1
|
Yang R, Fu X, Fan J, Wang T, Song J, Xu T, Guo Y, Zhang SY. Semisynthesis and biological evaluation of novel honokiol thioethers against colon cancer cells HCT116 via inhibiting the transcription and expression of YAP protein. Bioorg Med Chem 2024; 107:117762. [PMID: 38759254 DOI: 10.1016/j.bmc.2024.117762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Honokiol, derived from Magnolia officinalis (a traditional Chinese medicine), has been reported to have anticancer activity. Here, a series of novel honokiol thioethers bearing a 1,3,4-oxadiazole moiety were prepared and evaluated for their anticancer activities against three types of digestive system tumor cells. Biological evaluation showed that honokiol derivative 3k exhibited the best antiproliferative activity against HCT116 cells with an IC50 value of 6.1 μmol/L, superior to the reference drug 5-fluorouracil (IC50: 9.63 ± 0.27 µmol/L). The structure-activity relationships (SARs) indicated that the introduction of -(4-NO2)Ph, 3-pyridyl, -(2-F)Ph, -(4-F)Ph, -(3-F)Ph, -(4-Cl)Ph, and -(3-Cl)Ph groups was favorable for enhancing the anticancer activity of the title honokiol thioethers. Further study revealed that honokiol thioether 3k can well inhibit the proliferation of colon cancer cells HCT116, arresting the cells in G1 phase and inducing cell death. Moreover, a preliminary mechanism study indicated that 3k directly inhibits the transcription and expression of YAP protein without activating the Hippo signaling pathway. Thus, honokiol thioether 3k could be deeply developed for the development of honokiol-based anticancer candidates.
Collapse
Affiliation(s)
- Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Xiangjing Fu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Jiangping Fan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Jian Song
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China.
| | - Sai-Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Liu X, Wang LL, Duan CY, Rong YR, Liang YQ, Zhu QX, Hao GP, Wang FZ. Daurisoline inhibits proliferation, induces apoptosis, and enhances TRAIL sensitivity of breast cancer cells by upregulating DR5. Cell Biol Int 2024. [PMID: 38563483 DOI: 10.1002/cbin.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Daurisoline (DS) is an isoquinoline alkaloid that exerts anticancer activities in various cancer cells. However, the underlying mechanisms through which DS affects the survival of breast cancer cells remain poorly understood. Therefore, the present study was undertaken to investigate the potential anticancer effect of DS on breast cancer cells and reveal the mechanism underlying the enhanced tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis by DS. Cell counting kit-8 (CCK-8) and 5-ethynyl-2-deoxyuridine (EdU) assay were used to evaluate the ability of cell proliferation. Flow cytometry was selected to examine the cell cycle distribution. TUNEL assay was used to detect the cell apoptosis. The protein expression was measured by Western blot analysis. DS was found to reduce the cell viability and suppress the proliferation of MCF-7 and MDA-MB-231 cells by causing G1 phase cell cycle arrest. DS could trigger apoptosis by promoting the cleavage of caspase-8 and PARP. The phosphorylation of ERK, JNK, and p38MAPK was upregulated clearly following DS treatment. Notably, SP600125 (JNK inhibitor) pretreatment significantly abrogated DS-induced PARP cleavage. DS inactivated Akt/mTOR and Wnt/β-catenin signaling pathway and upregulated the expression of ER stress-related proteins. Additionally, DS amplified TRAIL-caused viability reduction and apoptosis in breast cancer cells. Mechanismly, DS upregulated the protein level of DR4 and DR5, and knockdown of DR5 attenuated the cotreatment-induced cleavage of PARP. Inhibition of JNK could block DS-induced upregulation of DR5. This study provides valuable insights into the mechanisms of DS inhibiting cell proliferation, triggering apoptosis, and enhancing TRAIL sensitivity of breast cancer cells.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Lin-Lin Wang
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Cun-Yu Duan
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Yan-Ru Rong
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Ya-Qi Liang
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Qing-Xiang Zhu
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Gang-Ping Hao
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Feng-Ze Wang
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, People's Republic of China
- Center Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Taian, People's Republic of China
| |
Collapse
|
3
|
Yılmaz G, Özdemir F. Novel Anti-tumor Strategy for Breast Cancer: Synergistic Role of Oleuropein with Paclitaxel Therapeutic in MCF-7 Cells. Anticancer Agents Med Chem 2024; 24:224-234. [PMID: 38629155 PMCID: PMC10909830 DOI: 10.2174/0118715206284107231120063630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 04/19/2024]
Abstract
BACKGROUND The side effects of conventional therapeutics pose a problem for cancer treatment. Recently, combination treatments with natural compounds have attracted attention regarding limiting the side effects of treatment. Oleuropein is a natural polyphenol in olives that has antioxidant and anticancer effects. OBJECTIVES This study aimed to investigate the oxidative stress effect of a combination of Paclitaxel, a chemotherapeutic agent, and Oleuropein in the MCF-7 cell line. METHODS The xCELLigence RTCA method was used to determine the cytotoxic effects of Oleuropein and Paclitaxel in the MCF-7 cell line. The Total Oxidant and Total Antioxidant Status were analyzed using a kit. The Oxidative Stress Index was calculated by measuring Total Oxidant and Total Antioxidant states. The levels of superoxide dismutase, reduced glutathione and malondialdehyde, which are oxidative stress markers, were also measured by ELISA assay kit. RESULTS As a result of the measurement, IC50 doses of Oleuropein and Paclitaxel were determined as 230 μM and 7.5 μM, respectively. Different percentages of combination ratios were generated from the obtained IC50 values. The effect of oxidative stress was investigated at the combination rates of 10%, 20%, 30%, and 40% which were determined to be synergistic. In terms of the combined use of Oleuropein and Paclitaxel on oxidative stress, antioxidant defense increased, and Oxidative Stress Index levels decreased. CONCLUSION These findings demonstrate that the doses administered to the Oleuropein+Paclitaxel combination group were lower than those administered to groups using one agent alone (e.g. Paclitaxel), the results of which reduce the possibility of administering toxic doses.
Collapse
Affiliation(s)
- Gamze Yılmaz
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Filiz Özdemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
4
|
Macedo C, Costa PC, Rodrigues F. Bioactive compounds from Actinidia arguta fruit as a new strategy to fight glioblastoma. Food Res Int 2024; 175:113770. [PMID: 38129059 DOI: 10.1016/j.foodres.2023.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been a significant demand for natural products as a mean of disease prevention or as an alternative to conventional medications. The driving force for this change is the growing recognition of the abundant presence of valuable bioactive compounds in natural products. On recent years Actinia arguta fruit, also known as kiwiberry, has attracted a lot of attention from scientific community due to its richness in bioactive compounds, including phenolic compounds, organic acids, vitamins, carotenoids and fiber. These bioactive compounds contribute to the fruit's diverse outstanding biological activities such as antioxidant, anti-inflammatory, neuroprotective, immunomodulatory, and anti-cancer properties. Due to these properties, the fruit may have the potential to be used in the treatment/prevention of various types of cancer, including glioblastoma. Glioblastoma is the most aggressive form of brain cancer, displaying 90 % of recurrence rate within a span of 2 years. Despite the employment of an aggressive approach, the prognosis remains unfavorable, emphasizing the urgent requirement for the development of new effective treatments. The preclinical evidence suggests that kiwiberry has potential impact on glioblastoma by reducing the cancer self-renewal, modulating the signaling pathways involved in the regulation of the cell phenotype and metabolism, and influencing the consolidation of the tumor microenvironment. Even though, challenges such as the imprecise composition and concentration of bioactive compounds, and its low bioavailability after oral administration may be drawbacks to the development of kiwiberry-based treatments, being urgent to ensure the safety and efficacy of kiwiberry for the prevention and treatment of glioblastoma. This review aims to highlight the potential impact of A. arguta bioactive compounds on glioblastoma, providing novel insights into their applicability as complementary or alternative therapies.
Collapse
Affiliation(s)
- Catarina Macedo
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
5
|
Mushtaq A, Zahoor AF. Mukaiyama aldol reaction: an effective asymmetric approach to access chiral natural products and their derivatives/analogues. RSC Adv 2023; 13:32975-33027. [PMID: 38025859 PMCID: PMC10631541 DOI: 10.1039/d3ra05058k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
The Mukaiyama aldol reaction is generally a Lewis-acid catalyzed cross-aldol reaction between an aldehyde or ketone and silyl enol ether. It was first described by Mukaiyama in 1973, almost 5 decades ago, to achieve the enantioselective synthesis of β-hydroxy carbonyl compounds in high percentage yields. Mukaiyama aldol adducts play a pivotal role in the synthesis of various naturally occurring and medicinally important organic compounds such as polyketides, alkaloids, macrolides, etc. This review highlights the significance of the Mukaiyama aldol reaction towards the asymmetric synthesis of a wide range of biologically active natural products reported recently (since 2020).
