1
|
Lv Q, Su T, Liu W, Wang L, Hu J, Cheng Y, Ning C, Shan W, Luo X, Chen X. Low Serum Apolipoprotein A1 Levels Impair Antitumor Immunity of CD8+ T Cells via the HIF-1α-Glycolysis Pathway. Cancer Immunol Res 2024; 12:1058-1073. [PMID: 38752667 DOI: 10.1158/2326-6066.cir-23-0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 08/02/2024]
Abstract
An immunosuppressive microenvironment promotes the occurrence and development of tumors. Low apolipoprotein A1 (ApoA1) is closely related to tumor development, but the underlying mechanisms are unclear. This study investigated the association between serum ApoA1 levels and the immune microenvironment in endometrial, ovarian, and lung cancers. The serum ApoA1 level was decreased significantly in patients with endometrial and ovarian cancers compared with healthy controls. In endometrial cancer (EC) tissues, the low serum ApoA1 level group showed increased CD163+ macrophage infiltration and decreased CD8+ T-cell infiltration compared with the normal serum ApoA1 group. Compromised tumor-infiltrating CD8+ T-cell functions and decreased CD8+ T-cell infiltration also were found in tumor-bearing Apo1-knockout mice. CD8+ T-cell depletion experiments confirmed that ApoA1 exerted its antitumor activity in a CD8+ T-cell-dependent manner. In vitro experiments showed that the ApoA1 mimetic peptide L-4F directly potentiated the antitumor activity of CD8+ T cells via a HIF-1α-mediated glycolysis pathway. Mechanistically, ApoA1 suppressed ubiquitin-mediated degradation of HIF-1α protein by downregulating HIF-1α subunit α inhibitor. This regulatory process maintained the stability of HIF-1α protein and activated the HIF-1α signaling pathway. Tumor-bearing Apoa1 transgenic mice showed an increased response to anti-PD-1 therapy, leading to reduced tumor growth along with increased infiltration of activated CD8+ T cells and enhanced tumor necrosis. The data reported herein demonstrate critical roles for ApoA1 in enhancing CD8+ T-cell immune functions via HIF-1α-mediated glycolysis and support clinical investigation of combining ApoA1 supplementation with anti-PD-1 therapy for treating cancer.
Collapse
Affiliation(s)
- Qiaoying Lv
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Tong Su
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Wei Liu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Lulu Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Jiali Hu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Yali Cheng
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Chengcheng Ning
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Weiwei Shan
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Xuezhen Luo
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| | - Xiaojun Chen
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, PR China
| |
Collapse
|
2
|
Wang C, Chen S, Zhang R, Chen M, Yang X, He Y, Shangguan Z, Mao Q, Zhang Z, Ying S. Apolipoprotein A-1 downregulation promotes basal-like breast cancer cell proliferation and migration associated with DNA methylation. Oncol Lett 2024; 28:295. [PMID: 38737975 PMCID: PMC11082839 DOI: 10.3892/ol.2024.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/18/2024] [Indexed: 05/14/2024] Open
Abstract
Apolipoprotein A-I (APOA1) performs different roles in different subtypes of breast cancer. It is hypothesized to function as a tumor suppressor in basal-like breast cancer (BLBC). However, the specific role of APOA1 in BLBC and its underlying mechanisms remain unknown. The findings of the present study demonstrated a positive correlation between the expression level of APOA1 and the overall survival of patients with BLBC. Ectopic expression of APOA1 effectively inhibits the proliferation and metastasis of BLBC cells in vitro, and these effects are closely related to DNA methylation. To the best of our knowledge, the present study is the first to report increased methylation of the promoter region and decreased methylation of the structural genes of APOA1 in BLBC cells. These alterations resulted in the downregulation of APOA1 expression and suppression of BLBC tumor growth. Collectively, the results of the present study suggested that APOA1 mRNA expression is negatively regulated by DNA methylation in BLBC. Therefore, low expression of APOA1 may be a potential risk biomarker to predict survival in patients with BLBC.
Collapse
Affiliation(s)
- Cong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Shiliang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Ranran Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Mengqing Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoxiao Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Yibo He
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Zuifei Shangguan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Qifen Mao
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Zhezhong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, P.R. China
| | - Sunke Ying
- Department of Clinical Laboratory, The First People's Hospital of Yongkang, Jinhua, Zhejiang 321300, P.R. China
| |
Collapse
|
3
|
Luo F, Cao J, Chen Q, Liu L, Yang T, Bai X, Ma W, Lin C, Zhou T, Zhan J, Huang Y, Yang Y, Zhao H, Zhang L. HDL-cholesterol confers sensitivity of immunotherapy in nasopharyngeal carcinoma via remodeling tumor-associated macrophages towards the M1 phenotype. J Immunother Cancer 2024; 12:e008146. [PMID: 38871480 DOI: 10.1136/jitc-2023-008146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND The sustained effectiveness of anti-programmed cell death protein-1/programmed death-ligand 1 treatment is limited to a subgroup of patients with advanced nasopharyngeal carcinoma (NPC), and the specific biomarker determining the response to immunotherapy in NPC remains uncertain. METHODS We assessed the associations between pre-immunotherapy and post-immunotherapy serum lipoproteins and survival in a training cohort (N=160) and corroborated these findings in a validation cohort (N=100). Animal studies were performed to explore the underlying mechanisms. Additionally, the relationship between high-density lipoprotein-cholesterol (HDL-C) levels and M1/M2-like macrophages, as well as activated CD8+T cells in tumor tissues from patients with NPC who received immunotherapy, was investigated. RESULTS The lipoproteins cholesterol, HDL-C, low-density lipoprotein-cholesterol, triglycerides, apolipoprotein A-1 (ApoA1), and apolipoprotein B, were significantly altered after immunotherapy. Patients with higher baseline HDL-C or ApoA1, or those with increased HDL-C or ApoA1 after immunotherapy had longer progression-free survival, a finding verified in the validation cohort (p<0.05). Multivariate analysis revealed that baseline HDL-C and elevated HDL-C post-immunotherapy were independent predictors of superior PFS (p<0.05). Furthermore, we discovered that L-4F, an ApoA1 mimetic, could inhibit tumor growth in NPC xenografts. This effect was associated with L-4F's ability to polarize M2-like macrophages towards an M1-like phenotype via the activation of mitogen-activated protein kinase (MAPK) p38 and nuclear factor-κB (NF-κB) p65, thereby alleviating immunosuppression in the tumor microenvironment. Importantly, in patients with NPC with high plasma HDL-C levels, the number of M2-like macrophages was significantly decreased, while M1-like macrophages and activated CD8+T cells were notably increased in those with high HDL-C levels. CONCLUSION Higher baseline HDL-C levels or an increase in HDL-C post-immunotherapy can enhance immunotherapeutic responses in patients with NPC by reprogramming M2-like macrophages towards the M1 phenotype. This suggests a potential role for prospectively exploring ApoA1 mimetics as adjuvant agents in combination with immunotherapy.
Collapse
Affiliation(s)
- Fan Luo
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiaxin Cao
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qun Chen
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lusha Liu
- Department of Radiotherapy, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ting Yang
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xue Bai
- Department of Radiotherapy, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wenjuan Ma
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chaozhuo Lin
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianhua Zhan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
4
|
Hu J, Chen ZT, Su KY, Lian Y, Lu L, Hu ADN. Apolipoprotein A1 suppresses the hypoxia-induced angiogenesis of human retinal endothelial cells by targeting PlGF. Int J Ophthalmol 2023; 16:33-39. [PMID: 36659935 PMCID: PMC9815967 DOI: 10.18240/ijo.2023.01.05] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/10/2022] [Indexed: 12/30/2022] Open
Abstract
AIM To investigate the anti-angiogenic effect of apolipoprotein A1 (apoA1) on primary human retinal vascular endothelial cells (HRECs) and explore the possible mechanism. METHODS The primary HRECs were transfected with apoA1-GFP recombinant lentiviral and were compared with cells undergoing transfection with empty lentiviral vectors. Hypoxia chambers were used to simulate the anoxic environment of cells under pathological condition. The concentrations of secreted vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) were measured by enzyme-linked immunosorbent assay (ELISA). Cell migration ability was detected by wound healing assay. The sprouting of HRECs was determined by tube formation assay. The protein levels of extracellular signal regulated kinase 1/2 (ERK1/2) and phosphorylated ERK1/2 (p-ERK1/2) were measured by Western blot. RESULTS Overexpressed apoA1 in hypoxia-induced HRECs significantly suppressed PlGF (0.67±0.10 folds, P=0.007). Overexpressed apoA1 also attenuated hypoxia-induced cell migration (0.32±0.11 folds, P<0.0001), tube formation (0.66±0.01 folds, P<0.0001) and the phosphorylation levels of ERK (0.6±0.11 folds, P=0.025). Pretreatment of mitogen-activated protein kinase kinase (MEK) inhibitor (U0126) further reduced the PlGF and angiogenesis in hypoxia-induced HRECs. CONCLUSION ApoA1 inhibits the angiogenesis at least in part by inactivating ERK1/2 in hypoxia-induced HRECs. Moreover, apoA1 suppresses the PlGF expression, which selectively associated with pathological angiogenesis.
Collapse
|
5
|
He Y, Chen J, Ma Y, Chen H. Apolipoproteins: New players in cancers. Front Pharmacol 2022; 13:1051280. [PMID: 36506554 PMCID: PMC9732396 DOI: 10.3389/fphar.2022.1051280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
Apolipoproteins (APOs), the primary protein moiety of lipoproteins, are known for their crucial role in lipid traffic and metabolism. Despite extensive exploration of APOs in cardiovascular diseases, their roles in cancers did not attract enough attention. Recently, research focusing on the roles of APOs in cancers has flourished. Multiple studies demonstrate the interaction of APOs with classical pathways of tumorigenesis. Besides, the dysregulation of APOs may indicate cancer occurrence and progression, thus serving as potential biomarkers for cancer patients. Herein, we summarize the mechanisms of APOs involved in the development of various cancers, their applications as cancer biomarkers and their genetic polymorphism associated with cancer risk. Additionally, we also discuss the potential anti-cancer therapies by virtue of APOs. The comprehensive review of APOs in cancers may advance the understanding of the roles of APOs in cancers and their potential mechanisms. We hope that it will provide novel clues and new therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Yingcheng He
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Jianrui Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Yanbing Ma
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Experimental Animals, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Hongping Chen,
| |
Collapse
|
6
|
Patel KK, Kashfi K. Lipoproteins and cancer: The role of HDL-C, LDL-C, and cholesterol-lowering drugs. Biochem Pharmacol 2022; 196:114654. [PMID: 34129857 PMCID: PMC8665945 DOI: 10.1016/j.bcp.2021.114654] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023]
Abstract
Cholesterol is an amphipathic sterol molecule that is vital for maintaining normal physiological homeostasis. It is a relatively complicated molecule with 27 carbons whose synthesis starts with 2-carbon units. This in itself signifies the importance of this molecule. Cholesterol serves as a precursor for vitamin D, bile acids, and hormones, including estrogens, androgens, progestogens, and corticosteroids. Although essential, high cholesterol levels are associated with cardiovascular and kidney diseases and cancer initiation, progression, and metastasis. Although there are some contrary reports, current literature suggests a positive association between serum cholesterol levels and the risk and extent of cancer development. In this review, we first present a brief overview of cholesterol biosynthesis and its transport, then elucidate the role of cholesterol in the progression of some cancers. Suggested mechanisms for cholesterol-mediated cancer progression are plentiful and include the activation of oncogenic signaling pathways and the induction of oxidative stress, among others. The specific roles of the lipoprotein molecules, high-density lipoprotein (HDL) and low-density lipoprotein (LDL), in this pathogenesis, are also reviewed. Finally, we hone on the potential role of some cholesterol-lowering medications in cancer.
