1
|
Kang W, Frouni I, Kwan C, Desbiens L, Hamadjida A, Huot P. Activation of mGlu 2/3 receptors with the orthosteric agonist LY-404,039 alleviates dyskinesia in experimental parkinsonism. Behav Pharmacol 2024; 35:185-192. [PMID: 38563661 DOI: 10.1097/fbp.0000000000000765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
LY-404,039 is an orthosteric agonist at metabotropic glutamate 2 and 3 (mGlu 2/3 ) receptors, with a possible additional agonist effect at dopamine D 2 receptors. LY-404,039 and its pro-drug, LY-2140023, have previously been tested in clinical trials for psychiatric indications and could therefore be repurposed if they were shown to be efficacious in other conditions. We have recently demonstrated that the mGlu 2/3 orthosteric agonist LY-354,740 alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat without hampering the anti-parkinsonian action of L-DOPA. Here, we seek to take advantage of a possible additional D 2 -agonist effect of LY-404,039 and see if an anti-parkinsonian benefit might be achieved in addition to the antidyskinetic effect of mGlu 2/3 activation. To this end, we have administered LY-404,039 (vehicle, 0.1, 1 and 10 mg/kg) to 6-OHDA-lesioned rats, after which the severity of axial, limbs and oro-lingual (ALO) AIMs was assessed. The addition of LY-404,039 10 mg/kg to L-DOPA resulted in a significant reduction of ALO AIMs over 60-100 min (54%, P < 0.05). In addition, LY-404,039 significantly enhanced the antiparkinsonian effect of L-DOPA, assessed through the cylinder test (76%, P < 0.01). These results provide further evidence that mGlu 2/3 orthosteric stimulation may alleviate dyskinesia in PD and, in the specific case of LY-404,039, a possible D 2 -agonist effect might also make it attractive to address motor fluctuations. Because LY-404,039 and its pro-drug have been administered to humans, they could possibly be advanced to Phase IIa trials rapidly for the treatment of motor complications in PD.
Collapse
Affiliation(s)
- Woojin Kang
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro)
| | - Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro)
- Département de Pharmacologie et Physiologie, Université de Montréal
| | - Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro)
| | - Louis Desbiens
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro)
| | - Adjia Hamadjida
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro)
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro)
- Département de Pharmacologie et Physiologie, Université de Montréal
- Department of Neurology and Neurosurgery, McGill University
- Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
2
|
Kang W, Nuara SG, Bédard D, Frouni I, Kwan C, Hamadjida A, Gourdon JC, Gaudette F, Beaudry F, Huot P. The mGluR 2/3 orthosteric agonist LY-404,039 reduces dyskinesia, psychosis-like behaviours and parkinsonism in the MPTP-lesioned marmoset. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2347-2355. [PMID: 37410156 DOI: 10.1007/s00210-023-02587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/06/2022] [Indexed: 07/07/2023]
Abstract
LY-404,039 is an orthosteric agonist of metabotropic glutamate 2 and 3 receptors (mGluR2/3) that may harbour additional agonist effect at dopamine D2 receptors. LY-404,039 and its pro-drug, LY-2140023, have previously entered clinical trials as treatment options for schizophrenia. They could therefore be repurposed, if proven efficacious, for other conditions, notably Parkinson's disease (PD). We have previously shown that the mGluR2/3 orthosteric agonist LY-354,740 alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia and psychosis-like behaviours (PLBs) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. Unlike LY-404,039, LY-354,740 does not stimulate dopamine D2 receptors, suggesting that LY-404,039 may elicit broader therapeutic effects in PD. Here, we sought to investigate the effect of this possible additional dopamine D2-agonist action of LY-404,039 by assessing its efficacy on dyskinesia, PLBs and parkinsonism in the MPTP-lesioned marmoset. We first determined the pharmacokinetic profile of LY-404,039 in the marmoset, in order to select doses resulting in plasma concentrations known to be well tolerated in the clinic. Marmosets were then injected L-DOPA with either vehicle or LY-404,039 (0.1, 0.3, 1 and 10 mg/kg). The addition of LY-404,039 10 mg/kg to L-DOPA resulted in a significant reduction of global dyskinesia (by 55%, P < 0.01) and PLBs (by 50%, P < 0.05), as well as reduction of global parkinsonism (by 47%, P < 0.05). Our results provide additional support of the efficacy of mGluR2/3 orthosteric stimulation at alleviating dyskinesia, PLBs and parkinsonism. Because LY-404,039 has already been tested in clinical trials, it could be repurposed for indications related to PD.
Collapse
Affiliation(s)
- Woojin Kang
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Stephen G Nuara
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Dominique Bédard
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Imane Frouni
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Cynthia Kwan
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Adjia Hamadjida
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada
| | - Jim C Gourdon
- Comparative Medicine & Animal Resource Centre, McGill University, Montreal, QC, Canada
| | - Fleur Gaudette
- Plateforme de Pharmacocinétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de Recherche sur le Cerveau et l'Apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| | - Philippe Huot
- Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada.
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
3
|
Kwan C, Kang W, Kim E, Belliveau S, Frouni I, Huot P. Metabotropic glutamate receptors in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:1-31. [PMID: 36868628 DOI: 10.1016/bs.irn.2022.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Parkinson's disease (PD) is a complex disorder that leads to alterations in multiple neurotransmitter systems, notably glutamate. As such, several drugs acting at glutamatergic receptors have been assessed to alleviate the manifestation of PD and treatment-related complications, culminating with the approval of the N-methyl-d-aspartate (NMDA) antagonist amantadine for l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia. Glutamate elicits its actions through several ionotropic and metabotropic (mGlu) receptors. There are 8 sub-types of mGlu receptors, with sub-types 4 (mGlu4) and 5 (mGlu5) modulators having been tested in the clinic for endpoints pertaining to PD, while sub-types 2 (mGlu2) and 3 (mGlu3) have been investigated in pre-clinical settings. In this book chapter, we provide an overview of mGlu receptors in PD, with a focus on mGlu5, mGlu4, mGlu2 and mGlu3 receptors. For each sub-type, we review, when applicable, their anatomical localization and possible mechanisms underlying their efficacy for specific disease manifestation or treatment-induced complications. We then summarize the findings of pre-clinical studies and clinical trials with pharmacological agents and discuss the potential strengths and limitations of each target. We conclude by offering some perspectives on the potential use of mGlu modulators in the treatment of PD.
Collapse
Affiliation(s)
- Cynthia Kwan
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Woojin Kang
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Esther Kim
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Sébastien Belliveau
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Imane Frouni
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
4
|
Kang W, Gaudette F, Bédard D, Beaudry F, Huot P. Quantitative determination of LY-404,039, a metabotropic glutamate 2/3 receptor agonist, in rat plasma using chemical derivatization and HPLC-MRM/MS. Biomed Chromatogr 2022; 36:e5423. [PMID: 35684931 DOI: 10.1002/bmc.5423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 11/07/2022]
Abstract
A rapid, selective and sensitive method was developed and validated for the determination of LY-404,039 concentration in rat plasma using a butylation derivatization step to improve chromatographic characteristics and enhance signal intensity. The method consisted of a protein precipitation extraction followed by derivatization with butanol/HCl and analysis by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The separation was achieved using a 100 × 2.1 mm (2.6 μm) Thermo Scientific Accucore RP-MS column combined with an isocratic mobile phase composed of 40:60 acetonitrile-0.1% formic acid in water. An analytical range of 2.0-1,000 ng/ml was validated and used to quantify LY-404,039 in rat plasma. The novel method met all of the requirements of specificity, sensitivity, linearity, precision, accuracy and stability. A pharmacokinetic study was performed in rats and the novel analytical method was used as a routine analysis method to provide enhanced measurements of plasma concentrations of LY-404,039. The plasma pharmacokinetic results indicate very short terminal half-life (0.27 h ± 0.8) and high clearance (0.97 L/h/kg ± 0.12), suggesting that LY-404,039 is rapidly eliminated in the rat. Dose-dependent pharmacokinetics were observed following subcutaneous administration of LY-404,039 at doses of 0.1, 0.3 and 1.0 mg/kg.