Collapse
Affiliation(s)
- Aqsa Mushtaq
- Department of Chemistry, Government College University Faisalabad 38000 Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000 Faisalabad Pakistan
| |
Collapse
|
6
|
Ouellette V, Chavez Alvarez AC, Bouzriba C, Hamel-Côté G, Fortin S. 4-(3-Alkyl-2-oxoimidazolidin-1-yl)-N-phenylbenzenesulfonamide salts: Novel hydrosoluble prodrugs of antimitotics selectively bioactivated by the cytochrome P450 1A1 in breast cancer cells. Bioorg Chem 2023; 140:106820. [PMID: 37672952 DOI: 10.1016/j.bioorg.2023.106820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/09/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
4-(3-Alkyl-2-oxoimidazolidin-1-yl)-N-phenylbenzenesulfonamides (PAIB-SAs) are members of a new family of prodrugs bioactivated by cytochrome P450 1A1 (CYP1A1) in breast cancer cells into their potent 4-(2-oxoimidazolidin-1-yl)-N-phenylbenzenesulfonamide metabolites (PIB-SAs). One of the predominant problems for the galenic formulation and administration of PAIB-SAs in animal studies is their poor hydrosolubility. To circumvent that difficulty, we report the design, the synthesis, the chemical characterization, the evaluation of the aqueous solubility, the antiproliferative activity and the mechanism of action of 18 new Na+, K+ and Li+ salts of PAIB-SAs. Our results evidenced that the latter exhibited highly selective antiproliferative activity toward MCF7 and MDA-MB-468 breast cancer cells expressing endogenously CYP1A1 compared to insensitive MDA-MB-231 and HaCaT cells. Moreover, PAIB-SA salts 1-18 are significantly more hydrosoluble (3.9-9.4 mg/mL) than their neutral counterparts (< 0.0001 mg/mL). In addition, the most potent PAIB-SA salts 1-3 and 10-12 arrested the cell cycle progression in the G2/M phase and disrupted the cytoskeleton's dynamic assembly. Finally, PAIB-SA salts are N-dealkylated by CYP1A1 into their corresponding PIB-SA metabolites, which are potent antimitotics. In summary, our results show that our water-soluble PAIB-SA salts, notably the sodium salts, still exhibit potent antiproliferative efficacy and remain prone to CYP1A1 bioactivation. In addition, these PAIB-SA salts will allow the development of galenic formulations suitable for further biopharmaceutical and pharmacodynamic studies.
Collapse
Affiliation(s)
- Vincent Ouellette
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, Québec G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.
| | - Atziri Corin Chavez Alvarez
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, Québec G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval (IUCPQ), 2725 Chemin Ste-Foy, Québec, Québec G1V 4G5, Canada.
| | - Chahrazed Bouzriba
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, Québec G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.
| | - Geneviève Hamel-Côté
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, Québec G1L 3L5, Canada.
| | - Sébastien Fortin
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, Québec G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|
7
|
Grzywa R, Psurski M, Gajda A, Gajda T, Janczewski Ł. Isothiocyanates as Tubulin Polymerization Inhibitors-Synthesis and Structure-Activity Relationship Studies. Int J Mol Sci 2023; 24:13674. [PMID: 37761977 PMCID: PMC10531289 DOI: 10.3390/ijms241813674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Among the various substances that interfere with the microtubule formation process, isothiocyanates (ITCs) are the group of compounds for which the binding mode and mechanism of action have not yet been explained. To better understand the structure-activity relationship of tubulin-isothiocyanate interactions, we designed and synthesized a series of sixteen known and novel, structurally diverse ITCs, including amino acid ester-derived isothiocyanates, bis-isothiocyanates, analogs of benzyl isothiocyanate, and phosphorus analogs of sulforaphane. All synthesized compounds and selected natural isothiocyanates (BITC, PEITC, AITC, and SFN) were tested in vitro to evaluate their antiproliferative activity, tubulin polymerization inhibition potential, and influence on cell cycle progression. The antiproliferative activity of most of the newly tested compounds exceeded the action of natural isothiocyanates, with four structures being more potent as tubulin polymerization inhibitors than BITC. As a confirmation of anti-tubulin activity, the correlation between polymerization inhibition and cell cycle arrest in the G2/M phase was observed for the most active compounds. In light of the biological results indicating significant differences in the impact of structurally diverse isothiocyanate on tubulin polymerization, in silico analysis was conducted to analyze the possible mode of isothiocyanate-tubulin binding and to show how it can influence the polymerization reaction.
Collapse
Affiliation(s)
- Renata Grzywa
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Mateusz Psurski
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl St., 53-114 Wrocław, Poland;
| | - Anna Gajda
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Stefan Żeromski St., 90-924 Łódź, Poland; (A.G.); (T.G.)
| | - Tadeusz Gajda
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Stefan Żeromski St., 90-924 Łódź, Poland; (A.G.); (T.G.)
| | - Łukasz Janczewski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Stefan Żeromski St., 90-924 Łódź, Poland; (A.G.); (T.G.)
| |
Collapse
|
8
|
Pei Q, Jiang B, Hao D, Xie Z. Self-assembled nanoformulations of paclitaxel for enhanced cancer theranostics. Acta Pharm Sin B 2023; 13:3252-3276. [PMID: 37655323 PMCID: PMC10465968 DOI: 10.1016/j.apsb.2023.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 03/07/2023] Open
Abstract
Chemotherapy has occupied the critical position in cancer therapy, especially towards the post-operative, advanced, recurrent, and metastatic tumors. Paclitaxel (PTX)-based formulations have been widely used in clinical practice, while the therapeutic effect is far from satisfied due to off-target toxicity and drug resistance. The caseless multi-components make the preparation technology complicated and aggravate the concerns with the excipients-associated toxicity. The self-assembled PTX nanoparticles possess a high drug content and could incorporate various functional molecules for enhancing the therapeutic index. In this work, we summarize the self-assembly strategy for diverse nanodrugs of PTX. Then, the advancement of nanodrugs for tumor therapy, especially emphasis on mono-chemotherapy, combinational therapy, and theranostics, have been outlined. Finally, the challenges and potential improvements have been briefly spotlighted.
Collapse
Affiliation(s)
- Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bowen Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dengyuan Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Gür FM, Bilgiç S. Silymarin, an antioxidant flavonoid, protects the liver from the toxicity of the anticancer drug paclitaxel. Tissue Cell 2023; 83:102158. [PMID: 37459721 DOI: 10.1016/j.tice.2023.102158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
One of the biggest factors that negatively affect the cancer treatment plan is the toxic effects of chemotherapeutics on non-target cells and tissues. This information prompted us to investigate the protective effects of silymarin (SL), a hepatoprotective agent, against the hepatotoxic effects of the anticancer drug paclitaxel (PAC). Four groups were formed from 28 rats as control, PAC (2 mg/kg), SL (100 mg/kg) and PAC + SL (combination of PAC with SL). After completing the experimental procedures, the tissues collected after anesthesia were analyzed by Western blot, qRT-PCR, biochemical, stereological, immunohistochemical, and histopathological techniques. Administration of PAC significantly increased the expression of tumor necrosis factor-alpha (TNF-α), Bax, cytochrome-c (cyt-c), and active caspase-3, as well as malondialdehyde (MDA) levels in liver tissue and decreased glutathione (GSH) levels compared with the control group. PAC also resulted in a significant increase in serum triglyceride (TG), cholesterol (CH), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels compared with the control group. Pathological changes such as microvesicular steatosis, the formation of Councilman bodies, an increase in total sinusoidal volume, and a decrease in the total number of hepatocytes were observed in the liver tissue of the PAC group. Almost all analysis results in the PAC + SL group were similar to those in the control group, and no significant pathological alterations were observed in this group. The data obtained show that SL protects the liver from the harmful effects of PAC, especially thanks to its TNF-α suppressor, anti-inflammatory, anti-apoptotic and antioxidant effects. Based on this result, in cases where PAC is used in cancer treatment, it can be recommended to be used together with SL to prevent harmful effects on healthy liver tissue and to continue treatment uninterruptedly and effectively.
Collapse
Affiliation(s)
- Fatih Mehmet Gür
- Department of Histology and Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey.
| | - Sedat Bilgiç
- Department of Medical Biochemistry, Vocational School of Health Services, Adıyaman University, Adıyaman, Turkey.
| |
Collapse
|
10
|
Tauchen J, Frankova A, Manourova A, Valterova I, Lojka B, Leuner O. Garcinia kola: a critical review on chemistry and pharmacology of an important West African medicinal plant. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023:1-47. [PMID: 37359709 PMCID: PMC10205037 DOI: 10.1007/s11101-023-09869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2023]
Abstract
Garcinia kola Heckel (Clusiaceae) is a tree indigenous to West and Central Africa. All plant parts, but especially the seeds, are of value in local folklore medicine. Garcinia kola is used in treatment of numerous diseases, including gastric disorders, bronchial diseases, fever, malaria and is used to induce a stimulating and aphrodisiac effect. The plant is now attracting considerable interest as a possible source of pharmaceutically important drugs. Several different classes of compounds such as biflavonoids, benzophenones, benzofurans, benzopyran, vitamin E derivatives, xanthones, and phytosterols, have been isolated from G. kola, of which many appears to be found only in this species, such as garcinianin (found in seeds and roots), kolanone (fruit pulp, seeds, roots), gakolanone (stem bark), garcinoic acid, garcinal (both in seeds), garcifuran A and B, and garcipyran (all in roots). They showed a wide range of pharmacological activities (e.g. analgesic, anticancer, antidiabetic, anti-inflammatory, antimalarial, antimicrobial, hepatoprotective and neuroprotective effects), though this has only been confirmed in animal models. Kolaviron is the most studied compound and is perceived by many studies as the active principle of G. kola. However, its research is associated with significant flaws (e.g. too high doses tested, inappropriate positive control). Garcinol has been tested under better conditions and is perhaps showing more promising results and should attract deeper research interest (especially in the area of anticancer, antimicrobial, and neuroprotective activity). Human clinical trials and mechanism-of-action studies must be carried out to verify whether any of the compounds present in G. kola may be used as a lead in the drug development.
