1
|
Hao Q, Lin C, Hu Y, Yu Q, Lv J, Zheng C, Zhang S, Xu C, Song C. Dual-wavelength Fourier ptychographic microscopy for topographic measurement. OPTICS EXPRESS 2024; 32:6684-6699. [PMID: 38439366 DOI: 10.1364/oe.516874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024]
Abstract
Topographic measurements of micro- or nanostructures are essential in cutting-edge scientific disciplines such as optical communications, metrology, and structural biology. Despite the advances in surface metrology, measuring micron-scale steps with wide field of view (FOV) and high-resolution remains difficult. This study demonstrates a dual-wavelength Fourier ptychographic microscopy for high-resolution topographic measurement across a wide FOV using an aperture scanning structure. This structure enables the capture of a three-dimensional (3D) sample's scattered field with two different wavelength lasers, thus allowing the axial measurement range growing from nano- to micro-scale with enhanced lateral resolution. To suppress the unavoidable noises and artifacts caused by temporal coherence, system vibration, etc., a total variation (TV) regularization algorithm is introduced for phase retrieval. A blazed grating with micron-scale steps is used as the sample to validate the performance of our method. The agreement between the high-resolution reconstructed topography with our method and that with atomic force microscopy verified the effectiveness. Meanwhile, numerical simulations suggest that the method has the potential to characterize samples with high aspect-ratio steps.
Collapse
|
2
|
Sentre-Arribas E, Aparicio-Millán A, Lemaître A, Favero I, Tamayo J, Calleja M, Gil-Santos E. Simultaneous Optical and Mechanical Sensing Based on Optomechanical Resonators. ACS Sens 2024; 9:371-378. [PMID: 38156765 PMCID: PMC10825865 DOI: 10.1021/acssensors.3c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Optical and mechanical resonators have each been abundantly employed in sensing applications, albeit following separate development. Here we show that bringing together optical and mechanical resonances in a unique sensing device significantly improves the sensor performance. To that purpose, we employ nanoscale optomechanical disk resonators that simultaneously support high quality optical and mechanical modes localized in tiny volumes, which provide extraordinary sensitivities. We perform environmental sensing, but the conclusions of our work extend to other sensing applications. First, we determine optical and mechanical responsivities to temperature and relative humidity changes. Second, by characterizing mechanical and optical frequency stabilities, we determine the corresponding limits of detection. Mechanical modes appear more sensitive to relative humidity changes, while optical modes appear more sensitive to temperature ones, reaching, respectively, 0.05% and 0.6 mK of independent resolution. We then prove that simultaneous optical and mechanical monitoring enables disentangling both effects and demonstrates 0.1% and 1 mK resolution, even considering that both parameters may change at the same time. Finally, we highlight the importance of actively tracking the optical mode when optomechanical sensor devices. Not doing so enforces tedious independent calibration, influences the device sensitivity during the experiment, and shortens the sensing range. The present work hence clarifies the requirements for the optimal operation of optomechanical sensors, which will be of importance for chemical and biological sensing.
Collapse
Affiliation(s)
- Elena Sentre-Arribas
- OptoMechanicalSensors
Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid Spain
| | - Alicia Aparicio-Millán
- OptoMechanicalSensors
Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid Spain
| | - Aristide Lemaître
- Centre
de Nanosciences et de Nanotechnologies, Université Paris-Saclay, CNRS, UMR 9001, 91120 Palaiseau, France
| | - Ivan Favero
- Matériaux
et Phénomènes Quantiques, Université Paris Cité, CNRS, UMR 7162, 75013 Paris, France
| | - Javier Tamayo
- Bionanomechanics
Lab, Instituto de Micro y Nanotecnología,
IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid Spain
| | - Montserrat Calleja
- Bionanomechanics
Lab, Instituto de Micro y Nanotecnología,
IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid Spain
| | - Eduardo Gil-Santos
- OptoMechanicalSensors
Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid Spain
| |
Collapse
|
3
|
Yu W, Ohara Y, Meffan C, Hirotani J, Banerjee A, Tsuchiya T. Achieving Ultrawide Tunability in Monolithically Fabricated Si Nanoresonator Devices. NANO LETTERS 2023; 23:11517-11525. [PMID: 38100378 DOI: 10.1021/acs.nanolett.3c03164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Nanoresonators are powerful and versatile tools promising to revolutionize a wide range of technological areas by delivering unparalleled performance in physical, chemical, biological sensing, signal and information processing, quantum computation, etc., via their high-frequency resonant vibration and rich dynamic behavior. Having the ability to tune the resonance frequency and dynamic behavior at the application stage promises further improvement in their effectiveness and enables novel applications. However, achieving significant room-temperature tunability in conventional (monolithically fabricated) nanoresonators is considered challenging. Here we demonstrate ultrawide electrostatic tuning (∼70%) of (initial) resonance-frequency (∼7% V-1) at room temperature in a monolithically fabricated ultrathin Si nanoresonator (width ∼ 40 nm, length ∼ 200 μm) device. Extreme electrostatic tuning of nonlinear behavior is also demonstrated by canceling the cubic-nonlinear coefficient and subsequently flipping its sign. Thus, these results are expected to provide remarkable operational flexibility and new capabilities to microfabricated resonators, which will benefit many technological areas.
Collapse
Affiliation(s)
- Wei Yu
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Yuma Ohara
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Claude Meffan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Jun Hirotani
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Amit Banerjee
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Toshiyuki Tsuchiya
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| |
Collapse
|
4
|
Licata JP, Schwab KH, Har-El YE, Gerstenhaber JA, Lelkes PI. Bioreactor Technologies for Enhanced Organoid Culture. Int J Mol Sci 2023; 24:11427. [PMID: 37511186 PMCID: PMC10380004 DOI: 10.3390/ijms241411427] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
An organoid is a 3D organization of cells that can recapitulate some of the structure and function of native tissue. Recent work has seen organoids gain prominence as a valuable model for studying tissue development, drug discovery, and potential clinical applications. The requirements for the successful culture of organoids in vitro differ significantly from those of traditional monolayer cell cultures. The generation and maturation of high-fidelity organoids entails developing and optimizing environmental conditions to provide the optimal cues for growth and 3D maturation, such as oxygenation, mechanical and fluidic activation, nutrition gradients, etc. To this end, we discuss the four main categories of bioreactors used for organoid culture: stirred bioreactors (SBR), microfluidic bioreactors (MFB), rotating wall vessels (RWV), and electrically stimulating (ES) bioreactors. We aim to lay out the state-of-the-art of both commercial and in-house developed bioreactor systems, their benefits to the culture of organoids derived from various cells and tissues, and the limitations of bioreactor technology, including sterilization, accessibility, and suitability and ease of use for long-term culture. Finally, we discuss future directions for improvements to existing bioreactor technology and how they may be used to enhance organoid culture for specific applications.
Collapse
Affiliation(s)
- Joseph P Licata
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Kyle H Schwab
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yah-El Har-El
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Jonathan A Gerstenhaber
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
5
|
Walther-Antonio M, Schulze-Makuch D. The Hypothesis of a "Living Pulse" in Cells. Life (Basel) 2023; 13:1506. [PMID: 37511881 PMCID: PMC10381587 DOI: 10.3390/life13071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Motility is a great biosignature and its pattern is characteristic for specific microbes. However, motion does also occur within the cell by the myriads of ongoing processes within the cell and the exchange of gases and nutrients with the outside environment. Here, we propose that the sum of these processes in a microbial cell is equivalent to a pulse in complex organisms and suggest a first approach to measure the "living pulse" in microorganisms. We emphasize that if a "living pulse" can be shown to exist, it would have far-reaching applications, such as for finding life in extreme environments on Earth and in extraterrestrial locations, as well as making sure that life is not present where it should not be, such as during medical procedures and in the food processing industry.