Collapse
Affiliation(s)
- Kush K Patel
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, NY, USA.
| |
Collapse
|
7
|
Wang B, Shen Y, Liu T, Tan L. ERα promotes transcription of tumor suppressor gene ApoA-I by establishing H3K27ac-enriched chromatin microenvironment in breast cancer cells. J Zhejiang Univ Sci B 2021; 22:1034-1044. [PMID: 34904415 DOI: 10.1631/jzus.b2100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Apolipoprotein A-I (ApoA-I), the main protein component of high-density lipoprotein (HDL), plays a pivotal role in reverse cholesterol transport (RCT). Previous studies indicated a reduction of serum ApoA-I levels in various types of cancer, suggesting ApoA-I as a potential cancer biomarker. Herein, ectopically overexpressed ApoA-I in MDA-MB-231 breast cancer cells was observed to have antitumor effects, inhibiting cell proliferation and migration. Subsequent studies on the mechanism of expression regulation revealed that estradiol (E2)/estrogen receptor α (ERα) signaling activates ApoA-I gene transcription in breast cancer cells. Mechanistically, our ChIP-seq data showed that ERα directly binds to the estrogen response element (ERE) site within the ApoA-I gene and establishes an acetylation of histone 3 lysine 27 (H3K27ac)-enriched chromatin microenvironment. Conversely, Fulvestrant (ICI 182780) treatment blocked ERα binding to ERE within the ApoA-I gene and downregulated the H3K27ac level on the ApoA-I gene. Treatment with p300 inhibitor also significantly decreased the ApoA-I messenger RNA (mRNA) level in MCF7 cells. Furthermore, the analysis of data from The Cancer Genome Atlas (TCGA) revealed a positive correlation between ERα and ApoA-I expression in breast cancer tissues. Taken together, our study not only revealed the antitumor potential of ApoA-I at the cellular level, but also found that ERα promotes the transcription of ApoA-I gene through direct genomic effects, and p300 may act as a co-activator of ERα in this process.
Collapse
Affiliation(s)
- Bingjie Wang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yinghui Shen
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Tianyu Liu
- Colorectal Cancer Center, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Guo Y, Huang B, Li R, Li J, Tian S, Peng C, Dong W. Low APOA-1 Expression in Hepatocellular Carcinoma Patients Is Associated With DNA Methylation and Poor Overall Survival. Front Genet 2021; 12:760744. [PMID: 34790226 PMCID: PMC8591198 DOI: 10.3389/fgene.2021.760744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the most frequent fatal malignancy, and it has a poor prognosis. Apolipoprotein 1 (APOA-1), the main protein component of high-density lipoproteins, is involved in numerous biological processes. Thus, this study was performed to detect the clinical significance of APOA-1 mRNA, APOA-1 expression, and APOA-1DNA methylation in patients with HCC. Methods: Data mining was performed using clinical and survival data from the Cancer Genome Atlas (TCGA) and Oncomine databases. The serum concentration of APOA-1 was measured in 316 patients with HCC and 100 healthy individuals at Renmin Hospital of Wuhan University, and the intact clinical information was reviewed and determined using univariate and multivariate Cox hazard models. Results: Bioinformatic analysis revealed that APOA-1 mRNA was present at lower levels in the serum of patients with HCC than in that of healthy individuals, and there was a strong negative correlation between levels of APOA-1 mRNA and APOA-1 DNA methylation. High expression of APOA-1 transcription correlated with better overall survival (p = 0.003), and APOA-1 hypermethylation correlated with progress-free survival (p = 0.045) in HCC sufferers. Next, the clinical data analysis demonstrated that APOA-1 protein levels in the serum were significantly lower in patients with HCC than in healthy controls. Furthermore, the expression of APOA-1 was significantly associated with some significant clinical indexes, and elevated APOA-1 expression was significantly associated with favorable (OS; HR:1.693, 95% CI: 1.194–2.401, p = 0.003) and better progression-free survival (PFS; HR = 1.33, 95% CI = 1.194–2.401, p = 0.045). Finally, enrichment analysis suggested that co-expressed genes of APOA-1 were involved in lipoprotein metabolism and FOXA2/3 transcription factor networks. Conclusion: APOA-1 mRNA expression is negatively regulated by DNA methylation in HCC. Low expression of APOA-1 might be a potential risk biomarker to predict survival in patients with HCC.
Collapse
Affiliation(s)
- Yingyun Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Binglu Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruixue Li
- Department of Gastroenterology, Macheng Renmin Hospital, Macheng, Huanggang, China
| | - Jiao Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shan Tian
- Department of Infectious, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Peng
- Department of Infectious, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Ossoli A, Wolska A, Remaley AT, Gomaraschi M. High-density lipoproteins: A promising tool against cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159068. [PMID: 34653581 DOI: 10.1016/j.bbalip.2021.159068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
High-density lipoproteins (HDL) are well known for their protective role against the development and progression of atherosclerosis. Atheroprotection is mainly due to the key role of HDL within the reverse cholesterol transport, and to their ability to exert a series of antioxidant and anti-inflammatory activities. Through the same mechanisms HDL could also affect cancer cell proliferation and tumor progression. Many types of cancers share common alterations of cellular metabolism, including lipid metabolism. In this context, not only fatty acids but also cholesterol and its metabolites play a key role. HDL were shown to reduce cancer cell content of cholesterol, overall rewiring cholesterol homeostasis. In addition, HDL reduce oxidative stress and the levels of pro-inflammatory molecules in cancer cells and in the tumor microenvironment (TME). Here, HDL can also help in reverting tumor immune escape and in inhibiting angiogenesis. Interestingly, HDL are good candidates for drug delivery, targeting antineoplastic agents to the tumor mass mainly through their binding to the scavenger receptor BI. Since they could affect cancer development and progression per se, HDL-based drug delivery systems may render cancer cells more sensitive to antitumor agents and reduce the development of drug resistance.
Collapse
Affiliation(s)
- Alice Ossoli
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Monica Gomaraschi
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
10
|
Feng JF, Zhao JM, Yang X, Wang L. The Prognostic Impact of Preoperative Serum Apolipoprotein A-I in Patients with Esophageal Basaloid Squamous Cell Carcinoma. Cancer Manag Res 2021; 13:7373-7385. [PMID: 34588815 PMCID: PMC8474064 DOI: 10.2147/cmar.s328138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
Background Esophageal basaloid squamous cell carcinoma (EBSCC) is a rare malignancy. Serum apolipoprotein A-I (APO A-I) has proved to be a potentially useful prognostic indicator in various cancers. However, no studies have analyzed the prognostic significance of serum APO A-I in patients with EBSCC. The aim of this study was to investigate the prognostic impact of preoperative serum APO A-I in patients with EBSCC. Methods Between 2007 and 2018, a retrospective study of 4050 patients with resectable esophageal squamous cell carcinoma (ESCC) including the levels of preoperative serum lipids was conducted and evaluated. The best cut-off values of the preoperative serum lipids were evaluated by receiver operating characteristic (ROC) curves. Kaplan–Meier analyses and Cox regression analyses were analyzed the overall survival (OS) and recurrence-free survival (RFS). A prediction model of nomogram was developed to predict individual OS and RFS in EBSCC. Results There were 53 patients enrolled in the study, which accounted for 1.31% (53/4050) of all primary ESCC. The best cut-off point was 1.305 g/L for serum APO A-I according to the ROC curve. Patients with lower levels of serum preoperative APO A-I were associated with worse RFS (16.1% vs 54.5%, P = 0.006) and OS (29.0% vs 63.6%, P = 0.010). The results indicated that serum APO A-I serves as an independent predictor in patients with EBSCC regarding OS [hazard ratio (HR): 0.352; 95% confidence interval (CI): 0.154–0.808; P = 0.014] and RFS (HR: 0.397; 95% CI: 0.185–0.850; P = 0.017). Conclusion Preoperative serum APO A-I is an independent predictor regarding OS and RFS in EBSCC. As far as we know, this is the first study in EBSCC to explore the serum APO A-I in patients with EBSCC.
Collapse
Affiliation(s)
- Ji-Feng Feng
- Department of Thoracic Oncological Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jian-Ming Zhao
- Department of Thoracic Surgery, Jinhua Guangfu Hospital, Jinghua, Zhejiang Province, People's Republic of China
| | - Xun Yang
- Department of Thoracic Oncological Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Liang Wang
- Department of Thoracic Oncological Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
11
|
Lin CH, Huang RYJ, Lu TP, Kuo KT, Lo KY, Chen CH, Chen IC, Lu YS, Chuang EY, Thiery JP, Huang CS, Cheng AL. High prevalence of APOA1/C3/A4/A5 alterations in luminal breast cancers among young women in East Asia. NPJ Breast Cancer 2021; 7:88. [PMID: 34226567 PMCID: PMC8257799 DOI: 10.1038/s41523-021-00299-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
In East Asia, the breast cancer incidence rate among women aged <50 years has rapidly increased. Emerging tumors are distinctly characterized by a high prevalence of estrogen receptor (ER)-positive/human epidermal growth factor receptor (HER2)-negative cancer. In the present study, we identified unique genetic alterations in these emerging tumors. We analyzed gene copy number variations (CNVs) in breast tumors from 120 Taiwanese patients, and obtained public datasets of CNV and gene expression (GE). The data regarding CNV and GE were separately compared between East Asian and Western patients, and the overlapping genes identified in the comparisons were explored to identify the gene-gene interaction networks. In the age <50 years/ER + /HER2- subgroup, tumors of East Asian patients exhibited a higher frequency of copy number loss in APOA1/C3/A4/A5, a lipid-metabolizing gene cluster (33 vs. 10%, P < .001) and lower APOA1/C3/A4/A5 expressions than tumors of Western patients. These copy number loss related- and GE-related results were validated in another Taiwanese cohort and in two GE datasets, respectively. The copy number loss was significantly associated with poor survival among Western patients, but not among East Asian patients. Lower APOA1, APOC3, and APOA5 expressions were associated with higher ESTIMATE immune scores, indicating an abundance of tumor-infiltrating immune cells. In conclusion, APOA1/C3/A4/A5 copy number loss was more prevalent in luminal breast tumors among East Asian women aged <50 years, and its immunomodulatory effect on the tumor microenvironment possibly plays various roles in the tumor biology of East Asian patients.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center Hospital, Taipei, Taiwan
| | - Ruby Yun-Ju Huang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei, Taiwan
| | - Kuan-Ting Kuo
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ko-Yun Lo
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ching-Hsuan Chen
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei City Hospital Heping Fuyou Branch, Taipei, Taiwan
| | - I-Chun Chen
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center Hospital, Taipei, Taiwan
| | - Eric Y Chuang
- Graduate Institute of Biomedical Electronics and Bioinformatics and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Jean Paul Thiery
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chiun-Sheng Huang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center Hospital, Taipei, Taiwan
- Graduate Institute of Oncology and Cancer Research Centre, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Connecting Cholesterol Efflux Factors to Lung Cancer Biology and Therapeutics. Int J Mol Sci 2021; 22:ijms22137209. [PMID: 34281263 PMCID: PMC8268178 DOI: 10.3390/ijms22137209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Cholesterol is a foundational molecule of biology. There is a long-standing interest in understanding how cholesterol metabolism is intertwined with cancer biology. In this review, we focus on the known connections between lung cancer and molecules mediating cholesterol efflux. A major take-home lesson is that the roles of many cholesterol efflux factors remain underexplored. It is our hope that this article would motivate others to investigate how cholesterol efflux factors contribute to lung cancer biology.