Collapse
Affiliation(s)
- Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Adela Frankova
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Anna Manourova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Irena Valterova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Bohdan Lojka
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Astrain-Redin N, Sanmartin C, Sharma AK, Plano D. From Natural Sources to Synthetic Derivatives: The Allyl Motif as a Powerful Tool for Fragment-Based Design in Cancer Treatment. J Med Chem 2023; 66:3703-3731. [PMID: 36858050 PMCID: PMC10041541 DOI: 10.1021/acs.jmedchem.2c01406] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Since the beginning of history, natural products have been an abundant source of bioactive molecules for the treatment of different diseases, including cancer. Many allyl derivatives, which have shown anticancer activity both in vitro and in vivo in a large number of cancers, are bioactive molecules found in garlic, cinnamon, nutmeg, or mustard. In addition, synthetic products containing allyl fragments have been developed showing potent anticancer properties. Of particular note is the allyl derivative 17-AAG, which has been evaluated in Phase I and Phase II/III clinical trials for the treatment of multiple myeloma, metastatic melanoma, renal cancer, and breast cancer. In this Perspective, we compile extensive literature evidence with descriptions and discussions of the most recent advances in different natural and synthetic allyl derivatives that could generate cancer drug candidates in the near future.
Collapse
Affiliation(s)
- Nora Astrain-Redin
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
| | - Carmen Sanmartin
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
12
|
Paclitaxel-Loaded Lipid-Coated Magnetic Nanoparticles for Dual Chemo-Magnetic Hyperthermia Therapy of Melanoma. Pharmaceutics 2023; 15:pharmaceutics15030818. [PMID: 36986678 PMCID: PMC10055620 DOI: 10.3390/pharmaceutics15030818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Melanoma is the most aggressive and metastasis-prone form of skin cancer. Conventional therapies include chemotherapeutic agents, either as small molecules or carried by FDA-approved nanostructures. However, systemic toxicity and side effects still remain as major drawbacks. With the advancement of nanomedicine, new delivery strategies emerge at a regular pace, aiming to overcome these challenges. Stimulus-responsive drug delivery systems might considerably reduce systemic toxicity and side-effects by limiting drug release to the affected area. Herein, we report the development of paclitaxel-loaded lipid-coated manganese ferrite magnetic nanoparticles (PTX-LMNP) as magnetosomes synthetic analogs, envisaging the combined chemo-magnetic hyperthermia treatment of melanoma. PTX-LMNP physicochemical properties were verified, including their shape, size, crystallinity, FTIR spectrum, magnetization profile, and temperature profile under magnetic hyperthermia (MHT). Their diffusion in porcine ear skin (a model for human skin) was investigated after intradermal administration via fluorescence microscopy. Cumulative PTX release kinetics under different temperatures, either preceded or not by MHT, were assessed. Intrinsic cytotoxicity against B16F10 cells was determined via neutral red uptake assay after 48 h of incubation (long-term assay), as well as B16F10 cells viability after 1 h of incubation (short-term assay), followed by MHT. PTX-LMNP-mediated MHT triggers PTX release, allowing its thermal-modulated local delivery to diseased sites, within short timeframes. Moreover, half-maximal PTX inhibitory concentration (IC50) could be significantly reduced relatively to free PTX (142,500×) and Taxol® (340×). Therefore, the dual chemo-MHT therapy mediated by intratumorally injected PTX-LMNP stands out as a promising alternative to efficiently deliver PTX to melanoma cells, consequently reducing systemic side effects commonly associated with conventional chemotherapies.
Collapse
|
13
|
Manz C, Raorane ML, Maisch J, Nick P. Switching cell fate by the actin-auxin oscillator in Taxus: cellular aspects of plant cell fermentation. PLANT CELL REPORTS 2022; 41:2363-2378. [PMID: 36214871 PMCID: PMC9700576 DOI: 10.1007/s00299-022-02928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Paclitaxel synthesis in Taxus cells correlates with a cell-fate switch that leads to vacuoles of a glossy appearance and vermiform mitochondria. This switch depends on actin and apoplastic respiratory burst. Plant cell fermentation, the production of valuable products in plant cell culture, has great potential as sustainable alternative to the exploitation of natural resources for compounds of pharmaceutical interest. However, the success of this approach has remained limited, because the cellular aspects of metabolic competence are mostly unknown. The production of the anti-cancer alkaloid Paclitaxel has been, so far, the most successful case for this approach. In the current work, we map cellular aspects of alkaloid synthesis in cells of Taxus chinensis using a combination of live-cell imaging, quantitative physiology, and metabolite analysis. We show evidence that metabolic potency correlates with a differentiation event giving rise to cells with large vacuoles with a tonoplast that is of a glossy appearance, agglomerations of lipophilic compounds, and multivesicular bodies that fuse with the plasma membrane. Cellular features of these glossy cells are bundled actin, more numerous peroxisomes, and vermiform mitochondria. The incidence of glossy cells can be increased by aluminium ions, and this increase is significantly reduced by the actin inhibitor Latrunculin B, and by diphenylene iodonium, a specific inhibitor of the NADPH oxidase Respiratory burst oxidase Homologue (RboH). It is also reduced by the artificial auxin Picloram. This cellular fingerprint matches the implications of a model, where the differentiation into the glossy cell type is regulated by the actin-auxin oscillator that in plant cells acts as dynamic switch between growth and defence.
Collapse
Affiliation(s)
- Christina Manz
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Manish L Raorane
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Jan Maisch
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| |
Collapse
|
14
|
Tu DN, Hau VTB, Diep NT, Khanh HV, Long NT, Trang HTH, Hoang NH, Kiem PV, Nhiem NX. Alkaloids from Phaeanthus vietnamensis with inhibitory effect on nitric oxide production lipopolysaccharide-stimulated in RAW264.7 macrophages. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:898-903. [PMID: 34779313 DOI: 10.1080/10286020.2021.1993833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
The chemical study of the acidic extract of Phaeanthus vietnamensis leaves led to the isolation of one new alkaloid, vietnamine A (1) and eight known alkaloids (R,S)-2N-norberbamunine (2), grisabine (3), 1S,1'R,O,O'-dimethylgrisabine (4), dauricine (5), neothalibrine (6), vietnamine (7), xylopine (8), and argentinine (9) by NMR and MS and comparing with the data reported in the literature. Compounds 1-9 were evaluated for inhibitory NO production in RAW 264.7 macrophages, LPS-stimulated. Compounds 1-3 significantly inhibited on NO production with the IC50 values of 6.8 ± 0.9, 9.8 ± 1.0, and 7.1 ± 0.4 µg/ml, respectively.
Collapse
Affiliation(s)
- Duong Ngoc Tu
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi 11307, Vietnam
| | - Vu Thi Bich Hau
- Department of Science and Technology of Danang, 24 Tran Phu, Danang City 50207, Vietnam
| | - Nguyen Thi Diep
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi 11307, Vietnam
| | - Ho Van Khanh
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi 11307, Vietnam
| | - Nguyen The Long
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi 11307, Vietnam
| | - Ha Thi Huyen Trang
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Nguyen Huy Hoang
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Caugiay, Hanoi 11307, Vietnam
| | - Phan Van Kiem
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Caugiay, Hanoi 11307, Vietnam
| | - Nguyen Xuan Nhiem
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Caugiay, Hanoi 11307, Vietnam
| |
Collapse
|
15
|
Gür FM, Bilgiç S. A synthetic prostaglandin E1 analogue, misoprostol, ameliorates paclitaxel-induced oxidative damage in rat brain. Prostaglandins Other Lipid Mediat 2022; 162:106663. [PMID: 35809771 DOI: 10.1016/j.prostaglandins.2022.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
The main objective of our study was to examine the protection of misoprostol (MP) on paclitaxel (PAX) side effects in rat brains. Twenty-eight female Sprague-Dawley rats were provided to form 4 groups, each containing seven rats: the control group was given 1 mL of 0.9% NaCl intraperitoneally (i.p.) and 1 mL of 0.9% NaCl orally for six days. In treatment groups, each rat was injected with 2 mg/kg PAX i.p. on days 0, 2, 4, and 6 of the study, and 0.2 mg/kg/day MP was given by oral gavage for six days. Levels of malondialdehyde (MDA) and glutathione (GSH), activities of superoxide dismutase (SOD), and catalase (CAT) of tissue samples were measured. In immunohistochemical analyzes, it was observed that tumor necrosis factor-alpha (TNF-α) and cleaved caspase-3 expression in the cerebellum hippocampus and cerebral cortex were increased in the PAX group compared to the other groups. The increase in TNF-α and cleaved caspase-3 expression detected in PAX group rats were significantly decreased in the PAX + MP group. The results obtained in this study confirm the hypotheses that PAX can increase apoptosis in brain tissue both directly and through cytokines such as TNF-α. It also shows that MP can be used as a protective and therapeutic pharmacological agent against the harmful effects of PAX on brain tissue. In addition, it seems that the use of MP can improve PAX-induced brain damage by preventing oxidative damage.