Collapse
Affiliation(s)
- Marina Walther-Antonio
- Department of Surgery, Division of Surgical Research, Mayo Clinic, Rochester, MN 55905, USA
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN 55905, USA
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Dirk Schulze-Makuch
- Astrobiology Group, Center of Astronomy and Astrophysics, Technical University, 10623 Berlin, Germany
- German Research Centre for Geosciences (GFZ), Section Geomicrobiology, 14473 Potsdam, Germany
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
- School of the Environment, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
6
|
Zhou J, Huang J, Huang H, Zhao C, Zou M, Liu D, Weng X, Liu L, Qu J, Liu L, Liao C, Wang Y. Fiber-integrated cantilever-based nanomechanical biosensors as a tool for rapid antibiotic susceptibility testing. BIOMEDICAL OPTICS EXPRESS 2023; 14:1862-1873. [PMID: 37206142 PMCID: PMC10191643 DOI: 10.1364/boe.484015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/19/2023] [Accepted: 03/10/2023] [Indexed: 05/21/2023]
Abstract
There is an urgent need for developing rapid and affordable antibiotic susceptibility testing (AST) technologies to inhibit the overuse of antibiotics. In this study, a novel microcantilever nanomechanical biosensor based on Fabry-Pérot interference demodulation was developed for AST. To construct the biosensor, a cantilever was integrated with the single mode fiber in order to form the Fabry-Pérot interferometer (FPI). After the attachment of bacteria on the cantilever, the fluctuations of cantilever caused by the bacterial movements were detected by monitoring the changes of resonance wavelength in the interference spectrum. We applied this methodology to Escherichia coli and Staphylococcus aureus, showing the amplitude of cantilever's fluctuations was positively related on the quantity of bacteria immobilized on the cantilever and associated with the bacterial metabolism. The response of bacteria to antibiotics was dependent on the types of bacteria, the types and concentrations of antibiotics. Moreover, the minimum inhibitory and bactericidal concentrations for Escherichia coli were obtained within 30 minutes, demonstrating the capacity of this method for rapid AST. Benefiting from the simplicity and portability of the optical fiber FPI-based nanomotion detection device, the developed nanomechanical biosensor in this study provides a promising technique for AST and a more rapid alternative for clinical laboratories.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China
| | - Jiabin Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China
| | - Haoqiang Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China
| | - Cong Zhao
- Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518000, China
| | - Mengqiang Zou
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China
| | - Dejun Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Weng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Li Liu
- Department of Electronic Engineering, Chinese University of Hong Kong, Hong Kong, China
| | - Changrui Liao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
7
|
Ba Hashwan SS, Khir MHM, Nawi IM, Ahmad MR, Hanif M, Zahoor F, Al-Douri Y, Algamili AS, Bature UI, Alabsi SS, Sabbea MOB, Junaid M. A review of piezoelectric MEMS sensors and actuators for gas detection application. NANOSCALE RESEARCH LETTERS 2023; 18:25. [PMID: 36847870 DOI: 10.1186/s11671-023-03779-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/25/2023] [Indexed: 05/24/2023]
Abstract
Piezoelectric microelectromechanical system (piezo-MEMS)-based mass sensors including the piezoelectric microcantilevers, surface acoustic waves (SAW), quartz crystal microbalance (QCM), piezoelectric micromachined ultrasonic transducer (PMUT), and film bulk acoustic wave resonators (FBAR) are highlighted as suitable candidates for highly sensitive gas detection application. This paper presents the piezo-MEMS gas sensors' characteristics such as their miniaturized structure, the capability of integration with readout circuit, and fabrication feasibility using multiuser technologies. The development of the piezoelectric MEMS gas sensors is investigated for the application of low-level concentration gas molecules detection. In this work, the various types of gas sensors based on piezoelectricity are investigated extensively including their operating principle, besides their material parameters as well as the critical design parameters, the device structures, and their sensing materials including the polymers, carbon, metal-organic framework, and graphene.
Collapse
Affiliation(s)
- Saeed S Ba Hashwan
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia.
| | - Mohd Haris Md Khir
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Illani Mohd Nawi
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mohamad Radzi Ahmad
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mehwish Hanif
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Furqan Zahoor
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Y Al-Douri
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
- Department of Mechanical Engineering, Faculty of Engineering, Piri Reis University, Eflatun Sk. No: 8, 34940, Tuzla, Istanbul, Turkey
- Department of Applied Science and Astronomy, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdullah Saleh Algamili
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Usman Isyaku Bature
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Sami Sultan Alabsi
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Mohammed O Ba Sabbea
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Muhammad Junaid
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
- Department of Electronic Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| |
Collapse
|
8
|
Gardner ELW, Gardner JW, Udrea F. Micromachined Thermal Gas Sensors-A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020681. [PMID: 36679476 PMCID: PMC9860855 DOI: 10.3390/s23020681] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 05/14/2023]
Abstract
In recent years, there has been a growing desire to monitor and control harmful substances arising from industrial processes that impact upon our health and quality of life. This has led to a large market demand for gas sensors, which are commonly based on sensors that rely upon a chemical reaction with the target analyte. In contrast, thermal conductivity detectors are physical sensors that detect gases through a change in their thermal conductivity. Thermal conductivity gas sensors offer several advantages over their chemical (reactive) counterparts that include higher reproducibility, better stability, lower cost, lower power consumption, simpler construction, faster response time, longer lifetime, wide dynamic range, and smaller footprint. It is for these reasons, despite a poor selectivity, that they are gaining renewed interest after recent developments in MEMS-based silicon sensors allowing CMOS integration and smart application within the emerging Internet of Things (IoT). This timely review focuses on the state-of-the-art in thermal conductivity sensors; it contains a general introduction, theory of operation, interface electronics, use in commercial applications, and recent research developments. In addition, both steady-state and transient methods of operation are discussed with their relative advantages and disadvantages presented. Finally, some of recent innovations in thermal conductivity gas sensors are explored.
Collapse
Affiliation(s)
- Ethan L. W. Gardner
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
- Correspondence:
| | | | - Florin Udrea
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| |
Collapse
|
9
|
Murata T, Minami K, Yamazaki T, Yoshikawa G, Ariga K. Detection of Trace Amounts of Water in Organic Solvents by DNA-Based Nanomechanical Sensors. BIOSENSORS 2022; 12:1103. [PMID: 36551070 PMCID: PMC9775023 DOI: 10.3390/bios12121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The detection of trace amounts of water in organic solvents is of great importance in the field of chemistry and in the industry. Karl Fischer titration is known as a classic method and is widely used for detecting trace amounts of water; however, it has some limitations in terms of rapid and direct detection because of its time-consuming sample preparation and specific equipment requirements. Here, we found that a DNA-based nanomechanical sensor exhibits high sensitivity and selectivity to water vapor, leading to the detection and quantification of trace amounts of water in organic solvents as low as 12 ppm in THF, with a ppb level of LoD through their vapors. Since the present method is simple and rapid, it can be an alternative technique to the conventional Karl Fischer titration.
Collapse
Affiliation(s)
- Tomohiro Murata
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kosuke Minami
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Tomohiko Yamazaki
- Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
- Division of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| | - Genki Yoshikawa
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials (RCFM), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Materials Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
10
|
Conti M, Andolfi L, Betz-Güttner E, Zilio SD, Lazzarino M. Half-wet nanomechanical sensors for cellular dynamics investigations. BIOMATERIALS ADVANCES 2022; 144:213222. [PMID: 36493536 DOI: 10.1016/j.bioadv.2022.213222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Testing devices based on cell tracking are particularly interesting as diagnostic tools in medicine for antibiotics susceptibility testing and in vitro chemotherapeutic screening. In this framework, the application of nanomechanical sensors has attracted much attention, although some crucial aspects such as the effects of the viscous damping, when operating in physiological conditions environment, still need to be properly solved. To address this problem, we have designed and fabricated a nanomechanical force sensor that operates at the interface between liquid and air. Our sensor consists of a silicon chip including a 500 μm wide Si3N4 suspended membrane where three rectangular silicon nitride cantilevers are defined by a lithographically etched gap. The cantilevers can be operated in air, fully immersed in a liquid environment and in half wetting condition, with one side in contact with the solution and the opposite one in air. The formation of a water meniscus in the gap prevents the leakage of medium to the opposite side, which remained dry and is used to reflect a laser to measure the cantilever deflection. This configuration enables to keep the cells in physiological environment while operating the sensor in dry conditions. The performance of the sensor has been applied to monitor the motion and measures the forces developed by migrating breast cancer cell. The functionalization of one side of the cantilever and the use of a purposely designed chamber of measurements enable the confinement of the cell only on one side of the cantilever. Our data demonstrate that this approach can distinguish the adhesion and contraction forces developed by different cell lines and may represents valuable tool for a fast and quantitative in-vitro screening of new chemotherapeutic drugs targeting cancer cell adhesion and motility.
Collapse
Affiliation(s)
- Martina Conti
- University of Trieste, Department of Physics, PhD in Nanotechnology, 34100 Trieste, Italy; CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.
| | - Laura Andolfi
- CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| | - Erik Betz-Güttner
- University of Trieste, Department of Physics, PhD in Nanotechnology, 34100 Trieste, Italy; CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| | - Simone Dal Zilio
- CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| | - Marco Lazzarino
- CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| |
Collapse
|
11
|
Recent Advances in Nanomechanical Membrane-Type Surface Stress Sensors towards Artificial Olfaction. BIOSENSORS 2022; 12:bios12090762. [PMID: 36140147 PMCID: PMC9496807 DOI: 10.3390/bios12090762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Nanomechanical sensors have gained significant attention as powerful tools for detecting, distinguishing, and identifying target analytes, especially odors that are composed of a complex mixture of gaseous molecules. Nanomechanical sensors and their arrays are a promising platform for artificial olfaction in combination with data processing technologies, including machine learning techniques. This paper reviews the background of nanomechanical sensors, especially conventional cantilever-type sensors. Then, we focus on one of the optimized structures for static mode operation, a nanomechanical Membrane-type Surface stress Sensor (MSS), and discuss recent advances in MSS and their applications towards artificial olfaction.