Collapse
Affiliation(s)
- Woojin Kang
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Fleur Gaudette
- Plateforme de Pharmacocinétique, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Dominique Bédard
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada
| | - Francis Beaudry
- Département de biomédecine vétérinaire Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Centre de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montreal, QC, Canada
| | - Philippe Huot
- Neurodegenerative Disease Group, Montreal Neurological Institute-Hospital (The Neuro), Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Movement Disorder Clinic, Division of Neurology, Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
5
|
Cieślik P, Domin H, Chocyk A, Gruca P, Litwa E, Płoska A, Radulska A, Pelikant-Małecka I, Brański P, Kalinowski L, Wierońska JM. Simultaneous activation of mGlu 2 and muscarinic receptors reverses MK-801-induced cognitive decline in rodents. Neuropharmacology 2019; 174:107866. [PMID: 31785263 DOI: 10.1016/j.neuropharm.2019.107866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/09/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022]
Abstract
The activity of an allosteric agonist of muscarinic M1 receptor, VU0357017, and a positive allosteric modulator (PAM) of M5 receptor, VU0238429, were investigated alone or in combination with the mGlu2 receptor PAM, LY487379 using the following behavioural tests: prepulse inhibition (PPI), novel object recognition (NOR), and spatial delayed alternation (SDA). VU0357017 (10 and 20 mg/kg) and VU0238429 (5 and 10 mg/kg) reversed deficits in PPI while VU0238429 (2.5 and 5 mg/kg) was effective in SDA. The simultaneous administration of subeffective doses of M1 or M5 activators (5, 1, or 0.25 mg/kg) with LY487379 (0.5 mg/kg) induced the same effect as that observed for the active dose of each compound. Selective M1 or M5 receptor blockers antagonized the effect exerted by these combinations, and pharmacokinetic studies confirmed independent transport through the blood-brain barrier. The expression of both receptors (M1 and M5) was established in brain structures involved in cognition (neocortex, hippocampus, and entorhinal cortex) in both the rat and the mouse brains by immunofluorescence staining. Specifically, double neuronal staining of mGlu2-M1 and mGlu2-M5 receptors was observed in many areas of the rat brain, while the number of double-stained mGlu2-M1 receptors was moderate in the mouse brain with no mGlu2-M5 colocalization. Finally, the combined administration of subeffective doses of the compounds did not alter prolactin levels or motor coordination, in contrast to the compounds given alone at the highest dose or in combination with standard neuroleptics.
Collapse
Affiliation(s)
- Paulina Cieślik
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Helena Domin
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Agnieszka Chocyk
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Piotr Gruca
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Ewa Litwa
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Dębinki 7, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdańsk, Poland
| | - Adrianna Radulska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Dębinki 7, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdańsk, Poland
| | - Iwona Pelikant-Małecka
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Dębinki 7, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdańsk, Poland
| | - Piotr Brański
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Dębinki 7, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdańsk, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland.
| |
Collapse
|
6
|
Kinoshita K, Ochi M, Iwata K, Fukasawa M, Yamaguchi J. Preclinical disposition of MGS0274 besylate, a prodrug of a potent group II metabotropic glutamate receptor agonist MGS0008 for the treatment of schizophrenia. Pharmacol Res Perspect 2019; 7:e00520. [PMID: 31523433 PMCID: PMC6743422 DOI: 10.1002/prp2.520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/02/2023] Open
Abstract
MGS0274 besylate is an ester-based lipophilic prodrug of a metabotropic glutamate (mGlu) 2 and mGlu3 receptor agonist MGS0008 and being developed for the treatment of schizophrenia. We investigated the disposition of these compounds in rats and monkeys and in vitro metabolism in humans to evaluate whether MGS0274 besylate could be useful as a prodrug in humans. After the oral administration of MGS0274 besylate to monkeys (2.89 mg/kg), MGS0008 was immediately found in plasma, reached a maximum concentration at 4 hours postdose, and decreased with a terminal half-life of 16.7 hours; MGS0274 was barely detectable. The oral bioavailability as MGS0008 was 83.7%, which was approximately 20-fold greater than that after oral dosing of MGS0008 (3.8%). In rats, MGS0008 penetrated the cerebrospinal fluid and was eliminated slower than from plasma. The in vitro metabolism study indicated that MGS0274 was rapidly hydrolyzed to MGS0008, which was not further metabolized. After the intravenous administration of MGS0008 to rats and monkeys, almost all the dose was excreted unchanged in urine. These results suggested that MGS0274 was, as expected, presystemically hydrolyzed to MGS0008 after gastrointestinal absorption and that MGS0008 was distributed throughout the body without further metabolism and ultimately excreted in urine in the animals. Furthermore, the hydrolytic activity against MGS0274 in the human liver S9 fraction was comparable to that in monkeys, suggesting the possibility of the rapid presystemic hydrolysis of MGS0274 to MGS0008 in humans, as it is in monkeys. Consequently, MGS0274 besylate is expected to function as a preferable prodrug in humans.
Collapse
Affiliation(s)
- Kohnosuke Kinoshita
- Drug Metabolism and PharmacokineticsDrug Safety and Pharmacokinetics LaboratoriesResearch HeadquartersTaisho Pharmaceutical Co., Ltd.SaitamaJapan
| | - Motoki Ochi
- Drug Metabolism and PharmacokineticsDrug Safety and Pharmacokinetics LaboratoriesResearch HeadquartersTaisho Pharmaceutical Co., Ltd.SaitamaJapan
| | - Katsuya Iwata
- Drug Metabolism and PharmacokineticsDrug Safety and Pharmacokinetics LaboratoriesResearch HeadquartersTaisho Pharmaceutical Co., Ltd.SaitamaJapan
| | - Misako Fukasawa
- Drug Metabolism and PharmacokineticsDrug Safety and Pharmacokinetics LaboratoriesResearch HeadquartersTaisho Pharmaceutical Co., Ltd.SaitamaJapan
| | - Jun‐ichi Yamaguchi
- Drug Metabolism and PharmacokineticsDrug Safety and Pharmacokinetics LaboratoriesResearch HeadquartersTaisho Pharmaceutical Co., Ltd.SaitamaJapan
| |
Collapse
|
7
|
Cieślik P, Radulska A, Pelikant-Małecka I, Płoska A, Kalinowski L, Wierońska JM. Reversal of MK-801-Induced Disruptions in Social Interactions and Working Memory with Simultaneous Administration of LY487379 and VU152100 in Mice. Int J Mol Sci 2019; 20:ijms20112781. [PMID: 31174329 PMCID: PMC6600181 DOI: 10.3390/ijms20112781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 01/25/2023] Open
Abstract
Negative and cognitive symptoms of schizophrenia contribute to an impaired social and professional life for schizophrenic patients, and in most cases, these symptoms are treatment resistant. Therefore, identification of new treatment strategies is sorely needed. Metabotropic glutamate receptors (mGlu) and muscarinic (M) receptors for acetylcholine have been considered promising targets for novel antipsychotics. Among them, mGlu2 and M4 subtypes seem to be of particular importance. In the present study, the effect of mutual activation of mGlu2 and M4 receptors was assessed in MK-801-based animal models of negative and cognitive symptoms of schizophrenia, that is, social interaction and novel object recognition tests. Low sub-effective doses of LY487379 (0.5 mg/kg), a positive allosteric activator of the mGlu2 receptor, and VU152100 (0.25−0.5 mg/kg), a positive allosteric modulator of the M4 receptor, were simultaneously administered in the aforementioned tests. Combined administration of these compounds prevented MK-801-induced disturbances in social interactions and object recognition when acutely administered 30 min before MK-801. Prolonged (7 days) administration of these compounds resulted in the loss of effectiveness in preventing MK-801-induced disruptions in the novel object recognition test but not in the social interaction test. In the next set of experiments, MK-801 (0.3 mg/kg) was administered for seven consecutive days, and the activity of the compounds was investigated on day eight, during which time MK-801 was not administered. In this model, based on prolonged MK-801 administration, the effectiveness of the compounds to treat MK-801-induced disruptions was evident at low doses which were ineffective in preventing the behavioural disturbances induced by an acute MK-801 injection. Combined administration of the compounds did not exert better efficacy than each compound given alone. Pharmacokinetic analysis confirmed a lack of possible drug–drug interactions after combined administration of LY487379 and VU152100. Our data show that modulation of M4 and mGlu2 receptors may potentially be beneficial in the treatment of negative and cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| | - Adrianna Radulska
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland.
| | - Iwona Pelikant-Małecka
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland.
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland.
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdansk, 80-211 Gdansk, Poland.
