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Alessandra Alciati
- Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Via Roma 16, 22032 Albese con Cassano, Italy
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, 20089 Rozzano, Italy
| | - William M. Sbabo
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Domenico De Donatis
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
- Humanitas San Pio X, Personalized Medicine Center for Anxiety and Panic Disorders, Via Francesco Nava 31, 20159 Milan, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Domenico De Berardis
- Department of Mental Health, NHS, ASL 4 Teramo, Contrada Casalena, 64100 Teramo, Italy
- Correspondence:
| | - Giampaolo Perna
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
- Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Via Roma 16, 22032 Albese con Cassano, Italy
- Humanitas San Pio X, Personalized Medicine Center for Anxiety and Panic Disorders, Via Francesco Nava 31, 20159 Milan, Italy
| |
Collapse
|
11
|
Amoroso VG, Zhao A, Vargas I, Park TJ. Naked Mole-Rats Demonstrate Profound Tolerance to Low Oxygen, High Carbon Dioxide, and Chemical Pain. Animals (Basel) 2023; 13:ani13050819. [PMID: 36899677 PMCID: PMC10000161 DOI: 10.3390/ani13050819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Naked mole-rats (Heterocephalus glaber) are very unusual among subterranean mammals in that they live in large colonies and are extremely social, spending large amounts of time gathered together in underground nests more than a meter below the surface. Many respiring individuals resting in deep, poorly ventilated nests deplete the oxygen supply and increase the concentration of carbon dioxide. Consistent with living in that atmosphere, naked mole-rats tolerate levels of low oxygen and high carbon dioxide that are deadly to most surface-dwelling mammals. Naked mole-rats appear to have evolved a number of remarkable adaptations to be able to thrive in this harsh atmosphere. In order to successfully survive low oxygen atmospheres, they conserve energy utilization by reducing the physiological activity of all organs, manifest by reduced heart rate and brain activity. Amazingly, they resort to the anaerobic metabolism of fructose rather than glucose as a fuel to generate energy when challenged by anoxia. Similarly, high carbon dioxide atmospheres normally cause tissue acidosis, while naked mole-rats have a genetic mutation preventing both acid-induced pain and pulmonary edema. Together, these putative adaptations and the tolerances they provide make the naked mole-rat an important model for studying a host of biomedical challenges.
Collapse
Affiliation(s)
- Vince G Amoroso
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Aishi Zhao
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Isabel Vargas
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Thomas J Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
12
|
Smits JAJ, Monfils MH, Otto MW, Telch MJ, Shumake J, Feinstein JS, Khalsa SS, Cobb AR, Parsons EM, Long LJ, McSpadden B, Johnson D, Greenberg A. CO 2 reactivity as a biomarker of exposure-based therapy non-response: study protocol. BMC Psychiatry 2022; 22:831. [PMID: 36575425 PMCID: PMC9793569 DOI: 10.1186/s12888-022-04478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Exposure-based therapy is an effective first-line treatment for anxiety-, obsessive-compulsive, and trauma- and stressor-related disorders; however, many patients do not improve, resulting in prolonged suffering and poorly used resources. Basic research on fear extinction may inform the development of a biomarker for the selection of exposure-based therapy. Growing evidence links orexin system activity to deficits in fear extinction and we have demonstrated that reactivity to an inhaled carbon dioxide (CO2) challenge-a safe, affordable, and easy-to-implement procedure-can serve as a proxy for orexin system activity and predicts fear extinction deficits in rodents. Building upon this basic research, the goal for the proposed study is to validate CO2 reactivity as a biomarker of exposure-based therapy non-response. METHODS We will assess CO2 reactivity in 600 adults meeting criteria for one or more fear- or anxiety-related disorders prior to providing open exposure-based therapy. By incorporating CO2 reactivity into a multivariate model predicting treatment non-response that also includes reactivity to hyperventilation as well as a number of related predictor variables, we will establish the mechanistic specificity and the additive predictive utility of the potential CO2 reactivity biomarker. By developing models independently within two study sites (University of Texas at Austin and Boston University) and predicting the other site's data, we will validate that the results are likely to generalize to future clinical samples. DISCUSSION Representing a necessary stage in translating basic research, this investigation addresses an important public health issue by testing an accessible clinical assessment strategy that may lead to a more effective treatment selection (personalized medicine) for patients with anxiety- and fear-related disorders, and enhanced understanding of the mechanisms governing exposure-based therapy. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05467683 (20/07/2022).
Collapse
Affiliation(s)
- Jasper A. J. Smits
- grid.89336.370000 0004 1936 9924Department of Psychology and Institute for Mental Health Research, University of Texas at Austin, 1 University Station, Austin, TX 78712 USA
| | - Marie-H. Monfils
- grid.89336.370000 0004 1936 9924Department of Psychology and Institute for Mental Health Research, University of Texas at Austin, 1 University Station, Austin, TX 78712 USA
| | - Michael W. Otto
- grid.189504.10000 0004 1936 7558Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Avenue, Floor 2, Boston, MA 02215 USA
| | - Michael J. Telch
- grid.89336.370000 0004 1936 9924Department of Psychology and Institute for Mental Health Research, University of Texas at Austin, 1 University Station, Austin, TX 78712 USA
| | - Jason Shumake
- grid.89336.370000 0004 1936 9924Department of Psychology and Institute for Mental Health Research, University of Texas at Austin, 1 University Station, Austin, TX 78712 USA
| | - Justin S. Feinstein
- grid.417423.70000 0004 0512 88633The Laureate Institute for Brain Research, 6655 South Yale Ave., Tulsa, Oklahoma 74136 USA
| | - Sahib S. Khalsa
- grid.417423.70000 0004 0512 88633The Laureate Institute for Brain Research, 6655 South Yale Ave., Tulsa, Oklahoma 74136 USA
| | - Adam R. Cobb
- grid.89336.370000 0004 1936 9924Department of Psychology and Institute for Mental Health Research, University of Texas at Austin, 1 University Station, Austin, TX 78712 USA ,grid.259828.c0000 0001 2189 3475Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina and Ralph H. Johnson VAHCS, 67 President Street MSC 862, Charleston, SC 29425 USA
| | - E. Marie Parsons
- grid.189504.10000 0004 1936 7558Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Avenue, Floor 2, Boston, MA 02215 USA
| | - Laura J. Long
- grid.189504.10000 0004 1936 7558Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Avenue, Floor 2, Boston, MA 02215 USA
| | - Bryan McSpadden
- grid.89336.370000 0004 1936 9924Department of Psychology and Institute for Mental Health Research, University of Texas at Austin, 1 University Station, Austin, TX 78712 USA
| | - David Johnson
- grid.89336.370000 0004 1936 9924Department of Psychology and Institute for Mental Health Research, University of Texas at Austin, 1 University Station, Austin, TX 78712 USA
| | - Alma Greenberg
- grid.189504.10000 0004 1936 7558Department of Psychological and Brain Sciences, Boston University, 900 Commonwealth Avenue, Floor 2, Boston, MA 02215 USA
| | | |
Collapse
|
13
|
McMurray KMJ, Sah R. Neuroimmune mechanisms in fear and panic pathophysiology. Front Psychiatry 2022; 13:1015349. [PMID: 36523875 PMCID: PMC9745203 DOI: 10.3389/fpsyt.2022.1015349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 12/02/2022] Open
Abstract
Panic disorder (PD) is unique among anxiety disorders in that the emotional symptoms (e.g., fear and anxiety) associated with panic are strongly linked to body sensations indicative of threats to physiological homeostasis. For example, panic attacks often present with feelings of suffocation that evoke hyperventilation, breathlessness, or air hunger. Due to the somatic underpinnings of PD, a major focus has been placed on interoceptive signaling and it is recognized that dysfunctional body-to-brain communication pathways promote the initiation and maintenance of PD symptomatology. While body-to-brain signaling can occur via several pathways, immune and humoral pathways play an important role in communicating bodily physiological state to the brain. Accumulating evidence suggests that neuroimmune mediators play a role in fear and panic-associated disorders, although this has not been systematically investigated. Currently, our understanding of the role of immune mechanisms in the etiology and maintenance of PD remains limited. In the current review, we attempt to summarize findings that support a role of immune dysregulation in PD symptomology. We compile evidence from human studies and panic-relevant rodent paradigms that indicate a role of systemic and brain immune signaling in the regulation of fear and panic-relevant behavior and physiology. Specifically, we discuss how immune signaling can contribute to maladaptive body-to-brain communication and conditioned fear that are relevant to spontaneous and conditioned symptoms of PD and identify putative avenues warranting future investigation.