Collapse
|
12
|
Hoch D, Yao X, Poot M. Geometric Tuning of Stress in Predisplaced Silicon Nitride Resonators. NANO LETTERS 2022; 22:4013-4019. [PMID: 35510870 DOI: 10.1021/acs.nanolett.2c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We introduce a novel method to geometrically tune the tension in prestrained resonators by making Si3N4 strings with a designed predisplacement. This enables us, for example, to study their dissipation mechanisms, which are strongly dependent on the stress. After release of the resonators from the substrate, their static displacement is extracted using scanning electron microscopy. The results match finite-element simulations, which allows a quantitative determination of the resulting stress. The in- and out-of-plane eigenmodes are sensed using on-chip Mach-Zehnder interferometers, and the resonance frequencies and quality factors are extracted. The geometrically controlled stress enables tuning not only of the frequencies but also of the damping rate. We develop a model that quantitatively captures the stress dependence of the dissipation in the same SiN film. We show that the predisplacement shape provides additional flexibility, including control over the frequency ratio and the quality factor for a targeted frequency.
Collapse
Affiliation(s)
- David Hoch
- Department of Physics, Technical University Munich, Garching 85748, Germany
- Munich Center for Quantum Science and Technology (MCQST), Munich, 80799, Germany
- Institute for Advanced Study, Technical University Munich, Garching, 85748, Germany
| | - Xiong Yao
- Department of Physics, Technical University Munich, Garching 85748, Germany
| | - Menno Poot
- Department of Physics, Technical University Munich, Garching 85748, Germany
- Munich Center for Quantum Science and Technology (MCQST), Munich, 80799, Germany
- Institute for Advanced Study, Technical University Munich, Garching, 85748, Germany
| |
Collapse
|
13
|
Maeda T, Kanamori R, Choi YJ, Taki M, Noda T, Sawada K, Takahashi K. Bio-Interface on Freestanding Nanosheet of Microelectromechanical System Optical Interferometric Immunosensor for Label-Free Attomolar Prostate Cancer Marker Detection. SENSORS 2022; 22:s22041356. [PMID: 35214266 PMCID: PMC8963056 DOI: 10.3390/s22041356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 11/24/2022]
Abstract
Various biosensors that are based on microfabrication technology have been developed as point-of-care testing devices for disease screening. The Fabry–Pérot interferometric (FPI) surface-stress sensor was developed to improve detection sensitivity by performing label-free biomarker detection as a nanomechanical deflection of a freestanding membrane to adsorb the molecules. However, chemically functionalizing the freestanding nanosheet with excellent stress sensitivity for selective molecular detection may cause the surface chemical reaction to deteriorate the nanosheet quality. In this study, we developed a minimally invasive chemical functionalization technique to create a biosolid interface on the freestanding nanosheet of a microelectromechanical system optical interferometric surface-stress immunosensor. For receptor immobilization, glutaraldehyde cross-linking on the surface of the amino-functionalized parylene membrane reduced the shape variation of the freestanding nanosheet to 1/5–1/10 of the previous study and achieved a yield of 95%. In addition, the FPI surface-stress sensor demonstrated molecular selectivity and concentration dependence for prostate-specific antigen with a dynamic range of concentrations from 100 ag/mL to 1 µg/mL. In addition, the minimum limit of detection of the proposed sensor was 2,000,000 times lower than that of the conventional nanomechanical cantilevers.
Collapse
Affiliation(s)
- Tomoya Maeda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (T.M.); (R.K.); (Y.-J.C.); (M.T.); (T.N.); (K.S.)
| | - Ryoto Kanamori
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (T.M.); (R.K.); (Y.-J.C.); (M.T.); (T.N.); (K.S.)
| | - Yong-Joon Choi
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (T.M.); (R.K.); (Y.-J.C.); (M.T.); (T.N.); (K.S.)
| | - Miki Taki
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (T.M.); (R.K.); (Y.-J.C.); (M.T.); (T.N.); (K.S.)
| | - Toshihiko Noda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (T.M.); (R.K.); (Y.-J.C.); (M.T.); (T.N.); (K.S.)
- Electronics Inspired-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Kazuaki Sawada
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (T.M.); (R.K.); (Y.-J.C.); (M.T.); (T.N.); (K.S.)
- Electronics Inspired-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Kazuhiro Takahashi
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (T.M.); (R.K.); (Y.-J.C.); (M.T.); (T.N.); (K.S.)
- Correspondence: ; Tel.: +81-532-44-6740
| |
Collapse
|
14
|
Lee H, Berk J, Webster A, Kim D, Foreman MR. Label-free detection of single nanoparticles with disordered nanoisland surface plasmon sensor. NANOTECHNOLOGY 2022; 33:165502. [PMID: 34915461 DOI: 10.1088/1361-6528/ac43e9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
We report sensing of single nanoparticles using disordered metallic nanoisland substrates supporting surface plasmon polaritons (SPPs). Speckle patterns arising from leakage radiation of elastically scattered SPPs provide a unique fingerprint of the scattering microstructure at the sensor surface. Experimental measurements of the speckle decorrelation are presented and shown to enable detection of sorption of individual gold nanoparticles and polystyrene beads. Our approach is verified through bright-field and fluorescence imaging of particles adhering to the nanoisland substrate.
Collapse
Affiliation(s)
- Hongki Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Joel Berk
- Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2BW, United Kingdom
| | - Aaron Webster
- Independent Scholar, 187 Pinehurst Rd, Canyon, CA 94516, United States of America
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Matthew R Foreman
- Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2BW, United Kingdom
| |
Collapse
|
15
|
Malathi S, Pakrudheen I, Kalkura SN, Webster T, Balasubramanian S. Disposable biosensors based on metal nanoparticles. SENSORS INTERNATIONAL 2022; 3:100169. [PMID: 35252890 PMCID: PMC8889882 DOI: 10.1016/j.sintl.2022.100169] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease2019 (COVID-19) pandemic has highlighted the need for disposable biosensors that can detect viruses in infected patients quickly due to fast response and also at a low cost.The present review provides an overview of the applications of disposable biosensors based on metal nanoparticles in enzymatic and non-enzymatic sensors with special reference to glucose and H2O2, immunosensors as well as genosensors (DNA biosensors in which the recognized event consists of the hybridization reaction)for point-of-care diagnostics. The disposable biosensors for COVID19 have also been discussed.
Collapse
Affiliation(s)
- S. Malathi
- Crystal Growth Centre, Anna University, Guindy, Chennai, 600025, India
| | - I. Pakrudheen
- Department of Chemistry, CMR Institute of Technology, Bengaluru, 560037, Karnataka, India
| | | | - T.J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - S. Balasubramanian
- Department of Inorganic Chemistry, University of Madras, Guindy, Chennai, 600025, India,Corresponding author
| |
Collapse
|
16
|
Kumemura M, Pekin D, Menon VA, Van Seuningen I, Collard D, Tarhan MC. Fabricating Silicon Resonators for Analysing Biological Samples. MICROMACHINES 2021; 12:1546. [PMID: 34945396 PMCID: PMC8708134 DOI: 10.3390/mi12121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
The adaptability of microscale devices allows microtechnologies to be used for a wide range of applications. Biology and medicine are among those fields that, in recent decades, have applied microtechnologies to achieve new and improved functionality. However, despite their ability to achieve assay sensitivities that rival or exceed conventional standards, silicon-based microelectromechanical systems remain underutilised for biological and biomedical applications. Although microelectromechanical resonators and actuators do not always exhibit optimal performance in liquid due to electrical double layer formation and high damping, these issues have been solved with some innovative fabrication processes or alternative experimental approaches. This paper focuses on several examples of silicon-based resonating devices with a brief look at their fundamental sensing elements and key fabrication steps, as well as current and potential biological/biomedical applications.
Collapse
Affiliation(s)
- Momoko Kumemura
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka 808-0196, Japan;
- LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; (D.P.); (D.C.)
| | - Deniz Pekin
- LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; (D.P.); (D.C.)
- CNRS/IIS/COL/Lille University, SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, CEDEX, 59046 Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France;
| | - Vivek Anand Menon
- Division of Mechanical Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan;
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France;
| | - Dominique Collard
- LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; (D.P.); (D.C.)