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), 80-211 Gdansk, Poland.
| | - Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| |
Collapse
|
8
|
Monn JA, Henry SS, Massey SM, Clawson DK, Chen Q, Diseroad BA, Bhardwaj RM, Atwell S, Lu F, Wang J, Russell M, Heinz BA, Wang XS, Carter JH, Getman BG, Adragni K, Broad LM, Sanger HE, Ursu D, Catlow JT, Swanson S, Johnson BG, Shaw DB, McKinzie DL, Hao J. Synthesis and Pharmacological Characterization of C4 β-Amide-Substituted 2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylates. Identification of (1 S,2 S,4 S,5 R,6 S)-2-Amino-4-[(3-methoxybenzoyl)amino]bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid (LY2794193), a Highly Potent and Selective mGlu 3 Receptor Agonist. J Med Chem 2018; 61:2303-2328. [PMID: 29350927 DOI: 10.1021/acs.jmedchem.7b01481] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Multiple therapeutic opportunities have been suggested for compounds capable of selective activation of metabotropic glutamate 3 (mGlu3) receptors, but small molecule tools are lacking. As part of our ongoing efforts to identify potent, selective, and systemically bioavailable agonists for mGlu2 and mGlu3 receptor subtypes, a series of C4β-N-linked variants of (1 S,2 S,5 R,6 S)-2-amino-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid 1 (LY354740) were prepared and evaluated for both mGlu2 and mGlu3 receptor binding affinity and functional cellular responses. From this investigation we identified (1 S,2 S,4 S,5 R,6 S)-2-amino-4-[(3-methoxybenzoyl)amino]bicyclo[3.1.0]hexane-2,6-dicarboxylic acid 8p (LY2794193), a molecule that demonstrates remarkable mGlu3 receptor selectivity. Crystallization of 8p with the amino terminal domain of hmGlu3 revealed critical binding interactions for this ligand with residues adjacent to the glutamate binding site, while pharmacokinetic assessment of 8p combined with its effect in an mGlu2 receptor-dependent behavioral model provides estimates for doses of this compound that would be expected to selectively engage and activate central mGlu3 receptors in vivo.
Collapse
|
9
|
New Targets for Schizophrenia Treatment beyond the Dopamine Hypothesis. Int J Mol Sci 2017; 18:ijms18081689. [PMID: 28771182 PMCID: PMC5578079 DOI: 10.3390/ijms18081689] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia has been primarily associated with dopamine dysfunction, and treatments have been developed that target the dopamine pathway in the central nervous system. However, accumulating evidence has shown that the core pathophysiology of schizophrenia might involve dysfunction in dopaminergic, glutamatergic, serotonergic, and gamma-aminobutyric acid (GABA) signaling, which may lead to aberrant functioning of interneurons that manifest as cognitive, behavioral, and social dysfunction through altered functioning of a broad range of macro- and microcircuits. The interactions between neurotransmitters can be modeled as nodes and edges by using graph theory, and oxidative balance, immune, and glutamatergic systems may represent multiple nodes interlocking at a central hub; imbalance within any of these nodes might affect the entire system. Therefore, this review attempts to address novel treatment targets beyond the dopamine hypothesis, including glutamate, serotonin, acetylcholine, GABA, and inflammatory cytokines. Furthermore, we outline that these treatment targets can be possibly integrated with novel treatment strategies aimed at different symptoms or phases of the illness. We anticipate that reversing anomalous activity in these novel treatment targets or combinations between these strategies might be beneficial in the treatment of schizophrenia.
Collapse
|
10
|
Matsumoto M, Walton NM, Yamada H, Kondo Y, Marek GJ, Tajinda K. The impact of genetics on future drug discovery in schizophrenia. Expert Opin Drug Discov 2017; 12:673-686. [PMID: 28521526 DOI: 10.1080/17460441.2017.1324419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Failures of investigational new drugs (INDs) for schizophrenia have left huge unmet medical needs for patients. Given the recent lackluster results, it is imperative that new drug discovery approaches (and resultant drug candidates) target pathophysiological alterations that are shared in specific, stratified patient populations that are selected based on pre-identified biological signatures. One path to implementing this paradigm is achievable by leveraging recent advances in genetic information and technologies. Genome-wide exome sequencing and meta-analysis of single nucleotide polymorphism (SNP)-based association studies have already revealed rare deleterious variants and SNPs in patient populations. Areas covered: Herein, the authors review the impact that genetics have on the future of schizophrenia drug discovery. The high polygenicity of schizophrenia strongly indicates that this disease is biologically heterogeneous so the identification of unique subgroups (by patient stratification) is becoming increasingly necessary for future investigational new drugs. Expert opinion: The authors propose a pathophysiology-based stratification of genetically-defined subgroups that share deficits in particular biological pathways. Existing tools, including lower-cost genomic sequencing and advanced gene-editing technology render this strategy ever more feasible. Genetically complex psychiatric disorders such as schizophrenia may also benefit from synergistic research with simpler monogenic disorders that share perturbations in similar biological pathways.
Collapse
Affiliation(s)
- Mitsuyuki Matsumoto
- a Unit 2, Candidate Discovery Science Labs., Drug Discovery Research , Astellas Pharma Inc. , Tsukuba , Ibaraki , Japan
| | - Noah M Walton
- b La Jolla Laboratory , Astellas Research Institute of America LLC , San Diego , CA , USA
| | - Hiroshi Yamada
- b La Jolla Laboratory , Astellas Research Institute of America LLC , San Diego , CA , USA
| | - Yuji Kondo
- a Unit 2, Candidate Discovery Science Labs., Drug Discovery Research , Astellas Pharma Inc. , Tsukuba , Ibaraki , Japan
| | - Gerard J Marek
- c Development Medical Sciences, Astellas Pharma Global Development , Northbrook , IL , USA
| | - Katsunori Tajinda
- b La Jolla Laboratory , Astellas Research Institute of America LLC , San Diego , CA , USA
| |
Collapse
|
11
|
Keshavan MS, Lawler AN, Nasrallah HA, Tandon R. New drug developments in psychosis: Challenges, opportunities and strategies. Prog Neurobiol 2017; 152:3-20. [PMID: 27519538 PMCID: PMC5362348 DOI: 10.1016/j.pneurobio.2016.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023]
Abstract
All currently approved drugs for schizophrenia work mainly by dopaminergic antagonism. While they are efficacious for psychotic symptoms, their efficacy is limited for negative symptoms and cognitive deficits which underlie the substantive disability in this illness. Recent insights into the biological basis of schizophrenia, especially in relation to non-dopaminergic mechanisms, have raised the efforts to find novel and effective drug targets, though with relatively little success thus far. Potential impediments to novel drug discovery include the continued use of symptom based disease definitions which leads to etiological and pathophysiological heterogeneity, lack of valid preclinical models for drug testing, and design limitations in clinical trials. These roadblocks can be addressed by (i) characterizing trans-diagnostic, translational pathophysiological dimensions as potential treatment targets, (ii) efficiency, accountability and, transparency in approaches to the clinical trials process, and (iii) leveraging recent advances in genetics and in vitro phenotypes. Accomplishing these goals is urgent given the significant unmet needs in the pharmacological treatment of schizophrenia. As this happens, it is imperative that clinicians employ optimal dosing, measurement-based care, and other best practices in utilizing existing treatments to optimize outcomes for their patients today.
Collapse
Affiliation(s)
- Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, United States.
| | - Ashley N Lawler
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, United States
| | - Henry A Nasrallah
- Department of Neurology & Psychiatry, St Louis University, United States
| | - Rajiv Tandon
- Department of Psychiatry, University of Florida, Gainsville, Florida. and the North FL/South Georgia Veterans' Administration Medical Center, Gainesville, FL 32610, United States; The North Florida/South Georgia Veterans' Administration Medical Center, Gainesville, FL, 32610, United States
| |
Collapse
|
12
|
Gaitonde SA, González-Maeso J. Contribution of heteromerization to G protein-coupled receptor function. Curr Opin Pharmacol 2016; 32:23-31. [PMID: 27835800 DOI: 10.1016/j.coph.2016.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a remarkably multifaceted family of transmembrane proteins that exert a variety of physiological effects. Although family A GPCRs are able to operate as monomers, there is increasing evidence that heteromerization represents a fundamental aspect of receptor function, trafficking and pharmacology. Most recently, it has been suggested that GPCR heteromers may play a crucial role as new molecular targets of heteromer-selective and bivalent ligands. The current review summarizes key recent developments in these topics.
