1
|
Xu J, Wang T, Deng S, Lai W, Shi Y, Zhao Y, Huang F, Wei P. Visible Light-Responsive Crystalline B←N Host Adducts with Solvent-Induced Allosteric Effect for Guest Release. Angew Chem Int Ed Engl 2024; 63:e202411880. [PMID: 39122652 DOI: 10.1002/anie.202411880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Photo-responsive organic crystals, capable of converting light energy into chemical energy to initiate conformational transitions, present an emerging strategy for developing lightweight and versatile smart materials. However, visible light-triggered tailored guests capture and release behaviors in all-organic solids are rarely reported. Here, we introduce a photoreactive crystalline boron-nitrogen (B←N) host adduct with the ability to undergo [2+2] photocycloaddition upon 447 nm light exposure. This process facilitates single-crystal-to-single-crystal (SCSC) photodimerization in the mother liquor, maintaining the original B←N host structure. Weakened intermolecular interactions within the photodimer host contribute to fast guest release in air under irradiation. Furthermore, the dynamic B←N bonds enable reversible transformations between organic host adducts and adduct cocrystals under the solvent-induced allosteric effect. As a result, four B←N host adduct crystals containing individual alkane guest are easily obtained and exhibited the ability of photo-controlled alkane release. Therefore, the integration of photo reactivity and structural transformation within B←N host adduct enables customized capture and release of guest molecules.
Collapse
Affiliation(s)
- Jieqiong Xu
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| | - Tao Wang
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| | - Shengyong Deng
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| | - Weiming Lai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, 410082, Changsha, Hunan, China
| | - Yadong Shi
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| | - Yanyu Zhao
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Peifa Wei
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| |
Collapse
|
2
|
Šlechta P, Viták R, Bárta P, Koucká K, Berková M, Žďárová D, Petríková A, Kuneš J, Kubíček V, Doležal M, Kučera R, Kučerová-Chlupáčová M. Replacement of nitro function by free boronic acid in non-steroidal anti-androgens. RSC Med Chem 2024:d4md00343h. [PMID: 39345716 PMCID: PMC11428147 DOI: 10.1039/d4md00343h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
A new series of potential flutamide-like antiandrogens has been designed and synthesized to treat prostate cancer. This new series results from our research, which has been aimed at discovering new compounds that can be used for androgen deprivation treatment. The antiandrogens were designed and synthesized by varying the acyl part, linker, and substitution of the benzene ring in the 4-nitro-3-trifluoromethylanilide scaffold of non-steroidal androgens. In addition, the characteristic feature of the nitro group was replaced by a boronic acid functionality. Compound 9a was found to be more effective against LAPC-4 than the standard antiandrogens flutamide, hydroxyflutamide, and bicalutamide. Moreover, it exhibited lower toxicity against the non-cancerous cell line HK-2. The initial in silico study did not show evidence of covalent bonding to the androgen receptor, which was confirmed by an NMR binding experiment with arginine methyl ester. The structure-activity relationships discovered in this study could provide directions for further research on non-steroidal antiandrogens.
Collapse
Affiliation(s)
- Petr Šlechta
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University Ak. Heyrovského 1203/8 50003 Hradec Králové Czech Republic
| | - Roman Viták
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University Alej Svobody 1655/76 32300 Plzeň Czech Republic
| | - Pavel Bárta
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University Ak. Heyrovského 1203/8 50003 Hradec Králové Czech Republic
| | - Kateřina Koucká
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University Ak. Heyrovského 1203/8 50003 Hradec Králové Czech Republic
| | - Monika Berková
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University Ak. Heyrovského 1203/8 50003 Hradec Králové Czech Republic
| | - Diana Žďárová
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University Ak. Heyrovského 1203/8 50003 Hradec Králové Czech Republic
| | - Andrea Petríková
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University Ak. Heyrovského 1203/8 50003 Hradec Králové Czech Republic
| | - Jiří Kuneš
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University Ak. Heyrovského 1203/8 50003 Hradec Králové Czech Republic
| | - Vladimír Kubíček
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University Ak. Heyrovského 1203/8 50003 Hradec Králové Czech Republic
| | - Martin Doležal
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University Ak. Heyrovského 1203/8 50003 Hradec Králové Czech Republic
| | - Radek Kučera
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University Alej Svobody 1655/76 32300 Plzeň Czech Republic
| | - Marta Kučerová-Chlupáčová
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University Ak. Heyrovského 1203/8 50003 Hradec Králové Czech Republic
| |
Collapse
|
3
|
Odent J, Baleine N, Torcasio SM, Gautier S, Coulembier O, Raquez JM. 3D-Printed Phenylboronic Acid-Bearing Hydrogels for Glucose-Triggered Drug Release. Polymers (Basel) 2024; 16:2502. [PMID: 39274135 PMCID: PMC11398034 DOI: 10.3390/polym16172502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Diabetes is a major health concern that the next-generation of on-demand insulin releasing implants may overcome via personalized therapy. Therein, 3D-printed phenylboronic acid-containing implants with on-demand glucose-triggered drug release abilities are produced using high resolution stereolithography technology. To that end, the methacrylation of phenylboronic acid is targeted following a two-step reaction. The resulting photocurable phenylboronic acid derivative is accordingly incorporated within bioinert polyhydroxyethyl methacrylate-based hydrogels at varying loadings. The end result is a sub-centimeter scaled 3D-printed bioinert implant that can be remotely activated with 1,2-diols and 1,3-diols such as glucose for on-demand drug administration such as insulin. As a proof of concept, varying glucose concentration from hypoglycemic to hyperglycemic levels readily allow the release of pinacol, i.e., a 1,2-diol-containing model molecule, at respectively low and high rates. In addition, the results demonstrated that adjusting the geometry and size of the 3D-printed part is a simple and suitable method for tailoring the release behavior and dosage.
Collapse
Affiliation(s)
- Jérémy Odent
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Nicolas Baleine
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Serena Maria Torcasio
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Sarah Gautier
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Olivier Coulembier
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| |
Collapse
|
4
|
Toffoli D, Turco E, Stredansky M, Costantini R, Dell'Angela M, Floreano L, Goldoni A, Morgante A, Kladnik G, Cvetko D, de Oteyza DG, Colazzo L, Mohammed MSG, Sala A, Comelli G, Africh C, Fronzoni G, Balducci G, Stener M, Ustunel H, Cossaro A. Oxygen-Promoted on-Surface Synthesis of Polyboroxine Molecules. Chemistry 2024; 30:e202401565. [PMID: 38864572 DOI: 10.1002/chem.202401565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
We present a protocol for the on-surface synthesis of polyboroxine molecules derived from boroxine molecules precursors. This process is promoted by oxygen species present on the Au(111) surface: oxygen atoms facilitate the detachment of naphthalene units of trinaphthyl-boroxine molecules and bridge two unsaturated boroxine centers to form a boroxine-O-boroxine chemical motif. X-ray spectroscopic characterization shows that, as the synthesis process proceeds, it progressively tunes the electronic properties of the interface, thus providing a promising route to control the electron level alignment.