Collapse
|
13
|
Yun X, Sun X, Hu X, Zhang H, Yin Z, Zhang X, Liu M, Zhang Y, Wang X. Prognostic and Therapeutic Value of Apolipoprotein A and a New Risk Scoring System Based on Apolipoprotein A and Adenosine Deaminase in Chronic Lymphocytic Leukemia. Front Oncol 2021; 11:698572. [PMID: 34277446 PMCID: PMC8281891 DOI: 10.3389/fonc.2021.698572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Lipid metabolism is related to lymphomagenesis, and is a novel therapeutic target in some hematologic tumors. Apolipoprotein A (ApoA), the major protein of high-density lipoprotein (HDL), plays a crucial role in lipid transportation and protecting against cardiovascular disease, and takes effect on anti-inflammation and anti-oxidation. It is correlated with the prognosis of some solid tumors. Yet, there is no investigation involving the role of ApoA plays in chronic lymphocytic leukemia (CLL). Our retrospective study focuses on the prognostic value of ApoA in CLL and its therapeutic potential for CLL patients. Herein, ApoA is a favorable independent prognostic factor for both overall survival (OS) and progression-free survival (PFS) of CLL patients. ApoA is negatively associated with β2-microglobulin (β2-MG) and advanced stage, which are poor prognostic factors in CLL. Age, Rai stage, ApoA, and adenosine deaminase (ADA) are included in a new risk scoring system named ARAA-score. It is capable of assessing OS and PFS of CLL patients. Furthermore, cell proliferation assays show that the ApoA-I mimetic L-4F can inhibit the proliferation of CLL cell lines and primary cells. In conclusion, ApoA is of prognostic value in CLL, and is a potential therapy for CLL patients. The ARAA-score may optimize the risk stratification of CLL patients.
Collapse
Affiliation(s)
- Xiaoya Yun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Sun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huimin Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zixun Yin
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Xu Y, Zuo W, Wang X, Zhang Q, Gan X, Tan N, Jia W, Liu J, Li Z, Zhou B, Zhao D, Xie Z, Tan Y, Zheng S, Liu C, Li H, Chen Z, Yang X, Huang Z. Deciphering the effects of PYCR1 on cell function and its associated mechanism in hepatocellular carcinoma. Int J Biol Sci 2021; 17:2223-2239. [PMID: 34239351 PMCID: PMC8241733 DOI: 10.7150/ijbs.58026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/16/2021] [Indexed: 12/28/2022] Open
Abstract
Overexpression of pyrroline-5-carboxylate reductase 1 (PYCR1) has been associated with the development of certain cancers; however, no studies have specifically examined the role of PYCR1 in hepatocellular carcinoma (HCC). Based on The Cancer Genome Atlas expression array and meta-analysis conducted using the Gene Expression Omnibus database, we determined that PYCR1 was upregulated in HCC compared to adjacent nontumor tissues (P < 0.05). These data were verified using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry analysis. Additionally, patients with low PYCR1 expression showed a higher overall survival rate than patients with high PYCR1 expression. Furthermore, PYCR1 overexpression was associated with the female sex, higher levels of alpha-fetoprotein, advanced clinical stages (III and IV), and a younger age (< 45 years old). Silencing of PYCR1 inhibited cell proliferation, invasive migration, epithelial-mesenchymal transition, and metastatic properties in HCC in vitro and in vivo. Using RNA sequencing and bioinformatics tools for data-dependent network analysis, we found binary relationships among PYCR1 and its interacting proteins in defined pathway modules. These findings indicated that PYCR1 played a multifunctional role in coordinating a variety of biological pathways involved in cell communication, cell proliferation and growth, cell migration, a mitogen-activated protein kinase cascade, ion binding, etc. The structural characteristics of key pathway components and PYCR1-interacting proteins were evaluated by molecular docking, and hotspot analysis showed that better affinities between PYCR1 and its interacting molecules were associated with the presence of arginine in the binding site. Finally, a candidate regulatory microRNA, miR-2355-5p, for PYCR1 mRNA was discovered in HCC. Overall, our study suggests that PYCR1 plays a vital role in HCC pathogenesis and may potentially serve as a molecular target for HCC treatment.
Collapse
Affiliation(s)
- Yanzhen Xu
- Department of pathology, Affiliated hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Department of Pathology, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, 310000, Hangzhou, China
| | - Wenpu Zuo
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Medical Scientific Research Center, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xiao Wang
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Qinle Zhang
- Genetic and metabolic central laboratory, the maternal and children's health hospital of Guangxi, Nanning, 530000, Guangxi, China
| | - Xiang Gan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Ning Tan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Wenxian Jia
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Jiayi Liu
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhouquan Li
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Bo Zhou
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Dong Zhao
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhibin Xie
- Department of Urology, the Five Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Yanjun Tan
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Shengfeng Zheng
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Chengwu Liu
- Department of Pathophysiology, Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Hongtao Li
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhijian Chen
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xiaoli Yang
- Scientific Research Center, Guilin Medical University, Guilin, 541001, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Zhaoquan Huang
- Department of pathology, Affiliated hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| |
Collapse
|
15
|
Chiu CF, Chang HY, Huang CY, Mau CZ, Kuo TT, Lee HC, Huang SY. Betulinic Acid Affects the Energy-Related Proteomic Profiling in Pancreatic Ductal Adenocarcinoma Cells. Molecules 2021; 26:molecules26092482. [PMID: 33923185 PMCID: PMC8123215 DOI: 10.3390/molecules26092482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 01/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a 5-year survival rate of <8%. Therefore, finding new treatment strategies against PDAC cells is an imperative issue. Betulinic acid (BA), a plant-derived natural compound, has shown great potential to combat cancer owing to its versatile physiological functions. In this study, we observed the impacts of BA on the cell viability and migratory ability of PDAC cell lines, and screened differentially expressed proteins (DEPs) by an LC-MS/MS-based proteomics analysis. Our results showed that BA significantly inhibited the viability and migratory ability of PDAC cells under a relatively low dosage without affecting normal pancreatic cells. Moreover, a functional analysis revealed that BA-induced downregulation of protein clusters that participate in mitochondrial complex 1 activity and oxidative phosphorylation, which was related to decreased expressions of RNA polymerase mitochondrial (POLRMT) and translational activator of cytochrome c oxidase (TACO1), suggesting that the influence on mitochondrial function explains the effect of BA on PDAC cell growth and migration. In addition, BA also dramatically increased Apolipoprotein A1 (APOA1) expression and decreased NLR family CARD domain-containing protein 4 (NLRC4) expression, which may be involved in the dampening of PDAC migration. Notably, altered expression patterns of APOA1 and NLRC4 indicated a favorable clinical prognosis of PDAC. Based on these findings, we identified potential proteins and pathways regulated by BA from a proteomics perspective, which provides a therapeutic window for PDAC.
Collapse
Affiliation(s)
- Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (H.-Y.C.); (C.-Z.M.)
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsin-Yi Chang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (H.-Y.C.); (C.-Z.M.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Yine Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chen-Zou Mau
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (H.-Y.C.); (C.-Z.M.)
| | - Tzu-Ting Kuo
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan;
| | - Hsiu-Chuan Lee
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan;
- Correspondence: (H.-C.L.); (S.-Y.H.)
| | - Shih-Yi Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan; (C.-F.C.); (H.-Y.C.); (C.-Z.M.)
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan;
- Correspondence: (H.-C.L.); (S.-Y.H.)
| |
Collapse
|
16
|
Jang YJ, Kim HK, Choi BC, Song SJ, Park JI, Chun SY, Cho MK. Expression of tissue factor and tissue factor pathway inhibitors during ovulation in rats: a relevance to the ovarian hyperstimulation syndrome. Reprod Biol Endocrinol 2021; 19:52. [PMID: 33794911 PMCID: PMC8017805 DOI: 10.1186/s12958-021-00708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 02/11/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Blood coagulation has been associated with ovulation and female infertility. In this study, the expression of the tissue factor system was examined during ovulation in immature rats; the correlation between tissue factor and ovarian hyperstimulation syndrome (OHSS) was evaluated both in rats and human follicular fluids. METHODS Ovaries were obtained at various times after human chorionic gonadotropin (hCG) injection to investigate the expression of tissue factor system. Expression levels of ovarian tissue factor, tissue factor pathway inhibitor (Tfpi)-1 and Tfpi-2 genes and proteins were determined by real-time quantitative polymerase chain reaction (qPCR), and Western blot and immunofluorescence analyses, respectively. Expression levels of tissue factor system were also investigated in ovaries of OHSS-induced rats and in follicular fluid of infertile women. RESULTS The expression of tissue factor in the preovulatory follicles was stimulated by hCG, reaching a maximum at 6 h. Tissue factor was expressed in the oocytes and the preovulatory follicles. Tfpi-2 mRNA levels were mainly increased by hCG in the granulosa cells whereas the mRNA levels of Tfpi-1 were decreased by hCG. Human CG-stimulated tissue factor expression was inhibited by the progesterone receptor antagonist. The increase in Tfpi-2 expression by hCG was decreased by the proliferator-activated receptor γ (PPARγ) antagonist. Decreased expression of the tissue factor was detected in OHSS-induced rats. Interestingly, the tissue factor concentrations in the follicular fluids of women undergoing in vitro fertilization were correlated with pregnancy but not with OHSS. CONCLUSIONS Collectively, the results indicate that tissue factor and Tfpi-2 expression is stimulated during the ovulatory process in rats; moreover, a correlation exists between the levels of tissue factor and OHSS in rats but not in humans.
Collapse
Affiliation(s)
- You Jee Jang
- Animal Facility of Aging Science, Korea Basic Science Institute, Gwangju, 61186, Republic of Korea
| | - Hee Kyung Kim
- School of Biological Sciences and Biotechnology, Faculty of Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Bum Chae Choi
- Center for Recurrent Miscarriage and Infertility, Creation and Love Women's Hospital, Gwangju, 61917, Republic of Korea
| | - Sang Jin Song
- Center for Recurrent Miscarriage and Infertility, Creation and Love Women's Hospital, Gwangju, 61917, Republic of Korea
| | - Jae Il Park
- Animal Facility of Aging Science, Korea Basic Science Institute, Gwangju, 61186, Republic of Korea.
| | - Sang Young Chun
- School of Biological Sciences and Biotechnology, Faculty of Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Moon Kyoung Cho
- Department of Obstetrics and Gynecology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
17
|
Lui DTW, Cheung CL, Lee ACH, Wong Y, Shiu SWM, Tan KCB. Carbamylated HDL and Mortality Outcomes in Type 2 Diabetes. Diabetes Care 2021; 44:804-809. [PMID: 33402368 DOI: 10.2337/dc20-2186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/24/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Carbamylation is part of the aging process and causes adverse changes in the structure and function of proteins. Lipoproteins are subjected to carbamylation. We investigated the usefulness of carbamylated HDL as a prognostic indicator of survival in patients with type 2 diabetes and the association with mortality outcomes. RESEARCH DESIGN AND METHODS Baseline plasma carbamylated HDL was measured by ELISA in a cohort of 1,517 patients with type 2 diabetes. The primary outcome was all-cause mortality, and the secondary outcomes were cause-specific deaths, including cardiovascular, renal, infection, and cancer related. RESULTS Over a median follow-up of 14 years, 292 patients died, and the mortality rate was 14.5 per 1,000 person-years. Plasma carbamylated HDL level was higher in those with a fatal outcome (46.1 ± 17.8 µg/mL vs. 32.9 ± 10.7; P < 0.01). Patients in the third (hazard ratio [HR] 2.11; 95% CI 1.40-3.17; P < 0.001) and fourth quartiles (HR 6.55; 95% CI 4.67-9.77; P < 0.001) of carbamylated HDL had increased mortality risk. After adjustment for conventional risk factors, elevated carbamylated HDL was independently associated with all-cause mortality (HR 1.39; 95% CI 1.28-1.52; P < 0.001) as well as with all the cause-specific mortalities. Adding plasma carbamylated HDL level improved the power of the multivariable models for predicting all-cause mortality, with significant increments in C index (from 0.78 to 0.80; P < 0.001), net reclassification index, and integrated discrimination improvement. CONCLUSIONS Carbamylation of HDL renders HDL dysfunctional, and carbamylated HDL is independently associated with mortality outcomes in patients with type 2 diabetes.