- CNRS/IIS/COL/Lille University, SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, CEDEX, 59046 Lille, France
| | - Mehmet Cagatay Tarhan
- LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; (D.P.); (D.C.)
- CNRS/IIS/COL/Lille University, SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, CEDEX, 59046 Lille, France
- Univ. Lille, CNRS, Centrale Lille, Junia, University Polytechnique Hauts-de-France, UMR 8520—IEMN, Institut
d’Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France
| |
Collapse
|
17
|
Jung DG, Han M, Kim SD, Kwon SY, Kwon JB, Lee J, Kong SH, Jung D. Miniaturized Portable Total Phosphorus Analysis Device Based on Photocatalytic Reaction for the Prevention of Eutrophication. MICROMACHINES 2021; 12:1062. [PMID: 34577705 PMCID: PMC8465746 DOI: 10.3390/mi12091062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
Phosphorus (P) is one of the most important elements in the aquatic ecosystem, but its overuse causes eutrophication, which is a serious issue worldwide. In this study, we developed a miniaturized portable total phosphorus (TP) analysis device by integrating a TP sensor with a photocatalyst to pretreat analyte and optical components (LED and photodetector) to measure the absorbance of the blue-colored analyte for real-time TP monitoring and prevention of eutrophication. The size of the miniaturized portable TP analysis device is about 10.5 cm × 9.5 cm × 8 cm. Analyte-containing phosphorus was pretreated and colored blue by colorizing agent as a function of the phosphorus concentration. Absorbance of the blue-colored analyte was estimated by the LED and the photodetector such that the phosphorus concentration was quantitatively measured. This device can obtain a wide linear response range from 0.5 mg/L to 2.0 mg/L (R2 = 0.97381), and its performance can be improved by increasing the intensity of the UV light emitted from the LED array. Consequently, the performance of this miniaturized portable TP analysis device was found to be similar to that of a conventional TP analysis system; thus, it can be used in automated in situ TP analysis.
Collapse
Affiliation(s)
- Dong Geon Jung
- Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology (KITECH), Daegu 42994, Korea
| | - Maeum Han
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Seung Deok Kim
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Soon Yeol Kwon
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Jin-Beom Kwon
- Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology (KITECH), Daegu 42994, Korea
| | - Junyeop Lee
- Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology (KITECH), Daegu 42994, Korea
| | - Seong Ho Kong
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Daewoong Jung
- Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology (KITECH), Daegu 42994, Korea
| |
Collapse
|
18
|
A Low Cost Inkjet-Printed Mass Sensor Using a Frequency Readout Strategy. SENSORS 2021; 21:s21144878. [PMID: 34300617 PMCID: PMC8309803 DOI: 10.3390/s21144878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
The development of low-cost mass sensors is of unique interest for the scientific community due to the wide range of fields requiring these kind of devices. In this paper, a full inkjet-printed mass sensor is proposed. The device is based on a PolyEthylene Terephthalate (PET) cantilever beam (operating in its first natural frequency) where a strain-sensor and a planar coil have been realized by a low-cost InkJet Printing technology to implement the sensing and actuation strategies, respectively. The frequency readout strategy of the sensor presents several advantages, such as the intrinsic robustness against instabilities of the strain sensor, the residual stress of the cantilever beam, the target mass material, and the distance between the permanent magnet and the actuation coil (which changes as a function of the target mass values). However, the frictionless actuation mode represents another shortcoming of the sensor. The paper describes the sensor design, realization, and characterization while investigating its expected behavior by exploiting dedicate models. The working span of the device is 0–0.36 g while its resolution is in the order of 0.001 g, thus addressing a wide range of potential applications requiring very accurate mass measurements within a narrow operating range.
Collapse
|
19
|
A holistic survey on mechatronic Systems in Micro/Nano scale with challenges and applications. JOURNAL OF MICRO-BIO ROBOTICS 2021. [DOI: 10.1007/s12213-021-00145-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Song B, Jin C, Wang B, Wu J, Liu B, Lin W, Huang W, Duan S, Qiao M. Hydrophobin HGFI assisted immunobiologic sensor based on a cascaded taper integrated ultra-long-period fiber grating. BIOMEDICAL OPTICS EXPRESS 2021; 12:2790-2799. [PMID: 34123504 PMCID: PMC8176812 DOI: 10.1364/boe.425014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
A new type of cascaded taper integrated ultra-long-period fiber grating (ULPFG) based immunobiologic sensor has been developed that benefits from the self-assembled monolayer of class I hydrophobin HGFI. Due to the cascaded arc, discharge tapers constitute an ultra-long-period and circular symmetrical refractive index modulation along fiber axial direction, and by local integration in one period, the mode coupling would generate to the higher harmonic of LP02, LP03 and LP04 modes in the wavelength range from 1300 nm to 1620 nm. The hydrophobic characteristic of the ULPFG surface is modified employing the HGFI, and the antibody molecule probes could be absorbed strongly on the HGFI nano-film, furthermore, the performances of immunobiologic sensing are investigated employing multiple control groups of matched and mismatched antigen molecule targets. The results show that it possesses higher sensing sensitivity of 4.5 nm/(µg/ml), faster response time about of 35 min, lower stability error of 8.8%, and excellent immuno-specificity. Moreover, this proposed ULPFG sensor has the advantages of low cost, simple fabrication and label-free, which is a powerful tool in the trace biomedical detection field.
Collapse
Affiliation(s)
- Binbin Song
- The Key Laboratory of Computer Vision and System of Ministry of Education, Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin, 300071, China
| | - Chang Jin
- The Key Laboratory of Computer Vision and System of Ministry of Education, Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin, 300071, China
| | - Bo Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jixuan Wu
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tianjin Key Laboratory of Engneering Technologies for Cell Phamaceutical, College of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China
| | - Bo Liu
- Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Wei Lin
- Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Wei Huang
- The Key Laboratory of Computer Vision and System of Ministry of Education, Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin, 300071, China
| | - Shaoxiang Duan
- Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Mingqiang Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Kasas S, Malovichko A, Villalba MI, Vela ME, Yantorno O, Willaert RG. Nanomotion Detection-Based Rapid Antibiotic Susceptibility Testing. Antibiotics (Basel) 2021; 10:287. [PMID: 33801939 PMCID: PMC7999052 DOI: 10.3390/antibiotics10030287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 01/04/2023] Open
Abstract
Rapid antibiotic susceptibility testing (AST) could play a major role in fighting multidrug-resistant bacteria. Recently, it was discovered that all living organisms oscillate in the range of nanometers and that these oscillations, referred to as nanomotion, stop as soon the organism dies. This finding led to the development of rapid AST techniques based on the monitoring of these oscillations upon exposure to antibiotics. In this review, we explain the working principle of this novel technique, compare the method with current ASTs, explore its application and give some advice about its implementation. As an illustrative example, we present the application of the technique to the slowly growing and pathogenic Bordetella pertussis bacteria.
Collapse
Affiliation(s)
- Sandor Kasas
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- Unité Facultaire d’Anatomie et de Morphologie (UFAM), CUMRL, University of Lausanne, 1005 Lausanne, Switzerland
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Anton Malovichko
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Maria Ines Villalba
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - María Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, and CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina;
| | - Osvaldo Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina;
| | - Ronnie G. Willaert
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
- Research Group Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
22
|
A Review on Theory and Modelling of Nanomechanical Sensors for Biological Applications. Processes (Basel) 2021. [DOI: 10.3390/pr9010164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over the last decades, nanomechanical sensors have received significant attention from the scientific community, as they find plenty of applications in many different research fields, ranging from fundamental physics to clinical diagnosis. Regarding biological applications, nanomechanical sensors have been used for characterizing biological entities, for detecting their presence, and for characterizing the forces and motion associated with fundamental biological processes, among many others. Thanks to the continuous advancement of micro- and nano-fabrication techniques, nanomechanical sensors have rapidly evolved towards more sensitive devices. At the same time, researchers have extensively worked on the development of theoretical models that enable one to access more, and more precise, information about the biological entities and/or biological processes of interest. This paper reviews the main theoretical models applied in this field. We first focus on the static mode, and then continue on to the dynamic one. Then, we center the attention on the theoretical models used when nanomechanical sensors are applied in liquids, the natural environment of biology. Theory is essential to properly unravel the nanomechanical sensors signals, as well as to optimize their designs. It provides access to the basic principles that govern nanomechanical sensors applications, along with their intrinsic capabilities, sensitivities, and fundamental limits of detection.