Collapse
Affiliation(s)
- Daniele Toffoli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
- CNR - Istituto Officina dei Materiali (IOM), Strada Statale 14 - km 163.5, 34149, Trieste, Italy
| | - Elia Turco
- Department of Physics, University of Trieste, via A. Valerio 2, 34127, Trieste, Italy
| | - Matus Stredansky
- CNR - Istituto Officina dei Materiali (IOM), Strada Statale 14 - km 163.5, 34149, Trieste, Italy
| | - Roberto Costantini
- CNR - Istituto Officina dei Materiali (IOM), Strada Statale 14 - km 163.5, 34149, Trieste, Italy
- Department of Physics, University of Trieste, via A. Valerio 2, 34127, Trieste, Italy
| | - Martina Dell'Angela
- CNR - Istituto Officina dei Materiali (IOM), Strada Statale 14 - km 163.5, 34149, Trieste, Italy
| | - Luca Floreano
- CNR - Istituto Officina dei Materiali (IOM), Strada Statale 14 - km 163.5, 34149, Trieste, Italy
| | - Andrea Goldoni
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163.5, 34149, Trieste, Italy
| | - Alberto Morgante
- CNR - Istituto Officina dei Materiali (IOM), Strada Statale 14 - km 163.5, 34149, Trieste, Italy
- Department of Physics, University of Trieste, via A. Valerio 2, 34127, Trieste, Italy
| | - Gregor Kladnik
- CNR - Istituto Officina dei Materiali (IOM), Strada Statale 14 - km 163.5, 34149, Trieste, Italy
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000, Ljubljana, Slovenia
| | - Dean Cvetko
- CNR - Istituto Officina dei Materiali (IOM), Strada Statale 14 - km 163.5, 34149, Trieste, Italy
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000, Ljubljana, Slovenia
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Dimas G de Oteyza
- Donostia International Physics Center, Paseo Manuel Lardizabal 4, E-20018, Donostia-San Sebastián, Spain
- Nanomaterials and Nanotechnology Research Center (CINN), CSOC-UNIOVI-PA, 33940, El Entrego, Spain
| | - Luciano Colazzo
- Donostia International Physics Center, Paseo Manuel Lardizabal 4, E-20018, Donostia-San Sebastián, Spain
- Centro de Física de Materiales (CSIC-UPV/EHU) - MPC, Paseo Manuel de Lardizabal, 5, E-20018, Donostia-San Sebastián, Spain
| | - Mohammed S G Mohammed
- Donostia International Physics Center, Paseo Manuel Lardizabal 4, E-20018, Donostia-San Sebastián, Spain
- Centro de Física de Materiales (CSIC-UPV/EHU) - MPC, Paseo Manuel de Lardizabal, 5, E-20018, Donostia-San Sebastián, Spain
| | - Alessandro Sala
- CNR - Istituto Officina dei Materiali (IOM), Strada Statale 14 - km 163.5, 34149, Trieste, Italy
- Department of Physics, University of Trieste, via A. Valerio 2, 34127, Trieste, Italy
| | - Giovanni Comelli
- CNR - Istituto Officina dei Materiali (IOM), Strada Statale 14 - km 163.5, 34149, Trieste, Italy
- Department of Physics, University of Trieste, via A. Valerio 2, 34127, Trieste, Italy
| | - Cristina Africh
- CNR - Istituto Officina dei Materiali (IOM), Strada Statale 14 - km 163.5, 34149, Trieste, Italy
| | - Giovanna Fronzoni
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
| | - Gabriele Balducci
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
| | - Mauro Stener
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
- CNR - Istituto Officina dei Materiali (IOM), Strada Statale 14 - km 163.5, 34149, Trieste, Italy
| | - Hande Ustunel
- Department of Physics, Middle East Technical University, 06800, Ankara, Turkey
| | - Albano Cossaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
- CNR - Istituto Officina dei Materiali (IOM), Strada Statale 14 - km 163.5, 34149, Trieste, Italy
| |
Collapse
|
5
|
Preuss MD, Schnitzer T, Jansen SAH, Meskers SCJ, Kuster THR, Lou X, Meijer EW, Vantomme G. Functionalization of Supramolecular Polymers by Dynamic Covalent Boroxine Chemistry. Angew Chem Int Ed Engl 2024; 63:e202402644. [PMID: 38716788 DOI: 10.1002/anie.202402644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 06/04/2024]
Abstract
Molecular scaffolds that enable the combinatorial synthesis of new supramolecular building blocks are promising targets for the construction of functional molecular systems. Here, we report a supramolecular scaffold based on boroxine that enables the formation of chiral and ordered 1D supramolecular polymers, which can be easily functionalized for circularly polarized luminescence. The boroxine monomers are quantitatively synthesized in situ, both in bulk and in solution, from boronic acid precursors and cooperatively polymerize into 1D helical aggregates stabilized by threefold hydrogen-bonding and π-π stacking. We then demonstrate amplification of asymmetry in the co-assembly of chiral/achiral monomers and the co-condensation of chiral/achiral precursors in classical and in situ sergeant-and-soldiers experiments, respectively, showing fast boronic acid exchange reactions occurring in the system. Remarkably, co-condensation of pyrene boronic acid with a hydrogen-bonding chiral boronic acid results in chiral pyrene aggregation with circularly polarized excimer emission and g-values in the order of 10-3. Yet, the electron deficiency of boron in boroxine makes them chemically addressable by nucleophiles, but also sensitive to hydrolysis. With this sensitivity in mind, we provide first insights into the prospects offered by boroxine-based supramolecular polymers to make chemically addressable, functional, and adaptive systems.
Collapse
Affiliation(s)
- Marco D Preuss
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Tobias Schnitzer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Stef A H Jansen
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Stefan C J Meskers
- Institute for Complex Molecular Systems and Molecular Materials and Nanosystems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Tom H R Kuster
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Xianwen Lou
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- School of Chemistry and RNA Institute, The University of New South Wales, Sydney, NSW-2052, Australia
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
6
|
Sánchez M, Baltrusaitis J, Vasquez-Ríos MG, Campillo-Alvarado G, MacGillivray LR, Höpfl H. Nanoscale Dodecahedral and Fullerene-Type Organoboroxine and Borazine Cages from Planar Building Units. NANO LETTERS 2024; 24:5824-5830. [PMID: 38712765 PMCID: PMC11100284 DOI: 10.1021/acs.nanolett.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Boroxine- and borazine-cage analogs to C20, C60, and C70 were calculated and compared in terms of structure, strain indicators, and physical properties relevant to nanoscale applications. The results show C60 and C70 type cages are less strained than the smaller congener, primarily due to minimized bending in the B-arylene-B segments. The smallest cage calculated has a diameter of 2.4 nm, which increases up to 4.9 nm by either variation of the polyhedron (C20 < C60 < C70-type cage) or organic spacer elongation between boron centers. All calculated cages are porous (apertures ranging from 0.6 to 1.9 nm). Molecular electrostatic potential and Hirshfeld population analysis revealed both nucleophilic and electrophilic sites in the interior and exterior cage surfaces. HOMO-LUMO gaps range from 3.98 to 4.89 eV and 5.10-5.18 eV for the boroxine- and borazine-cages, respectively. Our findings provide insights into the design and properties of highly porous boroxine and borazine cages for nanoscience.
Collapse
Affiliation(s)
- Mario Sánchez
- Centro
de Investigación en Materiales Avanzados, S.C., Alianza Norte
202, Parque de Investigación en Innovación
Tecnológica (PIIT), Carretera Monterrey-Aeropuerto Km 11, Apodaca 66628, Nuevo León, México
| | - Jonas Baltrusaitis
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Research Drive 111, Bethlehem, Pennsylvania 18015, United States
| | | | | | | | - Herbert Höpfl
- Centro
de Investigaciones Químicas, Instituto de Investigación
en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, México
| |
Collapse
|
7
|
Scholz AS, Bolte M, Virovets A, Peresypkina E, Lerner HW, Anstöter CS, Wagner M. Tetramerization of BEB-Doped Phenalenyls to Obtain (BE) 8-[16]Annulenes (E = N, O). J Am Chem Soc 2024; 146:12100-12112. [PMID: 38635878 DOI: 10.1021/jacs.4c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two (BE)8-[16]annulenes were prepared and fully characterized by experimental and quantum-chemical means (1, E = N; 2, E = O). The 1,8-naphthalenediyl-bridged diborane(6) 3 served as their common starting material, which was treated with [Al(NH3)6]Cl3 to form 1 (91% yield) or with 1,8-naphthalenediboronic acid anhydride to form 2 (93% yield). As a result, the heteroannulenes 1 and 2 are supported by four aromatic "clamps" and may also be viewed as NH- or O-bridged cyclic tetramers of BNB- or BOB-doped phenalenyls. X-ray crystallography on mono-, di-, and tetraadducts 2·thf, 2·py2, and 2·py4 showed that 2 is an oligotopic Lewis acid (thf/py: tetrahydrofuran/pyridine donor). The applicability of 2 also as a Lewis basic ligand in coordination chemistry was demonstrated by the synthesis of the mononuclear Ag+ complex [Ag(py)2(2·py4)]+ and the dinuclear Pb2+ complex 6. During the assembly of 6, the rearrangement of 2 led to the formation of two (BO)9-macrocycles linked by two BOB-phenalenyls to form a nanometer-sized cage with four negatively charged, tetracoordinated B atoms. Both 1 and 2 show several redox waves in the cathodic regions of the cyclic voltammograms. An in-depth assessment of the consequences of electron injection on the aromaticity of 1 and 2 was achieved by electronic structure calculations. 1 and 2 are proposed to exhibit aromatic switching capabilities in the [16]annulene motif.