Collapse
Affiliation(s)
- David T W Lui
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong
| | - Alan C H Lee
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Ying Wong
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Sammy W M Shiu
- Department of Medicine, University of Hong Kong, Hong Kong
| | | |
Collapse
|
18
|
Cochran BJ, Ong KL, Manandhar B, Rye KA. APOA1: a Protein with Multiple Therapeutic Functions. Curr Atheroscler Rep 2021; 23:11. [PMID: 33591433 DOI: 10.1007/s11883-021-00906-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE OF THE REVIEW Apolipoprotein (APO) A1, the main apolipoprotein of plasma high-density lipoproteins (HDLs), has several well documented cardioprotective functions. A number of additional potentially beneficial functions of APOA1 have recently been identified. This review is concerned with the therapeutic potential of all of these functions in multiple disease states. RECENT FINDINGS Knowledge of the beneficial functions of APOA1 in atherosclerosis, thrombosis, diabetes, cancer, and neurological disorders is increasing exponentially. These insights have led to the development of clinically relevant peptides and APOA1-containing, synthetic reconstituted HDL (rHDL) preparations that mimic the functions of full-length APOA1. APOA1 is a multifunctional apolipoprotein that has therapeutic potential in several diseases. Translation of this knowledge into the clinic is likely to be dependent on the efficacy and bioavailability of small peptides and synthetic rHDL preparations that are currently under investigation, or in development.
Collapse
Affiliation(s)
- Blake J Cochran
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Kwok-Leung Ong
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Bikash Manandhar
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia.
| |
Collapse
|
19
|
Delk SC, Chattopadhyay A, Escola-Gil JC, Fogelman AM, Reddy ST. Apolipoprotein mimetics in cancer. Semin Cancer Biol 2020; 73:158-168. [PMID: 33188891 DOI: 10.1016/j.semcancer.2020.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
Peptides have many advantages over traditional therapeutics, including small molecules and other biologics, because of their low toxicity and immunogenicity, while still exhibiting efficacy. This review discusses the benefits and mechanism of action of apolipoprotein mimetic peptides in tumor biology and their potential utility in treating various cancers. Among lipoproteins in the circulation, high-density lipoprotein (HDL) and its constituents including apolipoprotein A-I (apoA-I; the predominant protein in HDL), apoJ, and apoE, harbor anti-tumorigenic activities. Peptides that mimic apoA-I function have been developed through molecular mimicry of the amphipathic α-helices of apoA-I. Oral apoA-I mimetic peptides remodel HDL, promote cholesterol efflux, sequester oxidized lipids, and activate anti-inflammatory processes. ApoA-I and apoJ mimetic peptides ameliorate various metrics of cancer progression and have demonstrated efficacy in preclinical models in the inhibition of ovarian, colon, breast, and metastatic lung cancers. Apolipoprotein mimetic peptides are poorly absorbed when administered orally and rapidly degraded when injected into the circulation. The small intestine is the major site of action for apoA-I mimetic peptides and recent studies suggest that modulation of immune cells in the lamina propria of the small intestine is, in part, a potential mechanism of action. Finally, several recent studies underscore the use of reconstituted HDL as target-specific nanoparticles carrying poorly soluble or unstable therapeutics to tumors even across the blood-brain barrier. Preclinical studies suggest that these versatile recombinant lipoprotein based nanoparticles and apolipoprotein mimetics can serve as safe, novel drug delivery, and therapeutic agents for the treatment of a number of cancers.
Collapse
Affiliation(s)
- Samuel C Delk
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Arnab Chattopadhyay
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Joan Carles Escola-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Sant Quintí 77, 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Monforte de Lemos 3-5, 28029, Madrid, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Antoni M. Claret 167, 08025, Barcelona, Spain
| | - Alan M Fogelman
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Srinivasa T Reddy
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
20
|
[The influence of apolipoprotein A1 on the prognosis of multiple myeloma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:675-679. [PMID: 32942823 PMCID: PMC7525179 DOI: 10.3760/cma.j.issn.0253-2727.2020.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
目的 探讨多发性骨髓瘤患者血清载脂蛋白A1水平的变化及其临床意义。 方法 统计412例多发性骨髓瘤患者的临床资料,以93名健康体检者为正常对照,使用SPSS 22.0进行数据分析。相关分析采用线性相关或Spearman秩相关系数。分析数据采用t检验、Mann-Whitney U检验或单因素方差分析。采用ROC曲线计算分界值,并与Kaplan-Meier生存分析进行比较。 结果 骨髓瘤组载脂蛋白A1水平低于正常对照组(0.89 g/L对1.24 g/L,P<0.05)。载脂蛋白A1水平随疾病的不同阶段动态变化,当疾病缓解时载脂蛋白A1水平可升高,疾病进展时载脂蛋白A1水平降低。多因素分析表明载脂蛋白A1减少是多发性骨髓瘤的独立危险因素。高载脂蛋白A1组与低载脂蛋白A1组的Kaplan-Meier生存分析显示高载脂蛋白A1组有更高的生存率和更长的无进展生存期。 结论 载脂蛋白A1是多发性骨髓瘤有效的肿瘤负荷标志物和预后因素。
Collapse
|
21
|
Dossou AS, Sabnis N, Nagarajan B, Mathew E, Fudala R, Lacko AG. Lipoproteins and the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:93-116. [PMID: 32845504 DOI: 10.1007/978-3-030-48457-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The tumor microenvironment (TME) plays a key role in enhancing the growth of malignant tumors and thus contributing to "aggressive phenotypes," supporting sustained tumor growth and metastasis. The precise interplay between the numerous components of the TME that contribute to the emergence of these aggressive phenotypes is yet to be elucidated and currently under intense investigation. The purpose of this article is to identify specific role(s) for lipoproteins as part of these processes that facilitate (or oppose) malignant growth as they interact with specific components of the TME during tumor development and treatment. Because of the scarcity of literature reports regarding the interaction of lipoproteins with the components of the tumor microenvironment, we were compelled to explore topics that were only tangentially related to this topic, to ensure that we have not missed any important concepts.
Collapse
Affiliation(s)
- Akpedje Serena Dossou
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nirupama Sabnis
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Bhavani Nagarajan
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ezek Mathew
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rafal Fudala
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA.,Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Andras G Lacko
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA. .,Departments of Physiology/Anatomy and Pediatrics, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
22
|
Zeng Z, Cao Z, Tang Y. Identification of diagnostic and prognostic biomarkers, and candidate targeted agents for hepatitis B virus-associated early stage hepatocellular carcinoma based on RNA-sequencing data. Oncol Lett 2020; 20:231. [PMID: 32968453 PMCID: PMC7499982 DOI: 10.3892/ol.2020.12094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Primary liver cancer is a rapidly progressing neoplasm with high morbidity and mortality rates. The present study aimed to identify potential diagnostic and prognostic biomarkers, and candidate targeted agents for hepatitis B virus (HBV)-associated early stage hepatocellular carcinoma (HCC). The gene expression profiles were extracted from the Gene Expression Omnibus database. Differentially expressed genes (DEGs), hub genes and the enrichment of signaling pathways were filtered out via a high-throughput sequencing method. The association between hub genes and the effects of the abnormal expression of hub genes on the rate of genetic variation, overall survival (OS), relapse-free survival (RFS), progression-free survival (PFS) and disease-free survival (DSS) of patients with HCC, as well as pathological stage and grade, were analyzed using different databases. A total of 1,582 DEGs were identified. Gene Ontology analysis revealed that the DEGs were mainly involved in the ‘oxidation-reduction process’, ‘steroid metabolic process’, ‘metabolic process’ and ‘fatty acid beta-oxidation’. Enrichment analysis of Kyoto Encyclopedia of Genes and Genomes pathways revealed that the DEGs were mainly associated with ‘metabolic pathways’, ‘PPAR signaling pathway’, ‘fatty acid degradation’ and the ‘cell cycle’. A total of 8 hub genes were extracted. Additionally, the abnormal expression levels of hub genes were closely associated with the OS, RFS, PFS and DSS of patients, the pathological stage and the grade. Furthermore, abnormal expression levels of the 8 hub genes were found in >30% of all samples. Several small molecular compounds that may reverse the altered DEGs were identified based on Connectivity Map analysis, including phenoxybenzamine, GW-8510, resveratrol, 0175029-0000 and daunorubicin. In conclusion, the dysfunction of fat metabolic pathways, the cell cycle, oxidation-reduction processes and viral carcinogenesis may serve critical roles in the occurrence of HBV-associated early stage HCC. The identified 8 hub genes may act as robust biomarkers for diagnosis and prognosis. Some small molecular compounds may be promising targeted agents against HBV-associated early stage HCC.
Collapse
Affiliation(s)
- Zhili Zeng
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Zebiao Cao
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Ying Tang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Department of Oncology, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
23
|
Kluck GEG, Durham KK, Yoo JA, Trigatti BL. High Density Lipoprotein and Its Precursor Protein Apolipoprotein A1 as Potential Therapeutics to Prevent Anthracycline Associated Cardiotoxicity. Front Cardiovasc Med 2020; 7:65. [PMID: 32411725 PMCID: PMC7198830 DOI: 10.3389/fcvm.2020.00065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/06/2020] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular disease and cancer are the leading causes of death in developed societies. Despite their effectiveness, many cancer therapies exhibit deleterious cardiovascular side effects such as cardiotoxicity and heart failure. The cardiotoxic effects of anthracyclines such as doxorubicin are the most well-characterized of cardiotoxic anti-cancer therapies. While other anti-neoplastic drugs also induce cardiotoxicity, often leading to heart failure, they are beyond the scope of this review. This review first summarizes the mechanisms of doxorubicin-induced cardiotoxicity. It then reviews emerging preclinical evidence that high density lipoprotein and its precursor protein apolipoprotein A1, which are known for their protective effects against ischemic cardiovascular disease, may also protect against doxorubicin-induced cardiotoxicity both directly and indirectly, when used therapeutically.
Collapse
Affiliation(s)
- George E. G. Kluck
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Kristina K. Durham
- Faculty of Health Sciences, Institute of Applied Health Sciences, School of Rehabilitation Sciences, McMaster University, Hamilton, ON, Canada
| | - Jeong-Ah Yoo
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Bernardo L. Trigatti
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| |
Collapse
|
24
|
Penson P, Long DL, Howard G, Howard VJ, Jones SR, Martin SS, Mikhailidis DP, Muntner P, Rizzo M, Rader DJ, Safford MM, Sahebkar A, Toth PP, Banach M. Associations between cardiovascular disease, cancer, and very low high-density lipoprotein cholesterol in the REasons for Geographical and Racial Differences in Stroke (REGARDS) study. Cardiovasc Res 2020; 115:204-212. [PMID: 30576432 PMCID: PMC6302258 DOI: 10.1093/cvr/cvy198] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/01/2018] [Indexed: 01/01/2023] Open
Abstract
Aims Relatively little is known about the health outcomes associated with very low plasma concentrations of high-density lipoprotein cholesterol (HDL-C) mainly because of the small numbers of individuals with such extreme values included in clinical trials. We, therefore, investigated the association between low and very low HDL-C concentration at baseline and incident all-cause-mortality, death from malignant disease (i.e. cancer), and with fatal or non-fatal incident coronary heart disease (CHD) in individuals from the Reasons for Geographical And Racial Differences in Stroke (REGARDS) study. Methods and results Analysis was based on 21 751 participants from the REGARDS study who were free of CHD, other cardiovascular disease, and cancer at baseline and were categorized by baseline HDL-C into <30 mg/dL (very low), 30-<40 mg/dL (low), and ≥40 mg/dL (reference). A series of incremental Cox proportional hazards models were employed to assess the association between the HDL-C categories and outcomes. Statistical analysis was performed using both complete case methods and multiple imputations with chained equations. After adjustment for age, race, and sex, the hazard ratios (HRs) comparing the lowest and highest HDL-C categories were 1.48 [95% confidence interval (CI) 1.28-1.73] for all-cause mortality, 1.35 (95% CI 1.03-1.77) for cancer-specific mortality and 1.39 (95% CI 0.99-1.96) for incident CHD. These associations became non-significant in models adjusting for demographics, cardiovascular risk factors, and treatment for dyslipidaemia. We found evidence for an HDL paradox, whereby low HDL (30-<40 mg/dL) was associated with reduced risk of incident CHD in black participants in a fully adjusted complete case model (HR 0.63; 95% CI 0.46-0.88) and after multiple imputation analyses (HR 0.76; 95% CI 0.58-0.98). HDL-C (<30 mg/dL) was significantly associated with poorer outcomes in women for all outcomes, especially with respect to cancer mortality (HR 2.31; 95% CI 1.28-4.16) in a fully adjusted complete case model, replicated using multiple imputation (HR 1.81; 95% CI 1.03-3.20). Conclusion Low HDL-C was associated with reduced risk of incident CHD in black participants suggesting a potential HDL paradox for incident CHD. Very low HDL-C in women was significantly associated with cancer mortality in a fully adjusted complete case model.