Collapse
Affiliation(s)
- Katherine M. J. McMurray
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| |
Collapse
|
14
|
Cozza EM, Shankman SA. Integrating NIMH's Research Domain Criteria (RDoC) Initiative into Psychiatry Resident Training. ACADEMIC PSYCHIATRY : THE JOURNAL OF THE AMERICAN ASSOCIATION OF DIRECTORS OF PSYCHIATRIC RESIDENCY TRAINING AND THE ASSOCIATION FOR ACADEMIC PSYCHIATRY 2022; 46:522-527. [PMID: 34642858 DOI: 10.1007/s40596-021-01547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Eugene M Cozza
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | |
Collapse
|
15
|
Hosford PS, Wells JA, Nizari S, Christie IN, Theparambil SM, Castro PA, Hadjihambi A, Barros LF, Ruminot I, Lythgoe MF, Gourine AV. CO 2 signaling mediates neurovascular coupling in the cerebral cortex. Nat Commun 2022; 13:2125. [PMID: 35440557 PMCID: PMC9019094 DOI: 10.1038/s41467-022-29622-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Abstract
Neurovascular coupling is a fundamental brain mechanism that regulates local cerebral blood flow (CBF) in response to changes in neuronal activity. Functional imaging techniques are commonly used to record these changes in CBF as a proxy of neuronal activity to study the human brain. However, the mechanisms of neurovascular coupling remain incompletely understood. Here we show in experimental animal models (laboratory rats and mice) that the neuronal activity-dependent increases in local CBF in the somatosensory cortex are prevented by saturation of the CO2-sensitive vasodilatory brain mechanism with surplus of exogenous CO2 or disruption of brain CO2/HCO3- transport by genetic knockdown of electrogenic sodium-bicarbonate cotransporter 1 (NBCe1) expression in astrocytes. A systematic review of the literature data shows that CO2 and increased neuronal activity recruit the same vasodilatory signaling pathways. These results and analysis suggest that CO2 mediates signaling between neurons and the cerebral vasculature to regulate brain blood flow in accord with changes in the neuronal activity.
Collapse
Affiliation(s)
- Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Jack A Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Shereen Nizari
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Isabel N Christie
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Pablo A Castro
- Centro de Estudios Científicos (CECs) & Universidad San Sebastián, Valdivia, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Anna Hadjihambi
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - L Felipe Barros
- Centro de Estudios Científicos (CECs) & Universidad San Sebastián, Valdivia, Chile
| | - Iván Ruminot
- Centro de Estudios Científicos (CECs) & Universidad San Sebastián, Valdivia, Chile.
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
16
|
Subfornical organ interleukin 1 receptor: A novel regulator of spontaneous and conditioned fear associated behaviors in mice. Brain Behav Immun 2022; 101:304-317. [PMID: 35032573 PMCID: PMC9836229 DOI: 10.1016/j.bbi.2022.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/25/2021] [Accepted: 01/07/2022] [Indexed: 01/14/2023] Open
Abstract
Impaired threat responding and fear regulation is a hallmark of psychiatric conditions such as post-traumatic stress disorder (PTSD) and Panic Disorder (PD). Most studies have focused on external psychogenic threats to study fear, however, accumulating evidence suggests a primary role of homeostatic perturbations and interoception in regulating emotional behaviors. Heightened reactivity to interoceptive threat carbon dioxide (CO2) inhalation associates with increased risk for developing PD and PTSD, however, contributory mechanisms and molecular targets are not well understood. Previous studies from our group suggested a potential role of interleukin 1 receptor (IL-1R1) signaling within BBB-devoid sensory circumventricular organ, the subfornical organ (SFO) in CO2-evoked fear. However, the necessity of SFO-IL-1R1 in regulating CO2-associated spontaneous fear as well as, long-term fear potentiation relevant to PD/PTSD has not been investigated. The current study tested male mice with SFO-targeted microinfusion of the IL-1R1 antagonist (IL-1RA) or vehicle in a recently developed CO2-startle-fear conditioning-extinction paradigm. Consistent with our hypothesis, SFO IL-1RA treatment elicited significant attenuation of freezing and increased rearing during CO2 inhalation suggesting SFO-IL1R1 regulation of spontaneous fear to CO2. Intriguingly, SFO IL-1RA treatment normalized CO2-associated potentiation of conditioned fear and impaired extinction a week later suggesting modulation of long-term fear by SFO-IL-1R1 signaling. Post behavior FosB mapping revealed recruitment of prefrontal cortex-amygdala-periaqueductal gray (PAG) areas in SFO-IL-1RA mediated effects. Additionally, we localized cellular IL-1R1 expression within the SFO to blood vessel endothelial cells and observed CO2-induced alterations in IL-1β/IL-1R1 expression in peripheral mononuclear cells and SFO. Lastly, CO2-evoked microglial activation was attenuated in SFO-IL-1RA treated mice. These observations suggest a peripheral monocyte-endothelial-microglia interplay in SFO-IL-1R1 modulation of CO2-associated spontaneous fear and delayed fear memory. Collectively, our data highlight a novel, "bottom-up" neuroimmune mechanism that integrates interoceptive and exteroceptive threat processing of relevance to fear-related pathologies.
Collapse
|
17
|
Lovick TA, Zangrossi H. Effect of Estrous Cycle on Behavior of Females in Rodent Tests of Anxiety. Front Psychiatry 2021; 12:711065. [PMID: 34531768 PMCID: PMC8438218 DOI: 10.3389/fpsyt.2021.711065] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Anxiety disorders are more prevalent in women than in men. In women the menstrual cycle introduces another variable; indeed, some conditions e.g., premenstrual syndrome, are menstrual cycle specific. Animal models of fear and anxiety, which form the basis for research into drug treatments, have been developed almost exclusively, using males. There remains a paucity of work using females and the available literature presents a confusing picture. One confound is the estrous cycle in females, which some authors consider, but many do not. Importantly, there are no accepted standardized criteria for defining cycle phase, which is important given the rapidly changing hormonal profile during the 4-day cycle of rodents. Moreover, since many behavioral tests that involve a learning component or that consider extinction of a previously acquired association require several days to complete; the outcome may depend on the phase of the cycle on the days of training as well as on test days. In this article we consider responsiveness of females compared to males in a number of commonly used behavioral tests of anxiety and fear that were developed in male rodents. We conclude that females perform in a qualitatively similar manner to males in most tests although there may be sex and strain differences in sensitivity. Tests based on unconditioned threatening stimuli are significantly influenced by estrous cycle phase with animals displaying increased responsiveness in the late diestrus phase of the cycle (similar to the premenstrual phase in women). Tests that utilize conditioned fear paradigms, which involve a learning component appear to be less impacted by the estrous cycle although sex and cycle-related differences in responding can still be detected. Ethologically-relevant tests appear to have more translational value in females. However, even when sex differences in behavior are not detected, the same outward behavioral response may be mediated by different brain mechanisms. In order to progress basic research in the field of female psychiatry and psychopharmacology, there is a pressing need to validate and standardize experimental protocols for using female animal models of anxiety-related states.
Collapse
Affiliation(s)
- Thelma A. Lovick
- Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Hélio Zangrossi
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
18
|
Luchetti A, Di Segni M, Andolina D, Ventura R, Battaglia M, D'Amato FR. Mouse model of panic disorder: Vulnerability to early environmental instability is strain-dependent. Dev Psychobiol 2021; 63:e22135. [PMID: 34196403 DOI: 10.1002/dev.22135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 02/03/2023]
Abstract
Early life experiences and genetic background shape phenotypic variation. Several mouse models based on early treatments have evaluated short- and long-term phenotypic alterations and explored their molecular mechanisms. The instability of maternal cues was used to model human separation anxiety in outbred mice, one of the etiopathogenetic factors that predict panic disorder (PD). Application of the repeated cross-fostering (RCF) protocol to inbred strains (C57 and DBA) allowed us to measure differential responses to the same experimental manipulation. Ultrasounds emitted during isolation indicated that after RCF, pups from both strains lose their ability to be comforted by nest cues, but the frequency modulation of separation calls increased in RCF-C57 and decreased in RCF-DBA mice. No strain-specific difference in olfactory ability explained these responses in RCF-exposed mice. Rather, disruption of the infant-mother bond may differentially affect separation calls in the two strains. Moreover, the RCF-associated increased respiratory response to hypercapnia-an endophenotype of human PD documented among mice outbred strains-was replicated in the C57 strain only. We suggest that RCF-induced instability of the early environment affects emotionality and respiratory physiology differentially, depending on pups' genetic background. These strain-specific responses provide a lead to understand differential vulnerability to emotional disorders.