Collapse
Affiliation(s)
- Alexander S Scholz
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Alexander Virovets
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Eugenia Peresypkina
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Cate S Anstöter
- EaStCHEM School of Chemistry, University of Edinburgh, EH8 9YLEdinburgh,U.K
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Pajić M, Juribašić Kulcsár M. Solid-State Synthesis of B←N Adducts by the Amine-Facilitated Trimerization of the Phenylboronic Acid. Chemistry 2024; 30:e202400190. [PMID: 38334299 DOI: 10.1002/chem.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/10/2024]
Abstract
Stable boroxine-amine adducts comprising dative B←N bond(s) were prepared by mechanochemically-induced reactions of phenylboronic acid (PBA) and amines (pyridine, DMAP, 1H-pyrazole, piperidine, DABCO, hexamethylenetetramine, or 4,4'-bipyridine). In-situ Raman monitoring, ex-situ PXRD and DFT calculations were used for product identification. Stoichiometry of the product (3 : 1, 3 : 2 or 6 : 1 adduct) was controlled by the amine structure and the molar ratio of the reactants. The 1 : 2 H-bonded assembly of PBA and 4,4'-bipyridine (bpy) was confirmed as an intermediate in the adduct formation for bpy. Competitive binding experiments indicated that the exchange of the amines in the 3 : 1 adducts follows the computed adduct stabilities that increase with the amine basicity. Following the DFT prediction, the first adduct with two different amines, DMAP and pip, bound to one boroxine moiety was isolated and structurally characterized. Results show that calculations can be used to predict possible and preferred product(s) and their spectral characteristics.
Collapse
Affiliation(s)
- Mario Pajić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Marina Juribašić Kulcsár
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| |
Collapse
|
9
|
Kirchner P, Schramm L, Ivanova S, Shoyama K, Würthner F, Beuerle F. A Water-Stable Boronate Ester Cage. J Am Chem Soc 2024; 146:5305-5315. [PMID: 38325811 PMCID: PMC10910528 DOI: 10.1021/jacs.3c12002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
The reversible condensation of catechols and boronic acids to boronate esters is a paradigm reaction in dynamic covalent chemistry. However, facile backward hydrolysis is detrimental for stability and has so far prevented applications for boronate-based materials. Here, we introduce cubic boronate ester cages 6 derived from hexahydroxy tribenzotriquinacenes and phenylene diboronic acids with ortho-t-butyl substituents. Due to steric shielding, dynamic exchange at the Lewis acidic boron sites is feasible only under acid or base catalysis but fully prevented at neutral conditions. For the first time, boronate ester cages 6 tolerate substantial amounts of water or alcohols both in solution and solid state. The unprecedented applicability of these materials under ambient and aqueous conditions is showcased by efficient encapsulation and on-demand release of β-carotene dyes and heterogeneous water oxidation catalysis after the encapsulation of ruthenium catalysts.
Collapse
Affiliation(s)
- Philipp
H. Kirchner
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Louis Schramm
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Svetlana Ivanova
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Kazutaka Shoyama
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Frank Würthner
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Florian Beuerle
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
- Institut
für Organische Chemie, Eberhard Karls
Universität Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| |
Collapse
|
10
|
Li X, Zhang Y, Shi Z, Wang D, Yang H, Zhang Y, Qin H, Lu W, Chen J, Li Y, Qing G. Water-stable boroxine structure with dynamic covalent bonds. Nat Commun 2024; 15:1207. [PMID: 38331926 PMCID: PMC10853236 DOI: 10.1038/s41467-024-45464-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Boroxines are significant structures in the production of covalent organic frameworks, anion receptors, self-healing materials, and others. However, their utilization in aqueous media is a formidable task due to hydrolytic instability. Here we report a water-stable boroxine structure discovered from 2-hydroxyphenylboronic acid. We find that, under ambient environments, 2-hydroxyphenylboronic acid undergoes spontaneous dehydration to form a dimer with dynamic covalent bonds and aggregation-induced enhanced emission activity. Intriguingly, upon exposure to water, the dimer rapidly transforms into a boroxine structure with excellent pH stability and water-compatible dynamic covalent bonds. Building upon these discoveries, we report the strong binding capacity of boroxines toward fluoride ions in aqueous media, and develop a boroxine-based hydrogel with high acid-base stability and reversible gel-sol transition. This discovery of the water-stable boroxine structure breaks the constraint of boroxines not being applicable in aqueous environments, opening a new era of researches in boroxine chemistry.
Collapse
Affiliation(s)
- Xiaopei Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
- Instrumental Analysis Center, School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Yongjie Zhang
- Instrumental Analysis Center, School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Zhenqiang Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Hang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Yahui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Wenqi Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Junjun Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Yan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China.
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, P. R. China.
| |
Collapse
|
11
|
Chen B, Jäkle F. Boron-Nitrogen Lewis Pairs in the Assembly of Supramolecular Macrocycles, Molecular Cages, Polymers, and 3D Materials. Angew Chem Int Ed Engl 2024; 63:e202313379. [PMID: 37815889 DOI: 10.1002/anie.202313379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
Covering an exceptionally wide range of bond strengths, the dynamic nature and facile tunability of dative B-N bonds is highly attractive when it comes to the assembly of supramolecular polymers and materials. This Minireview offers an overview of advances in the development of functional materials where Lewis pairs (LPs) play a key role in their assembly and critically influence their properties. Specifically, we describe the reversible assembly of linear polymers with interesting optical, electronic and catalytic properties, discrete macrocycles and molecular cages that take up diverse guest molecules and undergo structural changes triggered by external stimuli, covalent organic frameworks (COFs) with intriguing interlocked structures that can embed and separate gases such as CO2 and acetylene, and soft polymer networks that serve as recyclable, self-healing, and responsive thermosets, gels and elastomeric materials.