Collapse
Affiliation(s)
- Peter Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - D Leann Long
- Department of Biostatistics, UAB School of Public Health, Birmingham, AL, USA
| | - George Howard
- Department of Biostatistics, UAB School of Public Health, Birmingham, AL, USA
| | - Virginia J Howard
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven R Jones
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Seth S Martin
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL), London, UK
| | - Paul Muntner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Manfredi Rizzo
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Monika M Safford
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Peter P Toth
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA.,Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland.,Polish Mother's Memorial Hospital Research Institute, Lodz, Poland.,Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|
25
|
Su F, GM A, Palgunachari MN, White CR, Stessman H, Wu Y, Vadgama J, Pietras R, Nguyen D, Reddy ST, Farias-Eisner R. Bovine HDL and Dual Domain HDL-Mimetic Peptides Inhibit Tumor Development in Mice. JOURNAL OF CANCER RESEARCH AND THERAPEUTIC ONCOLOGY 2020; 8:101. [PMID: 32462055 PMCID: PMC7252215 DOI: 10.17303/jcrto.2020.8.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A growing body of literature supports the role of apolipoproteins present in HDL in the treatment of pro-inflammatory diseases including cancer. We examined whether bovine HDL (bHDL) and three dual-domain peptides, namely AEM-28 and its analog AEM-28-2, and HM-10/10, affect tumor growth and development in mouse models of ovarian and colon cancer. We demonstrate that bHDL inhibits mouse colorectal cancer cell line CT26-mediated lung tumor development, and mouse ovarian cancer cell line ID8-mediated tumor burden. We also demonstrate that, although to different degrees, dual-domain peptides inhibit cell viability of mouse and human ovarian and colon cancer cell lines, but not that of normal human colonic epithelial cells or NIH3T3 mouse fibroblasts. Dual-domain peptides administered subcutaneously or in a chow diet decrease CT26 cell-mediated tumor burden, tumor growth, and tumor dissemination in BALB/c mice. Plasma levels of lysophosphatidic acid (LPA) are significantly reduced in mice that received bHDL and the dual-domain peptides, suggesting that reduction by effecting accumulation and/or synthesis of pro-inflammatory lipids may be one of the mechanisms for the inhibition of tumor development by bHDL and the dual-domain peptides. Our studies suggest that therapeutics based on apolipoproteins present in HDL may be novel agents for the treatment of epithelial adenocarcinomas of the ovary and colon.
Collapse
Affiliation(s)
- Feng Su
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, the University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Anantharamaiah GM
- Department of Medicine, the University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - C. Roger White
- Department of Medicine, the University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Holly Stessman
- Department of Pharmacology, Creighton University Medical School, Omaha, NE 68178, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Department of Internal Medicine, Charles Drew University, Los Angeles, CA 90059, USA
| | - Jay Vadgama
- Department of Internal Medicine, Charles Drew University, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, the University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Richard Pietras
- Jonsson Comprehensive Cancer Center, the University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, the University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Dorothy Nguyen
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, the University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Srinivasa T. Reddy
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, the University of California at Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, the University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, the University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, the University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Robin Farias-Eisner
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, the University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Obstetrics, Gynecology, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Hereditary Cancer Center, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
26
|
Chen H, Chu LY, Li XH, Peng YH, Liu CT, Tian LR, Xie JJ, Xu YW. ApoB/ApoA-1 Ratio as a Novel Prognostic Predictor in Patients With Primary Small Cell Carcinoma of the Esophagus. Front Oncol 2020; 10:610. [PMID: 32391278 PMCID: PMC7193088 DOI: 10.3389/fonc.2020.00610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/03/2020] [Indexed: 02/05/2023] Open
Abstract
Background and Aim: Primary small cell carcinoma of the esophagus (SCCE) is a rarely aggressive disease characterized by rapid progression, widespread metastasis, and poor prognosis. This study was aimed to evaluate the prognostic significance of serum lipids for overall survival (OS) in SCCE patients. Methods: We retrospectively analyzed SCCE patients in a training cohort (61 patients) and validated them in a validation cohort (27 patients). These cases were collected from Sun Yat-sen University Cancer Center from 2006 to 2017. Univariate and multivariate Cox survival analyses were performed to determine serum lipids as prognostic factors associated with the patient's OS. Time-dependent receiver operating characteristics (ROC) were used to compare predictive power of independent prognostic factors. The predictive accuracy and discriminative ability of the prognostic factors were measured by the concordance index (C-index) and decision curve, and were compared with the TNM stage system. Results: On multivariate analysis of the training cohort, independent factors for survival were gender, BAR (ApoB/ApoA-1) and TNM stage. The area under the curve (AUC) of BAR+TNM stage in the training cohort was higher than that of TNM stage for OS, and similar result was observed in the validation cohort. The c-index of BAR+TNM stage for predicting the OS was 0.655 (95% CI = 0.571-0.740), which was higher than that of TNM stage [0.614 (95% CI = 0.530-0.698)] in the training cohort. In the validation cohort, the C-index of the BAR+TNM stage for predicting OS was also higher than that of the TNM stage [0.688 (95% CI: 0.570~0.806) vs. (0.512; 95% CI: 0.392~0.632)]. In addition, decision curve analysis also showed that the predictive accuracy of BAR+TNM stage for OS was higher than TNM stage both in the training and the validation cohorts. Conclusions: BAR represents a promising prognostic indicator that might complement TNM stage in the prognosis of SCCE, and that warrant further assessment in large SCCE patient cohort.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ling-Yu Chu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Xiao-Hui Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - Can-Tong Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Li-Ru Tian
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
- *Correspondence: Yi-Wei Xu
| |
Collapse
|
27
|
Ye J, Luo QY, Wang XP, Liu ZY, Chen MX, Huang H, Zhang L. Serum Apolipoprotein A-I Combined With C-Reactive Protein Serves As A Novel Prognostic Stratification System For Colorectal Cancer. Cancer Manag Res 2019; 11:9265-9276. [PMID: 31802946 PMCID: PMC6826184 DOI: 10.2147/cmar.s215599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Background and objective Noninvasive prognostic tools for colorectal cancer (CRC) are urgently needed. This study was designed to investigate the prognostic value of preoperative serum lipid and lipoprotein concentrations (including ApoA-I, Apo-B, HDL-C, LDL-C, TC and TG) and CRP levels retrospectively in CRC patients. Methods Preoperative serum lipid and lipoprotein concentrations (including ApoA-I, Apo-B, HDL-C, LDL-C, TC and TG) and CRP levels were analyzed retrospectively in 250 patients with CRC. The prognostic significance of these indexes was determined by univariate and multivariate Cox hazard models. Results CRC patients with higher levels of ApoA-I and HDL-C and lower levels of CRP had significantly longer overall survival (OS, log rank test, p<0.05). Based on univariate analysis, ApoA-I levels (p=0.002), CRP levels (p=0.007), HDL-C levels (p=0.005), pT classification (p=0.005), pN classification (p<0.001), pM classification (p<0.001) and pTNM stage (p<0.001) were significantly associated with OS. Multivariate Cox proportional hazards regression analysis indicated that ApoA-I levels (HR: 1.52, p=0.023), CRP levels (HR: 1.85, p=0.035) and pTNM stage (HR: 2.53, p< 0.001) were independent predictors of CRC survival. The included patients were then stratified into three tiers based on the ApoA-I and CRP levels. In the whole cohort, the OS and disease-free survival differed significantly between the low-risk (ApoA-I≥1.08 mg/dL and CRP<3.04 mg/dL), medium-risk (ApoA-I≥1.08 mg/dL or CRP<3.04 mg/dL), and high-risk (ApoA-I<1.08 mg/dL and CRP ≥3.04 mg/dL) groups (p=0.001 and p=0.004). Conclusion Decreased levels of ApoA-I and HDL-C and increased levels of CRP were predictive of poor prognosis among patients with CRC. In addition, the combination of ApoA-I and CRP can serve as a novel prognostic stratification system for more accurate clinical staging of CRC.
Collapse
Affiliation(s)
- Juan Ye
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China.,Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, People's Republic of China.,Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Qiu-Yun Luo
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Xue-Ping Wang
- Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Zhen-Yi Liu
- Department of Blood Transfusion, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Mei-Xian Chen
- Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Hao Huang
- Department of Laboratory Science, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Lin Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China.,Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
28
|
Su F, Spee C, Araujo E, Barron E, Wang M, Ghione C, Hinton DR, Nusinowitz S, Kannan R, Reddy ST, Farias-Eisner R. A Novel HDL-Mimetic Peptide HM-10/10 Protects RPE and Photoreceptors in Murine Models of Retinal Degeneration. Int J Mol Sci 2019; 20:ijms20194807. [PMID: 31569695 PMCID: PMC6801888 DOI: 10.3390/ijms20194807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/17/2019] [Indexed: 01/30/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness in the developed world. The retinal pigment epithelium (RPE) is a critical site of pathology in AMD. Oxidative stress plays a key role in the development of AMD. We generated a chimeric high-density lipoprotein (HDL), mimetic peptide named HM-10/10, with anti-oxidant properties and investigated its potential for the treatment of retinal disease using cell culture and animal models of RPE and photoreceptor (PR) degeneration. Treatment with HM-10/10 peptide prevented human fetal RPE cell death caused by tert-Butyl hydroperoxide (tBH)-induced oxidative stress and sodium iodate (NaIO3), which causes RPE atrophy and is a model of geographic atrophy in mice. We also show that HM-10/10 peptide ameliorated photoreceptor cell death and significantly improved retinal function in a mouse model of N-methyl-N-nitrosourea (MNU)-induced PR degeneration. Our results demonstrate that HM-10/10 protects RPE and retina from oxidant injury and can serve as a potential therapeutic agent for the treatment of retinal degeneration.
Collapse
Affiliation(s)
- Feng Su
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Christine Spee
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Eduardo Araujo
- Jules Stein Eye Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Eric Barron
- The Stephen J. Ryan Initiative for Macular Research, Doheny Eye Institute, Los Angeles, CA 90033, USA.
| | - Mo Wang
- The Stephen J. Ryan Initiative for Macular Research, Doheny Eye Institute, Los Angeles, CA 90033, USA.
| | - Caleb Ghione
- Jules Stein Eye Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - David R Hinton
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA.
| | - Steven Nusinowitz
- Jules Stein Eye Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Ram Kannan
- Jules Stein Eye Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- The Stephen J. Ryan Initiative for Macular Research, Doheny Eye Institute, Los Angeles, CA 90033, USA.
| | - Srinivasa T Reddy
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Robin Farias-Eisner
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
- Department of Obstetrics and Gynecology, School of Medicine, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
29
|
Apolipoprotein A-I (ApoA-I), Immunity, Inflammation and Cancer. Cancers (Basel) 2019; 11:cancers11081097. [PMID: 31374929 PMCID: PMC6721368 DOI: 10.3390/cancers11081097] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I), the major protein component of high-density lipoproteins (HDL) is a multifunctional protein, involved in cholesterol traffic and inflammatory and immune response regulation. Many studies revealing alterations of ApoA-I during the development and progression of various types of cancer suggest that serum ApoA-I levels may represent a useful biomarker contributing to better estimation of cancer risk, early cancer diagnosis, follow up, and prognosis stratification of cancer patients. In addition, recent in vitro and animal studies disclose a more direct, tumor suppressive role of ApoA-I in cancer pathogenesis, which involves anti-inflammatory and immune-modulatory mechanisms. Herein, we review recent epidemiologic, clinicopathologic, and mechanistic studies investigating the role of ApoA-I in cancer biology, which suggest that enhancing the tumor suppressive activity of ApoA-I may contribute to better cancer prevention and treatment.