Collapse
|
23
|
Bayram F, Gajula D, Khan D, Koley G. Investigation of AlGaN/GaN HFET and VO 2 Thin Film Based Deflection Transducers Embedded in GaN Microcantilevers. MICROMACHINES 2020; 11:mi11090875. [PMID: 32962251 PMCID: PMC7570367 DOI: 10.3390/mi11090875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022]
Abstract
The static and dynamic deflection transducing performances of piezotransistive AlGaN/GaN heterojunction field effect transistors (HFET) and piezoresistive VO2 thin films, fabricated on GaN microcantilevers of similar dimensions, were investigated. Deflection sensitivities were tuned with the gate bias and operating temperature for embedded AlGaN/GaN HFET and VO2 thin film transducers, respectively. The GaN microcantilevers were excited with a piezoactuator in their linear and nonlinear oscillation regions of the fundamental oscillatory mode. In the linear regime, the maximum deflection sensitivity of piezotransistive AlGaN/GaN HFET reached up to a 0.5% change in applied drain voltage, while the responsivity of the piezoresistive VO2 thin film based deflection transducer reached a maximum value of 0.36% change in applied drain current. The effects of the gate bias and the operation temperature on nonlinear behaviors of the microcantilevers were also experimentally examined. Static deflection sensitivity measurements demonstrated a large change of 16% in drain-source resistance of the AlGaN/GaN HFET, and a similarly high 11% change in drain-source resistance in the VO2 thin film, corresponding to a 10 μm downward step bending of the cantilever free end.
Collapse
Affiliation(s)
- Ferhat Bayram
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (D.K.); (G.K.)
- Correspondence: ; Tel.: +1-(864)-650-5196
| | - Durga Gajula
- School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Digangana Khan
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (D.K.); (G.K.)
| | - Goutam Koley
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA; (D.K.); (G.K.)
| |
Collapse
|
24
|
Park DSW, Young BM, You BH, Singh V, Soper SA, Murphy MC. An integrated, optofluidic system with aligned optical waveguides, microlenses, and coupling prisms for fluorescence sensing. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2020; 29:600-609. [PMID: 39391841 PMCID: PMC11465942 DOI: 10.1109/jmems.2020.3004374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
An improved, laser-induced fluorescence-based micro-optical biosensor was designed and fabricated, with cyclic olefin copolymer (COC) optical waveguides, a poly(methyl methacrylate) (PMMA) fluidic substrate with an array of microlenses, and a COC coupling prism integrated with the waveguide substrate or cover plate. The double-sided hot embossed fluidic substrate had sampling zone microchannels on the bottom and microlenses on the top. Dissolved COC injected into polydimethylsiloxane (PDMS) lost molds embedded the waveguides in the PMMA cover plate and formed the integrated coupling prism. The embedded COC waveguide was flycut down to 50 μm. The cover plate and shallow, 1:20 aspect ratio, microchannels were thermal fusion bonded using a pressure-assisted boiling point control system, without sagging. The large COC prism coupled better to the waveguide. The highest intensity evanescent excitation of the waveguide was obtained near the critical angle. The maximum signal-to-noise ratio (SNR) was 119 and the lowest detection limit was 7.34 × 10-20 mol at a SNR of 2 for a 100 μm wide by 50 μm deep waveguide. The microlenses highly focused the fluorescent radiation in the sampling zone. The microfabricated waveguide enables rapid, low-cost detection of fluorescent samples with high SNR, a low detection limit, and high sampling efficiency.
Collapse
Affiliation(s)
- Daniel S-W Park
- Center for BioModular Multiscale Systems for Precision Medicine, Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Brandon M Young
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, NC, USA and is now with the Center for BioModular Multiscale Systems for Precision Medicine, at the University of Kansas, Lawrence, KS 66045
| | - Byoung H You
- Department of Engineering Technology, Texas State University, San Marcos, TX 78666, USA
| | - Varshni Singh
- Center for Advanced Microstructures and Devices (CAMD), Louisiana State University, Baton Rouge, LA 70806, USA
| | - Steven A Soper
- Center for BioModular Multiscale Systems for Precision Medicine, Departments of Chemistry and Mechanical Engineering, University of Kansas, Lawrence, KS, 66045, USA
| | - Michael C Murphy
- Center for BioModular Multiscale Systems for Precision Medicine, Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
25
|
Smart diagnostics devices through artificial intelligence and mechanobiological approaches. 3 Biotech 2020; 10:351. [PMID: 32728518 DOI: 10.1007/s13205-020-02342-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022] Open
Abstract
The present work illustrates the promising intervention of smart diagnostics devices through artificial intelligence (AI) and mechanobiological approaches in health care practices. The artificial intelligence and mechanobiological approaches in diagnostics widen the scope for point of care techniques for the timely revealing of diseases by understanding the biomechanical properties of the tissue of interest. Smart diagnostic device senses the physical parameters due to change in mechanical, biological, and luidic properties of the cells and to control these changes, supply the necessary drugs immediately using AI techniques. The latest techniques like sweat diagnostics to measure the overall health, Photoplethysmography (PPG) for real-time monitoring of pulse waveform by capturing the reflected signal due to blood pulsation), Micro-electromechanical systems (MEMS) and Nano-electromechanical systems (NEMS) smart devices to detect disease at its early stage, lab-on-chip and organ-on-chip technologies, Ambulatory Circadian Monitoring device (ACM), a wrist-worn device for Parkinson's disease have been discussed. The recent and futuristic smart diagnostics tool/techniques like emotion recognition by applying machine learning algorithms, atomic force microscopy that measures the fibrinogen and erythrocytes binding force, smartphone-based retinal image analyser system, image-based computational modeling for various neurological disorders, cardiovascular diseases, tuberculosis, predicting and preventing of Zika virus, optimal drugs and doses for HIV using AI, etc. have been reviewed. The objective of this review is to examine smart diagnostics devices based on artificial intelligence and mechanobiological approaches, with their medical applications in healthcare. This review determines that smart diagnostics devices have potential applications in healthcare, but more research work will be essential for prospective accomplishments of this technology.
Collapse
|
26
|
Stachiv I, Gan L, Kuo CY, Šittner P, Ševeček O. Mass Spectrometry of Heavy Analytes and Large Biological Aggregates by Monitoring Changes in the Quality Factor of Nanomechanical Resonators in Air. ACS Sens 2020; 5:2128-2135. [PMID: 32551518 DOI: 10.1021/acssensors.0c00756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanomechanical resonators are routinely used for identification of various analytes such as biological and chemical molecules, viruses, or bacteria cells from the frequency response. This identification based on the multimode frequency shift measurement is limited to the analyte of mass that is much lighter than the resonator mass. Hence, the analyte can be modeled as a point particle and, as such, its stiffness and nontrivial binding effects such as surface stress can be neglected. For heavy analytes (>MDa), this identification, however, leads to incorrectly estimated masses. Using a well-known frequency response of the nanomechanical resonator in air, we show that the heavy analyte can be identified without a need for highly challenging analysis of the analyte position, stiffness, and/or binding effects just by monitoring changes in the quality factor (Q-factor) of a single harmonic frequency. A theory with a detailed procedure of mass extraction from the Q-factor is developed. In air, the Q-factor depends on the analyte mass and known air damping, while the impact of the intrinsic dissipation is negligibly small. We find that the highest mass sensitivity (for considered resonator dimensions ∼zg) can be achieved for the rarely measured lateral mode, whereas the commonly detected flexural mode yields the lowest sensitivity. Validity of the proposed procedure is confirmed by extracting the mass of heavy analytes (>GDa) made of protein and Escherichia coli bacteria cells, and the ragweed pollen nanoparticle adsorbed on the surface of the nanomechanical resonator(s) in air, of which the required changes in the Q-factor were previously experimentally measured. Our results open a doorway for rapid detection of viruses and bacteria cells using standard nanomechanical mass sensors.
Collapse
Affiliation(s)
- Ivo Stachiv
- Institute of Physics, Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Lifeng Gan
- School of Sciences, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chih-Yun Kuo
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital in Prague, Charles University, Prague 128 00, Czech Republic
| | - Petr Šittner
- Institute of Physics, Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Oldřich Ševeček
- Faculty of Mechanical Engineering, Brno University of Technology, Brno 616 69, Czech Republic
| |
Collapse
|
27
|
Abstract
Volatile organic compounds (VOCs) are pervasive in the environment. Since the early 1980s, substantial work has examined the detection of these materials, as they can indicate environmental changes that can affect human health. VOCs and similar compounds present a very specific sensing problem in that they are not reactive and often nonpolar, so it is difficult to find materials that selectively bind or adsorb them. A number of techniques are applied to vapor sensing. High resolution molecular separation approaches such as gas chromatography and mass spectrometry are well-characterized and offer high sensitivity, but are difficult to implement in portable, real-time monitors, whereas approaches such as chemiresistors are promising, but still in development. Gravimetric approaches, in which the mass of an adsorbed vapor is directly measured, have several potential advantages over other techniques but have so far lagged behind other approaches in performance and market penetration. This review aims to offer a comprehensive background on gravimetric sensing including underlying resonators and sensitizers, as well as a picture of applications and commercialization in the field.