Collapse
Affiliation(s)
- Supriya A Gaitonde
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
13
|
Muguruza C, Meana JJ, Callado LF. Group II Metabotropic Glutamate Receptors as Targets for Novel Antipsychotic Drugs. Front Pharmacol 2016; 7:130. [PMID: 27242534 PMCID: PMC4873505 DOI: 10.3389/fphar.2016.00130] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/05/2016] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a chronic psychiatric disorder which substantially impairs patients' quality of life. Despite the extensive research in this field, the pathophysiology and etiology of schizophrenia remain unknown. Different neurotransmitter systems and functional networks have been found to be affected in the brain of patients with schizophrenia. In this context, postmortem brain studies as well as genetic assays have suggested alterations in Group II metabotropic glutamate receptors (mGluRs) in schizophrenia. Despite many years of drug research, several needs in the treatment of schizophrenia have not been addressed sufficiently. In fact, only 5-10% of patients with schizophrenia successfully achieve a full recovery after treatment. In recent years mGluRs have turned up as novel targets for the design of new antipsychotic medications for schizophrenia. Concretely, Group II mGluRs are of particular interest due to their regulatory role in neurotransmission modulating glutamatergic activity in brain synapses. Preclinical studies have demonstrated that orthosteric Group II mGluR agonists exhibit antipsychotic-like properties in animal models of schizophrenia. However, when these compounds have been tested in human clinical studies with schizophrenic patients results have been inconclusive. Nevertheless, it has been recently suggested that this apparent lack of efficacy in schizophrenic patients may be related to previous exposure to atypical antipsychotics. Moreover, the role of the functional heterocomplex formed by 5-HT2A and mGlu2 receptors in the clinical response to Group II mGluR agonists is currently under study.
Collapse
Affiliation(s)
- Carolina Muguruza
- Department of Pharmacology, University of the Basque Country, UPV/EHULeioa, Spain
- Centro de Investigación Biomédica en Red de Salud MentalMadrid, Spain
| | - J. Javier Meana
- Department of Pharmacology, University of the Basque Country, UPV/EHULeioa, Spain
- Centro de Investigación Biomédica en Red de Salud MentalMadrid, Spain
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHULeioa, Spain
- Centro de Investigación Biomédica en Red de Salud MentalMadrid, Spain
| |
Collapse
|
14
|
Engel M, Snikeris P, Matosin N, Newell KA, Huang XF, Frank E. mGluR2/3 agonist LY379268 rescues NMDA and GABAA receptor level deficits induced in a two-hit mouse model of schizophrenia. Psychopharmacology (Berl) 2016; 233:1349-59. [PMID: 26861891 DOI: 10.1007/s00213-016-4230-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
RATIONALE An imbalance of excitatory and inhibitory neurotransmission underlies the glutamate hypothesis of schizophrenia. Agonists of group II metabotropic glutamate receptors, mGluR2/3, have been proposed as novel therapeutic agents to correct this imbalance. However, the influence of mGluR2/3 activity on excitatory and inhibitory neurotransmitter receptors has not been explored. OBJECTIVES We aimed to investigate the ability of a novel mGluR2/3 agonist, LY379268, to modulate the availability of the excitatory N-methyl-D-aspartate receptor (NMDA-R) and the inhibitory gamma-aminobutyrate-A receptor (GABAA-R), in a two-hit mouse model of schizophrenia. METHODS Wild type (WT) and heterozygous neuregulin 1 transmembrane domain mutant mice (NRG1 HET) were treated daily with phencyclidine (10 mg/kg ip) or saline for 14 days. After a 14-day washout, an acute dose of the mGluR2/3 agonist LY379268 (3 mg/kg), olanzapine (antipsychotic drug comparison, 1.5 mg/kg), or saline was administered. NMDA-R and GABAA-R binding densities were examined by receptor autoradiography in several schizophrenia-relevant brain regions. RESULTS In both WT and NRG1 HET mice, phencyclidine treatment significantly reduced NMDA-R and GABAA-R binding density in the prefrontal cortex, hippocampus, and nucleus accumbens. Acute treatment with LY379268 restored NMDA-R and GABAA-R levels in the two-hit mouse model comparable to olanzapine. CONCLUSIONS We demonstrate that the mGluR2/3 agonist LY379268 restores excitatory and inhibitory deficits with similar efficiency as olanzapine in our two-hit schizophrenia mouse model. This study significantly contributes to our understanding of the mechanisms underlying the therapeutic effects of LY379268 and supports the use of agents aimed at mGluR2/3.
Collapse
Affiliation(s)
- Martin Engel
- Schizophrenia Research Institute, Sydney, Australia. .,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia. .,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia. .,School of Biological Sciences, University of Wollongong, Wollongong, Australia.
| | - Peta Snikeris
- Schizophrenia Research Institute, Sydney, Australia.,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Natalie Matosin
- Schizophrenia Research Institute, Sydney, Australia.,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Kelly Anne Newell
- Schizophrenia Research Institute, Sydney, Australia.,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Xu-Feng Huang
- Schizophrenia Research Institute, Sydney, Australia.,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Elisabeth Frank
- Schizophrenia Research Institute, Sydney, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
15
|
Serotonin 2A Receptor SNP rs7330461 Association with Treatment Response to Pomaglumetad Methionil in Patients with Schizophrenia. J Pers Med 2016; 6:jpm6010009. [PMID: 26861400 PMCID: PMC4810388 DOI: 10.3390/jpm6010009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 11/16/2022] Open
Abstract
This study aims to confirm the initial pharmacogenetic finding observed within the clinical proof-of-concept trial of an enhanced response to treatment with pomaglumetad methionil (LY2140023 monohydrate) in Caucasian schizophrenia patients homozygous for T/T at single nucleotide polymorphism rs7330461 in the serotonin (5-hydroxytryptamine) 2A receptor gene compared to A/A homozygous patients. The effect of the rs7330461 genotype on the response to pomaglumetad methionil treatment was assessed in three additional clinical trials and in an integrated analysis. Overall, this study includes data from 1115 Caucasian patients for whom genotyping information for rs7330461 was available, consisting of 513 A/A homozygous, 466 A/T heterozygous and 136 T/T homozygous patients. Caucasian T/T homozygous patients showed significantly (p ≤ 0.05) greater improvement in Positive and Negative Syndrome Scale (PANSS) total scores during treatment with pomaglumetad methionil 40 mg twice daily compared to A/A homozygous patients. Additionally, T/T homozygous patients receiving pomaglumetad methionil had significantly (p ≤ 0.05) greater improvements in PANSS total scores compared to placebo and similar improvements as T/T homozygous patients receiving standard-of-care (SOC) treatment. The findings reported here in conjunction with prior reports show that in Caucasian patients with schizophrenia, the T/T genotype at rs7330461 is consistently associated with an increased treatment response to pomaglumetad methionil compared to the A/A genotype.
Collapse
|
16
|
Ruble CL, Smith RM, Calley J, Munsie L, Airey DC, Gao Y, Shin JH, Hyde TM, Straub RE, Weinberger DR, Nisenbaum LK. Genomic structure and expression of the human serotonin 2A receptor gene (HTR2A) locus: identification of novel HTR2A and antisense (HTR2A-AS1) exons. BMC Genet 2016; 17:16. [PMID: 26738766 PMCID: PMC4702415 DOI: 10.1186/s12863-015-0325-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/22/2015] [Indexed: 01/16/2023] Open
Abstract
Background The serotonin 2A receptor is widely implicated in genetic association studies and remains an important drug target for psychiatric, neurological, and cardiovascular conditions. RNA sequencing redefined the architecture of the serotonin 2A receptor gene (HTR2A), revealing novel mRNA transcript isoforms utilizing unannotated untranslated regions of the gene. Expression of these untranslated regions is modulated by common single nucleotide polymorphisms (SNPs), namely rs6311. Previous studies did not fully capture the complexity of the sense- and antisense-encoded transcripts with respect to novel exons in the HTR2A gene locus. Here, we comprehensively catalogued exons and RNA isoforms for both HTR2A and HTR2A-AS1 using RNA-Seq from human prefrontal cortex and multiple mouse tissues. We subsequently tested associations between expression of newfound gene features and common SNPs in humans. Results We find that the human HTR2A gene spans ~66 kilobases and consists of 7, rather than 4 exons. Furthermore, the revised human HTR2A-AS1 gene spans ~474 kilobases and consists of 18, rather than 3 exons. Three HTR2A exons directly overlap with HTR2A-AS1 exons, suggesting potential for complementary nucleotide interactions. The repertoire of possible mouse Htr2a splice isoforms is remarkably similar to humans and we also find evidence for overlapping sense-antisense transcripts in the same relative positions as the human transcripts. rs6311 and SNPs in high linkage disequilibrium are associated with HTR2A-AS1 expression, in addition to previously described associations with expression of the extended 5’ untranslated region of HTR2A. Conclusions Our proposed HTR2A and HTR2A-AS1 gene structures dramatically differ from current annotations, now including overlapping exons on the sense and anti-sense strands. We also find orthologous transcript isoforms expressed in mice, providing opportunities to elucidate the biological roles of the human isoforms using a model system. Associations between rs6311 and expression of HTR2A and HTR2A-AS1 suggest this polymorphism is capable of modulating the expression of the sense or antisense transcripts. Still unclear is whether these SNPs act directly on the expression of the sense or antisense transcripts and whether overlapping exons are capable of interacting through complimentary base-pairing. Additional studies are necessary to determine the extent and nature of interactions between the SNPs and the transcripts prior to interpreting these findings in the context of phenotypes associated with HTR2A. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0325-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cara L Ruble
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| | - Ryan M Smith
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| | - John Calley
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| | - Leanne Munsie
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| | - David C Airey
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| | - Yuan Gao
- Lieber Institute for Brain Development, Baltimore, MD, ᅟ.