Collapse
|
30
|
Wang X, Gong Y, Deng T, Zhang L, Liao X, Han C, Yang C, Huang J, Wang Q, Song X, Zhang T, Yu T, Zhu G, Ye X, Peng T. Diagnostic and prognostic significance of mRNA expressions of apolipoprotein A and C family genes in hepatitis B virus-related hepatocellular carcinoma. J Cell Biochem 2019; 120:18246-18265. [PMID: 31211449 DOI: 10.1002/jcb.29131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is among the most common and lethal malignancies worldwide. Apolipoproteins (APOs) have been reported increasingly for their relationships with tumors. We aim at exploring the potential relationships of apolipoprotein A (APOA) and apolipoprotein C (APOC) family members with HCC. METHODS A data set, containing 212 hepatitis B virus-related HCC patients, was used for analysis. The diagnostic and prognostic ability of APOA and APOC family genes was figured out. Risk score models and nomograms were developed for the HCC prognosis prediction. Moreover, molecular mechanism exploration were identified biological processes and metabolic pathways of these genes involved in. Validation analysis was carried out using online website. RESULTS APOA1, APOC1, APOC3, and APOC4 showed robust diagnosis significance (all P < 0.05). APOA4, APOC3, and APOC4 were associated with the overall survival (OS) while APOA4 and APOC4 were linked to recurrence-free survival (RFS, all P ≤ 0.05). Risk score models and nomograms had the advantage of predicting OS and RFS for HCC. Molecular mechanism exploration indicated that these genes were involved in the steroid metabolic process, the PPAR signaling pathway, and fatty acid metabolism. Besides that, validation analysis revealed that APOC1 and APOC4 had an association with OS; and APOC3 was associated with OS and RFS (all P ≤ 0.05). CONCLUSIONS APOA1, APOC1, APOC3, and APOC4 are likely to be potential diagnostic biomarkers and APOC3 and APOC4 are likely to be potential prognostic biomarkers for hepatitis B virus-related HCC. They may be involved in the steroid metabolic process, PPAR signaling pathway, and fatty acid metabolism.
Collapse
Affiliation(s)
- Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yizhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Teng Deng
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Linbo Zhang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianlu Huang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiaoqi Wang
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaowei Song
- Department of Gastrointestinal Glands, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tengfang Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
31
|
Marinho AT, Lu H, Pereira SA, Monteiro E, Gabra H, Recchi C. Anti-tumorigenic and Platinum-Sensitizing Effects of Apolipoprotein A1 and Apolipoprotein A1 Mimetic Peptides in Ovarian Cancer. Front Pharmacol 2019; 9:1524. [PMID: 30745873 PMCID: PMC6360149 DOI: 10.3389/fphar.2018.01524] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/12/2018] [Indexed: 01/11/2023] Open
Abstract
Objective: Apolipoprotein A1 (ApoA1) is remarkably decreased in serum and ovarian tissues of ovarian cancer patients. ApoA1 and ApoA1 mimetic peptides can sequestrate pro-inflammatory phospholipids, some of which are known to activate a variety of oncogenic pathways. Besides, more intrinsic anti-tumorigenic properties, independent from interaction with lipids, have also been described for ApoA1. We aimed to disclose the effects of ApoA1 and a mimetic peptide on the malignant phenotype of ovarian cancer cells, particularly regarding cell viability, invasiveness and platinum sensitization. Methods: Cells viability was assessed by MTS assay. Extracellular matrix invasion was assessed by transwell and spheroid invasion assays. Western blotting was performed to evaluate the effect of test compounds on intracellular pathways. Sensitization assays were performed in vitro and in the biologically relevant in ovo chorioallantoic membrane model. Results: Both ApoA1 and the mimetic peptide, at a concentration of 100 μg/mL, were able to decrease the viability of SKOV3, CAOV3, and OVCAR3 cells (p < 0.05). The peptide at this concentration was not able to affect the viability of immortalized non-neoplastic ovarian cells (p > 0.05). ApoA1 decreased SKOV3 cells invasiveness at 300 μg/mL after 72 and 96 h of exposure (p < 0.05), while the ApoA1 mimetic peptide prevented cell invasion at 50 and 100 μg/mL (p < 0.01). Treatment with 100 μg/mL of ApoA1 mimetic peptide decreased Akt phosphorylation in SKOV3 cells (p < 0.01). Accordingly, treatment with increasing concentrations of the peptide sensitized SKOV3, OVCAR3 and CAOV3 cells to cisplatin. This synergistic effect was observed both in vitro and in ovo. Conclusions: These results support the role of ApoA1 and ApoA1 mimetics as suppressors of ovarian tumorigenesis and as chemo-sensitising agents.
Collapse
Affiliation(s)
- Aline T. Marinho
- CEDOC Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Haonan Lu
- Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Sofia A. Pereira
- CEDOC Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Emília Monteiro
- CEDOC Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| | - Chiara Recchi
- Ovarian Cancer Action Research Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
Morin EE, Li XA, Schwendeman A. HDL in Endocrine Carcinomas: Biomarker, Drug Carrier, and Potential Therapeutic. Front Endocrinol (Lausanne) 2018; 9:715. [PMID: 30555417 PMCID: PMC6283888 DOI: 10.3389/fendo.2018.00715] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022] Open
Abstract
High-density lipoprotein (HDL) have long been studied for their protective role against cardiovascular diseases, however recently relationship between HDL and cancer came into focus. Several epidemiological studies have shown an inverse correlation between HDL-cholesterol (HDL-C) and cancer risk, and some have even implied that HDL-C can be used as a predictive measure for survival prognosis in for specific sub-population of certain types of cancer. HDL itself is an endogenous nanoparticle capable of removing excess cholesterol from the periphery and returning it to the liver for excretion. One of the main receptors for HDL, scavenger receptor type B-I (SR-BI), is highly upregulated in endocrine cancers, notably due to the high demand for cholesterol by cancer cells. Thus, the potential to exploit administration of cholesterol-free reconstituted or synthetic HDL (sHDL) to deplete cholesterol in endocrine cancer cell and stunt their growth of use chemotherapeutic drug loaded sHDL to target payload delivery to cancer cell has become increasingly attractive. This review focuses on the role of HDL and HDL-C in cancer and application of sHDLs as endocrine cancer therapeutics.
Collapse
Affiliation(s)
- Emily E. Morin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Xiang-An Li
- Department of Physiology, Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
- BioInterfaces Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
33
|
Mao M, Wang X, Sheng H, Liu Y, Zhang L, Dai S, Chi PD. A novel score based on serum apolipoprotein A-1 and C-reactive protein is a prognostic biomarker in hepatocellular carcinoma patients. BMC Cancer 2018; 18:1178. [PMID: 30486825 PMCID: PMC6260712 DOI: 10.1186/s12885-018-5028-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
Abstract
Background The aim of this study was to propose a prognostic scoring system based on preoperative serum apolipoprotein A-1 and C-reactive protein (ApoA-1 and CRP, AC score) levels and to evaluate the prognostic value of these markers in patients with hepatocellular carcinoma (HCC). Methods In all, 539 consecutive cases diagnosed with HCC from 2009 to 2012 at Sun Yat-sen University Cancer Center were analysed. The characteristics and levels of pretreatment lipids (ApoA-1, apolipoprotein B (Apo-B), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglycerides (TGs)) and CRP were reviewed and determined by univariate and multivariate Cox hazard models. Then, the AC score was proposed, which combines two independent risk factors (ApoA-1 and CRP). Results The optimal cut-off points in our study were determined according to established reference ranges. Patients with decreased ApoA-1 levels (< 1.090 g/L) and increased CRP levels (≥3.00 mg/L) exhibited a significantly poor overall survival (OS) and disease-free survival (DFS). The AC score was calculated as follows: patients with decreased ApoA-1 and elevated CRP were given a score of 3, patients with only one of these abnormalities were given a score of 2, and those with no abnormalities were given a score of 1. Patients with a higher AC score showed more progressive disease and a poorer prognosis. This was observed not only in the entire cohort (for OS, P < 0.001; for DFS, P < 0.001) but also in the subgroups stratified by pathological stage (stage I-II and stage III-IV). The discriminatory ability of the AC score in HCC was assessed according to the AUC values. The AUC value of the AC score (AUC: 0.676, 95% CI: 0.629–0.723, P < 0.001) was higher than that of AFP. In addition, the combination of the AFP and AC scores (AUC: 0.700, 95% CI: 0.655–0.745, P < 0.001) was superior to the AFP and AC scores alone. Conclusions The AC score is a significant valuable predictor of OS and DFS and could more accurately differentiate the prognosis of HCC patients. As this study is a retrospective analysis, the value of the AC score should be validated in large prospective trials.
Collapse
Affiliation(s)
- Minjie Mao
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Xueping Wang
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Hui Sheng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Yijun Liu
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Lin Zhang
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Shuqin Dai
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Pei-Dong Chi
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
34
|
Chattopadhyay A, Yang X, Mukherjee P, Sulaiman D, Fogelman HR, Grijalva V, Dubinett S, Wasler TC, Paul MK, Salehi-Rad R, Mack JJ, Iruela-Arispe ML, Navab M, Fogelman AM, Reddy ST. Treating the Intestine with Oral ApoA-I Mimetic Tg6F Reduces Tumor Burden in Mouse Models of Metastatic Lung Cancer. Sci Rep 2018; 8:9032. [PMID: 29899427 PMCID: PMC5998131 DOI: 10.1038/s41598-018-26755-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
Having demonstrated that apolipoprotein A-I (apoA-I) mimetic peptides ameliorate cancer in mouse models, we sought to determine the mechanism for the anti-tumorigenic function of these peptides. CT-26 cells (colon cancer cells that implant and grow into tumors in the lungs) were injected into wild-type BALB/c mice. The day after injection, mice were either continued on chow or switched to chow containing 0.06% of a concentrate of transgenic tomatoes expressing the apoA-I mimetic peptide 6F (Tg6F). After four weeks, the number of lung tumors was significantly lower in Tg6F-fed mice. Gene expression array analyses of jejunum and lung identified Notch pathway genes significantly upregulated, whereas osteopontin (Spp1) was significantly downregulated by Tg6F in both jejunum and lung. In jejunum, Tg6F increased protein levels for Notch1, Notch2, Dll1, and Dll4. In lung, Tg6F increased protein levels for Notch1 and Dll4 and decreased Spp1. Tg6F reduced oxidized phospholipid levels (E06 immunoreactivity) and reduced 25-hydroxycholesterol (25-OHC) levels, which are known to inhibit Notch1 and induce Spp1, respectively. Notch pathway promotes anti-tumorigenic patrolling monocytes, while Spp1 facilitates pro-tumorigenic myeloid derived suppressor cells (MDSCs) formation. Tg6F-fed mice had higher numbers of patrolling monocytes in jejunum and in lung (p < 0.02), and lower plasma levels of Spp1 with reduced numbers of MDSCs in jejunum and in lung (p < 0.03). We conclude that Tg6F alters levels of specific oxidized lipids and 25-OHC to modulate Notch pathways and Spp1, which alter small intestine immune cells, leading to similar changes in lung that reduce tumor burden.