Collapse
Affiliation(s)
- Alessandra Luchetti
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, Rome, Italy
| | - Matteo Di Segni
- Department of Psychology and Center "Daniel Bovet,", Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Diego Andolina
- Department of Psychology and Center "Daniel Bovet,", Sapienza University, Rome, Italy
| | - Rossella Ventura
- Department of Psychology and Center "Daniel Bovet,", Sapienza University, Rome, Italy
| | - Marco Battaglia
- Department of Psychiatry, the University of Toronto, Toronto, Canada.,Child, Youth and Emerging Adults Programme, Centre for Addiction and Mental Health, Toronto, Canada
| | - Francesca Romana D'Amato
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, Rome, Italy
| |
Collapse
|
19
|
Tenorio-Lopes L, Kinkead R. Sex-Specific Effects of Stress on Respiratory Control: Plasticity, Adaptation, and Dysfunction. Compr Physiol 2021; 11:2097-2134. [PMID: 34107062 DOI: 10.1002/cphy.c200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As our understanding of respiratory control evolves, we appreciate how the basic neurobiological principles of plasticity discovered in other systems shape the development and function of the respiratory control system. While breathing is a robust homeostatic function, there is growing evidence that stress disrupts respiratory control in ways that predispose to disease. Neonatal stress (in the form of maternal separation) affects "classical" respiratory control structures such as the peripheral O2 sensors (carotid bodies) and the medulla (e.g., nucleus of the solitary tract). Furthermore, early life stress disrupts the paraventricular nucleus of the hypothalamus (PVH), a structure that has emerged as a primary determinant of the intensity of the ventilatory response to hypoxia. Although underestimated, the PVH's influence on respiratory function is a logical extension of the hypothalamic control of metabolic demand and supply. In this article, we review the functional and anatomical links between the stress neuroendocrine axis and the medullary network regulating breathing. We then present the persistent and sex-specific effects of neonatal stress on respiratory control in adult rats. The similarities between the respiratory phenotype of stressed rats and clinical manifestations of respiratory control disorders such as sleep-disordered breathing and panic attacks are remarkable. These observations are in line with the scientific consensus that the origins of adult disease are often found among developmental and biological disruptions occurring during early life. These observations bring a different perspective on the structural hierarchy of respiratory homeostasis and point to new directions in our understanding of the etiology of respiratory control disorders. © 2021 American Physiological Society. Compr Physiol 11:1-38, 2021.
Collapse
Affiliation(s)
- Luana Tenorio-Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
20
|
Caldirola D, Alciati A, Cuniberti F, Perna G. Experimental Drugs for Panic Disorder: An Updated Systematic Review. J Exp Pharmacol 2021; 13:441-459. [PMID: 33889031 PMCID: PMC8055642 DOI: 10.2147/jep.s261403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023] Open
Abstract
Several effective pharmacological therapies for panic disorder (PD) are available, but they have some drawbacks, and unsatisfactory outcomes can occur. Expanding the variety of anti-panic medications may allow for improving PD treatment. The authors performed an updated systematic review of preclinical and clinical (Phase I–III) pharmacological studies to look for advances made in the last six years concerning novel-mechanism-based anti-panic compounds or using medications approved for nonpsychiatric medical conditions to treat PD. The study included seven published articles presenting a series of preclinical studies, two Phase I clinical studies with orexin receptor (OXR) antagonists, and two clinical studies investigating the effects of D-cycloserine (DCS) and xenon gas in individuals with PD. The latest preclinical findings confirmed and expanded previous promising indications of OXR1 antagonists as novel-mechanism-based anti-panic compounds. Translating preclinical research into clinical applications remains in the early stages. However, limited clinical findings suggested the selective OXR1 antagonist JNJ-61393115 may exert anti-panic effects in humans. Overall, OXR1 antagonists displayed a favorable profile of short-term safety and tolerability. Very preliminary suggestions of possible anti-panic effects of xenon gas emerged but need confirmation with more rigorous methodology. DCS did not seem promising as an enhancer of cognitive-behavioral therapy in PD. Future studies, including objective panic-related physiological parameters, such as respiratory measures, and expanding the use of panic vulnerability biomarkers, such as hypersensitivity to CO2 panic provocation, may allow for more reliable conclusions about the anti-panic properties of new compounds.
Collapse
Affiliation(s)
- Daniela Caldirola
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy
| | - Alessandra Alciati
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy.,Humanitas Clinical and Research Center, IRCCS, Milan, Rozzano, 20089, Italy
| | - Francesco Cuniberti
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy
| | - Giampaolo Perna
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy
| |
Collapse
|
21
|
Améndola L, Ratuski A, Weary DM. Individual differences in rat sensitivity to CO2. PLoS One 2021; 16:e0245347. [PMID: 33481851 PMCID: PMC7822239 DOI: 10.1371/journal.pone.0245347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022] Open
Abstract
Feelings of fear, anxiety, dyspnea and panic when inhaling carbon dioxide (CO2) are variable among humans, in part due to differences in CO2 sensitivity. Rat aversion to CO2 consistently varies between individuals; this variation in aversion may reflect CO2 sensitivity, but other personality traits could also account for individual differences in aversion. The aims of this study were to 1) assess the stability of individual differences in rat aversion to CO2, 2) determine if individual differences in sweet reward motivation are associated with variation in aversion to CO2, and 3) assess whether variation in aversion to CO2 is related to individual differences in motivation to approach gains (promotion focus) or maintain safety (prevention focus). Twelve female Sprague Dawley rats were exposed multiple times at three different ages (3, 9 and 16 months old) to CO2 in approach-avoidance testing to assess motivation to avoid CO2 against motivation to gain sweet rewards. Rats were also tested for motivation to find hidden sweet rewards, and for their motivation to approach rewards or darkness. Tolerance to CO2 increased with repeated exposures and was higher at older ages. Individual differences in aversion to CO2 were highly repeatable but unrelated to motivation for sweet rewards or the strength of promotion and prevention focus. These results indicate that individual differences in aversion to CO2 reflect variation in CO2 sensitivity.
Collapse
Affiliation(s)
- Lucía Améndola
- Animal Welfare Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Ratuski
- Animal Welfare Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel M. Weary
- Animal Welfare Program, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
22
|
El-Betany AMM, Behiry EM, Gumbleton M, Harding KG. Humidified Warmed CO 2 Treatment Therapy Strategies Can Save Lives With Mitigation and Suppression of SARS-CoV-2 Infection: An Evidence Review. Front Med (Lausanne) 2020; 7:594295. [PMID: 33425942 PMCID: PMC7793941 DOI: 10.3389/fmed.2020.594295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023] Open
Abstract
The coronavirus disease (COVID-19) outbreak has presented enormous challenges for healthcare, societal, and economic systems worldwide. There is an urgent global need for a universal vaccine to cover all SARS-CoV-2 mutant strains to stop the current COVID-19 pandemic and the threat of an inevitable second wave of coronavirus. Carbon dioxide is safe and superior antimicrobial, which suggests it should be effective against coronaviruses and mutants thereof. Depending on the therapeutic regime, CO2 could also ameliorate other COVID-19 symptoms as it has also been reported to have antioxidant, anti-inflammation, anti-cytokine effects, and to stimulate the human immune system. Moreover, CO2 has beneficial effects on respiratory physiology, cardiovascular health, and human nervous systems. This article reviews the rationale of early treatment by inhaling safe doses of warmed humidified CO2 gas, either alone or as a carrier gas to deliver other inhaled drugs may help save lives by suppressing SARS-CoV-2 infections and excessive inflammatory responses. We suggest testing this somewhat counter-intuitive, but low tech and safe intervention for its suitability as a preventive measure and treatment against COVID-19. Overall, development and evaluation of this therapy now may provide a safe and economical tool for use not only during the current pandemic but also for any future outbreaks of respiratory diseases and related conditions.
Collapse
Affiliation(s)
- Alaa M. M. El-Betany
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Enas M. Behiry
- School of Medicine, Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Keith G. Harding
- Wound Healing Research Unit, Welsh Wound Innovation Centre, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
23
|
Perna G, Cuniberti F, Daccò S, Nobile M, Caldirola D. Impact of respiratory protective devices on respiration: Implications for panic vulnerability during the COVID-19 pandemic. J Affect Disord 2020; 277:772-778. [PMID: 33065816 PMCID: PMC7476564 DOI: 10.1016/j.jad.2020.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The wearing of respiratory protective devices (RPDs) correctly and continually in situations where people are at risk of respiratory infections is crucial for infection prevention. Certain people are poorly compliant with RPDs due to RPD-related annoyance, including respiratory discomfort. We hypothesized that individuals vulnerable to panic attacks are included in this group. No published studies on this topic are available. The evidence for our hypothesis was reviewed in this study as a starting point for future research. METHODS We selected a set of experimental studies that measured the respiratory physiological burden in RPD wearers through objective and validated methods. We conducted a bibliographic search of publications in the PubMed database (January 2000-May 2020) to identify representative studies that may be of interest for panic respiratory pathophysiology. RESULTS Five studies were included. Wearing RPDs exerted significant respiratory effects, including increased breathing resistance, CO2 rebreathing due to CO2 accumulation in the RPD cavity, and decreased inhaled O2 concentration. We discussed the implications of these effects on the respiratory pathophysiology of panic. LIMITATIONS Most studies had a small sample size, with a preponderance of young participants. Different methodologies were used across the studies. Furthermore, differences in physical responses between wearing RPDs in experimental settings or daily life cannot be excluded. CONCLUSIONS This research supports the idea that panic-prone individuals may be at higher risk of respiratory discomfort when wearing RPDs, thereby reducing their tolerance for these devices. Strategies to decrease discomfort should be identified to overcome the risk of poor compliance.