Collapse
Affiliation(s)
- Christine K. McGinn
- Department of Electrical Engineering, Columbia University, New York, New York 10027-6902, United States
| | - Zachary A. Lamport
- Department of Electrical Engineering, Columbia University, New York, New York 10027-6902, United States
| | - Ioannis Kymissis
- Department of Electrical Engineering, Columbia University, New York, New York 10027-6902, United States
| |
Collapse
|
28
|
Abbaspour M, Akbarzadeh H, Zaeifi S. Thermodynamics, Structure, and Dynamic Properties of Nanostructured Water Confined into B-, N-, and Si-Doped Graphene Surfaces and Carbon Nanotubes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohsen Abbaspour
- Department of Chemistry, Hakim Sabzevari University, 96179-76487 Sabzevar, Iran
| | - Hamed Akbarzadeh
- Department of Chemistry, Hakim Sabzevari University, 96179-76487 Sabzevar, Iran
| | - Shadi Zaeifi
- Department of Chemistry, Hakim Sabzevari University, 96179-76487 Sabzevar, Iran
| |
Collapse
|
29
|
A Novel Top-Down Fabrication Process for Vertically-Stacked Silicon-Nanowire Array. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10031146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Silicon nanowires are widely used for sensing applications due to their outstanding mechanical, electrical, and optical properties. However, one of the major challenges involves introducing silicon-nanowire arrays to a specific layout location with reproducible and controllable dimensions. Indeed, for integration with microscale structures and circuits, a monolithic wafer-level process based on a top-down silicon-nanowire array fabrication method is essential. For sensors in various electromechanical and photoelectric applications, the need for silicon nanowires (as a functional building block) is increasing, and thus monolithic integration is highly required. In this paper, a novel top-down method for fabricating vertically-stacked silicon-nanowire arrays is presented. This method enables the fabrication of lateral silicon-nanowire arrays in a vertical direction, as well as the fabrication of an increased number of silicon nanowires on a finite dimension. The proposed fabrication method uses a number of processes: photolithography, deep reactive-ion etching, and wet oxidation. In applying the proposed method, a vertically-aligned silicon-nanowire array, in which a single layer consists of three vertical layers with 20 silicon nanowires, is fabricated and analyzed. The diamond-shaped cross-sectional dimension of a single silicon nanowire is approximately 300 nm in width and 20 μm in length. The developed method is expected to result in highly-sensitive, reproducible, and low-cost silicon-nanowire sensors for various biomedical applications.
Collapse
|
30
|
Beardslee LA, Carron C, Demirci KS, Lehman J, Schwartz S, Dufour I, Heinrich SM, Josse F, Brand O. In-Plane Vibration of Hammerhead Resonators for Chemical Sensing Applications. ACS Sens 2020; 5:73-82. [PMID: 31840501 DOI: 10.1021/acssensors.9b01651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermally excited and piezoresistively detected in-plane cantilever resonators have been previously demonstrated for gas- and liquid-phase chemical and biosensing applications. In this work, the hammerhead resonator geometry, consisting of a cantilever beam supporting a wider semicircular "head", vibrating in an in-plane vibration mode, is shown to be particularly effective for gas-phase sensing with estimated limits of detection in the sub-ppm range for volatile organic compounds. This paper discusses the hammerhead resonator design and the particular advantages of the hammerhead geometry, while also presenting mechanical characterization, optical characterization, and chemical sensing results. These data highlight the distinct advantages of the hammerhead geometry over other cantilever designs.
Collapse
Affiliation(s)
- Luke A. Beardslee
- Naval Submarine Medical Research Laboratory, Groton, Connecticut 06349-5900, United States
| | - Christopher Carron
- Space and Intelligence Systems, Harris Corporation, Melbourne, Florida 32904, United States
| | | | | | | | - Isabelle Dufour
- IMS Laboratory, University of Bordeaux, Talence 33400, France
| | | | | | | |
Collapse
|
31
|
Miller LM, Silver CD, Herman R, Duhme-Klair AK, Thomas GH, Krauss TF, Johnson SD. Surface-Bound Antibiotic for the Detection of β-Lactamases. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32599-32604. [PMID: 31449379 PMCID: PMC7007045 DOI: 10.1021/acsami.9b05793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Antimicrobial resistance (AMR) has been identified as a major threat to public health worldwide. To ensure appropriate use of existing antibiotics, rapid and reliable tests of AMR are necessary. One of the most common and clinically important forms of bacterial resistance is to β-lactam antibiotics (e.g., penicillin). This resistance is often caused by β-lactamases, which hydrolyze β-lactam drugs, rendering them ineffective. Current methods for detecting these enzymes require either time-consuming growth assays or antibiotic mimics such as nitrocefin. Here, we report the development of a surface-bound, clinically relevant β-lactam drug that can be used to detect β-lactamases and that is compatible with a range of high-sensitivity, low-cost, and label-free analytical techniques currently being developed for point-of-care-diagnostics. Furthermore, we demonstrate the use of these functionalized surfaces to selectively detect β-lactamases in complex biological media, such as urine.
Collapse
Affiliation(s)
- Lisa M. Miller
- Department
of Chemistry, Department of Electronic Engineering, Department of Biology, and Department of
Physics, University of York, Heslington YO10 5DD, U.K.
| | - Callum D. Silver
- Department
of Chemistry, Department of Electronic Engineering, Department of Biology, and Department of
Physics, University of York, Heslington YO10 5DD, U.K.
| | - Reyme Herman
- Department
of Chemistry, Department of Electronic Engineering, Department of Biology, and Department of
Physics, University of York, Heslington YO10 5DD, U.K.
| | - Anne-Kathrin Duhme-Klair
- Department
of Chemistry, Department of Electronic Engineering, Department of Biology, and Department of
Physics, University of York, Heslington YO10 5DD, U.K.
| | - Gavin H. Thomas
- Department
of Chemistry, Department of Electronic Engineering, Department of Biology, and Department of
Physics, University of York, Heslington YO10 5DD, U.K.
| | - Thomas F. Krauss
- Department
of Chemistry, Department of Electronic Engineering, Department of Biology, and Department of
Physics, University of York, Heslington YO10 5DD, U.K.
| | - Steven D. Johnson
- Department
of Chemistry, Department of Electronic Engineering, Department of Biology, and Department of
Physics, University of York, Heslington YO10 5DD, U.K.
| |
Collapse
|
32
|
SoltanRezaee M, Bodaghi M, Farrokhabadi A. A thermosensitive electromechanical model for detecting biological particles. Sci Rep 2019; 9:11706. [PMID: 31406216 PMCID: PMC6691007 DOI: 10.1038/s41598-019-48177-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/31/2019] [Indexed: 11/24/2022] Open
Abstract
Miniature electromechanical systems form a class of bioMEMS that can provide appropriate sensitivity. In this research, a thermo-electro-mechanical model is presented to detect biological particles in the microscale. Identification in the model is based on analyzing pull-in instability parameters and frequency shifts. Here, governing equations are derived via the extended Hamilton’s principle. The coupled effects of system parameters such as surface layer energy, electric field correction, and material properties are incorporated in this thermosensitive model. Afterward, the accuracy of the present model and obtained results are validated with experimental, analytical, and numerical data for several cases. Performing a parametric study reveals that mechanical properties of biosensors can significantly affect the detection sensitivity of actuated ultra-small detectors and should be taken into account. Furthermore, it is shown that the number or dimension of deposited particles on the sensing zone can be estimated by investigating the changes in the threshold voltage, electrode deflection, and frequency shifts. The present analysis is likely to provide pertinent guidelines to design thermal switches and miniature detectors with the desired performance. The developed biosensor is more appropriate to detect and characterize viruses in samples with different temperatures.