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, ᅟ.
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, ᅟ. .,Departments of Neurology, Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD, ᅟ.
| | | | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, ᅟ. .,Departments of Psychiatry, Neurology, Neuroscience, and the Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, ᅟ.
| | - Laura K Nisenbaum
- Tailored Therapeutics, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, ᅟ.
| |
Collapse
|
17
|
Monn JA, Prieto L, Taboada L, Hao J, Reinhard MR, Henry SS, Beadle CD, Walton L, Man T, Rudyk H, Clark B, Tupper D, Baker SR, Lamas C, Montero C, Marcos A, Blanco J, Bures M, Clawson DK, Atwell S, Lu F, Wang J, Russell M, Heinz BA, Wang X, Carter JH, Getman BG, Catlow JT, Swanson S, Johnson BG, Shaw DB, McKinzie DL. Synthesis and Pharmacological Characterization of C4-(Thiotriazolyl)-substituted-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylates. Identification of (1R,2S,4R,5R,6R)-2-Amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid (LY2812223), a Highly Potent, Functionally Selective mGlu2 Receptor Agonist. J Med Chem 2015; 58:7526-48. [PMID: 26313429 DOI: 10.1021/acs.jmedchem.5b01124] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Identification of orthosteric mGlu(2/3) receptor agonists capable of discriminating between individual mGlu2 and mGlu3 subtypes has been highly challenging owing to the glutamate-site sequence homology between these proteins. Herein we detail the preparation and characterization of a series of molecules related to (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate 1 (LY354740) bearing C4-thiotriazole substituents. On the basis of second messenger responses in cells expressing other recombinant human mGlu2/3 subtypes, a number of high potency and efficacy mGlu2 receptor agonists exhibiting low potency mGlu3 partial agonist/antagonist activity were identified. From this, (1R,2S,4R,5R,6R)-2-amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic acid 14a (LY2812223) was further characterized. Cocrystallization of 14a with the amino terminal domains of hmGlu2 and hmGlu3 combined with site-directed mutation studies has clarified the underlying molecular basis of this unique pharmacology. Evaluation of 14a in a rat model responsive to mGlu2 receptor activation coupled with a measure of central drug disposition provides evidence that this molecule engages and activates central mGlu2 receptors in vivo.
Collapse
Affiliation(s)
- James A Monn
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Lourdes Prieto
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Lorena Taboada
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Junliang Hao
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Matthew R Reinhard
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Steven S Henry
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Christopher D Beadle
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Lesley Walton
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Teresa Man
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Helene Rudyk
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Barry Clark
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - David Tupper
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - S Richard Baker
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Carlos Lamas
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Carlos Montero
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Alicia Marcos
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Jaime Blanco
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Mark Bures
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - David K Clawson
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Shane Atwell
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Frances Lu
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Jing Wang
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Marijane Russell
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Beverly A Heinz
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Xushan Wang
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Joan H Carter
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Brian G Getman
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - John T Catlow
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Steven Swanson
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Bryan G Johnson
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - David B Shaw
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - David L McKinzie
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| |
Collapse
|
18
|
Kinon BJ, Millen BA, Zhang L, McKinzie DL. Exploratory analysis for a targeted patient population responsive to the metabotropic glutamate 2/3 receptor agonist pomaglumetad methionil in schizophrenia. Biol Psychiatry 2015; 78:754-62. [PMID: 25890643 DOI: 10.1016/j.biopsych.2015.03.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/19/2015] [Accepted: 03/07/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Accumulating evidence indicates that glutamatergic tone in schizophrenia may vary as a function of illness duration or medication history. We conducted an exploratory analysis of the existing clinical trial database of pomaglumetad methionil (pomaglumetad) to demonstrate treatment response in targeted patient populations. METHODS Results of the H8Y-MC-HBBM (HBBM) study and an integrated analysis based on five placebo-controlled trials were summarized. Patients with schizophrenia were randomly assigned to receive either pomaglumetad, 40 or 80 mg twice daily (BID), placebo, or risperidone, 2 mg BID, for up to 6 weeks. Patient subgroups were analyzed to determine the efficacy of pomaglumetad treatment in patients early-in-disease (≤3 years) and late-in-disease (≥10 years) (HBBM, 40 mg, n = 206, 80 mg, n = 198; integrated analysis, 40 mg, n = 382, 80 mg, n = 381) and in patients previously treated with central nervous system drugs with prominent serotonin 2A receptor antagonist activity (S2 group) or with predominant dopamine D2 receptor antagonist activity (D2 group; HBBM, 40 mg, n = 275, 80 mg, n = 269; integrated analysis, 40 mg, n = 590, 80 mg, n = 506). RESULTS In the HBBM study and integrated analysis, only patients early-in-disease or previously treated with D2 drugs exhibited significantly greater improvement relative to those receiving placebo, when treated with pomaglumetad, 40 mg (but not 80 mg) BID. Treatment response to risperidone did not appear to depend upon these patient subgroups. CONCLUSIONS Demonstration of antipsychotic efficacy of a potential glutamate-based pharmacotherapy for schizophrenia may require the identification of appropriate patient subgroups whose treatment responsiveness may be fundamentally related to dysregulation of central nervous system glutamatergic tone.
Collapse
Affiliation(s)
- Bruce J Kinon
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana; Lundbeck LLC, Deerfield, Illinois.
| | - Brian A Millen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Lu Zhang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - David L McKinzie
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
19
|
Wierońska JM, Zorn SH, Doller D, Pilc A. Metabotropic glutamate receptors as targets for new antipsychotic drugs: Historical perspective and critical comparative assessment. Pharmacol Ther 2015; 157:10-27. [PMID: 26549541 DOI: 10.1016/j.pharmthera.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this review, we aim to present, discuss and clarify our current understanding regarding the prediction of possible antipsychotic effects of metabotropic glutamate (mGlu) receptor ligands. The number of preclinical trials clearly indicates, that this group of compounds constitutes an excellent alternative to presently used antipsychotic therapy, being effective not only to positive, but also negative and cognitive symptoms of schizophrenia. Although the results of clinical trials that were performed for the group of mGlu2/3 agonists were not so enthusiastic as in animal studies, they still showed that mGlu ligands do not induced variety of side effects typical for presently used antipsychotics, and were generally well tolerated. The lack of satisfactory effectiveness towards schizophrenia symptoms of mGlu2/3 activators in humans could be a result of variety of uncontrolled factors and unidentified biomarkers different for each schizophrenia patient, that should be taken into consideration in the future set of clinical trials. The subject is still open for further research, and the novel classes of mGlu5 or mGlu2/3 agonists/PAMs were recently introduced, including the large group of compounds from the third group of mGlu receptors, especially of mGlu4 subtype. Finally, more precise treatment based on simultaneous administration of minimal doses of the ligands for two or more receptors, seems to be promising in the context of symptoms-specific schizophrenia treatment.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | | | | | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland.
| |
Collapse
|
20
|
Ellaithy A, Younkin J, González-Maeso J, Logothetis DE. Positive allosteric modulators of metabotropic glutamate 2 receptors in schizophrenia treatment. Trends Neurosci 2015; 38:506-16. [PMID: 26148747 PMCID: PMC4530036 DOI: 10.1016/j.tins.2015.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/07/2015] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
Abstract
The past two decades have witnessed a rise in the 'NMDA receptor hypofunction' hypothesis for schizophrenia, a devastating disorder that affects around 1% of the population worldwide. A variety of presynaptic, postsynaptic, and regulatory proteins involved in glutamatergic signaling have thus been proposed as potential therapeutic targets. This review focuses on positive allosteric modulation of metabotropic glutamate 2 receptors (mGlu2Rs) and discusses how recent preclinical epigenetic data may provide a molecular explanation for the discrepant results of clinical studies, further stimulating the field to exploit the promise of mGlu2R as a target for schizophrenia treatment.