Collapse
Affiliation(s)
- Giampaolo Perna
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Via Roma 16, 22032 Albese con Cassano, Como, Italy.
| | - Francesco Cuniberti
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Via Roma 16, 22032 Albese con Cassano, Como, Italy
| | - Silvia Daccò
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Via Roma 16, 22032 Albese con Cassano, Como, Italy
| | - Maria Nobile
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini 23842, Lecco, Italy
| | - Daniela Caldirola
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Via Roma 16, 22032 Albese con Cassano, Como, Italy
| |
Collapse
|
24
|
Leibold NK, van den Hove DLA, Weidner MT, Buchanan GF, Steinbusch HWM, Lesch KP, Schruers KRJ. Effect of serotonin transporter genotype on carbon dioxide-induced fear-related behavior in mice. J Psychopharmacol 2020; 34:1408-1417. [PMID: 33103571 PMCID: PMC7708670 DOI: 10.1177/0269881120959611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Inhaling 35% carbon dioxide induces an emotional and symptomatic state in humans closely resembling naturally occurring panic attacks, the core symptom of panic disorder. Previous research has suggested a role of the serotonin system in the individual sensitivity to carbon dioxide. In line with this, we previously showed that a variant in the SLC6A4 gene, encoding the serotonin transporter, moderates the fear response to carbon dioxide in humans. To study the etiological basis of carbon dioxide-reactivity and panic attacks in more detail, we recently established a translational mouse model. AIM The purpose of this study was to investigate whether decreased expression of the serotonin transporter affects the sensitivity to carbon dioxide. METHODS Based on our previous work, wildtype and serotonin transporter deficient (+/-, -/-) mice were monitored while being exposed to carbon dioxide-enriched air. In wildtype and serotonin transporter +/- mice, also cardio-respiration was assessed. RESULTS For most behavioral measures under air exposure, wildtype and serotonin transporter +/- mice did not differ, while serotonin transporter -/- mice showed more fear-related behavior. Carbon dioxide exposure evoked a marked increase in fear-related behaviors, independent of genotype, with the exception of time serotonin transporter -/- mice spent in the center zone of the modified open field test and freezing in the two-chamber test. On the physiological level, when inhaling carbon dioxide, the respiratory system was strongly activated and heart rate decreased independent of genotype. CONCLUSION Carbon dioxide is a robust fear-inducing stimulus. It evokes inhibitory behavioral responses such as decreased exploration and is associated with a clear respiratory profile independent of serotonin transporter genotype.
Collapse
Affiliation(s)
- Nicole K Leibold
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands,Department of Neurology, Yale School of Medicine, New Haven, USA,Nicole K Leibold, Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616 (Vijverdal), 6200 MD Maastricht, The Netherlands.
| | - Daniel LA van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands,Division of Molecular Psychiatry, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Magdalena T Weidner
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands,Division of Molecular Psychiatry, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany,Department of Psychiatry and Psychotherapy, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gordon F Buchanan
- Department of Neurology, Yale School of Medicine, New Haven, USA,Department of Neurology, University of Iowa, Iowa City, USA,University of Iowa Graduate College, Iowa City, USA
| | - Harry WM Steinbusch
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technoglogy (DGIST), Daegu, South Korea
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands,Division of Molecular Psychiatry, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany,Laboratory of Psychiatric Neurobiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Koen RJ Schruers
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands,Department of Psychology, University of Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Tenorio-Lopes L, Fournier S, Henry MS, Bretzner F, Kinkead R. Disruption of estradiol regulation of orexin neurons: a novel mechanism in excessive ventilatory response to CO 2 inhalation in a female rat model of panic disorder. Transl Psychiatry 2020; 10:394. [PMID: 33173029 PMCID: PMC7656265 DOI: 10.1038/s41398-020-01076-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Panic disorder (PD) is ~2 times more frequent in women. An excessive ventilatory response to CO2 inhalation is more likely during the premenstrual phase. While ovarian hormones appear important in the pathophysiology of PD, their role remains poorly understood as female animals are rarely used in pre-clinical studies. Using neonatal maternal separation (NMS) to induce a "PD-like" respiratory phenotype, we tested the hypothesis that NMS disrupts hormonal regulation of the ventilatory response to CO2 in female rats. We then determined whether NMS attenuates the inhibitory actions of 17-β estradiol (E2) on orexin neurons (ORX). Pups were exposed to NMS (3 h/day; postnatal day 3-12). The ventilatory response to CO2-inhalation was tested before puberty, across the estrus cycle, and following ovariectomy. Plasma E2 and hypothalamic ORXA were measured. The effect of an ORX1 antagonist (SB334867; 15 mg/kg) on the CO2 response was tested. Excitatory postsynaptic currents (EPSCs) were recorded from ORX neurons using whole-cell patch-clamp. NMS-related increase in the CO2 response was observed only when ovaries were functional; the largest ventilation was observed during proestrus. SB334867 blocked this effect. NMS augmented levels of ORXA in hypothalamus extracts. EPSC frequency varied according to basal plasma E2 levels across the estrus cycle in controls but not NMS. NMS reproduces developmental and cyclic changes of respiratory manifestations of PD. NMS disrupts the inhibitory actions of E2 on the respiratory network. Impaired E2-related inhibition of ORX neurons during proestrus is a novel mechanism in respiratory manifestations of PD in females.
Collapse
Affiliation(s)
- Luana Tenorio-Lopes
- Hotchkiss Brain Institute; Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Stéphanie Fournier
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec. Département de Pédiatrie. Université Laval, Québec, QC, Canada
| | - Mathilde S Henry
- INRAE, Université de Bordeaux, Bordeaux INP, Nutrineuro, UMR 1286, F-33000, Bordeaux, France
| | - Frédéric Bretzner
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences. Département de Psychiatrie et de Neurosciences, Université Laval, Québec, QC, Canada
| | - Richard Kinkead
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec. Département de Pédiatrie. Université Laval, Québec, QC, Canada.
| |
Collapse
|
26
|
Salvadore G, Bonaventure P, Shekhar A, Johnson PL, Lord B, Shireman BT, Lebold TP, Nepomuceno D, Dugovic C, Brooks S, Zuiker R, Bleys C, Tatikola K, Remmerie B, Jacobs GE, Schruers K, Moyer J, Nash A, Van Nueten LGM, Drevets WC. Translational evaluation of novel selective orexin-1 receptor antagonist JNJ-61393215 in an experimental model for panic in rodents and humans. Transl Psychiatry 2020; 10:308. [PMID: 32895369 PMCID: PMC7477545 DOI: 10.1038/s41398-020-00937-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
Orexin neurons originating in the perifornical and lateral hypothalamic area project to anxiety- and panic-associated neural circuitry, and are highly reactive to anxiogenic stimuli. Preclinical evidence suggests that the orexin system, and particularly the orexin-1 receptor (OX1R), may be involved in the pathophysiology of panic and anxiety. Selective OX1R antagonists thus may constitute a potential new treatment strategy for panic- and anxiety-related disorders. Here, we characterized a novel selective OX1R antagonist, JNJ-61393215, and determined its affinity and potency for human and rat OX1R in vitro. We also evaluated the safety, pharmacokinetic, and pharmacodynamic properties of JNJ-61393215 in first-in-human single- and multiple-ascending dose studies conducted. Finally, the potential anxiolytic effects of JNJ-61393215 were evaluated both in rats and in healthy men using 35% CO2 inhalation challenge to induce panic symptoms. In the rat CO2 model of panic anxiety, JNJ-61393215 demonstrated dose-dependent attenuation of CO2-induced panic-like behavior without altering baseline locomotor or autonomic activity, and had minimal effect on spontaneous sleep. In phase-1 human studies, JNJ-61393215 at 90 mg demonstrated significant reduction (P < 0.02) in CO2-induced fear and anxiety symptoms that were comparable to those obtained using alprazolam. The most frequently reported adverse events were somnolence and headache, and all events were mild in severity. These results support the safety, tolerability, and anxiolytic effects of JNJ-61393215, and validate CO2 exposure as a translational cross-species experimental model to evaluate the therapeutic potential of novel anxiolytic drugs.