Collapse
Affiliation(s)
- Arnab Chattopadhyay
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Xinying Yang
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Pallavi Mukherjee
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Dawoud Sulaiman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095-1736, USA
| | - Hannah R Fogelman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Victor Grijalva
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Steven Dubinett
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Tonya C Wasler
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Manash K Paul
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Ramin Salehi-Rad
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Julia J Mack
- Department of Molecular, Cell and Developmental Biology, College of Letters and Science, University of California, Los Angeles, CA, 90095-1736, USA
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell and Developmental Biology, College of Letters and Science, University of California, Los Angeles, CA, 90095-1736, USA
| | - Mohamad Navab
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Alan M Fogelman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA
| | - Srinivasa T Reddy
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA.
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA.
- Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, 90095-1736, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1736, USA.
| |
Collapse
|
35
|
Shang Z, Wang J, Wang X, Yan H, Cui B, Jia C, Wang Q, Cui X, Li J, Ou T. Preoperative serum apolipoprotein A-I levels predict long-term survival in non-muscle-invasive bladder cancer patients. Cancer Manag Res 2018; 10:1177-1190. [PMID: 29795989 PMCID: PMC5958942 DOI: 10.2147/cmar.s165213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction The aim of this study was to elucidate the association between apolipoprotein A-I (Apo A-I) and overall survival (OS) as well as cancer-specific survival (CSS) in non-muscle-invasive bladder cancer (NMIBC) patients undergoing transurethral resection of bladder tumor (TURBT). Patients and methods We retrospectively collected data of 470 eligible patients diagnosed with NMIBC and who received TURBT between January 2004 and December 2011. Pretreatment blood indexes were examined. The association of Apo A-I with clinicopathological characteristics was further analyzed by dichotomizing our sample into those with Apo A-I ≤ 1.19 g/L (low Apo A-I group) and those with Apo A-I > 1.19 g/L (high Apo A-I group). OS and CSS were estimated by Kaplan–Meier analysis and the log-rank test was used to compare differences between groups. Univariate and multivariate Cox regression analyses were plotted to assess the prognostic value of Apo A-I in NMIBC patients. In addition, subgroup analyses were performed according to the risk classification of the International Bladder Cancer Group. Results In the overall population, patients in the high Apo A-I group had greater 5-year OS and 5-year CSS rates as compared to those in the low Apo A-I group. Kaplan–Meier survival analysis revealed that higher albumin, Apo A-I, and hemoglobin levels were associated with greater OS and CSS while elevated neutrophil–lymphocyte ratio was associated with worse OS and CSS in the overall and high-risk population rather than low- and intermediate-risk population. Furthermore, Apo A-I was shown to be an independent predictor in the overall population (for OS, hazard ratio [HR], 0.364, 95% confidence interval [CI], 0.221–0.598, p < 0.001; for CSS, HR, 0.328, 95% CI, 0.185–0.583, p < 0.001) and high-risk patients (for OS, HR, 0.232, 95% CI 0.121–0.443, p < 0.001; for CSS, HR, 0.269, 95% CI, 0.133–0.541, p < 0.001). Conclusion These results suggest that Apo A-I level could potentially serve as a useful prognostic indicator for therapeutic decision making in NMIBC patients.
Collapse
Affiliation(s)
- Zhenhua Shang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Jukun Wang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Xu Wang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Hao Yan
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Bo Cui
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Chunsong Jia
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Qi Wang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Xin Cui
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Jin Li
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
36
|
Quan Q, Huang Y, Chen Q, Qiu H, Hu Q, Rong Y, Li T, Xia L, Zhang B. Impact of Serum Apolipoprotein A-I on Prognosis and Bevacizumab Efficacy in Patients with Metastatic Colorectal Cancer: a Propensity Score-Matched Analysis. Transl Oncol 2017; 10:288-294. [PMID: 28292509 PMCID: PMC5334545 DOI: 10.1016/j.tranon.2017.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 11/17/2022] Open
Abstract
PURPOSE We aimed to investigate the role of apolipoprotein A-I (ApoA-I) as a predictor of prognosis and treatment efficacy of bevacizumab in patients with metastatic colorectal cancer (mCRC) treated with first-line chemotherapy with or without bevacizumab. METHODS We conducted a retrospective study on consecutive patients who were diagnosed with mCRC at Sun Yat-sen University Cancer Center. According to their pretreatment ApoA-I level, patients were divided into low- and high-ApoA-I groups. Propensity score-matched method was performed to balance baseline characteristics between two groups. Based on whether they accepted bevacizumab as a first-line therapy, patients were further divided into the chemo + bevacizumab group and the chemo group. Overall survival (OS) and progression-free survival (PFS) were assessed with Kaplan-Meier method, log-rank test, and Cox regression. RESULTS The optimal cutoff value for the ApoA-I level was determined to be 1.105 g/l. In the propensity-matched cohort of 508 patients, low ApoA-I was significantly associated with inferior OS (P<.001) and PFS (P<.001) than high ApoA-I. Multivariate analysis showed that ApoA-I level was an independent prognostic maker of OS (P<.001) and PFS (P=.001). PFS (P<.001) in either the high- or low-ApoA-I groups could be extended significantly after the administration of bevacizumab, and patients with a high ApoA-I level also had a better OS in the chemo + bevacizumab group than the chemo group (P=.049). CONCLUSIONS Patients with a low ApoA-I level have poor prognoses, and they did not display an OS benefit from bevacizumab.
Collapse
Affiliation(s)
- Qi Quan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yuanyuan Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qi Chen
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Huijuan Qiu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qiaozhen Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yuming Rong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tingwei Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liangping Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Address all correspondence to: Bei Zhang, MD, and Liangping Xia, PhD, VIP Region, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, China, 510060.VIP Region, Sun Yat-Sen University Cancer Center651 Dongfeng East RoadGuangzhouGuangdong510060China
| | - Bei Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
- VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Address all correspondence to: Bei Zhang, MD, and Liangping Xia, PhD, VIP Region, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, China, 510060.VIP Region, Sun Yat-Sen University Cancer Center651 Dongfeng East RoadGuangzhouGuangdong510060China
| |
Collapse
|
37
|
Song Z, Liu F, Zhang J. Targeting NRAS Q61K mutant delays tumor growth and angiogenesis in non-small cell lung cancer. Am J Cancer Res 2017; 7:831-844. [PMID: 28469956 PMCID: PMC5411791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023] Open
Abstract
Tumor cells require vascular supply for their growth, and they express proangiogenic growth factors that promote the formation of vascular networks. Many oncogenic mutations that may potentially lead to tumor angiogenesis have been identified. Somatic mutations in the small GTPase NRAS are the most common activating lesions found in human cancer and are generally associated with poor response to standard therapies. However, the mechanisms by which NRAS mutations affect tumor angiogenesis are largely unknown. Therefore, we investigated the role of NRASQ61K oncogene in tumor angiogenesis and analyzed tumors harboring NRASQ61K for potential sensitivity to a kinase inhibitor. Knock-in of the NRASQ61K allele in human normal epithelial cells triggered the angiogenic response in these cells. In cancer cells harboring oncogenic NRAS, a mitogen-activated protein kinase (MEK) inhibitor down-regulated the extracellular regulated protein kinase (ERK) pathway and inhibited the expression of proangiogenic molecules. In tumor xenografts harboring the NRASQ61K, the MEK inhibitor extensively modified tumor growth, causing abrogation of angiogenesis. Overall, our results provide a functional link between oncogenic NRAS and angiogenesis, and imply that tumor vasculature could be indirectly altered by targeting a genetic lesion on which cancer cells are dependent.
Collapse
Affiliation(s)
- Zhaowei Song
- Department of Interventional Radiology, Cangzhou Central Hospital of Hebei ProvinceNo.16, Xinhua West Road, Yunhe District, Cangzhou, Hebei, China
| | - Fenghai Liu
- Department of Magnetic Resonance Imaging, Cangzhou Central Hospital of Hebei ProvinceNo.16, Xinhua West Road, Yunhe District, Cangzhou, Hebei, China
| | - Jie Zhang
- Department of Interventional Radiology, Cangzhou Central Hospital of Hebei ProvinceNo.16, Xinhua West Road, Yunhe District, Cangzhou, Hebei, China
| |
Collapse
|
38
|
Zhang J, Cai Y, Hu H, Lan P, Wang L, Huang M, Kang L, Wu X, Wang H, Ling J, Xiao J, Wang J, Deng Y. Nomogram basing pre-treatment parameters predicting early response for locally advanced rectal cancer with neoadjuvant chemotherapy alone: a subgroup efficacy analysis of FOWARC study. Oncotarget 2016; 7:5053-62. [PMID: 26646794 PMCID: PMC4826265 DOI: 10.18632/oncotarget.6469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/25/2015] [Indexed: 12/12/2022] Open
Abstract
Objective To develop an accurate model with pre-treatment parameters to predict tumor regression and down-staging in locally advanced rectal cancer patients, basing the cohort of preoperative chemotherapy alone in FOWARC study. Patients and Methods From Jan 2011 to Feb 2015, complete data was available for 137 out of 165 patients who received preoperative chemotherapy alone. All pre-treatment clinical parameters were collected. Tumor regression grade (TRG) 0-1 was defined as good regression, and pathological TNM stage (ypTNM) 0-I after neoadjuvant treatment was defined as good down-staging. Nomogram was established to predict tumor regression and down-staging. The predictive performance of the model was assessed with concordance index and calibration plots. Results Of the 137 patients, 10 had TRG 0 (complete regression); 32 patients, TRG 1; and 95 patients, TRG 2 and 3 (poor regression); 56 (40.9%) patients were classified as good down-staging with ypTNM stage 0-I. The predictive nomograms were developed to predict the probability of TRG 0-1 and good down-staging with a C-index of 0.72 (95% CI: 0.604-0.797) and 0.76 (95% CI: 0.681-0.844). Calibration plots showed good statistical performance on internal validation. Predictive factors in the models included tumor length, tumor circumferential extent, age, and ApoA1. Conclusions The model based on available clinical parameters could accurately predict early efficacy with neoadjuvant mFOLFOX6 chemotherapy alone, which might help in patient selection for optimized treatment.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, Guangdong, P.R. China
| | - Yue Cai
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, Guangdong, P.R. China
| | - Huabin Hu
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, Guangdong, P.R. China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun-Yat sen University, Guangzhou, Guangdong, P.R. China
| | - Lei Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun-Yat sen University, Guangzhou, Guangdong, P.R. China
| | - Meijin Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun-Yat sen University, Guangzhou, Guangdong, P.R. China
| | - Liang Kang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun-Yat sen University, Guangzhou, Guangdong, P.R. China
| | - Xiaojian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun-Yat sen University, Guangzhou, Guangdong, P.R. China
| | - Hui Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun-Yat sen University, Guangzhou, Guangdong, P.R. China
| | - Jiayu Ling
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, Guangdong, P.R. China
| | - Jian Xiao
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, Guangdong, P.R. China
| | - Jianping Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun-Yat sen University, Guangzhou, Guangdong, P.R. China
| | - Yanhong Deng
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
39
|
Ma XL, Gao XH, Gong ZJ, Wu J, Tian L, Zhang CY, Zhou Y, Sun YF, Hu B, Qiu SJ, Zhou J, Fan J, Guo W, Yang XR. Apolipoprotein A1: a novel serum biomarker for predicting the prognosis of hepatocellular carcinoma after curative resection. Oncotarget 2016; 7:70654-70668. [PMID: 27683106 PMCID: PMC5342581 DOI: 10.18632/oncotarget.12203] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 09/12/2016] [Indexed: 12/15/2022] Open
Abstract
As a major protein constituent of high density lipoprotein, Apolipoprotein A1 (ApoA-1) might be associated with cancer progression. Our study investigated the serum ApoA-1 level for the prognosis of 443 patients with hepatocellular carcinoma (HCC) and its effects on tumor cells. We found that the serum ApoA-1 level was significantly lower in HCC patients with tumor recurrence, and was an independent indicator of tumor-free survival and overall survival. Low serum ApoA-1 levels were significantly associated with multiple tumors and high Barcelona Clinic Liver Cancer stage. The circulating tumor cell (CTC) levels were significantly higher in patients with low serum ApoA-1 compared with those with high serum ApoA-1 levels (4.03 ± 0.98 vs. 1.48 ± 0.22; p=0.001). In patients with detectable CTCs, those with low ApoA-1 levels had higher recurrence rates and shorter survival times. In vitro experiments showed that ApoA-1 can inhibit tumor cell proliferation through cell cycle arrest and promote apoptosis through down regulating mitogen-activated protein kinase (MAPK) pathway. In addition, ApoA-1 might impair extracellular matrix degradation properties of tumor cells. Taken together, our findings indicate that decreased serum ApoA-1 levels are a novel prognostic factor for HCC, and the role of ApoA-1 in inhibition of proliferation and promotion of apoptosis for tumor cells during their hematogenous dissemination are presumably responsible for the poor prognosis of patients with low ApoA-1 levels. Furthermore, AopA-1 might be a promising therapeutic target to reduce recurrence and metastasis for HCC patients after resection.