Collapse
Affiliation(s)
- Amr Ellaithy
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jason Younkin
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Departments of Psychiatry and Neurology, and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Diomedes E Logothetis
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
21
|
Abstract
Histone modifications and DNA methylation represent central dynamic and reversible processes that regulate gene expression and contribute to cellular phenotypes. These epigenetic marks have been shown to play fundamental roles in a diverse set of signaling and behavioral outcomes. Serotonin is a monoamine that regulates numerous physiological responses including those in the central nervous system. The cardinal signal transduction mechanisms via serotonin and its receptors are well established, but fundamental questions regarding complex interactions between the serotonin system and heritable epigenetic modifications that exert control on gene function remain a topic of intense research and debate. This review focuses on recent advances and contributions to our understanding of epigenetic mechanisms of serotonin receptor-dependent signaling, with focus on psychiatric disorders such as schizophrenia and depression.
Collapse
Affiliation(s)
- Terrell Holloway
- Department of Psychiatry, ‡Department of Neurology, and §Friedman Brain Institute, Icahn School of Medicine at Mount Sinai New York, New York 10029, United States
| | - Javier González-Maeso
- Department of Psychiatry, ‡Department of Neurology, and §Friedman Brain Institute, Icahn School of Medicine at Mount Sinai New York, New York 10029, United States
| |
Collapse
|
22
|
Li ML, Hu XQ, Li F, Gao WJ. Perspectives on the mGluR2/3 agonists as a therapeutic target for schizophrenia: Still promising or a dead end? Prog Neuropsychopharmacol Biol Psychiatry 2015; 60:66-76. [PMID: 25724760 PMCID: PMC4426221 DOI: 10.1016/j.pnpbp.2015.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 01/08/2023]
Abstract
Group II metabotropic glutamate receptor (mGluR2/3) agonists once showed promise as non-dopaminergic antipsychotic drugs because of their efficacy in alleviating symptoms of schizophrenia (SZ) in both animal models and human patients. However, the recent failure of Phase III clinical trials dealt a huge blow to the scientific community and the aftershock of the setback in mGluR2/3 research can be felt everywhere from grant support and laboratory studies to paper publication. An immediate question raised is whether mGluR2/3 is still a promising therapeutic target for schizophrenia. Answering this question is not easy, but apparently a new strategy is needed. This article provides a focused review of literature on the study of mGluR2/3 agonists, especially on mGluR2/3 agonists' mechanism of action and efficacy in both normal conditions and animal models of SZ, as well as clinical studies in human patients with the disease. We argue that the cellular and molecular actions of mGluR2/3 agonists, the distinct roles between mGluR2 and mGluR3, as well as their effects on different stages of the disease and different subpopulations of patients, remain incompletely studied. Until the mechanisms associated with mGluR2/3 are clearly elucidated and all treatment options are tested, it would be a great mistake to terminate the study of mGluR2/3 as a therapeutic target for schizophrenia. This review will thus shed light on the comprehensive features of the translational potential mGluR2/3 agonists as well as the need for further research into the more selective activation of mGluR2.
Collapse
Affiliation(s)
- Meng-Lin Li
- Drexel University College of Medicine, Philadelphia, PA, USA,Department of Rehabilitation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xi-Quan Hu
- Department of Rehabilitation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Feng Li
- Department of Neurobiology and Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Jun Gao
- Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Dunlop J, Brandon NJ. Schizophrenia drug discovery and development in an evolving era: are new drug targets fulfilling expectations? J Psychopharmacol 2015; 29:230-8. [PMID: 25586401 DOI: 10.1177/0269881114565806] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current therapeutics for schizophrenia, the typical and atypical antipsychotic class of drugs, derive their therapeutic benefit predominantly by antagonism of the dopamine D2 receptor subtype and have robust clinical benefit on positive symptoms of the disease with limited to no impact on negative symptoms and cognitive impairment. Driven by these therapeutic limitations of current treatments and the recognition that transmitter systems beyond the dopaminergic system in particular glutamatergic transmission contribute to the etiology of schizophrenia significant recent efforts have focused on the discovery and development of novel treatments for schizophrenia with mechanisms of action that are distinct from current drugs. Specifically, compounds selectively targeting the metabotropic glutamate receptor 2/3 subtype, phosphodiesterase subtype 10, glycine transporter subtype 1 and the alpha7 nicotinic acetylcholine receptor have been the subject of intense drug discovery and development efforts. Here we review recent clinical experience with the most advanced drug candidates targeting each of these novel mechanisms and discuss whether these new agents are living up to expectations.
Collapse
Affiliation(s)
- John Dunlop
- AstraZeneca Neuroscience iMed, Cambridge, MA, USA
| | | |
Collapse
|
24
|
Dunn W, Marder SR. Novel Treatments of Psychosis. Curr Behav Neurosci Rep 2015. [DOI: 10.1007/s40473-015-0032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Downing AM, Kinon BJ, Millen BA, Zhang L, Liu L, Morozova MA, Brenner R, Rayle TJ, Nisenbaum L, Zhao F, Gomez JC. A Double-Blind, Placebo-Controlled Comparator Study of LY2140023 monohydrate in patients with schizophrenia. BMC Psychiatry 2014; 14:351. [PMID: 25539791 PMCID: PMC4276262 DOI: 10.1186/s12888-014-0351-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/25/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Pomaglumetad methionil (LY2140023 monohydrate) is a potent and highly selective agonist for the metabotropic glutamate mGluR2 and mGluR3 receptors. We present results of a pivotal clinical study H8Y-MC-HBBM assessing the efficacy of LY2140023 in improving symptoms as a monotherapy in patients with an acute exacerbation of schizophrenia. METHODS Enrolled adult patients (ages 18-65) with schizophrenia who had experienced an exacerbation of symptoms within 2 weeks prior to study entry. Patients (N = 1013) were randomized 2:2:2:1 to treatment with placebo, LY40 mg twice daily (BID), LY80 mg BID, or risperidone (RIS) 2 mg BID for 6 weeks after a one-week blinded placebo lead-in. The primary outcome assessed change from baseline in the Positive and Negative Syndrome Scale (PANSS) total score in an overall schizophrenia population and a predefined subpopulation which excluded non-Hispanic white patients with the A/A genotype at the HTR2A SNP rs7330461. RESULTS Neither LY2140023 dose showed significant improvement compared to placebo on PANSS total in either population (1-sided p-value [significance level], overall: LY40, p = .154 [0.01]; LY80, p = .698 [0.01], subpopulation: LY40, p = .033 [0.0025]; LY80, p = .659 [0.0025], MMRM analysis). RIS statistically separated from placebo in both populations (p < .001 [0.05]). There were no statistically significant differences in the incidence of serious adverse events, and no seizures on LY2140023. CONCLUSION LY2140023 treatment did not demonstrate efficacy in populations studied. Overall, LY2140023 treatment was generally well tolerated with no new adverse safety findings compared to previous trials. Further understanding of the role of glutamate as a therapeutic target in schizophrenia is needed. CLINICAL TRIALS REGISTRATION A Phase 2, Multicenter, Double-Blind, Placebo-Controlled Comparator Study of 2 Doses of LY2140023 Versus Placebo in Patients With DSM-IV-TR SchizophreniaClinicalTrials.gov identifier: NCT01086748.