Collapse
Affiliation(s)
- Fatih Mehmet Gür
- Department of Histology and Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Sedat Bilgiç
- Department of Medical Biochemistry, Vocational School of Health Services, Adıyaman University, Adıyaman, Turkey.
| |
Collapse
|
16
|
Akao Y, Terazawa R, Sugito N, Heishima K, Morikawa K, Ito Y, Narui R, Hamaguchi R, Nobukawa T. Understanding of cell death induced by the constituents of Taxus yunnanensis wood. Sci Rep 2022; 12:6282. [PMID: 35428370 PMCID: PMC9012736 DOI: 10.1038/s41598-022-09655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
The ethanol extract from the wood of Taxus Yunnanensis (TY) induced apoptosis in all cancer cell lines tested, which was mainly due to activation of an extrinsic pathway in human colon cancer DLD-1 cells. The extrinsic pathway was activated by the upregulation of the expression levels of Fas and TRAIL/DR5, which led to the activation of caspase-8. Of note, the machinery of this increase in expression was promoted by the upregulation of MIR32a expression, which silenced MIR34a-targeting E2F3 transcription factor. Furthermore, ectopic expression of MIR32a or siR-E2F3 silencing E2F3 increased Fas and TRAIL/DR5 expression. Thus, the extract activated the extrinsic pathway through the MIR34a/E2F3 axis, resulting in the autocrine and paracrine release of TRAIL, and upregulated expression of death receptors Fas and DR5 in the treated DLD-1 cells, which were functionally validated by Fas immunocytochemistry, and using anti-Fas and anti-TRAIL antibodies, respectively. In vivo, TY showed significant anti-tumor effects on xenografted and syngeneic model mice. The extract may also aid in chemoprevention by selectively making marked tumor cells susceptible to the tumor immunosurveillance system.
Collapse
Affiliation(s)
- Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan.
| | - Riyako Terazawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Kohei Morikawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Ryoko Narui
- Karasuma Wada Clinic, Nakagyo-ku, Kyoto, 604-0845, Japan
| | - Reo Hamaguchi
- Karasuma Wada Clinic, Nakagyo-ku, Kyoto, 604-0845, Japan
| | | |
Collapse
|
17
|
Paclitaxel Drug Delivery Systems: Focus on Nanocrystals' Surface Modifications. Polymers (Basel) 2022; 14:polym14040658. [PMID: 35215570 PMCID: PMC8875890 DOI: 10.3390/polym14040658] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Paclitaxel (PTX) is a chemotherapeutic agent that belongs to the taxane family and which was approved to treat various kinds of cancers including breast cancer, ovarian cancer, advanced non-small-cell lung cancer, and acquired immunodeficiency syndrome (AIDS)-related Kaposi’s sarcoma. Several delivery systems for PTX have been developed to enhance its solubility and pharmacological properties involving liposomes, nanoparticles, microparticles, micelles, cosolvent methods, and the complexation with cyclodextrins and other materials that are summarized in this article. Specifically, this review discusses deeply the developed paclitaxel nanocrystal formulations. As PTX is a hydrophobic drug with inferior water solubility properties, which are improved a lot by nanocrystal formulation. Based on that, many studies employed nano-crystallization techniques not only to improve the oral delivery of PTX, but IV, intraperitoneal (IP), and local and intertumoral delivery systems were also developed. Additionally, superior and interesting properties of PTX NCs were achieved by performing additional modifications to the NCs, such as stabilization with surfactants and coating with polymers. This review summarizes these delivery systems by shedding light on their route of administration, the methods used in the preparation and modifications, the in vitro or in vivo models used, and the advantages obtained based on the developed formulations.
Collapse
|
18
|
Gür FM, Aktaş İ, Bilgiç S, Pekince M. Misoprostol alleviates paclitaxel-induced liver damage through its antioxidant and anti-apoptotic effects. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00210-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Aboelwafa H, Ramadan R, El-Kott A, Abdelhamid F. The protective effect of melatonin supplementation against taxol-induced testicular cytotoxicity in adult rats. Braz J Med Biol Res 2022; 55:e11614. [PMID: 35137851 PMCID: PMC8851920 DOI: 10.1590/1414-431x2021e11614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 01/22/2023] Open
Affiliation(s)
| | | | - A.F. El-Kott
- King Khalid University, Saudi Arabia; College of Science, Damanhour University, Egypt
| | | |
Collapse
|
20
|
Tost M, Andler O, Kazmaier U. A Matteson Homologation‐Based Synthesis of Doliculide and Derivatives. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Markus Tost
- Organic Chemistry Saarland University P.O. Box 151150 66041 Saarbrücken Germany
| | - Oliver Andler
- Organic Chemistry Saarland University P.O. Box 151150 66041 Saarbrücken Germany
| | - Uli Kazmaier
- Organic Chemistry Saarland University P.O. Box 151150 66041 Saarbrücken Germany
| |
Collapse
|
21
|
Guan P, Zhou J, Girel S, Zhu X, Schwab M, Zhang K, Wang-Müller Q, Bigler L, Nick P. Anti-microtubule activity of the traditional Chinese medicine herb Northern Ban Lan (Isatis tinctoria) leads to glucobrassicin. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:2058-2074. [PMID: 34636476 DOI: 10.1111/jipb.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Traditional Chinese medicine (TCM) belongs to the most elaborate and extensive systems of plant-based healing. The herb Northern Ban Lan (Isatis tinctoria) is famous for its antiviral and anti-inflammatory activity. Although numerous components isolated from I. tinctoria have been characterized so far, their modes of action have remained unclear. Here, we show that extracts from I. tinctoria exert anti-microtubular activity. Using time-lapse microscopy in living tobacco BY-2 (Nicotiana tabacum L. cv Bright Yellow 2) cells expressing green fluorescent protein-tubulin, we use activity-guided fractionation to screen out the biologically active compounds of I. tinctoria. Among 54 fractions obtained from either leaves or roots of I. tinctoria by methanol (MeOH/H2 O 8:2), or ethyl acetate extraction, one specific methanolic root fraction was selected, because it efficiently and rapidly eliminated microtubules. By combination of further purification with ultra-high-performance liquid chromatography and high-resolution tandem mass spectrometry most of the bioactivity could be assigned to the glucosinolate compound glucobrassicin. Glucobrassicin can also affect microtubules and induce apoptosis in HeLa cells. In the light of these findings, the antiviral activity of Northern Ban Lan is discussed in the context of microtubules being hijacked by many viral pathogens for cell-to-cell spread.
Collapse
Affiliation(s)
- Pingyin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Jianning Zhou
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Sergey Girel
- Department of Chemistry, University of Zürich, Winterthurerstr.190, CH-8057, Zürich, Switzerland
| | - Xin Zhu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Marian Schwab
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Kunxi Zhang
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Qiyan Wang-Müller
- Research Institute of Organic Agriculture FiBL, Ackerstrasse 113, CH-5070, Frick, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zürich, Winterthurerstr.190, CH-8057, Zürich, Switzerland
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| |
Collapse
|
22
|
Klamrak A, Nabnueangsap J, Puthongking P, Nualkaew N. Synthesis of Ferulenol by Engineered Escherichia coli: Structural Elucidation by Using the In Silico Tools. Molecules 2021; 26:6264. [PMID: 34684845 PMCID: PMC8537342 DOI: 10.3390/molecules26206264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
4-Hydroxycoumarin (4HC) has been used as a lead compound for the chemical synthesis of various bioactive substances and drugs. Its prenylated derivatives exhibit potent antibacterial, antitubercular, anticoagulant, and anti-cancer activities. In doing this, E. coli BL21(DE3)pLysS strain was engineered as the in vivo prenylation system to produce the farnesyl derivatives of 4HC by coexpressing the genes encoding Aspergillus terreus aromatic prenyltransferase (AtaPT) and truncated 1-deoxy-D-xylose 5-phosphate synthase of Croton stellatopilosus (CstDXS), where 4HC was the fed precursor. Based on the high-resolution LC-ESI(±)-QTOF-MS/MS with the use of in silico tools (e.g., MetFrag, SIRIUS (version 4.8.2), CSI:FingerID, and CANOPUS), the first major prenylated product (named compound-1) was detected and ultimately elucidated as ferulenol, in which information concerning the correct molecular formula, chemical structure, substructures, and classifications were obtained. The prenylated product (named compound-2) was also detected as the minor product, where this structure proposed to be the isomeric structure of ferulenol formed via the tautomerization. Note that both products were secreted into the culture medium of the recombinant E. coli and could be produced without the external supply of prenyl precursors. The results suggested the potential use of this engineered pathway for synthesizing the farnesylated-4HC derivatives, especially ferulenol.
Collapse
Affiliation(s)
- Anuwatchakij Klamrak
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (P.P.)
| | - Jaran Nabnueangsap
- Salaya Central Instrument Facility RSPG, Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Ploenthip Puthongking
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (P.P.)
| | - Natsajee Nualkaew
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (P.P.)
| |
Collapse
|
23
|
Uddin MS, Kabir MT, Mamun AA, Sarwar MS, Nasrin F, Emran TB, Alanazi IS, Rauf A, Albadrani GM, Sayed AA, Mousa SA, Abdel-Daim MM. Natural Small Molecules Targeting NF-κB Signaling in Glioblastoma. Front Pharmacol 2021; 12:703761. [PMID: 34512336 PMCID: PMC8429794 DOI: 10.3389/fphar.2021.703761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor that regulates various genes that mediate various cellular activities, including propagation, differentiation, motility, and survival. Abnormal activation of NF-κB is a common incidence in several cancers. Glioblastoma multiforme (GBM) is the most aggressive brain cancer described by high cellular heterogeneity and almost unavoidable relapse following surgery and resistance to traditional therapy. In GBM, NF-κB is abnormally activated by various stimuli. Its function has been associated with different processes, including regulation of cancer cells with stem-like phenotypes, invasion of cancer cells, and radiotherapy resistance identification of mesenchymal cells. Even though multimodal therapeutic approaches such as surgery, radiation therapy, and chemotherapeutic drugs are used for treating GBM, however; the estimated mortality rate for GBM patients is around 1 year. Therefore, it is necessary to find out new therapeutic approaches for treating GBM. Many studies are focusing on therapeutics having less adverse effects owing to the failure of conventional chemotherapy and targeted agents. Several studies of compounds suggested the involvement of NF-κB signaling pathways in the growth and development of a tumor and GBM cell apoptosis. In this review, we highlight the involvement of NF-κB signaling in the molecular understanding of GBM and natural compounds targeting NF-κB signaling.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Fatema Nasrin
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, QLD, Australia.,School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Ibtesam S Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
24
|
Siu YM, Roane J, Krische MJ. Total Synthesis of Leiodermatolide A via Transfer Hydrogenative Allylation, Crotylation, and Propargylation: Polyketide Construction beyond Discrete Allyl- or Allenylmetal Reagents. J Am Chem Soc 2021; 143:10590-10595. [PMID: 34237219 DOI: 10.1021/jacs.1c06062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The total synthesis of leiodermatolide A was accomplished in 13 steps (LLS). Transfer hydrogenative variants of three carbonyl additions that traditionally rely on premetalated reagents (allylation, crotylation, and propargylation) are deployed together in one total synthesis.