Collapse
Affiliation(s)
- Beijia Chen
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
12
|
Suzuki H, Akiyama Y, Yamashina M, Tanaka Y, Toyota S. Transformation of Highly Hydrophobic Triarylphosphines into Amphiphiles via Staudinger Reaction with Hydrophilic Trichlorophenyl Azide. Chemistry 2023; 29:e202303017. [PMID: 37766651 DOI: 10.1002/chem.202303017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
Owing to its hydrophobic properties and reactivity, triarylphosphines (PAr3 ) are promising precursors for the development of new amphiphiles. However, an efficient and reliable synthetic method for amphiphiles based on highly hydrophobic PAr3 is still required. Herein, a straightforward transformation of highly hydrophobic PAr3 into amphiphiles via the Staudinger reaction is reported. By simply mixing PAr3 and a hydrophilic trichlorophenyl azide containing two hydrophilic chains, amphiphiles bearing a N=P bond (i. e., an azaylide moiety) were quantitatively formed. The obtained azaylide-based amphiphiles were remarkably water-soluble, enabling their spontaneous self-assembly into 2 nm-sized micelles composed of 4-5 molecules in water with a low critical micelle concentration (up to 0.05 mM or less) due to the effective intermolecular interactions among the hydrophobic surfaces. Although the azaylide moiety is easily hydrolyzed in the presence of water, the azaylide in the amphiphiles displayed notable stability in water even at 60 h, which stems from the LUMO modulation induced by the presence of three electron-withdrawing chloro groups and two twisted alkoxycarbonyl groups, according to DFT calculations. An amphiphile having a large hydrophobic surface solubilized various hydrophobic organic dyes through efficient intermolecular interactions, resulting in the dyes exhibiting either monomer or excimer emissions in water.
Collapse
Affiliation(s)
- Hayate Suzuki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Yoshimori Akiyama
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Masahiro Yamashina
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
13
|
Guadalupe Vasquez-Ríos M, Campillo-Alvarado G, MacGillivray LR. Mechanochemical Mediated Coexistence of B←N Coordination and Hydrogen Bonding. Angew Chem Int Ed Engl 2023; 62:e202308350. [PMID: 37365138 DOI: 10.1002/anie.202308350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Mechanochemistry afforded a photoactive cocrystal via coexisting (B)O-H⋅⋅⋅N hydrogen bonds and B←N coordination. Specifically, solvent-free mechanochemical ball mill grinding and liquid-assisted grinding of a boronic acid and an alkene resulted in mixtures of hydrogen-bonded and coordinated complexes akin to mixtures of noncovalent complexes that can be obtained in solution in equilibria processes. The alkenes of the hydrogen-bonded assembly undergo an intermolecular [2+2] photodimerization in quantitative conversion, effectively reporting the outcome of the self-assembly processes. Our results suggest that interplay involving noncovalent bonds subjected to mechanochemical conditions can lead to functional solids where, in the current case, the structure composed of the weaker hydrogen bonding interactions predominates.
Collapse
|
14
|
Liu L, Ma X, Chang Y, Guo H, Wang W. Biosensors with Boronic Acid-Based Materials as the Recognition Elements and Signal Labels. BIOSENSORS 2023; 13:785. [PMID: 37622871 PMCID: PMC10452607 DOI: 10.3390/bios13080785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
It is of great importance to have sensitive and accurate detection of cis-diol-containing biologically related substances because of their important functions in the research fields of metabolomics, glycomics, and proteomics. Boronic acids can specifically and reversibly interact with 1,2- or 1,3-diols to form five or six cyclic esters. Based on this unique property, boronic acid-based materials have been used as synthetic receptors for the specific recognition and detection of cis-diol-containing species. This review critically summarizes the recent advances with boronic acid-based materials as recognition elements and signal labels for the detection of cis-diol-containing biological species, including ribonucleic acids, glycans, glycoproteins, bacteria, exosomes, and tumor cells. We also address the challenges and future perspectives for developing versatile boronic acid-based materials with various promising applications.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Hang Guo
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenqing Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
15
|
Ono K, Sawanaga K, Onodera S, Kawai H, Goto K. Structural Interconversion Based on Intramolecular Boroxine Formation. Chemistry 2023; 29:e202300995. [PMID: 37092863 DOI: 10.1002/chem.202300995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 04/25/2023]
Abstract
A novel structural interconversion unit based on intramolecular boroxine formation has been developed. A macrocyclic triboronic acid consisting of three phenylboronic acid units linked by covalent linkers preferentially underwent intramolecular rather than intermolecular boroxine formation, resulting in a quantitative formation of tricyclic boroxine. This structural transformation was accompanied by changes in the polarity, flexibility, and size of the molecule. Dynamic interconversion between the macrocyclic triboronic acid and the tricyclic boroxine was achieved by simple heating/cooling, whereas no boroxine formation occurred upon heating when three boronic acid units were not connected by linkers. Thermodynamic analysis revealed that the entropic advantage of the intramolecular boroxine formation process resulted in these unique features. The entropically stabilized tricyclic boroxine also shows high stability with respect to hydrolysis.
Collapse
Affiliation(s)
- Kosuke Ono
- School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Keisuke Sawanaga
- School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Satoru Onodera
- Department of Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Hidetoshi Kawai
- Department of Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Kei Goto
- School of Science, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
16
|
Vidal F, Smith S, Williams CK. Ring Opening Copolymerization of Boron-Containing Anhydride with Epoxides as a Controlled Platform to Functional Polyesters. J Am Chem Soc 2023. [PMID: 37311063 DOI: 10.1021/jacs.3c03261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Boron-functionalized polymers are used in opto-electronics, biology, and medicine. Methods to produce boron-functionalized and degradable polyesters remain exceedingly rare but relevant where (bio)dissipation is required, for example, in self-assembled nanostructures, dynamic polymer networks, and bio-imaging. Here, a boronic ester-phthalic anhydride and various epoxides (cyclohexene oxide, vinyl-cyclohexene oxide, propene oxide, allyl glycidyl ether) undergo controlled ring-opening copolymerization (ROCOP), catalyzed by organometallic complexes [Zn(II)Mg(II) or Al(III)K(I)] or a phosphazene organobase. The polymerizations are well controlled allowing for the modulation of the polyester structures (e.g., by epoxide selection, AB, or ABA blocks), molar masses (9.4 < Mn < 40 kg/mol), and uptake of boron functionalities (esters, acids, "ates", boroxines, and fluorescent groups) in the polymer. The boronic ester-functionalized polymers are amorphous, with high glass transition temperatures (81 < Tg < 224 °C) and good thermal stability (285 < Td < 322 °C). The boronic ester-polyesters are deprotected to yield boronic acid- and borate-polyesters; the ionic polymers are water soluble and degradable under alkaline conditions. Using a hydrophilic macro-initiator in alternating epoxide/anhydride ROCOP, and lactone ring opening polymerization, produces amphiphilic AB and ABC copolyesters. Alternatively, the boron-functionalities are subjected to Pd(II)-catalyzed cross-couplings to install fluorescent groups (BODIPY). The utility of this new monomer as a platform to construct specialized polyesters materials is exemplified here in the synthesis of fluorescent spherical nanoparticles that self-assemble in water (Dh = 40 nm). The selective copolymerization, variable structural composition, and adjustable boron loading represent a versatile technology for future explorations of degradable, well-defined, and functional polymers.
Collapse
Affiliation(s)
- Fernando Vidal
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Sevven Smith
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Charlotte K Williams
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
17
|
Li B, Cao PF, Saito T, Sokolov AP. Intrinsically Self-Healing Polymers: From Mechanistic Insight to Current Challenges. Chem Rev 2023; 123:701-735. [PMID: 36577085 DOI: 10.1021/acs.chemrev.2c00575] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Self-healing materials open new prospects for more sustainable technologies with improved material performance and devices' longevity. We present an overview of the recent developments in the field of intrinsically self-healing polymers, the broad class of materials based mostly on polymers with dynamic covalent and noncovalent bonds. We describe the current models of self-healing mechanisms and discuss several examples of systems with different types of dynamic bonds, from various hydrogen bonds to dynamic covalent bonds. The recent advances indicate that the most intriguing results are obtained on the systems that have combined different types of dynamic bonds. These materials demonstrate high toughness along with a relatively fast self-healing rate. There is a clear trade-off relationship between the rate of self-healing and mechanical modulus of the materials, and we propose design principles of polymers toward surpassing this trade-off. We also discuss various applications of intrinsically self-healing polymers in different technologies and summarize the current challenges in the field. This review intends to provide guidance for the design of intrinsic self-healing polymers with required properties.