Collapse
Affiliation(s)
| | | | | | - Lu Zhang
- Eli Lilly and Company, Indianapolis, Indiana 46285 USA
| | - Lin Liu
- inVentiv Health Clinical, Burlington, Ontario L7L 6G4 Canada
| | - Margarita A Morozova
- Mental Health Research Center RAMS, Kashirskoye Shosse 34, Moscow, 115522 Russia
| | - Ronald Brenner
- Neurobehavioral Research Inc, 74 Carmen Ave, Cedarhurst, NY 11516 USA
| | - Tami Jo Rayle
- Eli Lilly and Company, Indianapolis, Indiana 46285 USA
| | | | - Fangyi Zhao
- Eli Lilly and Company, Indianapolis, Indiana 46285 USA
| | | |
Collapse
|
26
|
Matosin N, Fernandez-Enright F, Frank E, Deng C, Wong J, Huang XF, Newell KA. Metabotropic glutamate receptor mGluR2/3 and mGluR5 binding in the anterior cingulate cortex in psychotic and nonpsychotic depression, bipolar disorder and schizophrenia: implications for novel mGluR-based therapeutics. J Psychiatry Neurosci 2014; 39:407-16. [PMID: 24949866 PMCID: PMC4214875 DOI: 10.1503/jpn.130242] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Metabotropic glutamate receptors 2/3 (mGluR2/3) and 5 (mGluR5) are novel therapeutic targets for major depression (MD), bipolar disorder (BD) and schizophrenia. We aimed to determine whether mGluR2/3 and mGluR5 binding in the anterior cingulate cortex (ACC), a brain region essential for the regulation of mood, cognition and emotion, were differentially altered in these pathologies. METHODS Using postmortem human brains derived from 2 cohorts, [(3)H]LY341495 binding to mGluR2/3 and [(3)H]MPEP binding to mGluR5 were measured by receptor autoradiography in the ACC. The first cohort comprised samples from individuals who had MD with psychosis (MDP), MD without psychosis (MDNP) and matched controls (n = 11-12 per group). The second cohort comprised samples from individuals who had MDNP, BD, schizophrenia and matched controls (n = 15 per group). RESULTS No differences in mGluR2/3 or mGluR5 binding were observed in the MDP, MDNP, BD or schizophrenia groups compared with the control group (all p > 0.05). Importantly, there were also no differences in binding densities between the psychiatric disorders (p > 0.05). We did, however, observe age-related effects, with consistent negative associations between mGluR2/3 and age in the control group (r < -0.575, p < 0.025) and the psychotic disorder groups (MDP and schizophrenia: r = -0.765 to -0.515, p < 0.05), but not in the mood disorder groups (MDNP, BD). LIMITATIONS Replication in larger independent cohorts and medication-naive individuals would strengthen these findings. CONCLUSION Our findings suggest that mGluRs are unaltered in the ACC; however, the presence of altered receptor function cannot be discounted and requires further investigation. Taken together with previous studies, which report differential changes in mGluR2, 3 and 5 across these disorders, we suggest mGluRs may be affected in a brain region-specific manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kelly A. Newell
- Correspondence to: K.A. Newell, University of Wollongong, Northfields Ave., Wollongong, NSW 2522, Australia;
| |
Collapse
|
27
|
A short-term, multicenter, placebo-controlled, randomized withdrawal study of a metabotropic glutamate 2/3 receptor agonist using an electronic patient-reported outcome device in patients with schizophrenia. J Clin Psychopharmacol 2014; 34:552-8. [PMID: 25006819 PMCID: PMC4165473 DOI: 10.1097/jcp.0000000000000187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This 6-week, multicenter, randomized withdrawal, placebo-controlled trial sought to determine whether symptoms of physical dependence occur after abrupt cessation of pomaglumetad methionil (LY2140023 monohydrate), a metabotropic glutamate 2/3 receptor agonist, in patients with schizophrenia. Eligible outpatients, 18 to 65 years old who required a modification or initiation of antipsychotic medication received 4 weeks of pomaglumetad methionil during open-label treatment and then were randomized, double-blind, to continue pomaglumetad methionil or receive placebo for 2 weeks. The primary outcome compared results of the 3-day moving mean of the total score on the Discontinuation Symptom Checklist-Modified Rickels for pomaglumetad methionil-treated patients with those on placebo during the randomized withdrawal phase. An electronic patient-reported outcome (ePRO) device was used daily to record these results. During the withdrawal phase, 103 patients were randomized, and 98 patients completed the trial. There was no statistically significant evidence of withdrawal symptoms associated with placebo compared with pomaglumetad methionil continuation as measured by Discontinuation Symptom Checklist-Modified Rickels (P = 0.170). The results are supported by secondary analyses with the clinician-rated, Clinical Institute Withdrawal Assessment of Alcohol Scale Revised, which showed no statistically significant differences between treatment groups. Using the ePRO device, 82.5% of the patients achieved 75% to 100% of compliance. No discontinuations due to worsening of schizophrenia, serious adverse events, deaths, or seizures were reported during either phase of the study. These findings suggest that there is no evidence of withdrawal symptoms associated with the abrupt discontinuation of pomaglumetad methionil and that an ePRO device can be successfully used in a multicenter schizophrenia trial.
Collapse
|
28
|
Abstract
This article discusses subgroup identification, the goal of which is to determine the heterogeneity of treatment effects across subpopulations. Searching for differences among subgroups is challenging because it is inherently a multiple testing problem with the complication that test statistics for subgroups are typically highly dependent, making simple multiplicity corrections such as the Bonferroni correction too conservative. In this article, a Bayesian approach to identify subgroup effects is proposed, with a scheme for assigning prior probabilities to possible subgroup effects that accounts for multiplicity and yet allows for (preexperimental) preference to specific subgroups. The analysis utilizes a new Bayesian model selection methodology and, as a by-product, produces individual probabilities of treatment effect that could be of use in personalized medicine. The analysis is illustrated on an example involving subgroup analysis of biomarker effects on treatments.
Collapse
Affiliation(s)
- James O Berger
- a Department of Statistical Science , Duke University , Durham , North Carolina , USA
| | | | | |
Collapse
|
29
|
Abstract
One of the oldest models of schizophrenia is based on the effects of serotonergic hallucinogens such as mescaline, psilocybin, and (+)-lysergic acid diethylamide (LSD), which act through the serotonin 5-HT(2A) receptor. These compounds produce a 'model psychosis' in normal individuals that resembles at least some of the positive symptoms of schizophrenia. Based on these similarities, and because evidence has emerged that the serotonergic system plays a role in the pathogenesis of schizophrenia in some patients, animal models relevant to schizophrenia have been developed based on hallucinogen effects. Here we review the behavioural effects of hallucinogens in four of those models, the receptor and neurochemical mechanisms for the effects and their translational relevance. Despite the difficulty of modelling hallucinogen effects in nonverbal species, animal models of schizophrenia based on hallucinogens have yielded important insights into the linkage between 5-HT and schizophrenia and have helped to identify receptor targets and interactions that could be exploited in the development of new therapeutic agents.
Collapse
|
30
|
Altar CA, Hornberger J, Shewade A, Cruz V, Garrison J, Mrazek D. Clinical validity of cytochrome P450 metabolism and serotonin gene variants in psychiatric pharmacotherapy. Int Rev Psychiatry 2013; 25:509-33. [PMID: 24151799 DOI: 10.3109/09540261.2013.825579] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adverse events, response failures and medication non-compliance are common in patients receiving medications for the treatment of mental illnesses. A systematic literature review assessed whether pharmacokinetic (PK) or pharmacodynamic (PD) responses to 26 commonly prescribed antipsychotic and antidepressant medications, including efficacy or side effects, are associated with nucleotide polymorphisms in eight commonly studied genes in psychiatric pharmacotherapy: CYP2D6, CYP2C19, CYP2C9, CYP1A2, CYP3A4, HTR2C, HTR2A, and SLC6A4. Of the 294 publications included in this review, 168 (57%) showed significant associations between gene variants and PK or PD outcomes. Other studies that showed no association often had insufficient control for confounding variables, such as co-medication use, or analysis of medications not substrates of the target gene. The strongest gene-outcome associations were for the PK profiles of CYP2C19 and CYP2D6 (93% and 90%, respectively), for the PD associations between HTR2C and weight gain (57%), and for SLC6A4 and clinical response (54%), with stronger SLC6A4 response associations for specific drug classes (60-83%). The preponderance of evidence supports the validity of analyzing nucleotide polymorphisms in CYP and pharmacodynamic genes to predict the metabolism, safety, or therapeutic efficacy of psychotropic medications commonly used for the treatment of depression, schizophrenia, and bipolar illness.
Collapse
|
31
|
Metabotropic glutamate receptor 5 in schizophrenia: emerging evidence for the development of antipsychotic drugs. Future Med Chem 2013; 5:1471-4. [DOI: 10.4155/fmc.13.137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Prenatal stress induces schizophrenia-like alterations of serotonin 2A and metabotropic glutamate 2 receptors in the adult offspring: role of maternal immune system. J Neurosci 2013; 33:1088-98. [PMID: 23325246 DOI: 10.1523/jneurosci.2331-12.2013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It has been suggested that severe adverse life events during pregnancy increase the risk of schizophrenia in the offspring. The serotonin 5-HT(2A) and the metabotropic glutamate 2 (mGlu2) receptors both have been the target of considerable attention regarding schizophrenia and antipsychotic drug development. We tested the effects of maternal variable stress during pregnancy on expression and behavioral function of these two receptors in mice. Prenatal stress increased 5-HT(2A) and decreased mGlu2 expression in frontal cortex, a brain region involved in perception, cognition, and mood. This pattern of expression of 5-HT(2A) and mGlu2 receptors was consistent with behavioral alterations, including increased head-twitch response to the hallucinogenic 5-HT(2A) agonist DOI [1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane] and decreased mGlu2-dependent antipsychotic-like effect of the mGlu2/3 agonist LY379268 (1R,4R,5S,6R-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate) in adult, but not prepubertal, mice born to stressed mothers during pregnancy. Cross-fostering studies determined that these alterations were not attributable to effects of prenatal stress on maternal care. Additionally, a similar pattern of biochemical and behavioral changes were observed in mice born to mothers injected with polyinosinic:polycytidylic acid [poly(I:C)] during pregnancy as a model of prenatal immune activation. These data strengthen pathophysiological hypotheses that propose an early neurodevelopmental origin for schizophrenia and other psychiatric disorders.