Collapse
Affiliation(s)
- Yuk-Ming Siu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - James Roane
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
25
|
Asgari S, Pourjavadi A, Setayeshmehr M, Boisen A, Ajalloueian F. Encapsulation of Drug‐Loaded Graphene Oxide‐Based Nanocarrier into Electrospun Pullulan Nanofibers for Potential Local Chemotherapy of Breast Cancer. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shadi Asgari
- Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800 Kgs. Lyngby Denmark
- Polymer Research Laboratory Department of Chemistry Sharif University of Technology Tehran 1458889694 Iran
| | - Ali Pourjavadi
- Polymer Research Laboratory Department of Chemistry Sharif University of Technology Tehran 1458889694 Iran
| | - Mohsen Setayeshmehr
- Department of Biomaterials Tissue Engineering and Nanotechnology School of Advanced Technologies in Medicine Isfahan University of Medical Sciences Isfahan 8174673461 Iran
| | - Anja Boisen
- Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800 Kgs. Lyngby Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN) Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800, Kgs. Lyngby Denmark
| | - Fatemeh Ajalloueian
- Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800 Kgs. Lyngby Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN) Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800, Kgs. Lyngby Denmark
| |
Collapse
|
26
|
Zhou S, Huang G, Chen G. Synthesis and anti-tumor activity of marine alkaloids. Bioorg Med Chem Lett 2021; 41:128009. [DOI: 10.1016/j.bmcl.2021.128009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/20/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022]
|
27
|
Mumtaz SM, Bhardwaj G, Goswami S, Tonk RK, Goyal RK, Abu-Izneid T, Pottoo FH. Management of Glioblastoma Multiforme by Phytochemicals: Applications of Nanoparticle-Based Targeted Drug Delivery System. Curr Drug Targets 2021; 22:429-442. [PMID: 32718288 DOI: 10.2174/1389450121666200727115454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
The Glioblastoma Multiforme (GBM; grade IV astrocytoma) exhorts tumors of star-shaped glial cells in the brain. It is a fast-growing tumor that spreads to nearby brain regions specifically to cerebral hemispheres in frontal and temporal lobes. The etiology of GBM is unknown, but major risk factors are genetic disorders like neurofibromatosis and schwannomatosis, which develop the tumor in the nervous system. The management of GBM with chemo-radiotherapy leads to resistance, and current drug regimen like Temozolomide (TMZ) is less efficacious. The reasons behind the failure of drugs are due to DNA alkylation in the cell cycle by enzyme DNA guanidase and mitochondrial dysfunction. Naturally occurring bioactive compounds from plants referred as phytochemicals, serve as vital sources for anti-cancer drugs. Some prototypical examples include taxol analogs, vinca alkaloids (vincristine, vinblastine), podophyllotoxin analogs, camptothecin, curcumin, aloe-emodin, quercetin, berberine etc. These phytochemicals often regulate diverse molecular pathways, which are implicated in the growth and progression of cancers. However, the challenges posed by the presence of BBB/BBTB to restrict the passage of these phytochemicals, culminates in their low bioavailability and relative toxicity. In this review, we integrated nanotech as a novel drug delivery system to deliver phytochemicals from traditional medicine to the specific site within the brain for the management of GBM.
Collapse
Affiliation(s)
- Sayed M Mumtaz
- Department of Pharmacology and Toxicology, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Gautam Bhardwaj
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Shikha Goswami
- Department of Pharmacology and Toxicology, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Ramesh K Goyal
- Department of Pharmacology and Toxicology, Delhi Pharmaceutical Sciences and Research University, PusphVihar Sector-3, M.B Road, New Delhi, India
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
28
|
Yenilmez Çiftçi G, Demir G, Şenkuytu E, Tanrıverdi Eçik E, Aksahin M, Yıldırım T. 2-Hydroxyanthraquinone substituted cyclotriphosphazenes: Synthesis and cytotoxic activities in cancer cell lines. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Zhou S, Huang G. Retracted Article: The synthesis and biological activity of marine alkaloid derivatives and analogues. RSC Adv 2020; 10:31909-31935. [PMID: 35518151 PMCID: PMC9056551 DOI: 10.1039/d0ra05856d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
The ocean is the origin of life, with a unique ecological environment, which has given birth to a wealth of marine organisms. The ocean is an important source of biological resources and tens of thousands of monomeric compounds have been separated from marine organisms using modern separation technology. Most of these monomeric compounds have some kind of biological activity that has attracted extensive attention from researchers. Marine alkaloids are a kind of compound that can be separated from marine organisms. They have complex and special chemical structures, but at the same time, they can show diversity in biological activities. The biological activities of marine alkaloids mainly manifest in the form of anti-tumor, anti-fungus, anti-viral, anti-malaria, and anti-osteoporosis properties. Many marine alkaloids have good medicinal prospects and can possibly be used as anti-tumor, anti-viral, and anti-fungal clinical drugs or as lead compounds. The limited amounts of marine alkaloids that can be obtained by separation, coupled with the high cytotoxicity and low selectivity of these lead compounds, has restricted the clinical research and industrial development of marine alkaloids. Marine alkaloid derivatives and analogues have been obtained via rational drug design and chemical synthesis, to make up for the shortcomings of marine alkaloids; this has become an urgent subject for research and development. This work systematically reviews the recent developments relating to marine alkaloid derivatives and analogues in the field of medical chemistry over the last 10 years (2010-2019). We divide marine alkaloid derivatives and analogues into five types from the point-of-view of biological activity and elaborated on these activities. We also briefly discuss the optimization process, chemical synthesis, biological activity evaluation, and structure-activity relationship (SAR) of each of these compounds. The abundant SAR data provides reasonable approaches for the design and development of new biologically active marine alkaloid derivatives and analogues.
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou Hainan 571158 China
| | - Gangliang Huang
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
| |
Collapse
|
30
|
Sebhaoui J, El Bakri Y, Lai CH, Karthikeyan S, Anouar EH, Mague JT, Essassi EM. Unexpected synthesis of novel 2-pyrone derivatives: crystal structures, Hirshfeld surface analysis and computational studies. J Biomol Struct Dyn 2020; 39:4859-4877. [PMID: 32571166 DOI: 10.1080/07391102.2020.1780943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Here we report synthesis of three new compounds namely, 1-acetyl-1H-benzimidazolo-2(3H)-one (I), N-(5-acetyl-6-methyl-2-oxo-2H-pyran-4-yl)-N-(2-acetamidophenyl)acetamide (II) and N-(2-acetamidophenyl)-N-2-oxo-2H-pyran-4-yl)acetamide (III) have been synthesized and characterized by single crystal X-ray diffraction. Compounds I and II crystallize in the monoclinic space groups P21/n, and P21/c, respectively, while III crystallizes in the triclinic space group P-1. The theoretical parameters of I-III have been calculated through density functional theory (DFT) by using the hybrid functional B3LYP and basis set 6-311++G**. These theoretical parameters have been compared with the experimental ones obtained by XRD. The significant intermolecular interactions arising in crystal packing are rationalized by means of the Hirshfeld surface analysis method. The major intermolecular contacts in the Hirshfeld surfaces of I-III are from H…H contacts. In addition, binding modes of I-III within Tyrosine-protein kinase JAK2 were investigated using molecular docking and molecular dynamics simulation studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jihad Sebhaoui
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco
| | - Youness El Bakri
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco.,South Ural State University, Chelyabinsk, Russian Federation
| | - Chin-Hung Lai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Subramani Karthikeyan
- Organic Chemistry Department, Science Faculty, RUDN University, Moscow, Russian Federation
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - El Mokhtar Essassi
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco
| |
Collapse
|
31
|
Madariaga-Mazón A, Hernández-Alvarado RB, Noriega-Colima KO, Osnaya-Hernández A, Martinez-Mayorga K. Toxicity of secondary metabolites. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-0116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Secondary metabolites, commonly referred to as natural products, are produced by living organisms and usually have pharmacological or biological activities. Secondary metabolites are the primary source for the discovery of new drugs. Furthermore, secondary metabolites are also used as food preservatives, biopesticides or as research tools. Although secondary metabolites are mainly used by their beneficial biological activity, the toxicity of some of them may limit their use. The toxicity assessment of any compound that is prone to be used in direct contact with human beings is of vital importance. There is a vast spectrum of experimental methods for toxicity evaluation, including in vitro and in vivo methodologies. In this work, we present an overview of the different sources, bioactivities, toxicities and chemical classification of secondary metabolites, followed by a sketch of the role of toxicity assessment in drug discovery and agrochemistry.