Collapse
Affiliation(s)
- Giacomo Salvadore
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Titusville, NJ USA
| | | | - Anantha Shekhar
- grid.257413.60000 0001 2287 3919Departments of Psychiatry, and Pharmacology, Indiana University, School of Medicine, Indianapolis, IN USA
| | - Philip L. Johnson
- grid.257413.60000 0001 2287 3919Department of Anatomy, Physiology and Cell Biology, Indiana University, School of Medicine, Indianapolis, IN USA
| | - Brian Lord
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, San Diego, CA USA
| | - Brock T. Shireman
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, San Diego, CA USA
| | - Terry P. Lebold
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, San Diego, CA USA
| | - Diane Nepomuceno
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, San Diego, CA USA
| | - Christine Dugovic
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, San Diego, CA USA
| | - Sander Brooks
- grid.418011.d0000 0004 0646 7664Centre for Human Drug Research, Leiden, The Netherlands ,grid.10419.3d0000000089452978Leiden University Medical Center, Leiden, The Netherlands
| | - Rob Zuiker
- grid.418011.d0000 0004 0646 7664Centre for Human Drug Research, Leiden, The Netherlands
| | - Cathy Bleys
- grid.419619.20000 0004 0623 0341Janssen Research & Development, LLC, Beerse, Belgium
| | - Kanaka Tatikola
- grid.497530.c0000 0004 0389 4927Janssen Scientific Affairs, LLC, Titusville, NJ USA
| | - Bart Remmerie
- grid.419619.20000 0004 0623 0341Janssen Research & Development, LLC, Beerse, Belgium
| | - Gabriel E. Jacobs
- grid.418011.d0000 0004 0646 7664Centre for Human Drug Research, Leiden, The Netherlands ,grid.10419.3d0000000089452978Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen Schruers
- grid.5012.60000 0001 0481 6099Research School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - John Moyer
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, Titusville, NJ USA
| | - Abigail Nash
- grid.497530.c0000 0004 0389 4927Janssen Scientific Affairs, LLC, Titusville, NJ USA
| | - Luc G. M. Van Nueten
- grid.419619.20000 0004 0623 0341Janssen Research & Development, LLC, Beerse, Belgium
| | - Wayne C. Drevets
- grid.497530.c0000 0004 0389 4927Janssen Research & Development, LLC, San Diego, CA USA
| |
Collapse
|
27
|
Modulation of fear behavior and neuroimmune alterations in house dust mite exposed A/J mice, a model of severe asthma. Brain Behav Immun 2020; 88:688-698. [PMID: 32380274 PMCID: PMC8988097 DOI: 10.1016/j.bbi.2020.04.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022] Open
Abstract
Fear-associated conditions such as posttraumatic stress disorder (PTSD) and panic disorder (PD) are highly prevalent. There is considerable interest in understanding contributory risk and vulnerability factors. Accumulating evidence suggests that chronically elevated inflammatory load may be a potential risk factor for these disorders. In this regard, an association of asthma, a chronic inflammatory condition, with PTSD and PD has been reported. Symptoms of PD and PTSD are more prevalent in severe asthmatics, compared to those with mild or moderate asthma suggesting that factors that influence the severity of asthma, may also influence susceptibility to the development of fear-related disorders. There has been relatively little progress in identifying contributory factors and underlying mechanisms, particularly, the translation of severe asthma-associated lung inflammation to central neuroimmune alterations and behavioral manifestations remains unclear. The current study investigated the expression of behaviors relevant to PD and PTSD (CO2 inhalation and fear conditioning/extinction) in A/J mice using a model of severe allergic asthma associated with a mixed T helper 2 (Th2) and Th17 immune response. We also investigated the accumulation of Th2- and Th17-cytokine expressing cells in lung and brain tissue, microglial alterations, as well as neuronal activation marker, delta FosB (ΔFosB)) in fear and panic regulatory brain areas. HDM-exposed mice elicited higher freezing during fear extinction. CO2-associated spontaneous and conditioned freezing, as well as anxiety or depression-relevant exploratory and coping behaviors were not altered by HDM treatment. A significant increase in brain Th17-associated inflammatory mediators was observed prior to behavioral testing, accompanied by microglial alterations in specialized blood brain barrier-compromised circumventricular area, subfornical organ. Post extinction measurements revealed increased ΔFosB staining within the medial prefrontal cortex and basolateral amygdala in HDM-treated mice. Collectively, our data show modulation of brain immune mechanisms and fear circuits by peripheral airway inflammation, and is relevant to understanding the risk and comorbidity of asthma with fear-associated disorders such as PTSD.
Collapse
|
28
|
Abstract
The aim of this review is to summarize evidence regarding rat emotional experiences during carbon dioxide (CO2) exposure. The studies reviewed show that CO2 exposure is aversive to rats, and that rats respond to CO2 exposure with active and passive defense behaviors. Plasma corticosterone and bradycardia increased in rats exposed to CO2. As with anxiogenic drugs, responses to CO2 are counteracted by the administration of anxiolytics, SRIs, and SSRI's. Human studies reviewed indicate that, when inhaling CO2, humans experience feelings of anxiety fear and panic, and that administration of benzodiazepines, serotonin precursors, and SSRIs ameliorate these feelings. In vivo and in vitro rat studies reviewed show that brain regions, ion channels, and neurotransmitters involved in negative emotional responses are activated by hypercapnia and acidosis associated with CO2 exposure. On the basis of the behavioral, physiological, and neurobiological evidence reviewed, we conclude that CO2 elicits negative emotions in rats.
Collapse
|
29
|
DNA methylation in the 5-HTT regulatory region is associated with CO 2-induced fear in panic disorder patients. Eur Neuropsychopharmacol 2020; 36:154-159. [PMID: 32522387 DOI: 10.1016/j.euroneuro.2020.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 01/25/2023]
Abstract
A polymorphism in the gene encoding the serotonin (5-HT) transporter (5-HTT) has been shown to moderate the response to CO2 inhalation, an experimental model for panic attacks (PAs). Recurrent, unpredictable PAs represent, together with anticipatory anxiety of recurring attacks, the core feature of panic disorder (PD) and significantly interfere with patients' daily life. In addition to genetic components, accumulating evidence suggests that epigenetic mechanisms, which regulate gene expression by modifying chromatin structure, also play a fundamental role in the etiology of mental disorders. However, in PD, epigenetic mechanisms have barely been examined to date. In the present study, we investigated the relationship between methylation at the regulatory region of the gene encoding the 5-HTT and the reactivity to a 35% CO2 inhalation in PD patients. We focused on four specific CpG sites and found a significant association between the methylation level of one of these CpG sites and the fear response. This suggests that the emotional response to CO2 inhalation might be moderated by an epigenetic mechanism, and underlines the implication of the 5-HT system in PAs. Future studies are needed to further investigate epigenetic alterations in PD and their functional consequences. These insights can increase our understanding of the underlying pathophysiology and support the development of new treatment strategies.
Collapse
|
30
|
Liu N, Fu C, Yu H, Wang Y, Shi L, Hao Y, Yuan F, Zhang X, Wang S. Respiratory Control by Phox2b-expressing Neurons in a Locus Coeruleus-preBötzinger Complex Circuit. Neurosci Bull 2020; 37:31-44. [PMID: 32468398 DOI: 10.1007/s12264-020-00519-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
The locus coeruleus (LC) has been implicated in the control of breathing. Congenital central hypoventilation syndrome results from mutation of the paired-like homeobox 2b (Phox2b) gene that is expressed in LC neurons. The present study was designed to address whether stimulation of Phox2b-expressing LC (Phox2bLC) neurons affects breathing and to reveal the putative circuit mechanism. A Cre-dependent viral vector encoding a Gq-coupled human M3 muscarinic receptor (hM3Dq) was delivered into the LC of Phox2b-Cre mice. The hM3Dq-transduced neurons were pharmacologically activated while respiratory function was measured by plethysmography. We demonstrated that selective stimulation of Phox2bLC neurons significantly increased basal ventilation in conscious mice. Genetic ablation of these neurons markedly impaired hypercapnic ventilatory responses. Moreover, stimulation of Phox2bLC neurons enhanced the activity of preBötzinger complex neurons. Finally, axons of Phox2bLC neurons projected to the preBötzinger complex. Collectively, Phox2bLC neurons contribute to the control of breathing most likely via an LC-preBötzinger complex circuit.
Collapse
Affiliation(s)
- Na Liu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China.,Department of Physiology, Cangzhou Medical College, Cangzhou, 061000, China
| | - Congrui Fu
- School of Nursing, Hebei Medical University, Shijiazhuang, 050000, China
| | - Hongxiao Yu
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yakun Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Luo Shi
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yinchao Hao
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Fang Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiangjian Zhang
- Hebei Key laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
31
|
High Behavioral Sensitivity to Carbon Dioxide Associates with Enhanced Fear Memory and Altered Forebrain Neuronal Activation. Neuroscience 2020; 429:92-105. [PMID: 31930959 DOI: 10.1016/j.neuroscience.2019.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/13/2019] [Accepted: 12/08/2019] [Indexed: 01/06/2023]
Abstract
There is considerable interest in pre-trauma individual differences that may contribute to increased risk for developing post-traumatic stress disorder (PTSD). Identification of underlying vulnerability factors that predict differential responses to traumatic experiences is important. Recently, the relevance of homeostatic perturbations in shaping long-term behavior has been recognized. Sensitivity to CO2 inhalation, a homeostatic threat to survival, was shown to associate with the later development of PTSD symptoms in veterans. Here, we investigated whether behavioral sensitivity to CO2 associates with PTSD-relevant behaviors and alters forebrain fear circuitry in mice. Mice were exposed to 5% CO2 or air inhalation and tested one week later on acoustic startle and footshock contextual fear conditioning, extinction and reinstatement. CO2 inhalation evoked heterogenous freezing behaviors (high freezing CO2-H and low freezing CO2-L) that significantly associated with fear conditioning and extinction behaviors. CO2-H mice elicited potentiated conditioned fear and delayed extinction while behavioral responses in CO2-L mice were similar to the air group. Persistent neuronal activation marker ΔFosB immunostaining revealed altered regional neuronal activation within the hippocampus, amygdala and medial pre-frontal cortex that correlated with conditioned fear and extinction. Inter-regional co-activation mapping revealed disruptions in the coordinated activity of hippocampal dentate-amygdala-infralimbic regions and infralimbic-prelimbic associations in CO2-H mice that may explain their enhanced fear phenotype. In conclusion, our data support an association of behavioral sensitivity to interoceptive threats such as CO2 with altered fear responding to exteroceptive threats and suggest that "CO2-sensitive" individuals may be susceptible to developing PTSD.
