1
|
Peng P, Zhang Y, Ju Y, Wang K, Li G, Calhoun VD, Wang YP. Group Sparse Joint Non-Negative Matrix Factorization on Orthogonal Subspace for Multi-Modal Imaging Genetics Data Analysis. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:479-490. [PMID: 32750856 PMCID: PMC7758677 DOI: 10.1109/tcbb.2020.2999397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
With the development of multi-model neuroimaging technology and gene detection technology, the efforts of integrating multi-model imaging genetics data to explore the virulence factors of schizophrenia (SZ) are still limited. To address this issue, we propose a novel algorithm called group sparse of joint non-negative matrix factorization on orthogonal subspace (GJNMFO). Our algorithm fuses single nucleotide polymorphism (SNP) data, function magnetic resonance imaging (fMRI) data and epigenetic factors (DNA methylation) by projecting three-model data into a common basis matrix and three different coefficient matrices to identify risk genes, epigenetic factors and abnormal brain regions associated with SZ. Specifically, we introduce orthogonal constraints on the basis matrix to discard unimportant features in the row of coefficient matrices. Since imaging genetics data have rich group information, we draw into group sparse on three coefficient matrices to make the extracted features more accurate. Both the simulated and real Mind Clinical Imaging Consortium (MCIC) datasets are performed to validate our approach. Simulation results show that our algorithm works better than other competing methods. Through the experiments of MCIC datasets, GJNMFO reveals a set of risk genes, epigenetic factors and abnormal brain functional regions, which have been verified to be both statistically and biologically significant.
Collapse
|
2
|
Vanwong N, Sukasem C, Unaharassamee W, Jiratjintana N, Na Nakorn C, Hongkaew Y, Puangpetch A. Associations of the SREBF2 Gene and INSIG2 Polymorphisms with Obesity and Dyslipidemia in Thai Psychotic Disorder Patients Treated with Risperidone. J Pers Med 2021; 11:jpm11100943. [PMID: 34683084 PMCID: PMC8541118 DOI: 10.3390/jpm11100943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Patients with psychotic disorders who receive atypical antipsychotic drugs often develop metabolic abnormalities. The sterol regulatory element-binding factor 2 (SREBF2) gene and insulin-induced gene (INSIG) have important roles in lipid metabolism. A previous study indicated that risperidone stimulated both lipogenesis and cholesterogenesis through activation of SREBP2 expression and inhibition of INSIG2. The SREBF2 gene and INSIG2 polymorphisms have been reported to be associated with metabolic abnormalities. Objective: To investigate the association of the SREBF2 gene (rs1052717, rs2267439, and rs2267443) and INSIG2 (rs7566605, rs11123469, and rs17587100) polymorphisms and the presence of obesity and dyslipidemia in Thai psychotic disorder patients treated with risperidone. Methods: All 113 psychiatric patients using risperidone were evaluated for their lipid profile and screened for obesity criteria. We genotyped the SREBF2 gene and INSIG2 polymorphisms using TaqMan real-time polymerase chain reaction. Results: None of the studied SREBF2 gene and INSIG2 SNPs were associated with obesity in Thai psychotic disorder patients receiving risperidone. Nonetheless, the SREBF2 rs2267443 (G/A) A-allele carriers were at a higher risk for hypertriglyceridemia, whereas the INSIG2 rs11123469 (T/C) C-allele carriers had a lower risk for hypertriglyceridemia, after being adjusted for clinical characteristics using multiple logistic regression. Conclusions: Our findings suggest that the SREBF2 gene rs2267443 (G/A) and the INSIG2 rs11123469 (T/C) polymorphisms are associated with dyslipidemia in Thai psychotic disorder patients treated with risperidone. Further studies with prospective designs and larger patient groups are needed.
Collapse
Affiliation(s)
- Natchaya Vanwong
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Cardiovascular Precision Medicine Research Group, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok 10400, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics & Family Check-Up Services Center, Bumrungrad International Hospital, Bangkok 10110, Thailand
| | - Weerapon Unaharassamee
- Department of Psychiatry, Somdet Chaopraya Institute of Psychiatry, Bangkok 10600, Thailand; (W.U.); (N.J.)
| | - Napa Jiratjintana
- Department of Psychiatry, Somdet Chaopraya Institute of Psychiatry, Bangkok 10600, Thailand; (W.U.); (N.J.)
| | - Chalitpon Na Nakorn
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Yaowaluck Hongkaew
- Advance Research and Development Laboratory, Bumrungrad International Hospital, Bangkok 10110, Thailand;
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok 10400, Thailand
- Correspondence: ; Tel.: +66-2-200-4331; Fax: +66-2-200-4332
| |
Collapse
|
3
|
Zubiaur P, Soria-Chacartegui P, Villapalos-García G, Gordillo-Perdomo JJ, Abad-Santos F. The pharmacogenetics of treatment with olanzapine. Pharmacogenomics 2021; 22:939-958. [PMID: 34528455 DOI: 10.2217/pgs-2021-0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genetic polymorphism in olanzapine-metabolizing enzymes, transporters and drug targets is associated with alterations in safety and efficacy. The aim of this systematic review is to describe all clinically relevant pharmacogenetic information on olanzapine and to propose clinically actionable variants. Two hundred and eighty-four studies were screened; 76 complied with the inclusion criteria and presented significant associations. DRD2 Taq1A (rs1800497) *A1, LEP -2548 (rs7799039) G and CYP1A2*1F alleles were related to olanzapine effectiveness and safety variability in several studies, with a high level of evidence. DRD2 -141 (rs1799732) Ins, A-241G (rs1799978) G, DRD3 Ser9Gly (rs6280) Gly, HTR2A rs7997012 A, ABCB1 C3435T (rs1045642) T and G2677T/A (rs2032582) T and UGT1A4*3 alleles were related to safety, effectiveness and/or pharmacokinetic variability with moderated level of evidence.
Collapse
Affiliation(s)
- Pablo Zubiaur
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Paula Soria-Chacartegui
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Gonzalo Villapalos-García
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Juan J Gordillo-Perdomo
- Department of Clinical Analysis, Hospital Universitario de La Princesa, Madrid, 28006, Spain
| | - Francisco Abad-Santos
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28006, Spain
| |
Collapse
|
4
|
Cataldi M, Citro V, Resnati C, Manco F, Tarantino G. New Avenues for Treatment and Prevention of Drug-Induced Steatosis and Steatohepatitis: Much More Than Antioxidants. Adv Ther 2021; 38:2094-2113. [PMID: 33761100 PMCID: PMC8107075 DOI: 10.1007/s12325-021-01669-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Drug-induced lipid accumulation in the liver may induce two clinically relevant conditions, drug-induced steatosis (DIS) and drug-induced steatohepatitis (DISH). The list of drugs that may cause DIS or DISH is long and heterogeneous and includes therapeutically relevant molecules that cannot be easily replaced by less hepatotoxic medicines, therefore making specific strategies necessary for DIS/DISH prevention or treatment. For years, the only available tools to achieve these goals have been antioxidant drugs and free radical scavengers, which counteract drug-induced mitochondrial dysfunction but, unfortunately, have only limited efficacy. In the present review we illustrate how in vitro preclinical research unraveled new key players in the pathogenesis of specific forms of DISH, and how, in a few cases, proof of concept of the beneficial effects of their pharmacological modulation has been obtained in vivo in animal models of this condition. The key issue emerging from these studies is that, in selected cases, liver toxicity depends on mechanisms unrelated to those responsible for the desired, primary pharmacological effects of the toxic drug and, therefore, specific strategies can be designed to overcome steatogenicity without making the drug ineffective. In particular, the hepatotoxic drug could be given in combination with a second molecule intended to selectively antagonize its liver toxicity whilst, ideally, potentiating its desired pharmacological activity. Although most of the evidence that we discuss is from in vitro or animal models and will need to be further explored and validated in humans, it highlights new avenues to be pursued in order to improve the safety of steatogenic drugs.
Collapse
|
5
|
Libowitz MR, Nurmi EL. The Burden of Antipsychotic-Induced Weight Gain and Metabolic Syndrome in Children. Front Psychiatry 2021; 12:623681. [PMID: 33776816 PMCID: PMC7994286 DOI: 10.3389/fpsyt.2021.623681] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Antipsychotic medications are critical to child and adolescent psychiatry, from the stabilization of psychotic disorders like schizophrenia, bipolar disorder, and psychotic depression to behavioral treatment of autism spectrum disorder, tic disorders, and pediatric aggression. While effective, these medications carry serious risk of adverse events-most commonly, weight gain and cardiometabolic abnormalities. Negative metabolic consequences affect up to 60% of patients and present a major obstacle to long-term treatment. Since antipsychotics are often chronically prescribed beginning in childhood, cardiometabolic risk accumulates. An increased susceptibility to antipsychotic-induced weight gain (AIWG) has been repeatedly documented in children, particularly rapid weight gain. Associated cardiometabolic abnormalities include central obesity, insulin resistance, dyslipidemia, and systemic inflammation. Lifestyle interventions and medications such as metformin have been proposed to reduce risk but remain limited in efficacy. Furthermore, antipsychotic medications touted to be weight-neutral in adults can cause substantial weight gain in children. A better understanding of the biological underpinnings of AIWG could inform targeted and potentially more fruitful treatments; however, little is known about the underlying mechanism. As yet, modest genetic studies have nominated a few risk genes that explain only a small percentage of the risk. Recent investigations have begun to explore novel potential mechanisms of AIWG, including a role for gut microbiota and microbial metabolites. This article reviews the problem of AIWG and AP metabolic side effects in pediatric populations, proposed mechanisms underlying this serious side effect, and strategies to mitigate adverse impact. We suggest future directions for research efforts that may advance the field and lead to improved clinical interventions.