Collapse
|
32
|
Song HY, Kim HM, Mushtaq S, Kim WS, Kim YJ, Lim ST, Byun EB. Gamma-Irradiated Chrysin Improves Anticancer Activity in HT-29 Colon Cancer Cells Through Mitochondria-Related Pathway. J Med Food 2019; 22:713-721. [PMID: 31158040 DOI: 10.1089/jmf.2018.4320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Irradiation technology can improve the biological activities of natural molecules through a structural modification. This study was conducted to investigate the enhancement of the anticancer effects of chrysin upon exposure to gamma irradiation. Gamma irradiation induces the production of new radiolytic peaks simultaneously with the decrease of the chrysin peak, which increases the cytotoxicity in HT-29 human colon cancer cells. An isolated chrysin derivative (CM1) exhibited a stronger apoptotic effect in HT-29 cells than intact chrysin. The apoptotic characteristics induced by CM1 in HT-29 cells was mediated through the intrinsic signaling pathway, including the excessive production of included reactive oxygen species, the dissipation of the mitochondrial membrane potential, regulation of the B cell lymphoma-2 family, activation of caspase-9, 3, and cleavage of poly (adenosine diphosphate-ribose) polymerase. Our findings suggest that CM1 can be a potential anticancer candidate for the treatment of colon cancer.
Collapse
Affiliation(s)
- Ha-Yeon Song
- 1 Department of Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea.,2 Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Korea
| | - Hye-Min Kim
- 3 Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Sajid Mushtaq
- 1 Department of Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea.,4 Department of Radiation Biotechnology and Applied Radioisotope Science, Korea University of Science and Technology, Deajeon, Korea
| | - Woo Sik Kim
- 1 Department of Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Young Jun Kim
- 3 Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Seung-Taik Lim
- 2 Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Korea
| | - Eui-Baek Byun
- 1 Department of Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| |
Collapse
|
33
|
Sánchez-Murcia PA, Mills A, Cortés-Cabrera Á, Gago F. Unravelling the covalent binding of zampanolide and taccalonolide AJ to a minimalist representation of a human microtubule. J Comput Aided Mol Des 2019; 33:627-644. [DOI: 10.1007/s10822-019-00208-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/24/2019] [Indexed: 01/27/2023]
|
34
|
Li H, Li J, He X, Zhang B, Liu C, Li Q, Zhu Y, Huang W, Zhang W, Qian H, Ge L. Histology and antitumor activity study of PTX-loaded micelle, a fluorescent drug delivery system prepared by PEG-TPP. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Song Z, Gao J, Hu J, He H, Huang P, Zhang L, Song F. One new xanthenone from the marine-derived fungus Aspergillus versicolor MF160003. Nat Prod Res 2019; 34:2907-2912. [PMID: 31009246 DOI: 10.1080/14786419.2019.1597355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A new xanthenone derivative, 3-hydroxy pinselin (1), together with five known analogues (2-6) were isolated from the marine-derived fungus Aspergillus versicolor MF160003. Their structures were identified by extensive 1D- and 2D-NMR, and high-resolution mass spectrometry data. Compounds 5 and 6 showed moderate bioactivities against BCG with MIC values of 40 and 20 μg/mL, respectively.
Collapse
Affiliation(s)
- Zhijun Song
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jieyu Gao
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jiansen Hu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongtao He
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pei Huang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Fuhang Song
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Bioactivity Profile of the Diterpene Isosteviol and its Derivatives. Molecules 2019; 24:molecules24040678. [PMID: 30769819 PMCID: PMC6412665 DOI: 10.3390/molecules24040678] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/24/2022] Open
Abstract
Steviosides, rebaudiosides and their analogues constitute a major class of naturally occurring biologically active diterpene compounds. The wide spectrum of pharmacological activity of this group of compounds has developed an interest among medicinal chemists to synthesize, purify, and analyze more selective and potent isosteviol derivatives. It has potential biological applications and improves the field of medicinal chemistry by designing novel drugs with the ability to cope against resistance developing diseases. The outstanding advancement in the design and synthesis of isosteviol and its derivative has proved its effectiveness and importance in the field of medicinal chemical research. The present review is an effort to integrate recently developed novel drugs syntheses from isosteviol and potentially active pharmacological importance of the isosteviol derivatives covering the recent advances.
Collapse
|
37
|
Shen CY, Xu XL, Yang LJ, Jiang JG. Identification of narciclasine from Lycoris radiata (L'Her.) Herb. and its inhibitory effect on LPS-induced inflammatory responses in macrophages. Food Chem Toxicol 2019; 125:605-613. [PMID: 30738987 DOI: 10.1016/j.fct.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/21/2022]
Abstract
Lycoris radiata (L'Her.) Herb. (L. radiata) was traditionally used as a folk medicine in China for treatment of Alzheimer's disease. However, the specific component responsible for its considerable toxicity remained unclear thus restricting its clinical trials. Narciclasine (NCS) was isolated from L. radiata and treatment of NCS for 72 h exhibited significant antiproliferative effects against L02, Hep G2, HT-29 and RAW264.7 cells. However, what needs to be emphasized is that at safe working concentrations of 0.001-0.016 μM, administration of NCS for 24 h inhibited the mRNA expression of inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-ɑ), interleukin-1beta (IL-1β) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced macrophages thereby suppressing production of nitric oxide (NO), IL-6, TNF-ɑ and IL-1β. NCS supplementation also inhibited nuclear factor-kappa B (NF-κB) activation by suppressing NF-κB P65 phosphorylation and nuclear translocation, IκBɑ degradation and phosphorylation, and IκKɑ/β phosphorylation. The phosphorylation of c-Jun N-terminal kinase (JNK) and P38, and expression of COX-2 was also attenuated by NCS. These results suggested that NCS might exert anti-inflammatory effects through inhibiting NF-κB and mitogen-activated protein kinase (MAPK) pathways even at very low doses.
Collapse
Affiliation(s)
- Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Xi-Lin Xu
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | - Lin-Jiang Yang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
38
|
Karnati KR, Wang Y. Understanding the co-loading and releasing of doxorubicin and paclitaxel using chitosan functionalized single-walled carbon nanotubes by molecular dynamics simulations. Phys Chem Chem Phys 2019; 20:9389-9400. [PMID: 29565091 DOI: 10.1039/c8cp00124c] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two widely used anticancer drugs, doxorubicin (DOX) and paclitaxel (PTX), possess distinct physical properties and chemotherapy specificity. In order to investigate their interaction mechanism with single-walled carbon nanotubes (SWCNTs), co-loading and releasing from the SWCNTs, all-atom molecular dynamics (MD) simulations were firstly carried out for different SWCNT systems, followed by binding free energy calculation with MM-PBSA. The results indicate that the co-loading of DOX and PTX onto the pristine SWCNT is exothermic and spontaneous. The DOX molecules predominantly interact with the SWCNT via π-π stacking through the conjugated aromatic rings, while the separated aromatic rings of PTX also primarily interact with the SWCNT through π-π stacking yet supplemented by an X-π (X = C-H, N-H and C[double bond, length as m-dash]O) interaction. Moreover, the strongest binding of DOX and PTX with the pristine SWCNT shows similar strength (ΔG: -32.0 vs. -33.8 kcal mol-1). For the chitosan functionalized SWCNT (f-SWCNT), the DOX and PTX molecules still prefer binding to the sidewall of the CNT rather than binding with the polymer, and the non-covalent functionalization of the SWCNT with chitosan decreases the binding of DOX and PTX with the sidewall of the f-SWCNT as compared with the DOX/PTX-SWCNT system (ΔG: -24.0 and -21.9 kcal mol-1). The protonation of chitosan and drug molecules further weakens the interaction between DOX/PTX and the f-SWCNT, and shows a consequent displacement of the drug molecules, triggering the release of the drugs. The variation of binding strength of the three systems (DOX/PTX-SWCNT, DOX/PTX-f-SWCNT, and DOXH+/PTXH+-f-SWCNT) was also discussed in terms of the histogram or frequency of the distance from the drugs to the SWCNT. In addition, the encapsulation of two DOX molecules by the f-SWCNT is considerably stronger than the binding of the other six drug molecules to the sidewall, indicating that the encapsulation of anticancer drugs may also play a very important role and should be considered in the drug delivery.
Collapse
Affiliation(s)
- Konda Reddy Karnati
- Department of Chemistry and Forensic Science, Albany State University, Albany, GA 31705, USA.
| | - Yixuan Wang
- Department of Chemistry and Forensic Science, Albany State University, Albany, GA 31705, USA.
| |
Collapse
|
39
|
Alarif WM, Abdel-Lateff A, Alorfi HS, Alburae NA. Alcyonacea: A Potential Source for Production of Nitrogen-Containing Metabolites. Molecules 2019; 24:molecules24020286. [PMID: 30646584 PMCID: PMC6359195 DOI: 10.3390/molecules24020286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Alcyonacea (soft corals and gorgonia) are well known for their production of a wide array of unprecedented architecture of bioactive metabolites. This diversity of compounds reported from Alcyonacea confirms its productivity as a source of drug leads and, consequently, indicates requirement of further chemo-biological investigation. This review can be considered a roadmap to investigate the Alcyonacea, particularly those produce nitrogen-containing metabolites. It covers the era from the beginning of marine nitrogen-containing terpenoids isolation from Alcyonacea up to December 2018. One hundred twenty-one compounds with nitrogenous moiety are published from fifteen genera. Their prominent biological activity is evident in their antiproliferative effect, which makes them interesting as potential leads for antitumor agents. For instance, eleutherobin and sarcodictyins are in preclinical or clinical stages.