Collapse
|
32
|
Schwarzmeier H, Kleint NI, Wittchen HU, Ströhle A, Hamm AO, Lueken U. Characterizing the nature of emotional-associative learning deficits in panic disorder: An fMRI study on fear conditioning, extinction training and recall. Eur Neuropsychopharmacol 2019; 29:306-318. [PMID: 30497840 DOI: 10.1016/j.euroneuro.2018.11.1108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022]
Abstract
Emotional-associative learning represents a translational model for the development, maintenance and treatment of anxiety disorders such as panic disorder (PD). The exact nature of the underlying fear learning and extinction deficits however, remains under debate. Using a three-day paradigm to separate the distinct learning and consolidation processes, we aimed to gain insights into the neurofunctional substrates of altered fear conditioning, extinction training and recall in PD. In contrast to studies employing one-session fear conditioning paradigms, a differential fear conditioning and delayed extinction task was conducted for the purpose of disentangling neural networks involved in fear acquisition, extinction training and recall of extinction memories. Using functional magnetic resonance imaging (fMRI), quality-controlled datasets from 10 patients with PD and 10 healthy controls were available from three consecutive days (day 1: acquisition; day 2: extinction training; day 3: extinction recall) with neutral faces serving as CSs and an aversive auditory stimulus (panic scream) as US. PD patients showed heightened fear circuitry (e.g. right amygdala and left insula) activation during early acquisition and prolonged activation in the right insula, left inferior frontal operculum and left inferior frontal gyrus during extinction recall compared to healthy controls. Stronger neural activation in structures conferring defensive reactivity during early acquisition and extinction recall may indicate the accelerated acquisition of conditioned responses, while extinction recall may be attenuated as a function of PD pathophysiology. Future studies should investigate the predictive value of experimental measures of extinction recall for clinical relapse.
Collapse
Affiliation(s)
- H Schwarzmeier
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany.
| | - N I Kleint
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - H U Wittchen
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany; Clinical Psychology & Psychotherapy RG, Department of Psychiatry & Psychotherapy, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - A Ströhle
- Dept. of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - A O Hamm
- Dept. of Physiological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald , Germany
| | - U Lueken
- Center of Mental Health, Dept. of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany; Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany; Dept. of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
33
|
Taugher RJ, Dlouhy BJ, Kreple CJ, Ghobbeh A, Conlon MM, Wang Y, Wemmie JA. The amygdala differentially regulates defensive behaviors evoked by CO 2. Behav Brain Res 2019; 377:112236. [PMID: 31536735 DOI: 10.1016/j.bbr.2019.112236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 10/26/2022]
Abstract
CO2 inhalation can provoke panic attacks in humans, and the likelihood is increased in patients with panic disorder. Identifying brain sites involved could provide important mechanistic insight into the illness. In mice, the amygdala has been suggested to promote CO2 responses; however, recent studies in humans with amygdala damage indicate the amygdala is not required for CO2-induced fear and panic and might actually oppose these responses. To clarify the role of the amygdala, we produced lesions in mice paralleling the human lesions, and characterized behavioral responses to CO2. Compared to sham controls, we found that amygdala-lesioned mice froze less to 10% CO2, and unlike shams they also began to jump frenetically. At 20% CO2, controls also exhibited jumping, suggesting it is a normal response to more extreme CO2 concentrations. The effect of amygdala lesions was specific to CO2 as amygdala-lesioned mice did not jump in response to a predator odor or to an auditory conditioned stimulus. In amygdala-lesioned mice, jumping evoked by 10% CO2 was eliminated by co-lesioning the dorsal periaqueductal gray, a structure implicated in panic and escape-related behaviors. Together, these observations suggest a dual role for the amygdala in the CO2 response: promoting CO2-induced freezing, and opposing CO2-induced jumping, which may help explain the exaggerated CO2 responses in humans with amygdala lesions.
Collapse
Affiliation(s)
- R J Taugher
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA; Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - B J Dlouhy
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - C J Kreple
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA; Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - A Ghobbeh
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA; Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - M M Conlon
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA; Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Y Wang
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - J A Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
34
|
Winter A, Ahlbrand R, Sah R. Recruitment of central angiotensin II type 1 receptor associated neurocircuits in carbon dioxide associated fear. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:378-386. [PMID: 30776402 DOI: 10.1016/j.pnpbp.2019.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 11/29/2022]
Abstract
Individuals with fear-associated conditions such as panic disorder (PD) and posttraumatic stress disorder (PTSD) display increased emotional responses to interoceptive triggers, such as CO2 inhalation, that signal a threat to physiological homeostasis. Currently, effector systems and mechanisms underlying homeostatic modulation of fear memory are not well understood. In this regard, the renin angiotensin system (RAS), particularly the angiotensin receptor type 1 (AT1R), a primary homeostatic regulatory target, has gained attention. RAS polymorphisms have been reported in PD and PTSD, and recent studies report AT1R-mediated modulation of fear extinction. However, contribution of AT1Rs in fear evoked by the interoceptive threat of CO2 has not been investigated. Using pharmacological, behavioral, and AT1R/ACE gene transcription analyses, we assessed central AT1R recruitment in CO2-associated fear. CO2 inhalation led to significant AT1R and ACE mRNA upregulation in homeostatic regulatory regions, subfornical organ (SFO) and paraventricular nucleus (PVN), in a temporal manner. Intracerebroventricular infusion of selective AT1R antagonist, losartan, significantly attenuated freezing during CO2 inhalation, and during re-exposure to CO2 context, suggestive of AT1R modulation of contextual fear. Regional Fos mapping in losartan-treated mice post-behavior revealed significantly attenuated labeling in areas regulating defensive behavior, contextual fear, and threat responding; such as, the bed nucleus of stria terminalis, dorsal periaqueductal gray, hypothalamic nuclei, hippocampus, and prefrontal areas such as the prelimbic, infralimbic, and anterior cingulate cortices. Sub-regions of the amygdala did not show CO2-associated AT1R regulation or altered Fos labeling. Collectively, our data suggests central AT1R recruitment in modulation of fear behaviors associated with CO2 inhalation via engagement of neurocircuits regulating homeostasis and defensive behaviors. Our data provides mechanistic insights into the interoceptive regulation of fear, relevant to fear related disorders such as PD and PTSD.
Collapse
Affiliation(s)
- Andrew Winter
- Dept. of Pharmacology and Systems Physiology, University of Cincinnati, United States; Neuroscience Graduate Program, University of Cincinnati, United States
| | - Rebecca Ahlbrand
- Dept. of Pharmacology and Systems Physiology, University of Cincinnati, United States; VA Medical Center, Cincinnati, OH, 45221, United States
| | - Renu Sah
- Dept. of Pharmacology and Systems Physiology, University of Cincinnati, United States; Neuroscience Graduate Program, University of Cincinnati, United States; VA Medical Center, Cincinnati, OH, 45221, United States.
| |
Collapse
|
35
|
Assessment of fear and anxiety associated behaviors, physiology and neural circuits in rats with reduced serotonin transporter (SERT) levels. Transl Psychiatry 2019; 9:33. [PMID: 30670681 PMCID: PMC6343029 DOI: 10.1038/s41398-019-0368-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/15/2018] [Accepted: 10/05/2018] [Indexed: 01/11/2023] Open
Abstract
Genetic variation in serotonin transporter (SERT) that reduces transcriptional efficiency is associated with higher anxiety and fear traits and a greater incidence of post traumatic stress disorder (PTSD). Although previous studies have shown that rats with no expression of SERT (SERT-/-) have increased baseline anxiety behaviors, SERT+/- rats with low SERT expression (and more relevant to the clinical condition with low SERT expression) do not. Yet, no systematic studies of fear acquisition/extinction or their underlying neural mechanisms have been conducted in this preclinical genetic SERT+/- model. Here we sought to determine if SERT+/- or SERT-/-, compared to wildtype, rats would show exacerbated panic responses and/or persistent conditioned fear responses that may be associated with PTSD or phobia vulnerability. Results: Only SERT-/- rats showed increased baseline anxiety-like behaviors with heightened panic respiratory responses. However SERT+/- (also SERT-/-) rats showed enhanced acquisition of fear and delayed extinction of fear that was associated with changes in serotonergic-related genes (e.g., reduced 5-HT1A receptor) and disrupted inhibition within the basolateral amygdala (BLA). Furthermore, the disrupted fear responses in SERT+/- rats were normalized with 5HT1A antagonist infusions into the BLA. Enhanced acquisition and failure to extinguish fear memories displayed by both SERT-/- and SERT+/- rats are cardinal symptoms of disabling anxiety disorders such as phobias and PTSD. The data here support the hypothesis that reduced SERT function is a genetic risk that disrupts select gene expression and network properties in the amygdala that could result in vulnerability to these syndromes.