Collapse
Affiliation(s)
| | - Erika L. Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Sneller MH, de Boer N, Everaars S, Schuurmans M, Guloksuz S, Cahn W, Luykx JJ. Clinical, Biochemical and Genetic Variables Associated With Metabolic Syndrome in Patients With Schizophrenia Spectrum Disorders Using Second-Generation Antipsychotics: A Systematic Review. Front Psychiatry 2021; 12:625935. [PMID: 33868046 PMCID: PMC8044798 DOI: 10.3389/fpsyt.2021.625935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/24/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Individuals with severe mental illness experience increased morbidity and mortality compared to the general population. Adverse effects of antipsychotics, including weight gain, may contribute to the development of metabolic syndrome (MetS), which is associated with increased risks of all-cause and cardiovascular disease mortality. We aim to provide a comprehensive overview of clinical, biochemical and genetic factors associated with MetS among patients with schizophrenia spectrum disorders using second-generation antipsychotics (SGA). Methods: A literature search was performed in Pubmed and Embase to identify all cohort studies, cross-sectional studies and clinical trials investigating associations with MetS in patients with schizophrenia spectrum disorders using SGAs. We extracted and enumerated clinical, biochemical and genetic factors reported to be associated with MetS. We defined factors associated with MetS as factors being reported as associated with MetS in two or more studies. Results: 58 studies were included in this review (n = 12,123). In total, 62 factors were found to be associated with increased risk of MetS. Thirty one out of 58 studies investigated factors that were reported as associated with MetS in two or more studies. With regard to clinical factors, we found gender, higher age, concomitant use of mood stabilizers, higher baseline and current BMI, earlier SGA exposure, higher dose, longer duration of treatment, psychosis and tobacco smoking to be significantly associated with MetS. Furthermore, the biochemical factors hypo-adiponectinemia, elevated levels of C-reactive protein (CRP) and higher white blood cell (WBC) count were identified as factors associated with MetS. Among pharmacogenetic factors, the rs1414334 C-allele of the HTR2C-gene was associated with MetS in patients using SGA. Conclusion: In this systematic review investigating clinical, biochemical and genetic factors associated with MetS in patients using SGAs we found that higher age, higher baseline BMI, higher current BMI and male as well as female gender were positively associated with MetS across all antipsychotics. This study may set the stage for the application of clinical, biochemical and genetic factors to predict the risk of developing MetS in patients using SGAs. Future research is needed to determine which patients using SGAs are at risk to develop MetS in clinical practice.
Collapse
Affiliation(s)
- Marius H Sneller
- Faculty of Biomedical Sciences, Utrecht University, Utrecht, Netherlands
| | - Nini de Boer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sophie Everaars
- Faculty of Medicine, Utrecht University, Utrecht, Netherlands
| | - Max Schuurmans
- Faculty of Medicine, Utrecht University, Utrecht, Netherlands
| | - Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, Netherlands.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Altrecht Mental Health, Utrecht, Netherlands
| | - Jurjen J Luykx
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,GGNet Mental Health, Apeldoorn, Netherlands
| |
Collapse
|
7
|
Abstract
AbstractWe hypothesized that insulin-induced gene 1 (INSIG1) affects milk fat synthesis in buffalo. For this reason, the protein abundance of INSIG1 in the mammary tissue of buffalo during the peak period of lactation and dry-off period was evaluated. The results showed that the expression of INSIG1 at the peak of lactation was lower than that in the dry-off period. To explore the role of INSIG1 in milk fat synthesis, the buffalo mammary epithelial cells (BMECs) were isolated and purified from buffalo mammary tissue, andINSIG1gene were overexpressed and knocked down by constructing the recombinant lentivirus vector ofINSIG1gene and transfecting into BMECs. Results revealed thatINSIG1overexpression decreased the expression ofINSIG2,SREBP,PPARG,SCD,GPAM,DGAT2andAGPAT6, which led to reduction of triglycerides (TAG) content in the cell. In contrast, knockdown ofINSIG1had a positive effect on mRNA expression of the above genes. Overall, the data provide strong support for a key role of INSIG1 in the regulation of milk fat synthesis in BMECs.
Collapse
|
8
|
Li N, Cao T, Wu X, Tang M, Xiang D, Cai H. Progress in Genetic Polymorphisms Related to Lipid Disturbances Induced by Atypical Antipsychotic Drugs. Front Pharmacol 2020; 10:1669. [PMID: 32116676 PMCID: PMC7011106 DOI: 10.3389/fphar.2019.01669] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Metabolic side effects such as weight gain and disturbed lipid metabolism are often observed in the treatment of atypical antipsychotic drugs (AAPDs), which contribute to an excessive prevalence of metabolic syndrome among schizophrenic patients. Great individual differences are observed but the underlying mechanisms are still uncertain. Research on pharmacogenomics indicates that gene polymorphisms involved in the pathways controlling food intake and lipid metabolism may play a significant role. In this review, relevant genes (HTR2C, DRD2, LEP, NPY, MC4R, BDNF, MC4R, CNR1, INSIG2, ADRA2A) and genetic polymorphisms related to metabolic side effects of AAPDs especially dyslipidemia were summarized. Apart from clinical studies, in vitro and in vivo evidence is also analyzed to support related theories. The association of central and peripheral mechanisms is emphasized, enabling the possibility of using peripheral gene expression to predict the central status. Novel methodological development of pharmacogenomics is in urgent need, so as to provide references for individualized medication and further to shed some light on the mechanisms underlying AAPD-induced lipid disturbances.
Collapse
Affiliation(s)
- Nana Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiangxin Wu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
9
|
Ferreira V, Grajales D, Valverde ÁM. Adipose tissue as a target for second-generation (atypical) antipsychotics: A molecular view. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158534. [PMID: 31672575 DOI: 10.1016/j.bbalip.2019.158534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a neuropsychiatric disorder that chronically affects 21 million people worldwide. Second-generation antipsychotics (SGAs) are the cornerstone in the management of schizophrenia. However, despite their efficacy in counteracting both positive and negative symptomatology of schizophrenia, recent clinical observations have described an increase in the prevalence of metabolic disturbances in patients treated with SGAs, including abnormal weight gain, hyperglycemia and dyslipidemia. While the molecular mechanisms responsible for these side-effects remain poorly understood, increasing evidence points to a link between SGAs and adipose tissue depots of white, brown and beige adipocytes. In this review, we survey the present knowledge in this area, with a particular focus on the molecular aspects of adipocyte biology including differentiation, lipid metabolism, thermogenic function and the browning/beiging process.
Collapse
Affiliation(s)
- Vitor Ferreira
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Diana Grajales
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain.
| |
Collapse
|
10
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
11
|
Vantaggiato C, Panzeri E, Citterio A, Orso G, Pozzi M. Antipsychotics Promote Metabolic Disorders Disrupting Cellular Lipid Metabolism and Trafficking. Trends Endocrinol Metab 2019; 30:189-210. [PMID: 30718115 DOI: 10.1016/j.tem.2019.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
Antipsychotics frequently cause obesity and related metabolic disorders that current psychopharmacological/endocrinological theories do not explain consistently. An integrative/alternative theory implies metabolic alterations happening at the cellular level. Many observations in vitro and in vivo, and pivotal observations in humans, point towards chemical properties of antipsychotics, independent of receptor binding characteristics. Being amphiphilic weak bases, antipsychotics can disrupt lysosomal function, affecting cholesterol trafficking; moreover, by chemical mimicry, antipsychotics can inhibit cholesterol biosynthesis. These two molecular adverse effects may trigger a cascade of transcriptional and biochemical events, ultimately reducing available cholesterol while increasing cholesterol precursors and fatty acids. The macroscopic manifestation of these molecular alterations includes decreased high-density lipoprotein and increased very low-density lipoprotein and triglycerides that may translate into obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Elena Panzeri
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Andrea Citterio
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy
| | - Genny Orso
- Department of Pharmacological Sciences, University of Padova (PD), 35131, Italy
| | - Marco Pozzi
- Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini (LC), 23842, Italy.
| |
Collapse
|
12
|
Lin E, Tsai SJ, Kuo PH, Liu YL, Yang AC, Kao CF, Yang CH. The rs1277306 Variant of the REST Gene Confers Susceptibility to Cognitive Aging in an Elderly Taiwanese Population. Dement Geriatr Cogn Disord 2018; 43:119-127. [PMID: 28142142 DOI: 10.1159/000455833] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS There is growing evidence that the RE1-silencing transcription factor (REST) gene may contribute to cognitive aging and Alzheimer diseases. In this replication study, we reassessed whether single nucleotide polymorphisms (SNPs) within the REST gene are linked with cognitive aging independently and/or through complex interactions in an older Taiwanese population. METHODS A total of 634 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examination (MMSE) scores were performed for all subjects to weigh cognitive functions. RESULTS Our data showed that the REST rs1277306 SNP was significantly associated with cognitive aging among all subjects (p = 0.0052). Furthermore, the association remained significant for individuals without APOE ε4 allele (p = 0.0092), but not for individuals with at least 1 APOE ε4 allele. This association remained significant after Bonferroni correction. Additionally, we found the interactions between the rs1713985 and rs1277306 SNPs on cognitive aging (p = 0.016). However, the 3-marker haplotype derived from the rs1713985, rs3796529, and rs7680734 SNPs in the REST gene demonstrated no association with cognitive aging. CONCLUSION Our study indicates that the REST gene may contribute to susceptibility to cognitive aging independently as well as through SNP-SNP and APOE-REST interactions.