Collapse
|
33
|
Multiple regulatory variants modulate expression of 5-hydroxytryptamine 2A receptors in human cortex. Biol Psychiatry 2013; 73:546-54. [PMID: 23158458 PMCID: PMC3582836 DOI: 10.1016/j.biopsych.2012.09.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/13/2012] [Accepted: 09/28/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND The 5-hydroxytryptamine 2A receptor, encoded by HTR2A, is a major postsynaptic target for serotonin in the human brain and a therapeutic drug target. Despite hundreds of genetic associations investigating HTR2A polymorphisms in neuropsychiatric disorders and therapies, the role of genetic HTR2A variability in health and disease remains uncertain. METHODS To discover and characterize regulatory HTR2A variants, we sequenced whole transcriptomes from 10 human brain regions with massively parallel RNA sequencing and measured allelic expression of multiple HTR2A messenger (m)RNA transcript variants. Following discovery of functional variants, we further characterized their impact on genetic expression in vitro. RESULTS Three polymorphisms modulate the use of novel alternative exons and untranslated regions (UTRs), changing expression of RNA and protein. The frequent promoter variant rs6311, widely implicated in human neuropsychiatric disorders, decreases usage of an upstream transcription start site encoding a longer 5'UTR with greater translation efficiency. rs76665058, located in an extended 3'UTR and unique to individuals of African descent, modulates allelic HTR2A mRNA expression. The third single nucleotide polymorphism, unannotated and present in only a single subject, directs alternative splicing of exon 2. Targeted analysis of HTR2A in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study reveals associations between functional variants and depression severity or citalopram response. CONCLUSIONS Regulatory polymorphisms modulate HTR2A mRNA expression in an isoform-specific manner, directing the usage of novel untranslated regions and alternative exons. These results provide a foundation for delineating the role of HTR2A and serotonin signaling in central nervous system disorders.
Collapse
|
34
|
Morrow JA, Gilfillan R, Neale SA. Glutamatergic Approaches for the Treatment of Schizophrenia. DRUG DISCOVERY FOR PSYCHIATRIC DISORDERS 2012. [DOI: 10.1039/9781849734943-00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system and plays a key role in most aspects of normal brain function including cognition, learning and memory. Dysfunction of glutamatergic neurotransmission has been implicated in a number of neurological and psychiatric disorders with a growing body of evidence suggesting that hypofunction of glutamatergic neurotransmission via the N-methyl-d-aspartate (NMDA) receptor plays an important role in the pathophysiology of schizophrenia. It thus follows that potentiation of NMDA receptor function via pharmacological manipulation may provide therapeutic utility for the treatment of schizophrenia and a number of different approaches are currently being pursued by the pharmaceutical industry with this aim in mind. These include strategies that target the glycine/d-serine site of the NMDA receptor (glycine transporter GlyT1, d-serine transporter ASC-1 and d-amino acid oxidase (DAAO) inhibitors) together with those aimed at enhancing glutamatergic neurotransmission via modulation of AMPA receptor and metabotropic glutamate receptor function. Such efforts are now beginning to bear fruit with compounds such as the GlyT1 inhibitor RG1678 and mGlu2 agonist LY2140023 proving to have clinical meaningful effects in phase II clinical trials. While more studies are required to confirm long-term efficacy, functional outcome and safety in schizophrenic agents, these agents hold real promise for addressing unmet medical needs, in particular refractory negative and cognitive symptoms, not currently addressed by existing antipsychotic agents.
Collapse
Affiliation(s)
- John A. Morrow
- Neuroscience and Ophthalmology, Merck Research Laboratories 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 USA
| | - Robert Gilfillan
- Discovery Chemistry, Merck Research Laboratories 770 Sumneytown Pike, West Point, Pennsylvania 19486 USA
| | - Stuart A. Neale
- Neurexpert Ltd Ground Floor, 2 Woodberry Grove, North Finchley, London, N12 0DR UK
| |
Collapse
|
35
|
Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, Winiger E, Breier A, Shekhar A, Amdur R, Koller D, Nurnberger JI, Corvin A, Geyer M, Tsuang MT, Salomon D, Schork NJ, Fanous AH, O'Donovan MC, Niculescu AB. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012; 17:887-905. [PMID: 22584867 PMCID: PMC3427857 DOI: 10.1038/mp.2012.37] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 02/07/2023]
Abstract
We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein-coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology.
Collapse
Affiliation(s)
- M Ayalew
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D F Levey
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N Jain
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - B Changala
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Patel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E Winiger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Amdur
- Washington DC VA Medical Center, Washington, DC, USA
| | - D Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Corvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - M Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - M T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - D Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - N J Schork
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - A H Fanous
- Washington DC VA Medical Center, Washington, DC, USA
| | - M C O'Donovan
- Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
36
|
Kurita M, Holloway T, García-Bea A, Kozlenkov A, Friedman AK, Moreno JL, Heshmati M, Golden SA, Kennedy PJ, Takahashi N, Dietz DM, Mocci G, Gabilondo AM, Hanks J, Umali A, Callado LF, Gallitano AL, Neve RL, Shen L, Buxbaum JD, Han MH, Nestler EJ, Meana JJ, Russo SJ, González-Maeso J. HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat Neurosci 2012; 15:1245-54. [PMID: 22864611 PMCID: PMC3431440 DOI: 10.1038/nn.3181] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/05/2012] [Indexed: 02/08/2023]
Abstract
Histone deacetylases (HDACs) compact chromatin structure and repress gene transcription. In schizophrenia, clinical studies demonstrate that HDAC inhibitors are efficacious when given in combination with atypical antipsychotics. However, the molecular mechanism that integrates a better response to antipsychotics with changes in chromatin structure remains unknown. Here we found that chronic atypical antipsychotics downregulated the transcription of metabotropic glutamate 2 receptor (mGlu2, also known as Grm2), an effect that was associated with decreased histone acetylation at its promoter in mouse and human frontal cortex. This epigenetic change occurred in concert with a serotonin 5-HT(2A) receptor-dependent upregulation and increased binding of HDAC2 to the mGlu2 promoter. Virally mediated overexpression of HDAC2 in frontal cortex decreased mGlu2 transcription and its electrophysiological properties, thereby increasing psychosis-like behavior. Conversely, HDAC inhibitors prevented the repressive histone modifications induced at the mGlu2 promoter by atypical antipsychotics, and augmented their therapeutic-like effects. These observations support the view of HDAC2 as a promising new target for schizophrenia treatment.
Collapse
Affiliation(s)
- Mitsumasa Kurita
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Field JR, Walker AG, Conn PJ. Targeting glutamate synapses in schizophrenia. Trends Mol Med 2011; 17:689-98. [PMID: 21955406 DOI: 10.1016/j.molmed.2011.08.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/12/2011] [Accepted: 08/19/2011] [Indexed: 12/25/2022]
Abstract
Although early clinical observations implicated dopamine dysfunction in the neuropathology of schizophrenia, accumulating evidence suggests that multiple neurotransmitter pathways are dysregulated. The psychotomimetic actions of NMDA receptor antagonists point to an imbalance of glutamatergic signaling. Encouragingly, numerous preclinical and clinical studies have elucidated several potential targets for increasing NMDA receptor function and equilibrating glutamatergic tone, including the metabotropic glutamate receptors 2, 3 and 5, the muscarinic acetylcholine receptors M(1) and M(4), and the glycine transporter GlyT1. Highly specific allosteric and orthosteric ligands have been developed that modify the activity of these novel target proteins, and in this review we summarize both the glutamatergic mechanisms and the novel compounds that are increasing the promise for a multifaceted pharmacological approach to treat schizophrenia.
Collapse
Affiliation(s)
- Julie R Field
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | | | | |
Collapse
|