Collapse
Affiliation(s)
- Masoud SoltanRezaee
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom
| | - Amin Farrokhabadi
- Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
33
|
Jung DG, Jung D, Kong SH. Characterization of Total-Phosphorus (TP) Pretreatment Microfluidic Chip Based on a Thermally Enhanced Photocatalyst for Portable Analysis of Eutrophication. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3452. [PMID: 31394781 PMCID: PMC6721774 DOI: 10.3390/s19163452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 11/17/2022]
Abstract
To minimize conventional total-phosphorus (TP) analysis systems, TP pretreatment microfluidic chip is proposed and characterized in this paper. Phosphorus (P) is one of the most important elements in ecosystem but it causes the eutrophication due to its overdose. TP analysis systems are increasingly receiving attention as a means to prevent eutrophication. Even though conventional TP analysis systems have high accuracy and sensitivity, they are not frequently utilized outside the laboratory because of their bulky size, complicated pretreatment processes, long response times, and high cost. Thus, there is a growing need to develop portable TP analysis systems. The microfluidic chip in this study is proposed with the aim of simplifying and minimizing TP analysis by replacing the conventional pretreatment process with a new method employing a thermally enhanced photocatalytic reaction that can be applied directly to a microfluidic chip of small size. The fabricated TP pretreatment microfluidic chip with thermally enhanced photocatalyst (TiO2) was optimized compared to the conventional pretreatment equipment (autoclave). The optimum pretreatment conditions using the proposed chip were pretreatment time of 10 min and temperature of 75 °C. The optimized pretreatment process using the proposed microfluidic chip showed similar performance to the conventional pretreatment method, even with shorter pretreatment time. The shorter pretreatment time and small size are advantages that enable the TP analysis system to be minimized. Therefore, the proposed TP pretreatment microfluidic chip based on thermally enhanced photocatalytic reaction in this study will be utilized to develop a portable TP analysis system.
Collapse
Affiliation(s)
- Dong Geon Jung
- School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Daewoong Jung
- AI System Engineering Group, Korea Institute of Industrial Technology (KITECH), Yeongcheon 38822, Korea.
| | - Seong Ho Kong
- School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
34
|
Stress-Insensitive Resonant Graphene Mass Sensing via Frequency Ratio. SENSORS 2019; 19:s19133027. [PMID: 31324044 PMCID: PMC6651828 DOI: 10.3390/s19133027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 02/04/2023]
Abstract
Herein, a peripherally clamped stretched square monolayer graphene sheet with a side length of 10 nm was demonstrated as a resonator for atomic-scale mass sensing via molecular dynamics (MD) simulation. Then, a novel method of mass determination using the first three resonant modes (mode11, mode21 and mode22) was developed to avoid the disturbance of stress fluctuation in graphene. MD simulation results indicate that improving the prestress in stretched graphene increases the sensitivity significantly. Unfortunately, it is difficult to determine the mass accurately by the stress-reliant fundamental frequency shift. However, the absorbed mass in the middle of graphene sheets decreases the resonant frequency of mode11 dramatically while having negligible effect on that of mode21 and mode22, which implies that the latter two frequency modes are appropriate for compensating the stress-induced frequency shift of mode11. Hence, the absorbed mass, with a resolution of 3.3 × 10-22 g, is found using the frequency ratio of mode11 to mode21 or mode22, despite the unstable prestress ranging from 32 GPa to 47 GPa. This stress insensitivity contributes to the applicability of the graphene-based resonant mass sensor in real applications.
Collapse
|
35
|
Rashidi R, Alenezi J, Czechowski J, Niver J, Mohammad S. Graphite-on-paper-based resistive sensing device for aqueous chemical identification. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00836-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Balogun O. Optically Detecting Acoustic Oscillations at the Nanoscale: Exploring Techniques Suitable for Studying Elastic Wave Propagation. IEEE NANOTECHNOLOGY MAGAZINE 2019. [DOI: 10.1109/mnano.2019.2905021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Wang Y, Partridge A, Wu Y. Improving nanoparticle-enhanced surface plasmon resonance detection of small molecules by reducing steric hindrance via molecular linkers. Talanta 2019; 198:350-357. [DOI: 10.1016/j.talanta.2019.02.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
|
38
|
NO gas sensor based on ZnGa 2O 4 epilayer grown by metalorganic chemical vapor deposition. Sci Rep 2019; 9:7459. [PMID: 31097726 PMCID: PMC6522479 DOI: 10.1038/s41598-019-43752-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/28/2019] [Indexed: 11/08/2022] Open
Abstract
A gas sensor based on a ZnGa2O4(ZGO) thin film grown by metalorganic chemical vapor deposition operated under the different temperature from 25 °C to 300 °C is investigated in this study. This sensor shows great sensing properties at 300 °C. The sensitivity of this sensor is 22.21 as exposed to 6.25 ppm of NO and its response time is 57 s. Besides that, the sensitivities are 1.18, 1.27, 1.06, and 1.00 when exposed to NO2(500 ppb), SO2 (125 ppm), CO (125 ppm), and CO2 (1500 ppm), respectively. These results imply that the ZGO gas sensor not only has high sensitivity, but also has great selectivity for NO gas. Moreover, the obtained results suggest that ZGO sensors are suitable for the internet of things(IOT) applications.
Collapse
|
39
|
Atomic force microscopy-based cancer diagnosis by detecting cancer-specific biomolecules and cells. Biochim Biophys Acta Rev Cancer 2019; 1871:367-378. [DOI: 10.1016/j.bbcan.2019.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
|
40
|
Noyce SG, Vanfleet RR, Craighead HG, Davis RC. High surface-area carbon microcantilevers. NANOSCALE ADVANCES 2019; 1:1148-1154. [PMID: 36133213 PMCID: PMC9418787 DOI: 10.1039/c8na00101d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/15/2018] [Indexed: 06/16/2023]
Abstract
Microscale porous carbon mechanical resonators were formed using carbon nanotube templated microfabrication. These cantilever resonators exhibited nanoscale porosity resulting in a high surface area to volume ratio which could enable sensitive analyte detection in air. These resonators were shown to be mechanically robust and the porosity could be controllably varied resulting in densities from 102 to 103 kg m-3, with pore diameters on the order of hundreds of nanometers. Cantilevers with lengths ranging from 500 μm to 5 mm were clamped in a fixture for mechanical resonance testing where quality factors from 102 to 103 were observed at atmospheric pressure in air.
Collapse
Affiliation(s)
- Steven G Noyce
- Department of Physics and Astronomy, Brigham Young University Provo UT 84602 USA
| | - Richard R Vanfleet
- Department of Physics and Astronomy, Brigham Young University Provo UT 84602 USA
| | - Harold G Craighead
- School of Applied and Engineering Physics, Cornell University Ithaca NY 14853 USA
| | - Robert C Davis
- Department of Physics and Astronomy, Brigham Young University Provo UT 84602 USA
| |
Collapse
|
41
|
Ali A, Lee JEY. Fully Differential Piezoelectric Button-Like Mode Disk Resonator for Liquid Phase Sensing. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:600-608. [PMID: 30296218 DOI: 10.1109/tuffc.2018.2872923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We present a unique lateral shear resonance mode excited in a microelectromechanical (MEM) disk resonator. We refer to this proposed mode as the button-like (BL) mode. The BL mode has a characteristic lateral strain profile (based on the sum of orthogonal strain components in the plane of fabrication) which resembles a shirt button, hence our choice of name for this mode. The strain profile of the BL mode is highly suited for piezoelectric transduction. Like the more widely reported wine-glass (WG) or elliptical mode, the BL mode offers feedthrough cancellation through fully differential transduction. However, compared to the WG mode, the BL mode possesses a higher coupling coefficient ( [Formula: see text]) and a higher quality ( Q ) factor for the same disk radius. These advantages make the BL mode highly attractive for realizing electrically addressed MEM resonators for liquid-phase sensing. This paper examines various design aspects pertaining to the BL mode: tether geometry, characterization setup, size of disk, and even the effect of the gap around the disk on the Q factor. The highest Q factor measured in water is 410 based on a disk with a radius of [Formula: see text]. The lowest motional resistance in water is 1.36 [Formula: see text] based on a disk with a radius of [Formula: see text].
Collapse
|
42
|
Optical Sensors Based on II-VI Quantum Dots. NANOMATERIALS 2019; 9:nano9020192. [PMID: 30717393 PMCID: PMC6410100 DOI: 10.3390/nano9020192] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Fundamentals of quantum dots (QDs) sensing phenomena show the predominance of these fluorophores over standard organic dyes, mainly because of their unique optical properties such as sharp and tunable emission spectra, high emission quantum yield and broad absorption. Moreover, they also indicate no photo bleaching and can be also grown as no blinking emitters. Due to these properties, QDs may be used e.g., for multiplex testing of the analyte by simultaneously detecting multiple or very weak signals. Physico-chemical mechanisms used for analyte detection, like analyte stimulated QDs aggregation, nonradiative Förster resonance energy transfer (FRET) exhibit a number of QDs, which can be applied in sensors. Quantum dots-based sensors find use in the detection of ions, organic compounds (e.g., proteins, sugars, volatile substances) as well as bacteria and viruses.