Collapse
Affiliation(s)
- Eugene Lin
- TickleFish Systems Corporation, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Effects of circadian clock genes and environmental factors on cognitive aging in old adults in a Taiwanese population. Oncotarget 2018; 8:24088-24098. [PMID: 28412756 PMCID: PMC5421829 DOI: 10.18632/oncotarget.15493] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Previous animal studies have indicated associations between circadian clock genes and cognitive impairment . In this study, we assessed whether 11 circadian clockgenes are associated with cognitive aging independently and/or through complex interactions in an old Taiwanese population. We also analyzed the interactions between environmental factors and these genes in influencing cognitive aging. A total of 634 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examinations (MMSE) were administered to all subjects, and MMSE scores were used to evaluate cognitive function. Our data showed associations between cognitive aging and single nucleotide polymorphisms (SNPs) in 4 key circadian clock genes, CLOCK rs3749473 (p = 0.0017), NPAS2 rs17655330 (p = 0.0013), RORA rs13329238 (p = 0.0009), and RORB rs10781247 (p = 7.9 × 10−5). We also found that interactions between CLOCK rs3749473, NPAS2 rs17655330, RORA rs13329238, and RORB rs10781247 affected cognitive aging (p = 0.007). Finally, we investigated the influence of interactions between CLOCK rs3749473, RORA rs13329238, and RORB rs10781247 with environmental factors such as alcohol consumption, smoking status, physical activity, and social support on cognitive aging (p = 0.002 ∼ 0.01). Our study indicates that circadian clock genes such as the CLOCK, NPAS2, RORA, and RORB genes may contribute to the risk of cognitive aging independently as well as through gene-gene and gene-environment interactions.
Collapse
|
14
|
Lin E, Tsai SJ, Kuo PH, Liu YL, Yang AC, Kao CF. Association and interaction effects of Alzheimer's disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. Oncotarget 2018; 8:24077-24087. [PMID: 28199971 PMCID: PMC5421828 DOI: 10.18632/oncotarget.15269] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/29/2017] [Indexed: 12/21/2022] Open
Abstract
Genome-wide association studies and meta-analyses implicated that increased risk of developing Alzheimers diseases (AD) has been associated with the ABCA7, APOE, BIN1, CASS4, CD2AP, CD33, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB1, HLA-DRB4, INPP5D, MEF2C, MS4A4A, MS4A4E, MS4A6E, NME8, PICALM, PLD3, PTK2B, RIN3, SLC24A4, SORL1, and ZCWPW1 genes. In this study, we assessed whether single nucleotide polymorphisms (SNPs) within these 27 AD-associatedgenes are linked with cognitive aging independently and/or through complex interactions in an older Taiwanese population. We also analyzed the interactions between lifestyle and these genes in influencing cognitive aging. A total of 634 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examination (MMSE) scores were performed for all subjects to evaluate cognitive functions. Out of the 588 SNPs tested in this study, only the association between CASS4-rs911159 and cognitive aging persisted significantly (P = 2.2 × 10−5) after Bonferroni correction. Our data also showed a nominal association of cognitive aging with the SNPs in six more key AD-associated genes, including EPHA1-rs10952552, FERMT2-rs4901317, MEF2C-rs9293506, PLD3-rs11672825, RIN3-rs1885747, and SLC24A4-rs67063100 (P = 0.0018∼0.0097). Additionally, we found the interactions among CASS4-rs911159, EPHA-rs10952552, FERMT2-rs4901317, MEF2C-rs9293506, or SLC24A4-rs67063100 on cognitive aging (P = 0.004∼0.035). Moreover, our analysis suggested the interactions of SLC24A4-rs67063100 or MEF2C-rs9293506 with lifestyle such as alcohol consumption, smoking status, physical activity, or social support on cognitive aging (P = 0.008∼0.041). Our study indicates that the AD-associated genes may contribute to the risk of cognitive aging independently as well as through gene-gene and gene-lifestyle interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Vita Genomics, Inc., Taipei, Taiwan.,TickleFish Systems Corporation, Seattle, WA, USA
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture & Natural Resources, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
15
|
Lin E, Kuo PH, Liu YL, Yang AC, Tsai SJ. Transforming growth factor-β signaling pathway-associated genes SMAD2 and TGFBR2 are implicated in metabolic syndrome in a Taiwanese population. Sci Rep 2017; 7:13589. [PMID: 29051557 PMCID: PMC5648797 DOI: 10.1038/s41598-017-14025-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/05/2017] [Indexed: 01/18/2023] Open
Abstract
The transforming growth factor-β (TGF-β) signaling pathway and its relevant genes have been correlated with an increased risk of developing various hallmarks of metabolic syndrome (MetS). In this study, we assessed whether the TGF-β signaling pathway-associated genes of SMAD family member 2 (SMAD2), SMAD3, SMAD4, transforming growth factor beta 1 (TGFB1), TGFB2, TGFB3, transforming growth factor beta receptor 1 (TGFBR1), and TGFBR2 are associated with MetS and its individual components independently, through complex interactions, or both in a Taiwanese population. A total of 3,000 Taiwanese subjects from the Taiwan Biobank were assessed. Metabolic traits such as waist circumference, triglyceride, high-density lipoprotein cholesterol, systolic and diastolic blood pressure, and fasting glucose were measured. Our results showed a significant association of MetS with the two single nucleotide polymorphisms (SNPs) of SMAD2 rs11082639 and TGFBR2 rs3773651. The association of MetS with these SNPs remained significant after performing Bonferroni correction. Moreover, we identified the effect of SMAD2 rs11082639 on high waist circumference. We also found that an interaction between the SMAD2 rs11082639 and TGFBR2 rs3773651 SNPs influenced MetS. Our findings indicated that the TGF-β signaling pathway-associated genes of SMAD2 and TGFBR2 may contribute to the risk of MetS independently and through gene-gene interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Vita Genomics, Inc., Taipei, Taiwan.
- TickleFish Systems Corporation, Seattle, WA, USA.
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
16
|
Lin E, Kuo PH, Liu YL, Yang AC, Tsai SJ. Detection of susceptibility loci on APOA5 and COLEC12 associated with metabolic syndrome using a genome-wide association study in a Taiwanese population. Oncotarget 2017; 8:93349-93359. [PMID: 29212154 PMCID: PMC5706800 DOI: 10.18632/oncotarget.20967] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022] Open
Abstract
Background Although the association of single nucleotide polymorphisms (SNPs) with metabolic syndrome (MetS) has been reported in various populations in several genome-wide association studies (GWAS), the data is not conclusive. In this GWAS study, we assessed whether SNPs are associated with MetS and its individual components independently and/or through complex interactions in a Taiwanese population. Methods A total of 10,300 Taiwanese subjects were assessed in this study. Metabolic traits such as waist circumference, triglyceride, high-density lipoprotein (HDL) cholesterol, systolic and diastolic blood pressure, and fasting glucose were measured. Results Our data showed an association of MetS at the genome-wide significance level (P < 8.6 x 10-8) with two SNPs, including the rs662799 SNP in the apolipoprotein A5 (APOA5) gene and the rs16944558 SNP in the collectin subfamily member 12 (COLEC12) gene. Moreover, we identified the effect of APOA5 rs662799 on triglyceride and HDL, the effect of rs1106475 in the actin filament associated protein 1 like 2 (AFAP1L2) gene on systolic blood pressure, and the effect of rs17667932 in the mediator complex subunit 30 (MED30) gene on fasting glucose. Additionally, we found that an interaction between the APOA5 rs662799 and COLEC12 rs16944558 SNPs influenced MetS, high triglyceride, and low HDL. Conclusions Our study indicates that the APOA5 and COLEC12 genes may contribute to the risk of MetS and its individual components independently as well as through gene-gene interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Vita Genomics, Inc., Taipei, Taiwan.,TickleFish Systems Corporation, Seattle, WA, USA
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan.,Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
17
|
Chen CC, Hsu LW, Huang KT, Goto S, Chen CL, Nakano T. Overexpression of Insig-2 inhibits atypical antipsychotic-induced adipogenic differentiation and lipid biosynthesis in adipose-derived stem cells. Sci Rep 2017; 7:10901. [PMID: 28883496 PMCID: PMC5589828 DOI: 10.1038/s41598-017-11323-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/22/2017] [Indexed: 01/10/2023] Open
Abstract
Atypical antipsychotics (AAPs) are considered to possess superior efficacy for treating both the positive and negative symptoms of schizophrenia; however, AAP use often causes excessive weight gain and metabolic abnormalities. Recently, several reports have demonstrated that AAPs activate sterol regulatory element-binding protein (SREBP). SREBP, SREBP cleavage-activating protein (SCAP) and insulin-induced gene (Insig) regulate downstream cholesterol and fatty acid biosynthesis. In this study, we explored the effects of clozapine, olanzapine and risperidone on SREBP signaling and downstream lipid biosynthesis genes in the early events of adipogenic differentiation in adipose-derived stem cells (ASCs). After the induction of adipogenic differentiation for 2 days, all AAPs, notably clozapine treatment for 3 and 7 days, enhanced the expression of SREBP-1 and its downstream lipid biosynthesis genes without dexamethasone and insulin supplementation. Simultaneously, protein level of SREBP-1 was significantly enhanced via inhibition of Insig-2 expression. By contrast, SREBP-1 activation was suppressed when Insig-2 expression was upregulated by transfection with Insig-2 plasmid DNA. In summary, our results indicate that AAP treatment, notably clozapine treatment, induces early-stage lipid biosynthesis in ASCs. Such abnormal lipogenesis can be reversed when Insig-2 expression was increased, suggesting that Insig/SCAP/SREBP signaling may be a therapeutic target for AAP-induced weight gain and metabolic abnormalities.