Collapse
Affiliation(s)
- Walied Mohamed Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, PO. Box 80207, Jeddah 21589, Saudi Arabia.
| | - Ahmed Abdel-Lateff
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, PO Box 80260, Jeddah 21589, Saudi Arabia.
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Hajer Saeed Alorfi
- Department of Biology, Faculty of Science, King Abdulaziz University, PO. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Najla Ali Alburae
- Department of Biology, Faculty of Science, King Abdulaziz University, PO. Box 80203, Jeddah 21589, Saudi Arabia.
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, PO. Box 84428, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
40
|
Basic principles of drug delivery systems - the case of paclitaxel. Adv Colloid Interface Sci 2019; 263:95-130. [PMID: 30530177 DOI: 10.1016/j.cis.2018.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/15/2023]
Abstract
Cancer is the second cause of death worldwide, exceeded only by cardiovascular diseases. The prevalent treatment currently used against metastatic cancer is chemotherapy. Among the most studied drugs that inhibit neoplastic cells from acquiring unlimited replicative ability (a hallmark of cancer) are the taxanes. They operate via a unique molecular mechanism affecting mitosis. In this review, we show this mechanism for one of them, paclitaxel, and for other (non-taxanes) anti-mitotic drugs. However, the use of paclitaxel is seriously limited (its bioavailability is <10%) due to several long-standing challenges: its poor water solubility (0.3 μg/mL), its being a substrate for the efflux multidrug transporter P-gp, and, in the case of oral delivery, its first-pass metabolism by certain enzymes. Adequate delivery methods are therefore required to enhance the anti-tumor activity of paclitaxel. Thus, we have also reviewed drug delivery strategies in light of the various physical, chemical, and enzymatic obstacles facing the (especially oral) delivery of drugs in general and paclitaxel in particular. Among the powerful and versatile platforms that have been developed and achieved unprecedented opportunities as drug carriers, microemulsions might have great potential for this aim. This is due to properties such as thermodynamic stability (leading to long shelf-life), increased drug solubilization, and ease of preparation and administration. In this review, we define microemulsions and nanoemulsions, analyze their pertinent properties, and review the results of several drug delivery carriers based on these systems.
Collapse
|
41
|
Xu WW, Zheng CC, Huang YN, Chen WY, Yang QS, Ren JY, Wang YM, He QY, Liao HX, Li B. Synephrine Hydrochloride Suppresses Esophageal Cancer Tumor Growth and Metastatic Potential through Inhibition of Galectin-3-AKT/ERK Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9248-9258. [PMID: 30113849 DOI: 10.1021/acs.jafc.8b04020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A library consisting of 429 food-source compounds was used to screen the natural products with anticancer properties in esophageal squamous cell carcinoma (ESCC). We demonstrated for the first time that synephrine, an active compound isolated from leaves of citrus trees, markedly suppressed cell proliferation (inhibition rate with 20 μM synephrine at day 5:71.1 ± 5.8% and 75.7 ± 6.2% for KYSE30 and KYSE270, respectively) and colony formation (inhibition rate with 10 μM synephrine: 86.5 ± 5.9% and 82.3 ± 4.5% for KYSE30 and KYSE270, respectively), as well as migration (inhibition rate with 10 μM synephrine: 76.9 ± 4.4% and 62.2 ± 5.8% for KYSE30 and KYSE270, respectively) and invasion abilities (inhibition rate with 10 μM synephrine: 73.3 ± 7.5% and 75.3 ± 3.4% for KYSE30 and KYSE270, respectively) of ESCC cells in a dose-dependent manner, without significant toxic effect on normal esophageal epithelial cells. Mechanistically, quantitative proteomics and bioinformatics analyses were performed to explore the synephrine-regulated proteins. Western blot and qRT-PCR data indicated that synephrine may downregulate Galectin-3 to inactivate AKT and ERK pathways. In addition, we found that the sensitivity of ESCC to fluorouracil (5-FU) could be enhanced by synephrine. Furthermore, in vivo experiments showed that synephrine had significant antitumor effect on ESCC tumor xenografts in nude mice (inhibition rate with 20 mg/kg synephrine is 61.3 ± 20.5%) without observed side effects on the animals. Taken together, synephrine, a food-source natural product, may be a potential therapeutic strategy in ESCC.
Collapse
Affiliation(s)
- Wen Wen Xu
- Institute of Biomedicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- National Engineering Research Center of Genetic Medicine , Jinan University , Guangzhou 510632 , P. R. China
| | - Can-Can Zheng
- Institute of Biomedicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Yun-Na Huang
- Institute of Biomedicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- National Engineering Research Center of Genetic Medicine , Jinan University , Guangzhou 510632 , P. R. China
| | - Wen-You Chen
- Department of Thoracic Surgery, First Affiliated Hospital , Jinan University , Guangzhou 510632 , P. R. China
| | - Qing-Sheng Yang
- Department of Thoracic Surgery, First Affiliated Hospital , Jinan University , Guangzhou 510632 , P. R. China
| | - Jia-Yi Ren
- School of Traditional Chinese Medicine , Jinan University , Guangzhou 510632 , P. R. China
| | - Yue-Ming Wang
- Institute of Biomedicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- National Engineering Research Center of Genetic Medicine , Jinan University , Guangzhou 510632 , P. R. China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Hua-Xin Liao
- Institute of Biomedicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- National Engineering Research Center of Genetic Medicine , Jinan University , Guangzhou 510632 , P. R. China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| |
Collapse
|
42
|
Chen H, Li S, Wang S, Li W, Bao N, Ai W. The inhibitory effect of kokusaginine on the growth of human breast cancer cells and MDR-resistant cells is mediated by the inhibition of tubulin assembly. Bioorg Med Chem Lett 2018; 28:2490-2492. [PMID: 29903663 DOI: 10.1016/j.bmcl.2018.05.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 11/17/2022]
Abstract
The emergence of multidrug resistance (MDR) is a significant challenge in breast carcinoma chemotherapy. Kokusaginine isolated from Dictamnus dasycarpus Turcz. has been reported to show cytotoxicity in several human cancer cell lines including breast cancer cells MCF-7. In this study, kokusaginine showed the potent inhibitory effect on MCF-7 multidrug resistant subline MCF-7/ADR and MDA-MB-231 multidrug resistant subline MDA-MB-231/ADR. Kokusaginine markedly induced apoptosis in a concentration-dependent manner in MCF-7/ADR cells. Furthermore, kokusaginine reduced P-gp mRNA and protein levels, and suppressed P-gp function especially in MCF-7/ADR cells. In addition, kokusaginine showed to inhibit tubulin assembly and the binding of colchicine to tubulin by binding directly to tubulin and affects tubulin formation in vitro. Taken together, these results support the potential therapeutic value of kokusaginine as an anti-MDR agent in chemotherapy for breast carcinoma.
Collapse
Affiliation(s)
- Hao Chen
- The First People's Hospital of Jiangxia District, Wuhan 430200, Hubei, China.
| | - Shuguo Li
- Institute of Gerontology, China Three Gorges University, Yichang 443002, Hubei, China; People's Hospital of Yichang Center, Yichang 443003, Hubei, China
| | - Shuibin Wang
- Yichang Yiling Hospital, 32# Donghu Avenue, Yichang 443100, Hubei, China
| | - Weiping Li
- Yichang Yiling Hospital, 32# Donghu Avenue, Yichang 443100, Hubei, China
| | - Ning Bao
- Yichang Yiling Hospital, 32# Donghu Avenue, Yichang 443100, Hubei, China
| | - Wenbin Ai
- Yichang Yiling Hospital, 32# Donghu Avenue, Yichang 443100, Hubei, China.
| |
Collapse
|
43
|
da Silva GH, Fernandes MA, Trevizan LNF, de Lima FT, Eloy JO, Chorilli M. A Critical Review of Properties and Analytical Methods for the Determination of Docetaxel in Biological and Pharmaceutical Matrices. Crit Rev Anal Chem 2018; 48:517-527. [DOI: 10.1080/10408347.2018.1456315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gilmar Hanck da Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Mariza Aires Fernandes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | | | - Felipe Tita de Lima
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Josimar O. Eloy
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| |
Collapse
|
44
|
Vengoji R, Macha MA, Batra SK, Shonka NA. Natural products: a hope for glioblastoma patients. Oncotarget 2018; 9:22194-22219. [PMID: 29774132 PMCID: PMC5955138 DOI: 10.18632/oncotarget.25175] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive malignant tumors with an overall dismal survival averaging one year despite multimodality therapeutic interventions including surgery, radiotherapy and concomitant and adjuvant chemotherapy. Few drugs are FDA approved for GBM, and the addition of temozolomide (TMZ) to standard therapy increases the median survival by only 2.5 months. Targeted therapy appeared promising in in vitro monolayer cultures, but disappointed in preclinical and clinical trials, partly due to the poor penetration of drugs through the blood brain barrier (BBB). Cancer stem cells (CSCs) have intrinsic resistance to initial chemoradiation therapy (CRT) and acquire further resistance via deregulation of many signaling pathways. Due to the failure of classical chemotherapies and targeted drugs, research efforts focusing on the use of less toxic agents have increased. Interestingly, multiple natural compounds have shown antitumor and apoptotic effects in TMZ resistant and p53 mutant GBM cell lines and also displayed synergistic effects with TMZ. In this review, we have summarized the current literature on natural products or product analogs used to modulate the BBB permeability, induce cell death, eradicate CSCs and sensitize GBM to CRT.