Collapse
Affiliation(s)
- Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee37996, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, China
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
18
|
Wang W, Wang L, Du F, Wang GD, Hou L, Zhu Z, Liu B, Wang YY. Dative B←N bonds based crystalline organic framework with permanent porosity for acetylene storage and separation. Chem Sci 2023; 14:533-539. [PMID: 36741528 PMCID: PMC9847669 DOI: 10.1039/d2sc06016g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The utilization of dative B←N bonds for the creation of crystalline organic framework (BNOF) has increasingly received intensive interest; however, the shortage of permanent porosity is an obstacle that must be overcome to guarantee their application as porous materials. Here, we report the first microporous crystalline framework, BNOF-1, that is assembled through sole monomers, which can be scalably synthesized by the cheap 4-pyridine boronic acid. The 2D networks of BNOF-1 were stacked in parallel to generate a highly porous supramolecular open framework, which possessed not only the highest BET surface area of 1345 m2 g-1 amongst all of the BNOFs but also features a record-high uptake of C2H2 and CO2 in covalent organic framework (COF) materials to date. Dynamic breakthrough experiments demonstrated that BNOF-1 material can efficiently separate C2H2/CO2 mixtures. In addition, the network can be regenerated in organic solvents with no loss in performance, making its solution processable. We believe that BNOF-1 would greatly diversify the reticular chemistry and open new avenues for the application of BNOFs.
Collapse
Affiliation(s)
- Weize Wang
- College of Chemistry & Pharmacy, Northwest A&F UniversityYangling 712100P. R. China
| | - Linxia Wang
- College of Chemistry & Pharmacy, Northwest A&F UniversityYangling 712100P. R. China
| | - Fei Du
- College of Chemistry & Pharmacy, Northwest A&F UniversityYangling 712100P. R. China
| | - Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest UniversityXi'an 710127P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest UniversityXi'an 710127P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of QueenslandBrisbane4072Australia
| | - Bo Liu
- College of Chemistry & Pharmacy, Northwest A&F UniversityYangling 712100P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest UniversityXi'an 710127P. R. China
| |
Collapse
|
19
|
Drozdov FV, Manokhina EA, Vu TD, Muzafarov AM. Polyborosiloxanes (PBS): Evolution of Approaches to the Synthesis and the Prospects of Their Application. Polymers (Basel) 2022; 14:polym14224824. [PMID: 36432951 PMCID: PMC9696069 DOI: 10.3390/polym14224824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
The mini-review deals with borosiloxanes as a class of organoelement compounds that comprise Si-O-B bonds, including individual compounds and polymeric structures. The borosiloxanes first synthesized in the 1950s using simple methods demonstrated very unusual properties but were hydrolytically unstable. However, in recent times, synthetic methods have changed significantly, which made it possible to synthesize borosiloxanes that are resistant to external factors, including atmospheric moisture. Borosiloxanes became important due to their unique properties. For example, borosiloxane liquids acquire a thixotropic behavior due to donor-acceptor interchain interactions. In addition, borosiloxanes are used to produce flame-retardant ceramics. An analysis of the literature sources shows that no review has yet been completed on the topic of borosiloxanes. Therefore, we decided that even a brief outlook of this area would be useful for researchers in this and related fields. Thus, the review shows the evolution of the synthesis methods and covers the studies on the properties of these unique molecules, the latest achievements in this field, and the prospects for their application.
Collapse
Affiliation(s)
- Fedor V. Drozdov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 117393 Moscow, Russia
- Correspondence:
| | - Elizaveta A. Manokhina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tran D. Vu
- Institute of Tropical Durability, Joint Russia-Vietnam Tropical Science and Technology, Hanoi 122103, Vietnam
| | - Aziz M. Muzafarov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 117393 Moscow, Russia
| |
Collapse
|
20
|
DER FG, YALCIN G, OZCAN BULBUL E, ILERI H, CIHAN B, GOKCAN M, ESITMEZ YC, KILINC E. Hydrolytic Stability of Hydroxyphenyl Boronic Acids(HPBAs) and Employment of Poly(HPBAs) for Voltammetric Determination of Fluoride Levels in Dental Formulations and Beverages; Significance of Raw DPV Data for Chemometric Discrimination. ELECTROANAL 2022. [DOI: 10.1002/elan.202200012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Hakan ILERI
- Gensenta Pharmaceuticals Department of Govermental Affairs Ankara Turkey TURKEY
| | | | | | | | | |
Collapse
|
21
|
Dhiraj HS, Ishizuka F, Elshaer A, Zetterlund PB, Aldabbagh F. RAFT dispersion polymerization induced self-assembly (PISA) of boronic acid-substituted acrylamides. Polym Chem 2022. [DOI: 10.1039/d2py00530a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
For the unprotected monomer, the boroxine core of nanoparticles allows transitions to higher order morphologies, while worms and vesicles are yielded directly from PISA of the pinacol ester-protected monomer.
Collapse
Affiliation(s)
- Harpal S. Dhiraj
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Amr Elshaer
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Fawaz Aldabbagh
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
22
|
Ono K, Onodera S, Kawai H. Boroxine template for macrocyclization and postfunctionalization. Chem Commun (Camb) 2022; 58:12544-12547. [DOI: 10.1039/d2cc04691a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boroxine-templated macrocyclization: Olefin metathesis of boronic acid substrates in the presence of MS4A followed by workup with pinacol yields the desired macrocyclic compounds with modifiable three boron units.
Collapse
Affiliation(s)
- Kosuke Ono
- School of Science, Tokyo Institute of Technology, O-okayama Meguro-ku, Tokyo 152-8551, Japan
| | - Satoru Onodera
- Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hidetoshi Kawai
- Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
23
|
Milasheuskaya Y, Schwarz J, Dostál L, Růžičková Z, Bouška M, Olmrová Zmrhalová Z, Syrový T, Jambor R. Synthesis and optical properties of N→Ga coordinated gallium boroxines. Dalton Trans 2021; 50:18164-18172. [PMID: 34859799 DOI: 10.1039/d1dt02975d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions of the N,C,N-chelated organogallium amide LGa(NEt2)2 (1), where L is {2,6-(Me2NCH2)2C6H3}-, with organoboronic acids RB(OH)2 yielded molecular gallium boroxines LGa(O3B2R2) (2: R = OH, 3: R = Ph, 4: R = 4-MeO-C6H4, 5: R = 4-CHO-C6H4, 6: R = Fc), neutral analogues of gallaborates. The molecular structures revealed the presence of a six-membered central GaB2O3 ring. The film forming properties of 5 allowed the deposition of transparent thin films by a spin coating method. The thicknesses, refractive index, energy of the optical gap (Eoptg), activation energy of surface electrical conductivity (Esa) and pre-exponential factor (σ0) of the thin layers of 5 were measured and they are close to those found for related oxygen glass. Finally, GBO 5 was also used as an additive to printing ink and a thin film of 5 was prepared by the gravure printing technique.
Collapse
Affiliation(s)
- Yaraslava Milasheuskaya
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Jiří Schwarz
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Libor Dostál
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Zdenka Růžičková
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| | - Marek Bouška
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Zuzana Olmrová Zmrhalová
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Tomáš Syrový
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry, University of Pardubice, 532 10 Pardubice, Czech Republic.
| |
Collapse
|
24
|
Evans AM, Strauss MJ, Corcos AR, Hirani Z, Ji W, Hamachi LS, Aguilar-Enriquez X, Chavez AD, Smith BJ, Dichtel WR. Two-Dimensional Polymers and Polymerizations. Chem Rev 2021; 122:442-564. [PMID: 34852192 DOI: 10.1021/acs.chemrev.0c01184] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.