Collapse
Affiliation(s)
- Chien-Chih Chen
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Li-Wen Hsu
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Kuang-Tzu Huang
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Shigeru Goto
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Chao-Long Chen
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Toshiaki Nakano
- Liver Transplantation Center and Department of Surgery, Division of Transplant Immunology, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan. .,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan.
| |
Collapse
|
18
|
Lin E, Kuo PH, Liu YL, Yang AC, Kao CF, Tsai SJ. Effects of circadian clock genes and health-related behavior on metabolic syndrome in a Taiwanese population: Evidence from association and interaction analysis. PLoS One 2017; 12:e0173861. [PMID: 28296937 PMCID: PMC5352001 DOI: 10.1371/journal.pone.0173861] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/28/2017] [Indexed: 12/12/2022] Open
Abstract
Increased risk of developing metabolic syndrome (MetS) has been associated with the circadian clock genes. In this study, we assessed whether 29 circadian clock-related genes (including ADCYAP1, ARNTL, ARNTL2, BHLHE40, CLOCK, CRY1, CRY2, CSNK1D, CSNK1E, GSK3B, HCRTR2, KLF10, NFIL3, NPAS2, NR1D1, NR1D2, PER1, PER2, PER3, REV1, RORA, RORB, RORC, SENP3, SERPINE1, TIMELESS, TIPIN, VIP, and VIPR2) are associated with MetS and its individual components independently and/or through complex interactions in a Taiwanese population. We also analyzed the interactions between environmental factors and these genes in influencing MetS and its individual components. A total of 3,000 Taiwanese subjects from the Taiwan Biobank were assessed in this study. Metabolic traits such as waist circumference, triglyceride, high-density lipoprotein cholesterol, systolic and diastolic blood pressure, and fasting glucose were measured. Our data showed a nominal association of MetS with several single nucleotide polymorphisms (SNPs) in five key circadian clock genes including ARNTL, GSK3B, PER3, RORA, and RORB; but none of these SNPs persisted significantly after performing Bonferroni correction. Moreover, we identified the effect of GSK3B rs2199503 on high fasting glucose (P = 0.0002). Additionally, we found interactions among the ARNTL rs10832020, GSK3B rs2199503, PER3 rs10746473, RORA rs8034880, and RORB rs972902 SNPs influenced MetS (P < 0.001 ~ P = 0.002). Finally, we investigated the influence of interactions between ARNTL rs10832020, GSK3B rs2199503, PER3 rs10746473, and RORB rs972902 with environmental factors such as alcohol consumption, smoking status, and physical activity on MetS and its individual components (P < 0.001 ~ P = 0.002). Our study indicates that circadian clock genes such as ARNTL, GSK3B, PER3, RORA, and RORB genes may contribute to the risk of MetS independently as well as through gene-gene and gene-environment interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Vita Genomics, Inc., Taipei, Taiwan
- TickleFish Systems Corporation, Seattle, Western Australia, United States of America
- * E-mail: (EL); (SJT)
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C. Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture & Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (EL); (SJT)
| |
Collapse
|
19
|
Lin E, Tsai SJ, Kuo PH, Liu YL, Yang AC, Kao CF, Yang CH. The ADAMTS9 gene is associated with cognitive aging in the elderly in a Taiwanese population. PLoS One 2017; 12:e0172440. [PMID: 28225792 PMCID: PMC5321460 DOI: 10.1371/journal.pone.0172440] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/03/2017] [Indexed: 11/18/2022] Open
Abstract
Evidence indicates that the pathophysiologic mechanisms associated with insulin resistance may contribute to cognitive aging and Alzheimer’s diseases. In this study, we hypothesize that single nucleotide polymorphisms (SNPs) within insulin resistance-associated genes, such as the ADAM metallopeptidase with thrombospondin type 1 motif 9 (ADAMTS9), glucokinase regulator (GCKR), and peroxisome proliferator activated receptor gamma (PPARG) genes, may be linked with cognitive aging independently and/or through complex interactions in an older Taiwanese population. A total of 547 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examinations (MMSE) were administered to all subjects, and MMSE scores were used to measure cognitive functions. Our data showed that four SNPs (rs73832338, rs9985304, rs4317088, and rs9831846) in the ADAMTS9 gene were significantly associated with cognitive aging among the subjects (P = 1.5 x 10−6 ~ 0.0002). This association remained significant after performing Bonferroni correction. Additionally, we found that interactions between the ADAMTS9 rs9985304 and ADAMTS9 rs76346246 SNPs influenced cognitive aging (P < 0.001). However, variants in the GCKR and PPARG genes had no association with cognitive aging in our study. Our study indicates that the ADAMTS9 gene may contribute to susceptibility to cognitive aging independently as well as through SNP-SNP interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Vita Genomics, Inc., Taipei, Taiwan
- TickleFish Systems Corporation, Seattle, WA, United States of America
- * E-mail: (EL); (CHY)
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C. Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture & Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Hung Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (EL); (CHY)
| |
Collapse
|
20
|
Koskinen S, Kampman O, Solismaa A, Lyytikäinen LP, Seppälä N, Viikki M, Hämäläinen M, Moilanen E, Mononen N, Lehtimäki T, Leinonen E. INSIG2 polymorphism and weight gain, dyslipidemia and serum adiponectin in Finnish patients with schizophrenia treated with clozapine. Pharmacogenomics 2016; 17:1987-1997. [DOI: 10.2217/pgs-2016-0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate INSIG2's association with obesity, weight change and serum lipid profile during clozapine treatment. Materials & methods: Subjects with schizophrenia (n = 190) were genotyped, identifying seven SNPs. Genetic risk scores (GRSs) were calculated to adiponectin, high-density lipoprotein cholesterol, triglycerides and weight gain. Results: In the model for weight gain, SNPs rs12151787, rs17047733 and rs10490626 were selected. Explanatory variables were BMI (p = 5.05 × 10-5), age (p = 0.003) and GRS (p = 2.81 × 10-5, p = 0.0002 after permutation). No GRS resulted for adiponectin or high-density lipoprotein cholesterol. Rs2161829 and rs10490620 were selected for triglycerides; this GRS was insignificant after permutation. Conclusion: INSIG2 plays a role in weight gain and obesity during clozapine treatment.
Collapse
Affiliation(s)
- Suvi Koskinen
- School of Medicine, University of Tampere, 33014 Tampere, Finland
| | - Olli Kampman
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- Department of Psychiatry, Seinäjoki Hospital District, Seinäjoki, Finland
| | - Anssi Solismaa
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- Department of Psychiatry, Seinäjoki Hospital District, Seinäjoki, Finland
| | - Leo-Pekka Lyytikäinen
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- University of Tampere, School of Medicine, Department of Clinical Chemistry and Fimlab Laboratories, Tampere, Finland
| | - Niko Seppälä
- Department of Psychiatry, Tampere University Hospital, Tampere, Finland
| | - Merja Viikki
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- Tampere Mental Health Centre, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, School of Medicine & Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, School of Medicine & Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Nina Mononen
- University of Tampere, School of Medicine, Department of Clinical Chemistry and Fimlab Laboratories, Tampere, Finland
| | - Terho Lehtimäki
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- University of Tampere, School of Medicine, Department of Clinical Chemistry and Fimlab Laboratories, Tampere, Finland
| | - Esa Leinonen
- School of Medicine, University of Tampere, 33014 Tampere, Finland
- Department of Psychiatry, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
21
|
Lin E, Kuo PH, Liu YL, Yang AC, Kao CF, Tsai SJ. Association and interaction of APOA5, BUD13, CETP, LIPA and health-related behavior with metabolic syndrome in a Taiwanese population. Sci Rep 2016; 6:36830. [PMID: 27827461 PMCID: PMC5101796 DOI: 10.1038/srep36830] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/21/2016] [Indexed: 12/17/2022] Open
Abstract
Increased risk of developing metabolic syndrome (MetS) has been associated with the APOA5, APOC1, BRAP, BUD13, CETP, LIPA, LPL, PLCG1, and ZPR1 genes. In this replication study, we reassessed whether these genes are associated with MetS and its individual components independently and/or through complex interactions in a Taiwanese population. We also analyzed the interactions between environmental factors and these genes in influencing MetS and its individual components. A total of 3,000 Taiwanese subjects were assessed in this study. Metabolic traits such as waist circumference, triglyceride, high-density lipoprotein (HDL) cholesterol, systolic and diastolic blood pressure, and fasting glucose were measured. Our data showed a nominal association of MetS with the APOA5 rs662799, BUD13 rs11216129, BUD13 rs623908, CETP rs820299, and LIPA rs1412444 single nucleotide polymorphisms (SNPs). Moreover, APOA5 rs662799, BUD13 rs11216129, and BUD13 rs623908 were significantly associated with high triglyceride, low HDL, triglyceride, and HDL levels. Additionally, we found the interactions of APOA5 rs662799, BUD13 rs11216129, BUD13 rs623908, CETP rs820299, LIPA rs1412444, alcohol consumption, smoking status, or physical activity on MetS and its individual components. Our study indicates that the APOA5, BUD13, CETP, and LIPA genes may contribute to the risk of MetS independently as well as through gene-gene and gene-environment interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Vita Genomics, Inc., Taipei, Taiwan.,TickleFish Systems Corporation, Seattle, WA, USA
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture &Natural Resources, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
22
|
Lally J, Gaughran F, Timms P, Curran SR. Treatment-resistant schizophrenia: current insights on the pharmacogenomics of antipsychotics. Pharmgenomics Pers Med 2016; 9:117-129. [PMID: 27853387 PMCID: PMC5106233 DOI: 10.2147/pgpm.s115741] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Up to 30% of people with schizophrenia do not respond to two (or more) trials of dopaminergic antipsychotics. They are said to have treatment-resistant schizophrenia (TRS). Clozapine is still the only effective treatment for TRS, although it is underused in clinical practice. Initial use is delayed, it can be hard for patients to tolerate, and clinicians can be uncertain as to when to use it. What if, at the start of treatment, we could identify those patients likely to respond to clozapine - and those likely to suffer adverse effects? It is likely that clinicians would feel less inhibited about using it, allowing clozapine to be used earlier and more appropriately. Genetic testing holds out the tantalizing possibility of being able to do just this, and hence the vital importance of pharmacogenomic studies. These can potentially identify genetic markers for both tolerance of and vulnerability to clozapine. We aim to summarize progress so far, possible clinical applications, limitations to the evidence, and problems in applying these findings to the management of TRS. Pharmacogenomic studies of clozapine response and tolerability have produced conflicting results. These are due, at least in part, to significant differences in the patient groups studied. The use of clinical pharmacogenomic testing - to personalize clozapine treatment and identify patients at high risk of treatment failure or of adverse events - has moved closer over the last 20 years. However, to develop such testing that could be used clinically will require larger, multicenter, prospective studies.