Collapse
Affiliation(s)
- Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muzafar A. Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nicole A. Shonka
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Internal Medicine, Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
45
|
Byun EB, Kim HM, Sung NY, Yang MS, Kim WS, Choi D, Mushtaq S, Lee SS, Byun EH. Gamma irradiation of aloe-emodin induced structural modification and apoptosis through a ROS- and caspase-dependent mitochondrial pathway in stomach tumor cells. Int J Radiat Biol 2018; 94:403-416. [DOI: 10.1080/09553002.2018.1440330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Hye-Min Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Nak-Yun Sung
- Department of Food Science and Technology, Kongju National University, Yesan, Republic of Korea
| | - Mi-So Yang
- Department of Microbiology, Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Woo Sik Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - DaeSeong Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Sajid Mushtaq
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Eui-Hong Byun
- Department of Food Science and Technology, Kongju National University, Yesan, Republic of Korea
| |
Collapse
|
46
|
Zheng YD, Bai G, Tang C, Ke CQ, Yao S, Tong LJ, Feng F, Li Y, Ding J, Xie H, Ye Y. 7α,8α-Epoxynagilactones and their glucosides from the twigs of Podocarpus nagi: Isolation, structures, and cytotoxic activities. Fitoterapia 2018; 125:174-183. [PMID: 29355751 DOI: 10.1016/j.fitote.2018.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 11/25/2022]
Abstract
A phytochemical investigation of twigs of Podocarpus nagi resulted in the identification of eight new type B nagilactones (1-8), all bearing a 7α,8α-epoxy-9(11)-enolide substructure, along with two known analogs (9-10). Their structures were determined on the basis of spectroscopic analysis, including HRESIMS, IR and NMR experiments, and X-ray crystallographic analysis. In vitro cytotoxic assay exhibited that compounds 1, 2, 9 and 10 could induce antiproliferation against three different types of human cancer cells while compounds 3 and 5 were inactive. Notably, the IC50 value of compound 1 is 0.208μM for A431 human epidermoid carcinoma cells, reaching the same level as the positive control combretastatin A-4 (0.104μM). Furthermore, compound 1 performed a strong inhibition of cancer cells by triggering apoptosis and arresting the cell cycle at G1 phase. These results unfold potential anticancer therapeutic applications of type B nagilactones.
Collapse
Affiliation(s)
- Yuan-Dong Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, People's Republic of China
| | - Chunping Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Chang-Qiang Ke
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Sheng Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Lin-Jiang Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Fang Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jian Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, People's Republic of China
| | - Hua Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, People's Republic of China.
| |
Collapse
|
47
|
Alves RC, Fernandes RP, Eloy JO, Salgado HRN, Chorilli M. Characteristics, Properties and Analytical Methods of Paclitaxel: A Review. Crit Rev Anal Chem 2018; 48:110-118. [PMID: 29239659 DOI: 10.1080/10408347.2017.1416283] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Paclitaxel is a diterpenoid pseudoalkaloid, isolated from Taxus brevifolia, and is largely used as an antitumoral drug. The formulation of paclitaxel known as Taxol® employs a mixture of Cremophor EL and dehydrated ethanol, due the low drug water solubility. However, Taxol® causes some unwanted side effects due to the presence of Cremophor EL and ethanol in the formulation. Based on this, there is a need for the development of drug delivery systems to enhance the solubility, permeability and stability of paclitaxel and to promote a controlled and targeted delivery for better therapeutic effect and reduced side effects. In addition, the drug has been qualitatively and quantitatively analyzed in different delivery systems. In this context, several approaches were reported focusing on the optimization of analytical methods and development of new ones, considering the need of a fast, simple, with enough sensibility and selectivity assay, which can be a problem in some analysis. This review presents a summary of methods used in quantification of paclitaxel in different matrices, such as plasma, urine, plant extract, cells and delivery systems.
Collapse
Affiliation(s)
- Renata Carolina Alves
- a School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara , São Paulo , Brazil
| | | | - Josimar O Eloy
- a School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara , São Paulo , Brazil
| | | | - Marlus Chorilli
- a School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara , São Paulo , Brazil
| |
Collapse
|
48
|
Zhang MG, Lee JY, Gallo RA, Tao W, Tse D, Doddapaneni R, Pelaez D. Therapeutic targeting of oncogenic transcription factors by natural products in eye cancer. Pharmacol Res 2017; 129:365-374. [PMID: 29203441 DOI: 10.1016/j.phrs.2017.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/15/2017] [Accepted: 11/30/2017] [Indexed: 02/08/2023]
Abstract
Carcinogenesis has a multifactorial etiology, and the underlying molecular pathogenesis is still not entirely understood, especially for eye cancers. Primary malignant intraocular neoplasms are relatively rare, but delayed detection and inappropriate management contribute to poor outcomes. Conventional treatment, such as orbital exenteration, chemotherapy, or radiotherapy, alone results in high mortality for many of these malignancies. Recent sequential multimodal therapy with a combination of high-dose chemotherapy, followed by appropriate surgery, radiotherapy, and additional adjuvant chemotherapy has helped dramatically improve management. Transcription factors are proteins that regulate gene expression by modulating the synthesis of mRNA. Since transcription is a dominant control point in the production of many proteins, transcription factors represent key regulators for numerous cellular functions, including proliferation, differentiation, and apoptosis, making them compelling targets for drug development. Natural compounds have been studied for their potential to be potent yet safe chemotherapeutic drugs. Since the ancient times, plant-derived bioactive molecules have been used to treat dreadful diseases like cancer, and several refined pharmaceutics have been developed from these compounds. Understanding targeting mechanisms of oncogenic transcription factors by natural products can add to our oncologic management toolbox. This review summarizes the current findings of natural products in targeting specific oncogenic transcription factors in various types of eye cancer.
Collapse
Affiliation(s)
- Michelle G Zhang
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - John Y Lee
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ryan A Gallo
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Wensi Tao
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - David Tse
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ravi Doddapaneni
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Daniel Pelaez
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Biomedical Engineering, University of Miami College of Engineering, Coral Gables, FL, 33146, USA.
| |
Collapse
|
49
|
Mucaji P, Atanasov AG, Bak A, Kozik V, Sieron K, Olsen M, Pan W, Liu Y, Hu S, Lan J, Haider N, Musiol R, Vanco J, Diederich M, Ji S, Zitko J, Wang D, Agbaba D, Nikolic K, Oljacic S, Vucicevic J, Jezova D, Tsantili-Kakoulidou A, Tsopelas F, Giaginis C, Kowalska T, Sajewicz M, Silberring J, Mielczarek P, Smoluch M, Jendrzejewska I, Polanski J, Jampilek J. The Forty-Sixth Euro Congress on Drug Synthesis and Analysis: Snapshot †. Molecules 2017; 22:molecules22111848. [PMID: 29143778 PMCID: PMC6150335 DOI: 10.3390/molecules22111848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 01/08/2023] Open
Abstract
The 46th EuroCongress on Drug Synthesis and Analysis (ECDSA-2017) was arranged within the celebration of the 65th Anniversary of the Faculty of Pharmacy at Comenius University in Bratislava, Slovakia from 5-8 September 2017 to get together specialists in medicinal chemistry, organic synthesis, pharmaceutical analysis, screening of bioactive compounds, pharmacology and drug formulations; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topic of the conference, "Drug Synthesis and Analysis," meant that the symposium welcomed all pharmacists and/or researchers (chemists, analysts, biologists) and students interested in scientific work dealing with investigations of biologically active compounds as potential drugs. The authors of this manuscript were plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.
Collapse
Affiliation(s)
- Pavel Mucaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland.
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Andrzej Bak
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Violetta Kozik
- Department of Synthesis Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Karolina Sieron
- Department of Physical Medicine, Medical University of Silesia, Medykow 18, 40752 Katowice, Poland.
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy Glendale, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Yazhou Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Shengchao Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Junjie Lan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Norbert Haider
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria.
| | - Robert Musiol
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Jan Vanco
- Department of Inorganic Chemistry & Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic.
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Seoul 08826, Korea.
| | - Seungwon Ji
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Seoul 08826, Korea.
| | - Jan Zitko
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic.
| | - Dongdong Wang
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland.
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Danica Agbaba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Slavica Oljacic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Jelica Vucicevic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Daniela Jezova
- Laboratory of Pharmacological Neuroendocrinology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia.
| | - Anna Tsantili-Kakoulidou
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece.
| | - Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens, Greece.
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece.
| | - Teresa Kowalska
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Mieczyslaw Sajewicz
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30059 Krakow, Poland.
| | - Przemyslaw Mielczarek
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30059 Krakow, Poland.
| | - Marek Smoluch
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30059 Krakow, Poland.
| | - Izabela Jendrzejewska
- Department of Crystallography, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Bankowa 12, 40006 Katowice, Poland.
| | - Jaroslaw Polanski
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Josef Jampilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia.
| |
Collapse
|
50
|
Bettega D, Calzolari P, Ciocca M, Facoetti A, Lafiandra M, Marchesini R, Molinelli S, Pignoli E, Vischioni B. Combining proton or photon irradiation with epothilone B. An
in vitro
study of cytotoxicity in human cancer cells. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa818f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|