Collapse
Affiliation(s)
- Austin M Evans
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amanda R Corcos
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoheb Hirani
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Woojung Ji
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Xavier Aguilar-Enriquez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anton D Chavez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian J Smith
- Department of Chemistry, Bucknell University,1 Dent Drive, Lewisburg, Pennsylvania 17837, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Berntsen LN, Solvi TN, Sørnes K, Wragg DS, Sandtorv AH. Cu-catalyzed C(sp 2)-N-bond coupling of boronic acids and cyclic imides. Chem Commun (Camb) 2021; 57:11851-11854. [PMID: 34698731 DOI: 10.1039/d1cc04356k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A general Cu-catalyzed strategy for coupling cyclic imides and alkenylboronic acids by forming C(sp2)-N-bonds is reported. The method enables the practical and mild preparation of (E)-enimides. A large range of cyclic imides are allowed, and di- and tri-substituted alkenylboronic acids can be used. Full retention was observed in the configuration of the alkene double bond in the coupled products. The method is also applicable for preparing N-arylimides, using arylboronic acids as coupling partners. The usefulness of this strategy is exemplified by the convenient derivatization of the chemotherapy medication 5-flurouracil, the nucleoside uridine and the anti-epileptic drug phenytoin.
Collapse
Affiliation(s)
| | | | - Kristian Sørnes
- Department of Chemistry, University of Oslo, Oslo N-0315, Norway.
| | - David S Wragg
- Department of Chemistry, University of Oslo, Oslo N-0315, Norway.
| | | |
Collapse
|
26
|
Kong JW, Lam Z, Chan KH, Ganguly R, Joey Lee JY, Loo LH, Webster RD, Wong ZX, Leong WK. Group VIII Metal Carbonyl Cluster-Boronic Acid Conjugates: Cytotoxicity and Mode of Action Studies. ACS OMEGA 2021; 6:29045-29053. [PMID: 34746593 PMCID: PMC8567370 DOI: 10.1021/acsomega.1c04116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
A set of metal carbonyl cluster-boronic acid conjugates of the group VIII metals (Fe, Ru, and Os) were synthesized and their antiproliferative effects measured against two breast cancer cell lines (MCF-7 and MDA-MB-231) and a noncancerous breast epithelial (MCF-10A) cell line. The cytotoxicity followed the order Ru > Os > Fe for the MDA-MB-231 cells, although the latter two exhibited similar cytotoxicity against MCF-7 and MCF-10A cells. The osmium species {Os3(CO)10(μ-H)[μ-SC6H4-p-B(OH)2]} (2) could be chemically oxidized to its hydroxy analogue [Os3(CO)10(μ-H)(μ-SC6H4 -p-OH)] (2-OH), which showed comparable cytotoxicity. Mode of action studies pointed to an apoptotic pathway for cell death.
Collapse
Affiliation(s)
- Jia Wen Kong
- Division
of Chemistry and Biological Chemistry, School of Mathematical and
Physical Sciences, Nanyang Technological
University, Singapore 637371, Singapore
| | - Zhiyong Lam
- Division
of Chemistry and Biological Chemistry, School of Mathematical and
Physical Sciences, Nanyang Technological
University, Singapore 637371, Singapore
| | - Kiat Hwa Chan
- Yale-NUS
College, 16 College Avenue West, Singapore 138527, Singapore
| | - Rakesh Ganguly
- Division
of Chemistry and Biological Chemistry, School of Mathematical and
Physical Sciences, Nanyang Technological
University, Singapore 637371, Singapore
| | - Jia-Ying Joey Lee
- Agency
for Science, Technology, and Research (A*STAR), Bioinformatics Institute (BII), Singapore 138671, Singapore
| | - Lit-Hsin Loo
- Agency
for Science, Technology, and Research (A*STAR), Bioinformatics Institute (BII), Singapore 138671, Singapore
- Department
of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Richard D. Webster
- Division
of Chemistry and Biological Chemistry, School of Mathematical and
Physical Sciences, Nanyang Technological
University, Singapore 637371, Singapore
| | - Zhen Xuan Wong
- Division
of Chemistry and Biological Chemistry, School of Mathematical and
Physical Sciences, Nanyang Technological
University, Singapore 637371, Singapore
| | - Weng Kee Leong
- Division
of Chemistry and Biological Chemistry, School of Mathematical and
Physical Sciences, Nanyang Technological
University, Singapore 637371, Singapore
| |
Collapse
|
27
|
Toffoli D, Grazioli C, Monti M, Stener M, Totani R, Richter R, Schio L, Fronzoni G, Cossaro A. Revealing the electronic properties of the B-B bond: the bis-catecholato diboron molecule. Phys Chem Chem Phys 2021; 23:23517-23525. [PMID: 34642728 DOI: 10.1039/d1cp03428f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The electronic properties of a diboron molecule, namely bis(catecholato)diboron (2-(1,3,2-benzodioxaborol-2-yl)-1,3,2-benzodioxaborole) (B2Cat2), have been studied by comparing the results of photoemission (XPS) and near edge X-ray absorption spectroscopy (NEXAFS) experiments with the outcome of DFT calculations. The B 1s, C 1s and O 1s K-edges have been investigated for both the isolated gas phase molecule and the adsorbed one on the Au(111) surface. The main features of the polarized NEXAFS spectra at each of the three edges considered are not significantly affected by the presence of the substrate, with respect to the isolated molecule, indicating that the molecule-gold interaction is weak. Moreover, the comparison between the observed dichroism in the NEXAFS spectra of the adsorbed B2Cat2 and that in the NEXAFS spectra of the isolated molecule has confirmed the orbital symmetry assigned in the gas phase absorption spectra. The transitions to π(B-B) bonding and π*(B-B) anti-bonding final states represent the most relevant probe of the chemistry of the B2Cat2 molecule. We show that their theoretical description requires that the treatment of the relaxation changes among different excited state configurations, which we successfully implemented by using ΔSCF-DFT (ΔSCF) calculations.
Collapse
Affiliation(s)
- D Toffoli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy.
| | - C Grazioli
- IOM-CNR, Istituto Officina dei Materiali-CNR, S.S.14, Km 163.5, 34149 Trieste, Italy
| | - M Monti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy.
| | - M Stener
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy.
| | - R Totani
- ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | - R Richter
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - L Schio
- IOM-CNR, Istituto Officina dei Materiali-CNR, S.S.14, Km 163.5, 34149 Trieste, Italy
| | - G Fronzoni
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy.
| | - A Cossaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy. .,IOM-CNR, Istituto Officina dei Materiali-CNR, S.S.14, Km 163.5, 34149 Trieste, Italy
| |
Collapse
|
28
|
Iwasawa N, Ono K. 3D-Boronic Ester Architectures: Synthesis, Host-Guest Chemistry, Dynamic Behavior, and Supramolecular Catalysis. CHEM REC 2021; 22:e202100214. [PMID: 34596949 DOI: 10.1002/tcr.202100214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/09/2022]
Abstract
Boronic esters are known to be formed simply by mixing boronic acids and alcohols under neutral conditions, and the equilibrium is in favor of the boronic esters when 1,2- or 1,3-diols are employed as alcohols. By utilizing the dynamic nature of the boronic ester formation, our group successfully constructed unique boron-containing 3D structures, such as ring-shaped macrocycles, cages, and tubes, based on the boronic ester formation of various aromatic di-, tri-, or hexaboronic acids with an originally designed tetrol 1 containing two sets of fixed 1,2-diol units oriented on the same face of an indacene framework. Various functions of the obtained boronates were further pursued to disclose the characteristic features of this system. This personal account describes our self-assembled boronate system using tetrol 1 including synthesis, host-guest chemistry, kinetic connection, characteristic dynamic behaviors, and supramolecular catalysis.