Collapse
Affiliation(s)
- John Lally
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
- National Psychosis Service
| | - Fiona Gaughran
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- National Psychosis Service
| | - Philip Timms
- START Team, South London and Maudsley NHS Foundation Trust
- King’s College London
| | - Sarah R Curran
- King’s College London
- South West London and St George’s Mental Health NHS Foundation Trust
- St George’s University of London, London, UK
| |
Collapse
|
23
|
Hsiao TJ, Lin E. The ENPP1 K121Q polymorphism is associated with type 2 diabetes and related metabolic phenotypes in a Taiwanese population. Mol Cell Endocrinol 2016; 433:20-5. [PMID: 27238374 DOI: 10.1016/j.mce.2016.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022]
Abstract
Increased risk of developing type 2 diabetes (T2D) has been associated with a single nucleotide polymorphism (SNP), rs1044498 (K121Q), in the ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene, but this association is unclear among Asians. In this replication study, we reassessed whether the ENPP1 rs1044498 SNP is associated with T2D, obesity, and T2D/obesity-related metabolic traits in a Taiwanese population. A total of 1513 Taiwanese subjects were assessed in this study. The ENPP1 rs1044498 SNP was genotyped by the Taqman assay. T2D/Obesity-related quantitative traits, such as waist circumference and fasting glucose, were measured. Our data showed a significant association of the ENPP1 rs1044498 SNP with T2D (P < 0.001) among the subjects. Moreover, the ENPP1 rs1044498 SNP was significantly associated with T2D/obesity-related metabolic traits, such as waist circumference (P = 0.002) and fasting glucose (P < 0.001), among the subjects. However, we found no association of ENPP1 rs1044498 with obesity (BMI ≧ 27 kg/m(2)). Our study indicates that the ENPP1 rs1044498 SNP is associated with T2D, waist circumference, and fasting glucose in Taiwanese subjects.
Collapse
Affiliation(s)
- Tun-Jen Hsiao
- College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan, ROC
| | - Eugene Lin
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, ROC; Vita Genomics, Inc., Taipei, Taiwan, ROC; TickleFish Systems Corporation, Seattle, USA.
| |
Collapse
|
24
|
Association of a common rs9939609 variant in the fat mass and obesity-associated (FTO) gene with obesity and metabolic phenotypes in a Taiwanese population: a replication study. J Genet 2016; 95:595-601. [DOI: 10.1007/s12041-016-0671-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Hsiao TJ, Lin E. A Validation Study of Adiponectin rs266729 Gene Variant with Type 2 Diabetes, Obesity, and Metabolic Phenotypes in a Taiwanese Population. Biochem Genet 2016; 54:830-841. [DOI: 10.1007/s10528-016-9760-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/02/2016] [Indexed: 12/24/2022]
|
26
|
Malan-Müller S, Kilian S, van den Heuvel LL, Bardien S, Asmal L, Warnich L, Emsley RA, Hemmings SMJ, Seedat S. A systematic review of genetic variants associated with metabolic syndrome in patients with schizophrenia. Schizophr Res 2016; 170:1-17. [PMID: 26621002 DOI: 10.1016/j.schres.2015.11.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 12/15/2022]
Abstract
Metabolic syndrome (MetS) is a cluster of factors that increases the risk of cardiovascular disease (CVD), one of the leading causes of mortality in patients with schizophrenia. Incidence rates of MetS are significantly higher in patients with schizophrenia compared to the general population. Several factors contribute to this high comorbidity. This systematic review focuses on genetic factors and interrogates data from association studies of genes implicated in the development of MetS in patients with schizophrenia. We aimed to identify variants that potentially contribute to the high comorbidity between these disorders. PubMed, Web of Science and Scopus databases were accessed and a systematic review of published studies was conducted. Several genes showed strong evidence for an association with MetS in patients with schizophrenia, including the fat mass and obesity associated gene (FTO), leptin and leptin receptor genes (LEP, LEPR), methylenetetrahydrofolate reductase (MTHFR) gene and the serotonin receptor 2C gene (HTR2C). Genetic association studies in complex disorders are convoluted by the multifactorial nature of these disorders, further complicating investigations of comorbidity. Recommendations for future studies include assessment of larger samples, inclusion of healthy controls, longitudinal rather than cross-sectional study designs, detailed capturing of data on confounding variables for both disorders and verification of significant findings in other populations. In future, big genomic datasets may allow for the calculation of polygenic risk scores in risk prediction of MetS in patients with schizophrenia. This could ultimately facilitate early, precise, and patient-specific pharmacological and non-pharmacological interventions to minimise CVD associated morbidity and mortality.
Collapse
Affiliation(s)
- Stefanie Malan-Müller
- Stellenbosch University, Department of Psychiatry, Cape Town, South Africa; SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Sanja Kilian
- Stellenbosch University, Department of Psychiatry, Cape Town, South Africa
| | | | - Soraya Bardien
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Laila Asmal
- Stellenbosch University, Department of Psychiatry, Cape Town, South Africa
| | - Louise Warnich
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Robin A Emsley
- Stellenbosch University, Department of Psychiatry, Cape Town, South Africa
| | - Sîan M J Hemmings
- Stellenbosch University, Department of Psychiatry, Cape Town, South Africa; SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Soraya Seedat
- Stellenbosch University, Department of Psychiatry, Cape Town, South Africa
| |
Collapse
|
27
|
A potential mechanism underlying atypical antipsychotics-induced lipid disturbances. Transl Psychiatry 2015; 5:e661. [PMID: 26485545 PMCID: PMC4930135 DOI: 10.1038/tp.2015.161] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/25/2015] [Accepted: 09/14/2015] [Indexed: 11/09/2022] Open
Abstract
Previous findings suggested that a four-protein complex, including sterol-regulatory element-binding protein (SREBP), SREBP-cleavage-activating protein (SCAP), insulin-induced gene (INSIG) and progesterone receptor membrane component 1 (PGRMC1), within the endoplasmic reticulum appears to be an important regulator responsible for atypical antipsychotic drug (AAPD)-induced lipid disturbances. In the present study, effects of typical antipsychotic drug and AAPDs as well as treatment outcome of steroid antagonist mifepristone (MIF) on the PGRMC1/INSIG/SCAP/SREBP pathway were investigated in rat liver using real-time quantitative polymerase chain reaction (qPCR) and western blot analysis. In addition, serum triacylglycerol, total cholesterol, free fatty acids and various hormones including progesterone, corticosterone and insulin were measured simultaneously. Following treatment with clozapine or risperidone, both lipogenesis and cholesterogenesis were enhanced via inhibition of PGRMC1/INSIG-2 and activation of SCAP/SREBP expressions. Such metabolic disturbances, however, were not demonstrated in rats treated with aripiprazole (ARI) or haloperidol (HAL). Moreover, the add-on treatment of MIF was effective in reversing the AAPD-induced lipid disturbances by upregulating the expression of PGRMC1/INSIG-2 and subsequent downregulation of SCAP/SREBP. Taken together, our findings suggest that disturbances in lipid metabolism can occur at an early stage of AAPD treatment before the presence of weight gain. Such metabolic defects can be modified by an add-on treatment of steroid antagonist MIF enhancing the PGRMC1 pathway. Thus, it is likely that PGRMC1/INSIG-2 signaling may be a therapeutic target for AAPD-induced weight gain.
Collapse
|
28
|
Sriretnakumar V, Huang E, Müller DJ. Pharmacogenetics of clozapine treatment response and side-effects in schizophrenia: an update. Expert Opin Drug Metab Toxicol 2015; 11:1709-31. [PMID: 26364648 DOI: 10.1517/17425255.2015.1075003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Clozapine (CLZ) is the most effective treatment for treatment-resistant schizophrenia (SCZ) patients, with potential added benefits of reduction in suicide risk and aggression. However, CLZ is also mainly underused due to its high risk for the potentially lethal side-effect of agranulocytosis as well as weight gain and related metabolic dysregulation. Pharmacogenetics promises to enable the prediction of patient treatment response and risk of adverse effects based on patients' genetics, paving the way toward individualized treatment. AREA COVERED This article reviews pharmacogenetics studies of CLZ response and side-effects with a focus on articles from January 2012 to February 2015, as an update to the previous reviews. Pharmacokinetic genes explored primarily include CYP1A2, while pharmacodynamic genes consisted of traditional pharmacogenetic targets such as brain-derived neurotrophic factor as well novel mitochondrial genes, NDUFS-1 and translocator protein. EXPERT OPINION Pharmacogenetics is a promising avenue for individualized medication of CLZ in SCZ, with several consistently replicated gene variants predicting CLZ response and side-effects. However, a large proportion of studies have yielded mixed results. Large-scale Genome-wide association studies (e.g., CRESTAR) and targeted gene studies with standardized designs (response measurements, treatment durations, plasma level monitoring) are required for further progress toward clinical translation. Additionally, in order to improve study quality, we recommend accounting for important confounders, including polypharmacy, baseline measurements, treatment duration, gender, and age at onset.