Collapse
|
43
|
Yadav S, Nair SS, Sai VVR, Satija J. Nanomaterials based optical and electrochemical sensing of histamine: Progress and perspectives. Food Res Int 2019; 119:99-109. [PMID: 30884738 DOI: 10.1016/j.foodres.2019.01.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/20/2019] [Indexed: 12/23/2022]
Abstract
Histamine is known to be a principal causative agent associated with marine food poisoning outbreaks worldwide, which is typically formed in the contaminated food by decarboxylation of histidine by bacterial histidine decarboxylase. Upon quantification of histamine in different food products, one can comment on the quality of the food and use it as an indicator of the good manufacturing practices and the state of preservation. The United States Food and Drug Administration (FDA) has established 50 ppm (50 mg/kg) of histamine as the chemical index for fish spoilage. Consumption of foods containing histamine higher than the permissible limit can cause serious health issues. Several methods have been developed for the determination of histamine in a variety of food products. The conventional methods for histamine detection such as thin layer chromatography, capillary zone electrophoresis, gas chromatography, colorimetry, fluorimetry, ion mobility spectrometry, high-performance liquid chromatography, and enzyme-linked immunosorbent assay (ELISA), are being used for sensitive and selective detection of histamine. However, there are a number of disadvantages associated with the conventional techniques, such as multi-step sample processing and requirement of expensive sophisticated instruments, which restrict their applications at laboratory level only. In order to address the limitations associated with the traditional methods, new approaches have been developed by various research groups. Current advances in nanomaterial-based sensing of histamine in different food products have shown significant measurement accuracy due to their high sensitivity, specificity, field deployability, cost and ease of operation. In this review, we have discussed the development of nanomaterials-based histamine sensing assays/strategies where the detection is based on optical (fluorescence, surface enhanced Raman spectroscopy (SERS), localized surface plasmon resonance) and electrochemical (impedimetric, voltammetry, potentiometric, etc.). Further, the advantages, disadvantages and future scope of the nanomaterials-based histamine sensor research are highlighted.
Collapse
Affiliation(s)
- Sangeeta Yadav
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu 632014, India; School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | - Sheethal S Nair
- School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | - V V R Sai
- Department of Applied Mechanics, IIT, Madras, Tamil Nadu 600036, India
| | - Jitendra Satija
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
44
|
A Fluidic Biosensor Based on a Phase-Sensitive Low-Coherence Spectral-Domain Interferometer. SENSORS 2018; 18:s18113757. [PMID: 30400305 PMCID: PMC6263483 DOI: 10.3390/s18113757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023]
Abstract
A phase-sensitive fluidic biosensor based on a spectral-domain low-coherence interferometer is presented in this paper. With a fiber optic probe employing the common-path interferometric configuration, subnanometric changes in thickness of the molecular layers can be detected through phase analysis of the acquired interference signal from the sensor surface. Advantages of this biosensor include its picometer-scale thickness sensitivity, 13.9-ms time response, and tolerance to the fluctuation in concentration of the target solution. The capabilities of this biosensor in monitoring specific molecular binding and recognizing specific molecular was successfully demonstrated by using the reactions between the molecules of protein A and IgG. The calculated minimum detectable concentration of IgG is 0.11 µg/mL.
Collapse
|
45
|
Abstract
Background: Development of cost-effective platforms for identification of biomarkers is of paramount importance in low-income settings. The present work focuses on the development of a microfluidic paper-based analytical device (μPADs) for the diagnosis of osteoporosis by measuring three important bone biomarkers – calcium, alkaline phosphatase and vitamin D. Methods: Antibody-based detection is realized in μPAD reservoirs based on principle of colorimetric sensing, where μPAD images are captured using a smartphone. The results are compared with the calibration curves to give proper quantification of analytes. Conclusion: This device can be potentially developed into a point-of-care diagnostic device for low-income settings. To the best of our understanding, a μPAD platform for simultaneous diagnosis of multiple osteoporosis markers is not reported yet.
Collapse
|
46
|
Deepa S, kumar KR. A symmetrical luminol based azo derivative for trimodal ratiometric Hg2+ sensing and its application to bioimaging in living cells. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Marzban M, Dargahi J, Packirisamy M. Flow force augmented 3D suspended polymeric microfluidic (SPMF 3 ) platform. Electrophoresis 2018; 40:388-400. [PMID: 30025169 DOI: 10.1002/elps.201800166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 11/09/2022]
Abstract
Detection and study of bioelements using microfluidic systems has been of great interest in the biodiagnostics field. Microcantilevers are the most used systems in biodetection due to their implementation simplicity which have been used for a wide variety of applications ranging from cellular to molecular diagnosis. However, increasing further the sensitivity of the microcantilever systems have a great effect on the cantilever based sensing for chemical and bio applications. In order to improve further the performance of microcantilevers, a flow force augmented 3D suspended microchannel is proposed using which microparticles can be conveyed through a microchannel inside the microcantilever to the detection area. This innovative microchannel design addresses the low sensitivity issue by increasing its sensitivity up to 5 times than the earlier reported similar microsystems. Moreover, fabricating this microsystem out of Polydimethylsiloxane (PDMS) would eliminate external exciter dependency in many detection applications such as biodiagnostics. In this study, the designed microsystem has been analyzed theoretically, simulated and tested. Moreover, the microsystem has been fabricated and tested under different conditions, the results of which have been compared with simulation results. Finally, its innovative fabrication process and issues are reported and discussed.
Collapse
Affiliation(s)
- Mostapha Marzban
- Optical-Bio Microsystems Lab. Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Québec, Canada.,Robotic Assisted Minimally Invasive Surgery Lab., Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Québec, Canada
| | - Javad Dargahi
- Robotic Assisted Minimally Invasive Surgery Lab., Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Québec, Canada
| | - Muthukumaran Packirisamy
- Optical-Bio Microsystems Lab. Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Québec, Canada
| |
Collapse
|
48
|
Wang C, Perkins B, Wang Z, Han R. Molecular Detection for Unconcentrated Gas With ppm Sensitivity Using 220-to-320-GHz Dual-Frequency-Comb Spectrometer in CMOS. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:709-721. [PMID: 29877833 DOI: 10.1109/tbcas.2018.2812818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Millimeter-wave/terahertz rotational spectroscopy of polar gaseous molecules provides a powerful tool for complicated gas mixture analysis. In this paper, a 220-to-320-GHz dual-frequency-comb spectrometer in 65-nm bulk CMOS is presented, along with a systematic analysis on fundamental issues of rotational spectrometer, including the impacts of various noise mechanisms, gas cell, molecular properties, detection sensitivity, etc. Our comb spectrometer, based on a high-parallelism architecture, probes gas sample with 20 comb lines simultaneously. It does not only improve the scanning speed by 20, but also reduces the overall energy consumption to 90 mJ/point with 1 Hz bandwidth (or 0.5 s integration time). With its channelized 100-GHz scanning range and sub-kHz specificity, wide range of molecules can be detected. In the measurements, state-of-the-art total radiated power of 5.2 mW and single sideband noise figure of 14.6-19.5 dB are achieved, which further boost the scanning speed and sensitivity. Finally, spectroscopic measurements for carbonyl sulfide (OCS) and acetonitrile (CH CN) are presented. With a path length of 70 cm and 1 Hz bandwidth, the measured minimum detectable absorption coefficient reaches cm. For OCS that enables a minimum detectable concentration of 11 ppm. The predicted sensitivity for some other molecules reaches ppm level (e.g., 3 ppm for hydrogen cyanide), or 10 ppt level if gas preconcentration with a typical gain of 10 is used.
Collapse
|
49
|
Monitoring complex monosaccharide mixtures derived from macroalgae biomass by combined optical and microelectromechanical techniques. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Lim MP, Guo X, Grunblatt EL, Clifton GM, Gonzalez AN, LaFratta CN. Augmenting mask-based lithography with direct laser writing to increase resolution and speed. OPTICS EXPRESS 2018; 26:7085-7090. [PMID: 29609394 DOI: 10.1364/oe.26.007085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/26/2018] [Indexed: 05/23/2023]
Abstract
A new method of hybrid photolithography, Laser Augmented Microlithographic Patterning (LAMP), is described in which direct laser writing is used to define additional features to those made with an inexpensive transparency mask. LAMP was demonstrated with both positive- and negative-tone photoresists, S1813 and SU-8, respectively. The laser written features, which can have sub-micron linewidths, can be registered to within 2.2 µm of the mask created features. Two example structures, an interdigitated electrode and a microfluidic device that can capture an array of dozens of silica beads or living cells, are described. This combination of direct laser writing and conventional UV lithography compensates for the drawbacks of each method, and enables high resolution prototypes to be created, tested, and modified quickly.
Collapse
|