Collapse
|
36
|
McMurray KM, Strawn JR, Sah R. Fluoxetine Modulates Spontaneous and Conditioned Behaviors to Carbon Dioxide (CO2) Inhalation and Alters Forebrain–Midbrain Neuronal Activation. Neuroscience 2019; 396:108-118. [DOI: 10.1016/j.neuroscience.2018.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/17/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022]
|
37
|
Battaglia M, Rossignol O, Bachand K, D'Amato FR, De Koninck Y. Amiloride modulation of carbon dioxide hypersensitivity and thermal nociceptive hypersensitivity induced by interference with early maternal environment. J Psychopharmacol 2019; 33:101-108. [PMID: 29968500 DOI: 10.1177/0269881118784872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Early life adversities are risk factors for anxiety disorders and for pain syndromes, which are, in turn, highly comorbid with anxiety disorders. Repeated cross-fostering mouse pups to adoptive lactating females induces epigenetic modification and heightened mRNA-expression of the acid-sensing-ion-channel-1 gene, altered nociception, and hypersensitivity to 6% carbon dioxide air mixtures, a trait marker of specific human anxiety disorders such as, most clearly and prominently, panic disorder. AIMS We hypothesized that the acid-sensing ion channel inhibitor amiloride can modulate repeated cross-fostering animals' exaggerated responses to carbon dioxide and nociceptive thermal stimulation. METHODS Respiratory carbon dioxide sensitivity was assessed by plethysmography during 6% carbon dioxide air mixture challenges, and nociception was assessed by latency of paw withdrawal to thermal stimulation, in repeated cross-fostering and control animals. To circumvent the blood-brain barrier, prior to testing, amiloride was nebulized in a plethysmograph. Data were analyzed by general linear models. RESULTS Analyses of tidal volume responses to 6% carbon dioxide of animals pre-treated with nebulized amiloride/saline in a randomized crossover design showed significant modulatory effect of amiloride, and amiloride×repeated cross-fostering interaction. In contrast, repeated cross-fostering animals' responses to 6% carbon dioxide after intraperitoneal amiloride, saline, or no treatment, were no different. Analyses of responses to thermal stimuli showed a significant modulatory effect of nebulized amiloride, and repeated cross-fostering×amiloride interaction. CONCLUSIONS Single-dose nebulized amiloride decreased repeated cross-fostering animals' carbon dioxide sensitivity and nociception indices to levels that were no different from those of control animals. Inasmuch as these results pertain to human anxiety and/or pain hypersensitivity, our findings provide a rationale for studying inhaled amiloride in some anxiety disorders and/or pain syndromes.
Collapse
Affiliation(s)
- Marco Battaglia
- Child Youth and Emerging Adult Programme, Centre for Addiction & Mental Health, Toronto, ON, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Orlane Rossignol
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada
| | - Karine Bachand
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada
| | - Francesca R D'Amato
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| |
Collapse
|
38
|
Leibold NK, Schruers KR. Assessing Panic: Bridging the Gap Between Fundamental Mechanisms and Daily Life Experience. Front Neurosci 2018; 12:785. [PMID: 30459546 PMCID: PMC6232935 DOI: 10.3389/fnins.2018.00785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/10/2018] [Indexed: 12/16/2022] Open
Abstract
Panic disorder (PD) is one of the most common psychiatric disorders. Recurrent, unexpected panic attacks (PAs) are the primary symptom and strongly impact patients’ quality of life. Clinical manifestations are very heterogeneous between patients, emphasizing the need for a dimensional classification integrating various aspects of neurobiological and psychological circuits in line with the Research Domain Criteria (RDoC) proposed by the US National Institute of Mental Health. To go beyond data that can be collected in the daily clinical situation, experimental panic provocation is widely used, which has led to important insights into involved brain regions and systems. Genetic variants can determine the sensitivity to experimental models such as carbon dioxide (CO2) exposure and can increase the risk to develop PD. Recent developments now allow to better assess the dynamic course of PAs outside the laboratory in patients’ natural environment. This can provide novel insights into the underlying mechanisms and the influence of environmental factors that can alter gene regulation by changing DNA methylation. In this mini review, we discuss assessment of PAs in the clinic, in the laboratory using CO2 exposure, genetic associations, and the benefits of real-life assessment and epigenetic research.
Collapse
Affiliation(s)
- Nicole K Leibold
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Koen R Schruers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, Maastricht, Netherlands.,Faculty of Psychology, Center for Experimental and Learning Psychology, University of Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Spiacci A, Vilela-Costa HH, Sant'Ana AB, Fernandes GG, Frias AT, da Silva GSF, Antunes-Rodrigues J, Zangrossi H. Panic-like escape response elicited in mice by exposure to CO 2, but not hypoxia. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:178-186. [PMID: 29111406 DOI: 10.1016/j.pnpbp.2017.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022]
Abstract
Exposure to elevated concentrations of CO2 or hypoxia has been widely used in psychiatric research as a panic provoking stimulus. However, the use of these respiratory challenges to model panic-like responses in experimental animals has been less straightforward. Little data is available, from behavioral and endocrine perspectives, to support the conclusion that a marked aversive situation, such as that experienced during panic attacks, was evoked in these animals. We here compared the behavioral responses of male CB57BL/6 mice during exposure to 20% CO2 or 7% O2 and its consequence on plasma levels of corticosterone. We also evaluated whether clinically-effective panicolytic drugs affect the behavioral responses expressed during CO2 exposure. The results showed that whereas hypoxia caused a marked reduction in locomotion, inhalation of CO2-enriched air evoked an active escape response, characterized by bouts of upward leaps directed to the border of the experimental cage, interpreted as escape attempts. Corticosterone levels were increased 30min after either of the respiratory challenges used, but it was higher in the hypoxia group. Chronic (21days), but not acute, treatment with fluoxetine or imipramine (5, 10 or 15mg/kg) or a single injection of alprazolam (0.025, 0.05 or 0.1mg/kg), but not of the anxiolytic diazepam (0.025, 0.05 or 0.1 and 1mg/kg) reduced the number of escape attempts, indicating a panicolytic-like effect. Altogether, the results suggest that whereas hypoxia increased anxiety, exposure to 20% CO2 evoked a panic-like state. The latter condition/test protocol seems to be a simple and validated model for studying in mice pathophysiological mechanisms and the screening of novel drugs for panic disorder.
Collapse
Affiliation(s)
- Ailton Spiacci
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto CEP:14049-900, Brazil.
| | - Heloisa H Vilela-Costa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto CEP:14049-900, Brazil
| | - Ana Beatriz Sant'Ana
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto CEP:14049-900, Brazil
| | - Gabriel Gripp Fernandes
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto CEP:14049-900, Brazil
| | - Alana Tercino Frias
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto CEP:14049-900, Brazil
| | | | - José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto CEP:14049-900, Brazil.
| |
Collapse
|
40
|
Giannese F, Luchetti A, Barbiera G, Lampis V, Zanettini C, Knudsen GP, Scaini S, Lazarevic D, Cittaro D, D'Amato FR, Battaglia M. Conserved DNA Methylation Signatures in Early Maternal Separation and in Twins Discordant for CO 2 Sensitivity. Sci Rep 2018; 8:2258. [PMID: 29396481 PMCID: PMC5797081 DOI: 10.1038/s41598-018-20457-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/18/2018] [Indexed: 01/07/2023] Open
Abstract
Respiratory and emotional responses to blood-acidifying inhalation of CO2 are markers of some human anxiety disorders, and can be enhanced by repeatedly cross-fostering (RCF) mouse pups from their biological mother to unrelated lactating females. Yet, these dynamics remain poorly understood. We show RCF-associated intergenerational transmission of CO2 sensitivity in normally-reared mice descending from RCF-exposed females, and describe the accompanying alterations in brain DNA methylation patterns. These epigenetic signatures were compared to DNA methylation profiles of monozygotic twins discordant for emotional reactivity to a CO2 challenge. Altered methylation was consistently associated with repeated elements and transcriptional regulatory regions among RCF-exposed animals, their normally-reared offspring, and humans with CO2 hypersensitivity. In both species, regions bearing differential methylation were associated with neurodevelopment, circulation, and response to pH acidification processes, and notably included the ASIC2 gene. Our data show that CO2 hypersensitivity is associated with specific methylation clusters and genes that subserve chemoreception and anxiety. The methylation status of genes implicated in acid-sensing functions can inform etiological and therapeutic research in this field.