Collapse
Affiliation(s)
- Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kosuke Ono
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
29
|
Giraldi E, Scopelliti R, Fadaei-Tirani F, Severin K. Metal-Stabilized Boronate Ester Cages. Inorg Chem 2021; 60:10873-10879. [PMID: 34291934 DOI: 10.1021/acs.inorgchem.1c01719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular cages with arylboronate ester caps at the vertices are described. The cages were obtained by metal-templated polycondensation reactions of a tris(2-formylpyridine oxime) ligand with arylboronic acids. Suited templates are triflate or triflimide salts of ZnII, FeII, CoII, or MnII. In the products, the metal ions are coordinated internally to the pyridyl and oximato N atoms adjacent to the boronate ester, resulting in an improved hydrolytic stability of the latter. It is possible to decorate the cages with cyano or aldehyde groups using functionalized arylboronic acids. The aldehyde groups allow for a postsynthetic modification of the cages via an imine bond formation.
Collapse
Affiliation(s)
- Erica Giraldi
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
30
|
|
31
|
Marková P, Uchman M. Synthesis and self-assembly of polyzwitterionic phenylboronic acid-containing double hydrophilic block copolymers. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Wang S, Forster MC, Xue K, Ehlers F, Pang B, Andreas LB, Vana P, Zhang K. Macroscalar Helices Co-Assembled from Chirality-Transferring Temperature-Responsive Carbohydrate-Based Bolaamphiphiles and 1,4-Benzenediboronic Acid. Angew Chem Int Ed Engl 2021; 60:9712-9718. [PMID: 33501758 PMCID: PMC8252102 DOI: 10.1002/anie.202100153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 11/06/2022]
Abstract
We present the first example of macroscalar helices co‐assembled from temperature‐responsive carbohydrate‐based bolaamphiphiles (CHO‐Bolas) and 1,4‐benzenediboronic acid (BDBA). The CHO‐Bolas contained hydrophilic glucose or mannose moieties and a hydrophobic coumarin dimer. They showed temperature‐responsive reversible micelle‐to‐vesicle transition (MVT) in aqueous solutions. After the binding of carbohydrate moieties with boronic acids of BDBA in their alkaline solutions, right‐handed helices were formed via the temperature‐driven chirality transfer of d‐glucose or d‐mannose from the molecular to supramolecular level. These helices were co‐assembled by unreacted BDBA, boronate esters (B−O−C bonds) between CHO‐Bolas and BDBA, as well as boroxine anhydrides (B−O−B bonds) of self‐condensed BDBA. After heating at 300 °C under nitrogen, the helices displayed excellent morphological stability. Moreover, they emitted bright blue luminescence caused by strong self‐condensation of BDBA and decomposition of coumarin dimers.
Collapse
Affiliation(s)
- Shuang Wang
- Wood Technology and Wood Chemistry, Dept. Wood Technology and Wood-based Composites, Georg-August-University of Goettingen, 37077, Goettingen, Germany
| | - Marcel C Forster
- NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 4, 37077, Goettingen, Germany
| | - Kai Xue
- NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 4, 37077, Goettingen, Germany
| | - Florian Ehlers
- Institute of Physical Chemistry, Georg-August-University of Goettingen, Tammannstraße 6, 37077, Goettingen, Germany
| | - Bo Pang
- Wood Technology and Wood Chemistry, Dept. Wood Technology and Wood-based Composites, Georg-August-University of Goettingen, 37077, Goettingen, Germany
| | - Loren B Andreas
- NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 4, 37077, Goettingen, Germany
| | - Philipp Vana
- Institute of Physical Chemistry, Georg-August-University of Goettingen, Tammannstraße 6, 37077, Goettingen, Germany
| | - Kai Zhang
- Wood Technology and Wood Chemistry, Dept. Wood Technology and Wood-based Composites, Georg-August-University of Goettingen, 37077, Goettingen, Germany
| |
Collapse
|
33
|
Coassemblierung von Helices auf Makroebene durch chiralitätstransferierende, temperaturresponsive, Kohlenhydrat‐basierte Bolaamphiphile und 1,4‐Phenylenbisboronsäure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Tanaka R, Fujii H, Kida T, Nakayama Y, Shiono T. Incorporation of Boronic Acid Functionality into Isotactic Polypropylene and Its Application as a Cross-Linking Point. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ryo Tanaka
- Graduate School of Advanced Science and Technology, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Hiroya Fujii
- Graduate School of Advanced Science and Technology, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Takumitsu Kida
- Graduate School of Advanced Science and Technology, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Yuushou Nakayama
- Graduate School of Advanced Science and Technology, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Takeshi Shiono
- Graduate School of Advanced Science and Technology, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
35
|
Petrushenko IK, Bettinger HF. Hydrogen adsorption on inorganic benzenes decorated with alkali metal cations: theoretical study. Phys Chem Chem Phys 2021; 23:5315-5324. [PMID: 33634299 DOI: 10.1039/d1cp00025j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hydrogen adsorption on different benzenes, both organic and inorganic, decorated with Li cations (Li+) was systematically studied by using quantum chemistry techniques. Our calculations demonstrate that Li+-decoration enhances the hydrogen storage ability of the complexes. MP2 calculations reveal that one to five hydrogen molecules per Li+ have high adsorption energies (Ead), up to -4.77 kcal mol-1, which is crucial for effective adsorption/desorption performance. The assessed hydrogen capacity of studied complexes is in the range of 10.0-10.6 wt%. SAPT2 calculations confirmed that induction and electrostatic interactions play the major role for H2 adsorption of the investigated systems, whereas London dispersion contributes to Ead moderately only in the cases of large number of hydrogen molecules adsorbed. Independent gradient model (IGM) analysis showed that there exists non-covalent bonding between Li+ and H2. The obtained van't Hoff desorption temperatures substantially exceed the temperature of liquid nitrogen. Ab initio molecular dynamics simulations confirmed the stability of the studied complexes. Our investigations establish the high potential of the studied complexes for usage in systems for hydrogen storage.
Collapse
Affiliation(s)
- Igor K Petrushenko
- Irkutsk National Research Technical University, 83 Lermontov St., 664074 Irkutsk, Russia.
| | - Holger F Bettinger
- Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
36
|
Ota K, Kinjo R. Aromatic nature of neutral and dianionic 1,4-diaza-2,3,5,6-tetraborinine derivatives. RSC Adv 2020; 11:592-598. [PMID: 35423032 PMCID: PMC8691108 DOI: 10.1039/d0ra09040a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
The aromatically relevant parameters of boron-rich inorganic benzenes-neutral and dianionic 1,4-diaza-2,3,5,6-tetraborinine derivatives (B4N2R6)-have been computationally estimated and evaluated from geometric, electronic, magnetic, and energetic points of view. The majority of the criteria (ASE, NICSzz, ELF, and PDI) indicate that the aromaticity of the neutral B4N2 benzene analogue stabilized by Lewis bases lies in between those of benzene and borazine. On the other hand, the aromaticity of the dianionic B4N2 benzene analogue 4' is controversial. The pronounced aromatic nature of 4' is supported by ELFπ, PDI, and NICSπzz, but ASE, the FiPC-NICS plot, and ACID oppose this. These data confirm that even with the same B4N2-skeletal framework of a 6π-system, the aromatic feature varies depending on the overall charge of the B4N2 systems.