Collapse
Affiliation(s)
- Venuja Sriretnakumar
- a 1 Campbell Family Research Institute, Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health , Toronto, Ontario, Canada +1 416 535 8501 ; +1 416 979 4666 ; .,b 2 University of Toronto, Department of Laboratory Medicine and Pathobiology , Ontario, Canada
| | - Eric Huang
- a 1 Campbell Family Research Institute, Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health , Toronto, Ontario, Canada +1 416 535 8501 ; +1 416 979 4666 ; .,c 3 University of Toronto, Institute of Medical Sciences , Ontario, Canada
| | - Daniel J Müller
- a 1 Campbell Family Research Institute, Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health , Toronto, Ontario, Canada +1 416 535 8501 ; +1 416 979 4666 ; .,c 3 University of Toronto, Institute of Medical Sciences , Ontario, Canada.,d 4 University of Toronto, Department of Psychiatry , Ontario, Canada
| |
Collapse
|
29
|
Dang R, Jiang P, Cai H, Li H, Guo R, Wu Y, Zhang L, Zhu W, He X, Liu Y, Xu P. Vitamin D deficiency exacerbates atypical antipsychotic-induced metabolic side effects in rats: involvement of the INSIG/SREBP pathway. Eur Neuropsychopharmacol 2015; 25:1239-47. [PMID: 26003080 DOI: 10.1016/j.euroneuro.2015.04.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/07/2015] [Accepted: 04/29/2015] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome is a major concern in psychotic patients receiving atypical antipsychotics. Recent evidence suggests that sterol regulatory element-binding proteins (SREBPs) and insulin-induced genes (INSIGs) are implicated in the antipsychotic-induced metabolic side-effects. Vitamin D (VD) deficiency, a highly prevalent phenomenon among patients with psychosis, might also predispose individuals to metabolic syndrome Considering that VD has modulating effects on the INSIG/SREBP pathway, it is possible that VD may have a role in the antipsychotic-induced metabolic disturbances involving its effects on the INSIG/SREBP system. Thus, the present study aimed to evaluate the effects of VD deficiency and VD supplementation on antipsychotic-induced metabolic changes in rats. After 4-week administration, clozapine (10mg/kg/d) and risperidone (1mg/kg/d) both caused glucose intolerance and insulin resistance in VD deficient rats, but not in rats with sufficient VD status. Antipsychotic treatments, especially clozapine, elevated serum lipid levels, which were most apparent in VD deficient rats, but alleviated in VD-supplemented rats. Additionally, antipsychotic treatments down-regulated INSIGs and up-regulated SREBPs expression in VD deficient rats, and these effects were attenuated when VD status was more sufficient. Collectively, this study disclose the novel findings that antipsychotic-induced metabolic disturbances is exacerbated by VD deficiency and can be alleviated by VD supplementation, providing new evidence for the promising role of VD in prevention and treatment of metabolic disorders caused by antipsychotic medications. Furthermore, our data also suggest the involvement of INSIG/SREBP pathway in the antipsychotic-induced hyperlipidemia and beneficial effects of VD on lipid profile.
Collapse
Affiliation(s)
- Ruili Dang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China; Department of Pharmacy, Jining First People's Hospital, Jining, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China; Department of Pharmacy, Jining First People's Hospital, Jining, China
| | - Hualin Cai
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Huande Li
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China.
| | - Ren Guo
- School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yanqin Wu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China; School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Lihong Zhang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenye Zhu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xin He
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiping Liu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Xu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Hsiao TJ, Lin E. The Pro12Ala polymorphism in the peroxisome proliferator-activated receptor gamma (PPARG) gene in relation to obesity and metabolic phenotypes in a Taiwanese population. Endocrine 2015; 48:786-93. [PMID: 25182148 DOI: 10.1007/s12020-014-0407-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/25/2014] [Indexed: 01/17/2023]
Abstract
Obesity is considered as an important public health problem in the world. Although the association of a common single nucleotide polymorphism (SNP), rs1801282 (Pro12Ala), in the peroxisome proliferator-activated receptor gamma (PPARG) gene with obesity has been reported in various populations, these data are not conclusive. This study aimed to reassess whether the PPARG rs1801282 SNP is linked with obesity and obesity-related metabolic traits in a Taiwanese population. A total of 674 Taiwanese subjects with general health examinations were genotyped. The rs1801282 genotype was determined by the Taqman SNP genotyping assay. Obesity-related metabolic traits such as triglyceride, waist circumference, systolic and diastolic blood pressure, total cholesterol, and fasting glucose were measured. The PPARG rs1801282 SNP did not exhibit any significant association with obesity among the complete sample population. However, sex-stratified analyses revealed an effect on overweight in female participants where the carriers of the combined CG and GG genotypes had a higher risk to overweight than those with the CC homozygotes (OR=4.05; 95% CI=1.28-12.83; P=0.017). Compared to the carriers of CC homozygotes, BMI was significantly higher for the carriers of the combined CG and GG genotypes in the female subjects (24.4±3.7 vs. 23.5±3.8 kg/m2; P=0.033). In addition, the carriers of the CC homozygotes had a higher total cholesterol level than those with the combined CG and GG genotypes in the female subjects (197.0±37.3 vs. 180.7±33.7 mg/dl; P=0.026). Our study indicates that PPARG rs1801282 may significantly predict overweight, BMI, and total cholesterol in female but not male Taiwanese subjects.
Collapse
Affiliation(s)
- Tun-Jen Hsiao
- College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | | |
Collapse
|
31
|
Yang L, Chen J, Liu D, Yu S, Cong E, Li Y, Wu H, Yue Y, Zuo S, Wang Y, Liang S, Shi Y, Shi S, Xu Y. Association between SREBF2 gene polymorphisms and metabolic syndrome in clozapine-treated patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:136-41. [PMID: 25201120 DOI: 10.1016/j.pnpbp.2014.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Patients with schizophrenia using antipsychotics often develop metabolic side effects, especially with clozapine. Previous studies indicated that antipsychotics could activate the pathway of the sterol regulatory element-binding protein (SREBP). The sterol regulatory element binding transcription factor 2 (SREBF2) gene mainly regulates the cholesterol biosynthetic gene. Therefore, we hypothesized that the SREBF2 gene would be a candidate gene for interindividual variation in drug-induced metabolic syndrome (MetS). In this genetic case-control study, we examined the SREBF2 gene polymorphisms in the risk of MetS patients treated with clozapine. METHODS Ten single nucleotide polymorphisms (SNPs) of SREBF2 were genotyped in a CHB (Han Chinese in Beijing, China) population, a sample of 621 schizophrenia patients treated with clozapine. Patients were evaluated for metabolic parameters and screened for the MetS criteria. RESULTS The incidence of MetS among all subjects was 41.8% (260/621). Two markers of SREBF2 were associated with MetS induced by clozapine after False Discovery Rate (FDR) correction (rs1052717, corrected Pallele=0.010, corrected Pgenotype=0.022; and rs2267443, corrected Pgenotype=0.015). Patients who received clozapine and carried the A-allele of rs2267443 or rs1052717 had an increased risk of MetS (rs2267443, odds ratio (OR)=1.67, 95% confidence interval (CI): 1.20-2.34; and rs1052717, OR=1.81, 95% CI: 1.15-1.98), adjusted by logistic regression for clinical characteristics. CONCLUSION The results suggest that the genetic polymorphisms of SREBF2 gene may be associated with MetS in patients treated with clozapine.
Collapse
Affiliation(s)
- Lin Yang
- Department of Psychiatry, Huashan Hospital, Fudan University, 200021 Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Jianhua Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Dengtang Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Enzhao Cong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Yan Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Haisu Wu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Ying Yue
- Shanghai Luwan Mental Health Center, 1162 Quxi Road, 200023 Shanghai, China
| | - Sai Zuo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Yan Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Shiqiao Liang
- Department of Psychiatry, Huashan Hospital, Fudan University, 200021 Shanghai, China
| | - Yongyong Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes (Ministry of Education), Shanghai Jiao Tong University, 200030 Shanghai, China)
| | - Shenxun Shi
- Department of Psychiatry, Huashan Hospital, Fudan University, 200021 Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Yifeng Xu
- Department of Psychiatry, Huashan Hospital, Fudan University, 200021 Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China.
| |
Collapse
|
32
|
Emul M, Kalelioglu T. Etiology of cardiovascular disease in patients with schizophrenia: current perspectives. Neuropsychiatr Dis Treat 2015; 11:2493-503. [PMID: 26491327 PMCID: PMC4599145 DOI: 10.2147/ndt.s50006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular morbidity and mortality are important problems among patients with schizophrenia. A wide spectrum of reasons, ranging from genes to the environment, are held responsible for causing the cardiovascular risk factors that may lead to shortening the life expectancy of patients with schizophrenia. Here, we have summarized the etiologic issues related with the cardiovascular risk factors in schizophrenia. First, we focused on heritable factors associated with cardiovascular disease and schizophrenia by mentioning studies about genetics-epigenetics, in the first-episode or drug-naïve patients. In this context, the association and candidate gene studies about metabolic disturbances in schizophrenia are reviewed, and the lack of the effects of epigenetic/posttranscriptional factors such as microRNAs is mentioned. Increased rates of type 2 diabetes mellitus and disrupted metabolic parameters in schizophrenia are forcing clinicians to struggle with metabolic syndrome parameters and related issues, which are also the underlying causes for the risk of having cardiometabolic and cardiovascular etiology. Second, we summarized the findings of metabolic syndrome-related entities and discussed the influence of the illness itself, antipsychotic drug treatment, and the possible disadvantageous lifestyle on the occurrence of metabolic syndrome (MetS) or diabetes mellitus. Third, we emphasized on the risk factors of sudden cardiac death in patients with schizophrenia. We reviewed the findings on the arrhythmias such as QT prolongation, which is a risk factor for Torsade de Pointes and sudden cardiac death or P-wave prolongation that is a risk factor for atrial fibrillation. For example, the use of antipsychotics is an important reason for the prolongation of QT and some other cardiac autonomic dysfunctions. Additionally, we discussed relatively rare issues such as myocarditis and cardiomyopathy, which are important for prognosis in schizophrenia that may have originated from the use of antipsychotic medication. In conclusion, we considered that the studies and awareness about physical needs of patients with schizophrenia are increasing. It seems logical to increase cooperation and shared care between the different health care professionals to screen and treat cardiovascular disease (CVD)-risk factors, MetS, and diabetes in patients with psychiatric disorders, because some risk factors of MetS or CVD are avoidable or at least modifiable to decrease high mortality in schizophrenia. We suggested that future research should focus on conducting an integrated system of studies based on a holistic biopsychosocial evaluation.