Collapse
Affiliation(s)
- Francesca Giannese
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Luchetti
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy
| | - Giulia Barbiera
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudio Zanettini
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy.,National Institute on Drug Abuse, Medication Development Program Molecular Targets and Medications Discovery Branch, Intramural Research Program, NIH, Baltimore, USA
| | - Gun Peggy Knudsen
- The Norwegian Institute of Public Health Department of Genetics, Environment and Mental Health, Oslo, Norway
| | - Simona Scaini
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Dejan Lazarevic
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Davide Cittaro
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Francesca R D'Amato
- Institute of Cell Biology and Neurobiology, National Research Council, Rome, Italy.
| | - Marco Battaglia
- Department of Psychiatry, the University of Toronto, Toronto, Canada. .,Division of Child, Youth and Emerging Adulthood, Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
41
|
Leibold NK, van den Hove DLA, Viechtbauer W, Kenis G, Goossens L, Lange I, Knuts I, Smeets HJ, Myin-Germeys I, Steinbusch HW, Schruers KR. Amiloride-sensitive cation channel 2 genotype affects the response to a carbon dioxide panic challenge. J Psychopharmacol 2017; 31:1294-1301. [PMID: 28121219 DOI: 10.1177/0269881116686880] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Until recently, genetic research into panic disorder (PD) has had only limited success. Inspired by rodent research, demonstrating that the acid-sensing ion channel 1a (ASIC1a) is critically involved in the behavioral fear response to carbon dioxide (CO2) exposure, variants in the human homologue gene amiloride-sensitive cation channel 2 (ACCN2) were shown to be associated with PD. However, the relationship between changes in brain pH and ACCN2, as done in rodents by CO2 exposure, has not been investigated yet in humans. Here, we examined this link between the ACCN2 gene and the response to CO2 exposure in two studies: in healthy volunteers as well as PD patients and using both behavioral and physiological outcome measures. More specifically, 107 healthy volunteers and 183 PD patients underwent a 35% CO2 inhalation. Negative affect was assessed using visual analogue scales and the panic symptom list (PSL), and, in healthy volunteers, cardiovascular measurements. The single nucleotide polymorphism rs10875995 was significantly associated with a higher emotional response in PD patients and with an increase in systolic as well as diastolic blood pressure in healthy subjects. In all measurements, subjects homozygous for the T-allele showed a heightened reactivity to CO2. Furthermore, a trend towards an rs685012 genotype effect on the emotional response was found in PD patients. We provide the first evidence that genetic variants in the ACCN2 are associated with differential sensitivity to CO2 in PD patients as well as healthy volunteers, further supporting ACCN2 as a promising candidate for future research to improve current treatment options.
Collapse
Affiliation(s)
- Nicole K Leibold
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Daniel LA van den Hove
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands.,2 Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Wolfgang Viechtbauer
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Liesbet Goossens
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Iris Lange
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Inge Knuts
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Hubert J Smeets
- 3 Genome Center Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Inez Myin-Germeys
- 3 Genome Center Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Harry Wm Steinbusch
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Koen Rj Schruers
- 1 Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
42
|
Tipton MJ, Harper A, Paton JFR, Costello JT. The human ventilatory response to stress: rate or depth? J Physiol 2017. [PMID: 28650070 DOI: 10.1113/jp274596] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Many stressors cause an increase in ventilation in humans. This is predominantly reported as an increase in minute ventilation (V̇E). But, the same V̇E can be achieved by a wide variety of changes in the depth (tidal volume, VT ) and number of breaths (respiratory frequency, ƒR ). This review investigates the impact of stressors including: cold, heat, hypoxia, pain and panic on the contributions of ƒR and VT to V̇E to see if they differ with different stressors. Where possible we also consider the potential mechanisms that underpin the responses identified, and propose mechanisms by which differences in ƒR and VT are mediated. Our aim being to consider if there is an overall differential control of ƒR and VT that applies in a wide range of conditions. We consider moderating factors, including exercise, sex, intensity and duration of stimuli. For the stressors reviewed, as the stress becomes extreme V̇E generally becomes increased more by ƒR than VT . We also present some tentative evidence that the pattern of ƒR and VT could provide some useful diagnostic information for a variety of clinical conditions. In The Physiological Society's year of 'Making Sense of Stress', this review has wide-ranging implications that are not limited to one discipline, but are integrative and relevant for physiology, psychophysiology, neuroscience and pathophysiology.
Collapse
Affiliation(s)
- Michael J Tipton
- Extreme Environments Laboratory, Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, PO1 2ER, UK
| | - Abbi Harper
- Clinical Fellow in Intensive Care Medicine, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Julian F R Paton
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Joseph T Costello
- Extreme Environments Laboratory, Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, PO1 2ER, UK
| |
Collapse
|
43
|
Battaglia M. Sensitivity to carbon dioxide and translational studies of anxiety disorders. Neuroscience 2017; 346:434-436. [PMID: 28188857 DOI: 10.1016/j.neuroscience.2017.01.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/31/2017] [Indexed: 12/23/2022]
Abstract
Heightened concentrations of CO2 in inhaled air provoke temporary acidification of the brain, followed by compensatory hyperventilation and increased arousal/anxiety. These responses are likely to map a basic, latent general alarm/avoidance system that is largely shared across mammals, and are sources of individual differences. By showing paroxysmal respiratory and emotional responses to CO2 challenges, humans with panic and separation anxiety disorders lie at one extreme of the distribution for CO2 sensitivity. This is also a developmental trait, sensitive to interference with parental cares. By sharing CO2 sensitivity with humans, rodents constitute a valuable resource to model panic and separation anxiety in the laboratory. Advantages of modeling CO2 sensitivity in rodents include non-inferential measurements (e.g. respiratory readouts) as proxies for human conditions, unbiased investigation of gene-environment interplays, and flexible availability of tissues for mechanistic studies. Data in humans and animals such as those reported in this issue of Neuroscience begin to reveal that CO2-driven behavioral responses stem from anatomo-physiological systems that are relatively separated from those subserving general dispositions to anxiety. This supports the notion that sensitivity to suffocative stimuli and ensuing human panic are significantly independent from trait/cognitive anxiety, and corroborates newer conceptualizations that distinguish between fear and anxiety circuitries.
Collapse
Affiliation(s)
- Marco Battaglia
- Department of Psychiatry, The University of Toronto, Toronto, Canada; Division of Child, Youth and Emerging Adulthood, Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
44
|
Differential behavioral sensitivity to carbon dioxide (CO 2) inhalation in rats. Neuroscience 2017; 346:423-433. [PMID: 28087339 DOI: 10.1016/j.neuroscience.2017.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/14/2016] [Accepted: 01/03/2017] [Indexed: 01/21/2023]
Abstract
Inhalation of carbon dioxide (CO2) is frequently employed as a biological challenge to evoke intense fear and anxiety. In individuals with panic disorder, CO2 reliably evokes panic attacks. Sensitivity to CO2 is highly heterogeneous among individuals, and although a genetic component is implicated, underlying mechanisms are not clear. Preclinical models that can simulate differential responsivity to CO2 are therefore relevant. In the current study we investigated CO2-evoked behavioral responses in four different rat strains: Sprague-Dawley (SD), Wistar (W), Long Evans (LE) and Wistar-Kyoto, (WK) rats. We also assessed tryptophan hydroxylase 2 (TPH-2)-positive serotonergic neurons in anxiety/panic regulatory subdivisions of the dorsal raphe nucleus (DR), as well as dopamine β hydroxylase (DβH)-positive noradrenergic neurons in the locus coeruleus, implicated in central CO2-chemosensitivity. Behavioral responsivity to CO2 inhalation varied between strains. CO2-evoked immobility was significantly higher in LE and WK rats as compared with W and SD cohorts. Differences were also observed in CO2-evoked rearing and grooming behaviors. Exposure to CO2 did not produce conditioned behavioral responses upon re-exposure to CO2 context in any strain. Reduced TPH-2-positive cell counts were observed specifically in the panic-regulatory dorsal raphe ventrolateral (DRVL)-ventrolateral periaqueductal gray (VLPAG) subdivision in CO2-sensitive strains. Conversely, DβH-positive cell counts within the LC were significantly higher in CO2-sensitive strains. Collectively, our data provide evidence for strain dependent, differential CO2-sensitivity and potential differences in monoaminergic systems regulating panic and anxiety. Comparative studies between CO2-vulnerable and resistant strains may facilitate the mechanistic understanding of differential CO2-sensitivity in the development of panic and anxiety disorders.
Collapse
|