Collapse
Affiliation(s)
- Kei Ota
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
37
|
Cruz CD, Wrigstedt P, Moslova K, Iashin V, Mäkkylä H, Ghemtio L, Heikkinen S, Tammela P, Perea-Buceta JE. Installation of an aryl boronic acid function into the external section of N-aryl-oxazolidinones: Synthesis and antimicrobial evaluation. Eur J Med Chem 2020; 211:113002. [PMID: 33223262 DOI: 10.1016/j.ejmech.2020.113002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
N-aryl-oxazolidinones is a prominent family of antimicrobials used for treating infections caused by clinically prevalent Gram-positive bacteria. Recently, boron-containing compounds have displayed intriguing potential in the antibiotic discovery setting. Herein, we report the unprecedented introduction of a boron-containing moiety such as an aryl boronic acid in the external region of the oxazolidinone structure via a chemoselective acyl coupling reaction. As a result, we accessed a series of analogues with a distal aryl boronic pharmacophore on the oxazolidinone scaffold. We identified that a peripheric linear conformation coupled with freedom of rotation and no further substitution on the external aryl boronic ring, an amido linkage with hydrogen bonding character, in addition to a para-relative disposition between boronic group and linker, are the optimal combination of structural features in this series for antimicrobial activity. In comparison to linezolid, the analogue comprising all those features, compound 20b, displayed levels of antimicrobial activity augmented by an eight-fold to a thirty-two-fold against a panel of Gram-positive strains, and a near one hundred-fold against Escherichia coli JW5503, a Gram-negative mutant strain with a defective efflux capability.
Collapse
Affiliation(s)
- Cristina D Cruz
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Pauli Wrigstedt
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland
| | - Karina Moslova
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland
| | - Vladimir Iashin
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland
| | - Heidi Mäkkylä
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Léo Ghemtio
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Sami Heikkinen
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Jesus E Perea-Buceta
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, 00014, Finland.
| |
Collapse
|
38
|
Sasaki Y, Ito S, Zhang Z, Lyu X, Takizawa SY, Kubota R, Minami T. Supramolecular Sensor for Astringent Procyanidin C1: Fluorescent Artificial Tongue for Wine Components. Chemistry 2020; 26:16236-16240. [PMID: 32633434 DOI: 10.1002/chem.202002262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 01/15/2023]
Abstract
An artificial tongue that detects astringent components for a comprehensive evaluation of taste has not been established to date. Herein, we first propose fluorescent polythiophene (PT) derivatives (S1-S3) modified with 3-pyridinium boronic acid as supramolecular chemosensors for wine components including astringent procyanidin C1. After numerous attempts for the synthetic conditions, more than 95 mol % of the PT unit was modified with the pyridinium boronic acid moiety. To evaluate the PT derivatives as chemosensors of the artificial tongue, qualitative and quantitative analyses were performed with four types of wine components (i.e., sweet, sour, bitter, and astringent tastes) in combination with pattern recognition models. Notably, procyanidin C1 in the actual wine sample was successfully detected in a quantitative manner. In other words, we have established an authentic artificial tongue using PT based supramolecular chemosensors.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Satoshi Ito
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.,Nitto Denko Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka, 567-8680, Japan
| | - Zhoujie Zhang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Riku Kubota
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
39
|
Noda H, Shibasaki M, Kumagai N. Design, Synthesis, and Application of Multiboron Heterocycle to Direct Amidation Catalyst. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Pécharman AF, Hill MS, McMullin CL, Mahon MF. [BO 2 ] - as a Synthon for the Generation of Boron-Centered Carbamate and Carboxylate Isosteres. Angew Chem Int Ed Engl 2020; 59:13628-13632. [PMID: 32401402 PMCID: PMC7496551 DOI: 10.1002/anie.202005674] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/09/2020] [Indexed: 12/14/2022]
Abstract
Oxoborane carbamate and carboxylate analogues result from the in situ trapping of [BO2]− produced by elimination of 2,3‐dimethyl‐2‐butene from a pinacolatoboryl anion.
Collapse
Affiliation(s)
| | - Michael S Hill
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | | | - Mary F Mahon
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
41
|
Petrushenko I, Shipitsin N, Petrushenko K. Cation-π interactions of inorganic benzenes with Li, Na, and Mg cations: Theoretical insights. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Ota K, Kinjo R. Inorganic Benzene Valence Isomers. Chem Asian J 2020; 15:2558-2574. [DOI: 10.1002/asia.202000535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Kei Ota
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Nanyang Link 21 Singapore 637371 Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Nanyang Link 21 Singapore 637371 Singapore
| |
Collapse
|
43
|
Pécharman A, Hill MS, McMullin CL, Mahon MF. [BO
2
]
−
as a Synthon for the Generation of Boron‐Centered Carbamate and Carboxylate Isosteres. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Mary F. Mahon
- Department of Chemistry University of Bath Bath BA2 7AY UK
| |
Collapse
|
44
|
Ota K, Kinjo R. A Neutral and Aromatic Boron‐Rich Inorganic Benzene. Angew Chem Int Ed Engl 2020; 59:6572-6575. [DOI: 10.1002/anie.201915790] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/24/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Kei Ota
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Nanyang Link 21 Singapore 637371 Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Nanyang Link 21 Singapore 637371 Singapore
| |
Collapse
|
45
|
Affiliation(s)
- Kei Ota
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Nanyang Link 21 Singapore 637371 Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Nanyang Link 21 Singapore 637371 Singapore
| |
Collapse
|
46
|
Li SS, Lv XH, Sun XL, Wan WM, Bao H. Well-controlled polymerization of tri-vinyl dynamic covalent boroxine monomer: one dynamic covalent boroxine moiety toward a tunable penta-responsive polymer. Polym Chem 2020. [DOI: 10.1039/d0py00401d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attributed to dynamic characteristics of dynamic covalent boroxine, well-controlled polymerization of tri-vinyl monomer and molecular design of penta-responsive polymer with only one functional moiety are achieved.
Collapse
Affiliation(s)
- Shun-Shun Li
- State Key Laboratory of Structural Chemistry
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Xin-Hu Lv
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China)
- Qingdao 266580
- P. R. of China
| | - Xiao-Li Sun
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China)
- Qingdao 266580
- P. R. of China
| | - Wen-Ming Wan
- State Key Laboratory of Structural Chemistry
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| |
Collapse
|
47
|
Long PW, Xie JL, Yang JJ, Lu SQ, Xu Z, Ye F, Xu LW. Stereo- and regio-selective synthesis of silicon-containing diborylalkenes via platinum-catalyzed mono-lateral diboration of dialkynylsilanes. Chem Commun (Camb) 2020; 56:4188-4191. [PMID: 32167108 DOI: 10.1039/d0cc00844c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly chemoselective platinum-catalyzed mono-lateral diboration of dialkynylsilanes for the construction of silicon-tethered alkynyl diborylalkenes is described, in which tris(4-methoxyphenyl)phosphine was found to be an effective ligand for the cis-addition of diboron agents to the silicon-tethered alkynes, and the chiral ligand (AFSi-Phos)-mediated diboration of dialkynylsilanes resulted in the desymmetric construction of silicon-stereogenic centers with promising enantioselectivity.
Collapse
Affiliation(s)
- Peng-Wei Long
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, P. R. China.
| | - Jia-Le Xie
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, P. R. China.
| | - Jing-Jing Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, P. R. China.
| | - Si-Qi Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, P. R. China.
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, P. R. China.
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, P. R. China.
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, P. R. China. and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, P. R. China
| |
Collapse
|
48
|
Theoretical study on the M-H···π interactions between metal hydrides and inorganic benzene B3X3H3(X = O, S, Se). Struct Chem 2019. [DOI: 10.1007/s11224-019-01474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Fereidoni S, Ghiasi R, Pasdar H, Mohtat B. Substituent Effect on the Acidity Strength of para-C6H4XB(OH)2 Boronic Acid: A Theoretical Investigation. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619110064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Evans AM, Castano I, Brumberg A, Parent LR, Corcos AR, Li RL, Flanders NC, Gosztola DJ, Gianneschi NC, Schaller RD, Dichtel WR. Emissive Single-Crystalline Boroxine-Linked Colloidal Covalent Organic Frameworks. J Am Chem Soc 2019; 141:19728-19735. [DOI: 10.1021/jacs.9b08815] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | | | | | | | | | - David J. Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | | | - Richard D. Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | | |
Collapse
|