Collapse
Affiliation(s)
- Murat Emul
- Department of Psychiatry, Medical School of Cerrahpasa, Istanbul University, Istanbul, Turkey
| | - Tevfik Kalelioglu
- Department of Psychiatry, Bakırkoy Mental Health Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
33
|
Kao ACC, Müller DJ. Genetics of antipsychotic-induced weight gain: update and current perspectives. Pharmacogenomics 2014; 14:2067-83. [PMID: 24279860 DOI: 10.2217/pgs.13.207] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Antipsychotic medications are used to effectively treat various symptoms for different psychiatric conditions. Unfortunately, antipsychotic-induced weight gain (AIWG) is a common side effect that frequently results in obesity and secondary medical conditions. Twin and sibling studies have indicated that genetic factors are likely to be highly involved in AIWG. Over recent years, there has been considerable progress in this area, with several consistently replicated findings, as well as the identification of new genes and implicated pathways. Here, we will review the most recent genetic studies related to AIWG using the Medline database (PubMed) and Google Scholar. Among the steadiest findings associated with AIWG are serotonin 2C receptors (HTR2C) and leptin promoter gene variants, with more recent studies implicating MTHFR and, in particular, MC4R genes. Additional support was reported for the HRH1, BDNF, NPY, CNR1, GHRL, FTO and AMPK genes. Notably, some of the reported variants appear to have relatively large effect sizes. These findings have provided insights into the mechanisms involved in AIWG and will help to develop predictive genetic tests in the near future.
Collapse
Affiliation(s)
- Amy C C Kao
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
34
|
The gene-gene interaction of INSIG-SCAP-SREBP pathway on the risk of obesity in Chinese children. BIOMED RESEARCH INTERNATIONAL 2014; 2014:538564. [PMID: 25028659 PMCID: PMC4083216 DOI: 10.1155/2014/538564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/26/2014] [Indexed: 11/20/2022]
Abstract
Background. Childhood obesity has become a global public health problem in recent years. This study aimed to explore the association of genetic variants in INSIG-SCAP-SREBP pathway with obesity in Chinese children. Methods. A case-control study was conducted, including 705 obese cases and 1,325 nonobese controls. We genotyped 15 single nucleotide polymorphisms (SNPs) of five genes in INSIG-SCAP-SREBP pathway, including insulin induced gene 1 (INSIG1), insulin induced gene 2 (INSIG2), SREBP cleavage-activating protein gene (SCAP), sterol regulatory element binding protein gene 1 (SREBP1), and sterol regulatory element binding protein gene 2 (SREBP2). We used generalized multifactor dimensionality reduction (GMDR) and logistic regression to investigate gene-gene interactions. Results. Single polymorphism analyses showed that SCAP rs12487736 and rs12490383 were nominally associated with obesity. We identified a 3-locus interaction on obesity in GMDR analyses (P = 0.001), involving 3 genetic variants of INSIG2, SCAP, and SREBP2. The individuals in high-risk group of the 3-locus combinations had a 79.9% increased risk of obesity compared with those in low-risk group (OR = 1.799, 95% CI: 1.475–2.193, P = 6.61 × 10−9). Conclusion. We identified interaction of three genes in INSIG-SCAP-SREBP pathway on risk of obesity, revealing that these genes affect obesity more likely through a complex interaction pattern than single gene effect.
Collapse
|
35
|
Tsermpini EE, Assimakopoulos K, Bartsakoulia M, Iconomou G, Papadima EM, Mitropoulos K, Squassina A, Patrinos GP. Individualizing clozapine and risperidone treatment for schizophrenia patients. Pharmacogenomics 2014; 15:95-110. [DOI: 10.2217/pgs.13.219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Schizophrenia is a severe disorder that significantly affects the quality of life and total functioning of patients and their caregivers. Clozapine is the first atypical antipsychotic with fewer adverse effects and established efficacy. As a rule of thumb, risperidone is one of the most reliable and effective antipsychotics for newly diagnosed and chronic schizophrenics. Pharmacogenetic studies have identified genomic variants of candidate genes that seem to be important in the way a patient responds to treatment. The recent progress made in pharmacogenomics will improve the quality of treatment, since drug doses will be tailored to the special needs of each patient. In this article, we review the available literature attempting to delineate the role of genomic variations in clozapine and risperidone response in schizophrenic patients of various ethnicities. We conclude that pharmacogenomics for these two drugs is still not ready for implementation in the clinic.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- University of Patras School of Health Sciences, Department of Pharmacy, University Campus, Rion, GR-26504, Patras, Greece
| | | | - Marina Bartsakoulia
- University of Patras School of Health Sciences, Department of Pharmacy, University Campus, Rion, GR-26504, Patras, Greece
| | - Gregoris Iconomou
- University of Patras School of Medicine, Department of Psychiatry, Rion, Patras, Greece
| | - Eleni Merkouri Papadima
- University of Patras School of Health Sciences, Department of Pharmacy, University Campus, Rion, GR-26504, Patras, Greece
| | | | - Alessio Squassina
- University of Cagliari, Department of Biomedical Sciences, Cagliari, Sardinia, Italy
| | - George P Patrinos
- University of Patras School of Health Sciences, Department of Pharmacy, University Campus, Rion, GR-26504, Patras, Greece
| |
Collapse
|
36
|
Hsiao TJ, Hwang Y, Chang HM, Lin E. Association of the rs6235 variant in the proprotein convertase subtilisin/kexin type 1 (PCSK1) gene with obesity and related traits in a Taiwanese population. Gene 2013; 533:32-7. [PMID: 24140494 DOI: 10.1016/j.gene.2013.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/25/2013] [Accepted: 10/09/2013] [Indexed: 12/22/2022]
Abstract
One particularly interesting single nucleotide polymorphism (SNP), rs6235 (encoding an S690T substitution), in the proprotein convertase subtilisin/kexin type 1 (PCSK1) gene has been widely associated with obesity in several European cohorts. The present study was intended to investigate the association between the PCSK1 rs6235 SNP and the prevalence of overweight or obesity, or obesity-related metabolic traits in a Taiwanese population. A total of 964 Taiwanese subjects with general health examinations were analyzed. Our data revealed no association of PCSK1 rs6235 with the risk of obesity or overweight in the complete subjects. However, the PCSK1 rs6235 SNP exhibited a significant association with overweight among the male subjects (P=0.03), but not among the female subjects. Furthermore, the carriers of GG variant had a significantly higher waist circumference than those with the CC variant (82.5 ± 11.5 vs. 81.2 ± 10.2 cm; P=0.01) and those with the CG variant (82.5 ± 11.5 vs. 81.4 ± 10.4 cm; P=0.021). In addition, the carriers of GG variant had a higher diastolic blood pressure than those with the CC variant (81.9 ± 14.2 vs. 80.3 ± 12.9 mm Hg; P=0.023). Our study indicates that the PCSK1 rs6235 SNP may contribute to the risk of overweight in men and predict obesity-related metabolic traits such as waist circumference and diastolic blood pressure in Taiwanese subjects.
Collapse
Affiliation(s)
- Tun-Jen Hsiao
- College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | | | | | | |
Collapse
|
37
|
Bai YM, Su TP, Chen MH, Chen TJ, Chang WH. Risk of developing diabetes mellitus and hyperlipidemia among patients with bipolar disorder, major depressive disorder, and schizophrenia: a 10-year nationwide population-based prospective cohort study. J Affect Disord 2013; 150:57-62. [PMID: 23510547 DOI: 10.1016/j.jad.2013.02.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND The high comorbidity of metabolic side effects with severe mental disorders (SMDs), including bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia, had gained much attention, because the excess mortality of these patients is mainly due to physical illness. However, most of these studies were with cross-sectional study design, the time course of metabolic side effects and SMD cannot be elucidated without a cohort study. METHOD Using a nationwide database with a large sample size and a matched control cohort study design, we enrolled patients with SMDs but without diagnoses of and medications for DM and hyperlipidemia from 1996 to 2000, and followed them to the end of 2010. We compared them with age and gender-matched controls (1:4) for the incidence of DM and hyperlipidemia. RESULTS The identified cases were 367 patients with BD, 417 patients with MDD, and 1993 patients with schizophrenia, with average age of 45.3 ± 14.0, 46.5 ± 13.7, and 45.9 ± 12.3, respectively. The patients with BD and schizophrenia had increased risk of initiation of anti-diabetic medications (10.1% vs. 6.3%, p=0.012; 13.3% vs. 7.2% p<0.001; respectively), and anti-hyperlipidemia medications (15.8% vs.10.5%, p=0.004; 14.2% vs.12.1%, p=0.005; respectively) than the controls. After controlling age, gender, urbanization, and income, the Cox regression model showed significantly increased risk of initiation of anti-diabetic medications among patients with BD (hazard ratio (HR) of 1.702, 95% confidence interval (CI): 1.155-2.507) and schizophrenia (HR of1.793, 95% CI: 1.532-2.098). Increased risk of initiation of anti-hyperlipidemia medications was also noted among patients with BD (HR of 1.506, 95% CI: 1.107-2.047) and schizophrenia (HR of 1.154, 95% CI: 1.002-1.329). The patients with MDD did not show increased risk of initiation of these medications than the controls. CONCLUSIONS This first 10-year nationwide population-based prospective matched control cohort study showed increased risks of initiation of anti-diabetic and anti-hyperlipidemia medications among patients with BD and schizophrenia. No significant increased risk was noted among the patients with MDD.
Collapse
Affiliation(s)
- Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
38
|
Mas S, Llerena A, Saíz J, Bernardo M, Lafuente A. Strengths and weaknesses of pharmacogenetic studies of antipsychotic drugs: the potential value of the PEPs study. Pharmacogenomics 2013; 13:1773-82. [PMID: 23171340 DOI: 10.2217/pgs.12.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The successful application of pharmacogenetics in routine clinical practice is still a long way from becoming a reality. In order to favor the transfer of pharmacogenetic results to clinical practice, especially in psychiatry, these studies must be optimized. This article reviews the strengths and weaknesses that characterize pharmacogenetic studies in psychiatry and condition their implementation in clinical practice. We also include recommendations for improving the design of pharmacogenetic studies, which may convert their limitations into strengths and facilitate the implementation of their results into clinical practice. Finally, we discuss the potential value of naturalistic, prospective, multicenter and coordinated projects such as the 'Phenotype-genotype and environmental interaction. Application of a predictive model in first psychotic episodes' (known as the PEPs study, from the Spanish abbreviation) in pharmacogenetic studies.
Collapse
Affiliation(s)
- Sergi Mas
- Department of Anatomic Pathology, Pharmacology & Microbiology, University of Barcelona, IDIBAPS, Casanova 143, E-08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|
39
|
Genetic variants of microsomal triglyceride transfer protein (MTTP) are associated with metabolic syndrome in schizophrenic patients treated with atypical antipsychotics. J Clin Psychopharmacol 2013; 33:313-8. [PMID: 23609384 DOI: 10.1097/jcp.0b013e31828bf288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Promoter polymorphisms in microsomal triglyceride transfer protein (MTTP) have been associated with the various traits of metabolic syndrome (MetS) in the general population. This study investigated whether the common variants in MTTP genes were associated with MetS in schizophrenic patients treated with atypical antipsychotics. METHOD The study included 456 hospitalized patients diagnosed with schizophrenia, who had been treated with clozapine (n = 171), olanzapine (n = 91), or risperidone (n = 194) for at least 3 months. Patients were genotyped for the 10 MTTP single-nucleotide polymorphisms. RESULTS The prevalence of MetS among all subjects was 22.8%. In single-marker-based analysis, the MTTP rs1800591 (-493G>T) T-allele carriers were at double the risk for MetS relative to G/G homozygotes. In contrast, the T-allele homozygotes had considerably lower fasting high-density lipoprotein levels than that in the heterozygotes or G-allele homozygotes. CONCLUSIONS Our findings extend and add new information to the existing data regarding the association between MTTP genetic variants and MetS regulation during long-term atypical antipsychotic treatment. The MTTP rs1800591 T allele could be a risk factor for MetS in patients under atypical antipsychotic medication.
Collapse
|
40
|
Moteshafi H, Zhornitsky S, Brunelle S, Stip E. Comparing tolerability of olanzapine in schizophrenia and affective disorders: a meta-analysis. Drug Saf 2013; 35:819-36. [PMID: 22967188 DOI: 10.1007/bf03261978] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Olanzapine is prescribed for a number of psychiatric disorders, including schizophrenia, bipolar mania, and unipolar and bipolar depression. Olanzapine treatment is associated with tolerability issues such as metabolic adverse effects (e.g. weight gain, increase in blood glucose, triglycerides and total cholesterol levels), extrapyramidal symptoms [EPS] (e.g. parkinsonism, akathisia, tardive dyskinesia) and sedative adverse effects. Metabolic issues lead to some long-term consequences, which include cardiovascular diseases (CVD) and type 2 diabetes mellitus, and these complications cause high rates of mortality and morbidity among patients with severe mental illnesses. The expanded indications of olanzapine in psychiatry suggest a need to investigate whether there is a difference in the incidence and severity of adverse effects related to category diagnosis. Are the adverse effects expressed differently according to phenotype? Unfortunately, there are no reported studies that investigated these differences in adverse effects associated with olanzapine treatment in psychiatric patients with different phenotypes. OBJECTIVE The aim of the present meta-analysis is to separately examine olanzapine-induced cardiometabolic adverse effects and EPS in patients with schizophrenia and affective disorders. DATA SOURCES A search of computerized literature databases PsycINFO (1967-2010), PubMed (MEDLINE), EMBASE (1980-2010) and the clinicaltrials.gov website for randomized clinical trials was conducted. A manual search of reference lists of published review articles was carried out to gather further data. STUDY SELECTION Randomized controlled trials were included in our study if (i) they assessed olanzapine adverse effects (metabolic or extrapyramidal) in adult patients with schizophrenia or affective disorders; and (ii) they administered oral olanzapine as monotherapy during study. DATA EXTRACTION Two reviewers independently screened abstracts for choosing articles and one reviewer extracted relevant data on the basis of predetermined exclusion and inclusion criteria. It should be mentioned that for the affective disorders group we could only find articles related to bipolar disorder. DATA SYNTHESIS Thirty-three studies (4831 patients) that address olanzapine monotherapy treatment of adults with schizophrenia or bipolar disorder were included in the analysis. The primary outcomes were metabolic adverse effects (changes in weight, blood glucose, low-density lipoprotein, total cholesterol and triglyceride levels). The secondary outcomes of our study were assessing the incidence of some EPS (parkinsonism, akathisia and use of antiparkinson medication). The tolerability outcomes were calculated separately for the schizophrenia and bipolar disorder groups and were combined in a meta-analysis. Tolerability outcomes show that olanzapine contributes to weight gain and elevates blood triglycerides, glucose and total cholesterol levels in both schizophrenia and bipolar disorder patients. However, olanzapine treatment produced significantly more weight gain in schizophrenia patients than in bipolar disorder patients. In addition, increases in blood glucose, total cholesterol and triglyceride levels were higher in the schizophrenia group compared with the bipolar disorder group, even though these differences were not statistically significant. Based on our results, the incidence of parkinsonism was significantly higher in the schizophrenia group than in the bipolar disorder group. Subgroup analysis and logistic regression were used to assess the influence of treatment duration, dose, industry sponsorship, age and sex ratio on tolerability outcome. CONCLUSIONS Our results suggest that schizophrenia patients may be more vulnerable to olanzapine-induced weight gain. The findings may be explained by considering the fact that in addition to genetic disposition for metabolic syndrome in schizophrenia patients, they have an especially high incidence of lifestyle risk factors for CVD, such as poor diet, lack of exercise, stress and smoking. It might be that an antipsychotic induces severity of adverse effect according to the phenotype.
Collapse
Affiliation(s)
- Hoda Moteshafi
- Dpartement de Pharmacologie, Universit de Montral, Montral, QC, Canada
| | | | | | | |
Collapse
|
41
|
Modeling the Pharmacogenetic Architecture of Drug Response. Pharmacogenomics 2013. [DOI: 10.1016/b978-0-12-391918-2.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
42
|
Abstract
Schizophrenia (SZ) is a common disorder that runs in families. It has a relatively high heritability, i.e., inherited factors account for the major proportion of its etiology. The high heritability has motivated gene mapping studies that have improved in sophistication through the past two decades. Belying earlier expectations, it is now becoming increasingly clear that the cause of SZ does not reside in a single mutation, or even in a single gene. Rather, there are multiple DNA variants, not all of which have been identified. Additional risk may be conferred by interactions between individual DNA variants, as well as 'gene-environment' interactions. We review studies that have accounted for a fraction of the heritability. Their relevance to the practising clinician is discussed. We propose that continuing research in DNA variation, in conjunction with rapid ongoing advances in allied fields, will yield dividends from the perspective of diagnosis, treatment prediction through pharmacogenetics, and rational treatment through discoveries in pathogenesis.
Collapse
Affiliation(s)
- Prachi Kukshal
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - B. K. Thelma
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Vishwajit L. Nimgaonkar
- Departments of Psychiatry and Human Genetics, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine and Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Smita N. Deshpande
- Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Dr Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
43
|
Genetic correlates of medical comorbidity associated with schizophrenia and treatment with antipsychotics. Curr Opin Psychiatry 2012; 25:381-90. [PMID: 22842659 DOI: 10.1097/yco.0b013e3283568537] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW High comorbidity rates for various medical conditions have been documented in schizophrenia, being explained by factors either inherent to the disease or associated with antipsychotic treatment. The aim of this study is to review the genetic factors contributing to medical comorbidity in schizophrenia. RECENT FINDINGS Based on clinical genetic studies in schizophrenia, comorbid impaired glucose tolerance/type 2 diabetes mellitus, most autoimmune disorders and cardiac autonomic dysregulation have the strongest evidence for familial predisposition. Similarly, of antipsychotic-induced adverse drug reactions, tardive dyskinesia, neuroleptic malignant syndrome, and antipsychotic-induced weight gain have some evidence for familial clustering. On the molecular genetic level, schizophrenia seems to share specific genes with type 2 diabetes mellitus and with autoimmune disorders. Various genes have been proposed to account for the reduced incidence of rheumatoid arthritis and cancer in schizophrenic patients and their relatives. Many pharmacogenetic association studies have pinpointed numerous, though often contradictory or poorly replicated, genes of modest effect size for tardive dyskinesia, neuroleptic malignant syndrome, clozapine-induced agranulocytosis, hyperprolactinaemia, antipsychotic-induced weight gain, and antipsychotic-induced QT prolongation. SUMMARY Unravelling the genetic underpinnings of medical comorbidity associated with schizophrenia and its treatment is expected to highlight new pathogenetic pathways in both schizophrenia and comorbid medical conditions, and introduce personalized treatment strategies for schizophrenia patients.
Collapse
|
44
|
Moteshafi H, Stip E. Comparing tolerability profile of quetiapine, risperidone, aripiprazole and ziprasidone in schizophrenia and affective disorders: a meta-analysis. Expert Opin Drug Saf 2012; 11:713-32. [DOI: 10.1517/14740338.2012.712682] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Lane HY, Tsai GE, Lin E. Assessing Gene-Gene Interactions in Pharmacogenomics. Mol Diagn Ther 2012; 16:15-27. [DOI: 10.1007/bf03256426] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|