Collapse
Affiliation(s)
- Xiao-Lu Ma
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Xing-Hui Gao
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Zi-Jun Gong
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P. R. China
| | - Jiong Wu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Lu Tian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chun-Yan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Yan Zhou
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Yun-Fan Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P. R. China
| | - Bo Hu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P. R. China
| | - Shuang-jian Qiu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P. R. China
| | - Jian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P. R. China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P. R. China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Xin-Rong Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P. R. China
| |
Collapse
|
40
|
Shi J, Yang H, Duan X, Li L, Sun L, Li Q, Zhang J. Apolipoproteins as Differentiating and Predictive Markers for Assessing Clinical Outcomes in Patients with Small Cell Lung Cancer. Yonsei Med J 2016; 57:549-56. [PMID: 26996551 PMCID: PMC4800341 DOI: 10.3349/ymj.2016.57.3.549] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/11/2015] [Accepted: 04/09/2015] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The present study aimed to investigate the value of apolipoproteins, including ApoA-1, ApoC-III, and ApoE, in patients with small cell lung cancer (SCLC) as potential biomarkers for diagnosis, prognosis, and cancer progression. MATERIALS AND METHODS Lung samples were collected from 89 patients with SCLC. Nineteen lung samples from non-small cell lung cancer (NSCLC) patients and 12 normal lung tissues were used as controls. Expression profiles of ApoA-1, ApoC-III, and ApoE in different samples were examined using immunohistochemical methods, and the expression levels were correlated with cancer types, treatment, and outcomes using chi-square and Mann-Whitney tests. RESULTS Expression of ApoA-1 and ApoC-III in SCLC was significantly different, compared with that in NSCLC and normal lung tissues, and was correlated with recurrence of SCLC. Patients undergoing neoadjuvant chemotherapy before surgery showed significantly reduced expression of ApoA-1 and increased expression of ApoC-III and ApoE. Nevertheless, the expression levels of ApoA-1, ApoC-III, and ApoE were not correlated with SCLC staging. CONCLUSION ApoA-1 and ApoC-III may be used as differentiating and predictive markers for SCLC. ApoA-1, ApoC-III, and ApoE may be used to monitor the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Jian Shi
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China.
| | - Huichai Yang
- Department of Pathology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Xiaoyang Duan
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Lihua Li
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Lulu Sun
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Qian Li
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Junjun Zhang
- Department of Medical Oncology, Forth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
41
|
Quan Q, Chen Q, Chen P, Jiang L, Li T, Qiu H, Zhang B. Decreased apolipoprotein A-I level indicates poor prognosis in extranodal natural killer/T-cell lymphoma, nasal type. Onco Targets Ther 2016; 9:1281-90. [PMID: 27051293 PMCID: PMC4803244 DOI: 10.2147/ott.s96549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Extranodal natural killer (NK)/T-cell lymphoma, nasal type (ENKTL) is an invasive lymphoid malignancy with unfavorable survival, for which a prognostic model has not yet been validated. We hypothesized that serum apolipoprotein A-I (ApoA-I) may serve as a novel prognostic marker for ENKTL. Patients and methods A total of 236 newly diagnosed cases of ENKTL were analyzed retrospectively. Results The optimal cutoff value for the serum ApoA-I level was determined to be 0.95 g/L. A total of 154 and 82 cases were assigned to the high and low ApoA-I groups, respectively. Patients in the low ApoA-I group tended to present with poorer clinical features, a lower complete remission rate (P=0.001), and poor median progression-free survival (P<0.001) and overall survival (P<0.001). Multivariate analysis using Cox model showed that the serum ApoA-I level was an independent prognostic marker of overall survival (P<0.001) and progression-free survival (P<0.001) for ENKTL patients. For cases in the low-risk group, as assessed by International Prognostic Index, Prognosis Index for peripheral T-cell lymphoma, unspecified, and Korean Prognostic Index, the serum ApoA-I level was able to differentiate cases with poor outcomes from cases with good outcomes. Conclusion Our results showed that the baseline serum ApoA-I level was helpful for predicting ENKTL prognosis.
Collapse
Affiliation(s)
- Qi Quan
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China, Guangzhou, China; VIP Region, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qi Chen
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China, Guangzhou, China; VIP Region, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ping Chen
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China, Guangzhou, China; VIP Region, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li Jiang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China, Guangzhou, China; VIP Region, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tingwei Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China, Guangzhou, China; VIP Region, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Huijuan Qiu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China, Guangzhou, China; VIP Region, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Bei Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China, Guangzhou, China; VIP Region, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University Cancer Center, Guangzhou, China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
42
|
Amjadi F, Aflatoonian R, Javanmard SH, Saifi B, Ashrafi M, Mehdizadeh M. Apolipoprotein A1 as a novel anti-implantation biomarker in polycystic ovary syndrome: A case-control study. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2016; 20:1039-45. [PMID: 26941806 PMCID: PMC4755089 DOI: 10.4103/1735-1995.172813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background: Women with polycystic ovary syndrome have lower pregnancy rates, possibly due to the decreased uterine receptivity. Successful implantation depends on protein networks that are essential for cross-talk between the embryo and endometrium. Apolipoprotein A1 has been proposed as a putative anti-implantation factor. In this study, we evaluated apolipoprotein A1 expression in human endometrial tissues. Materials and Methods: Endometrial apolipoprotein A1 messenger RNA (mRNA) and protein expression were investigated using quantitative real-time polymerase chain reaction (PCR) and Western blot. The distribution of apolipoprotein A1 was also detected by immunostaining. Samples were obtained from 10 patients with polycystic ovary syndrome and 15 healthy fertile women in the proliferative (on day 2 or day 3 before ovulation, n = 7) and secretory (on days 3-5 after ovulation, n = 8) phases. Results: Endometrial apolipoprotein A1 expression was upregulated in patients with polycystic ovary syndrome compared to normal subjects. However, apolipoprotein A1 expression in the proliferative phase was significantly higher than in the luteal phase (P value < 0.05). Conclusion: It seems that differentially expressed apolipoprotein A1 negatively affects endometrial receptivity in patients with polycystic ovary syndrome. The results showed that apolipoprotein A1 level significantly changes in the human endometrium during the menstrual cycle with minimum expression in the secretory phase, coincident with the receptive phase (window of implantation). Further studies are required to clarify the clinical application of this protein.
Collapse
Affiliation(s)
- Fatemehsadat Amjadi
- Department of Anatomy, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, The Academic Center for Education Culture and Research (ACECR), Tehran, Iran
| | - Shaghayegh Haghjoo Javanmard
- Department of Physiology, Applied Physiology Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bita Saifi
- Department of Anatomy, Mashhad Medical Branch, Islamic Azad University, Mashhad, Iran
| | - Mahnaz Ashrafi
- Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Faculty of Advanced Technologies in Medicine, Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Zamanian-Daryoush M, DiDonato JA. Apolipoprotein A-I and Cancer. Front Pharmacol 2015; 6:265. [PMID: 26617517 PMCID: PMC4642354 DOI: 10.3389/fphar.2015.00265] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022] Open
Abstract
High-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I), the predominant protein in plasma HDL, have long been the focus of intense studies in the field of atherosclerosis and cardiovascular disease. ApoA-I, in large part, is responsible for HDL assembly and its main atheroprotective function, that of shuttling excess cholesterol from peripheral tissues to the liver for excretion (reverse cholesterol transport). Recently, a protective role for HDL in cancer was suggested from several large clinical studies where an inverse relationship between plasma HDL-cholesterol (HDL-C) levels and risk of developing cancer was noted. This notion has now been tested and found to be supported in mouse tumor studies, where increasing levels of apoA-I/HDL were discovered to protect against tumor development and provision of human apoA-I was therapeutic against established tumors. This mini-review discusses the emerging role of apoA-I in tumor biology and its potential as cancer therapeutic.
Collapse
Affiliation(s)
- Maryam Zamanian-Daryoush
- Department of Cellular and Molecular Medicine, and Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland OH, USA
| | - Joseph A DiDonato
- Department of Cellular and Molecular Medicine, and Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland OH, USA
| |
Collapse
|
44
|
Chattopadhyay A, Grijalva V, Hough G, Su F, Mukherjee P, Farias-Eisner R, Anantharamaiah GM, Faull KF, Hwang LH, Navab M, Fogelman AM, Reddy ST. Efficacy of tomato concentrates in mouse models of dyslipidemia and cancer. Pharmacol Res Perspect 2015; 3:e00154. [PMID: 26171234 PMCID: PMC4492730 DOI: 10.1002/prp2.154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022] Open
Abstract
We previously reported that adding freeze-dried tomato powder from transgenic plants expressing the apolipoprotein A-I mimetic peptide 6F at 2.2% by weight to a Western diet (WD) ameliorated dyslipidemia and atherosclerosis in mice. The same dose in a human would require three cups of tomato powder three times daily. To reduce the volume, we sought a method to concentrate 6F. Remarkably, extracting the transgenic freeze-dried tomato overnight in ethyl acetate with 5% acetic acid resulted in a 37-fold reduction in the amount of transgenic tomato needed for biologic activity. In a mouse model of dyslipidemia, adding 0.06% by weight of the tomato concentrate expressing the 6F peptide (Tg6F) to a WD significantly reduced plasma total cholesterol and triglycerides (P < 0.0065). In a mouse model of colon cancer metastatic to the lungs, adding 0.06% of Tg6F, but not a control tomato concentrate (EV), to standard mouse chow reduced tumor-associated neutrophils by 94 ± 1.1% (P = 0.0052), and reduced tumor burden by two-thirds (P = 0.0371). Adding 0.06% of either EV or Tg6F by weight to standard mouse chow significantly reduced tumor burden in a mouse model of ovarian cancer; however, Tg6F was significantly more effective (35% reduction for EV vs. 53% reduction for Tg6F; P = 0.0069). Providing the same dose of tomato concentrate to humans would require only two tablespoons three times daily making this a practical approach for testing oral apoA-I mimetic therapy in the treatment of dyslipidemia and cancer.
Collapse
Affiliation(s)
- Arnab Chattopadhyay
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Victor Grijalva
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Greg Hough
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Feng Su
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Pallavi Mukherjee
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Robin Farias-Eisner
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - G M Anantharamaiah
- Department of Medicine, University of Alabama at Birmingham Birmingham, Alabama, 35294
| | - Kym F Faull
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Lin H Hwang
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Mohamad Navab
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736 ; Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736 ; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA Los Angeles, California, 90095-1736
| |
Collapse
|
45
|
Tan JTM, Ng MKC, Bursill CA. The role of high-density lipoproteins in the regulation of angiogenesis. Cardiovasc Res 2015; 106:184-93. [PMID: 25759067 DOI: 10.1093/cvr/cvv104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/22/2015] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is important for postnatal physiological processes including tissue neovascularization in response to an ischaemic injury. Conversely, uncontrolled inflammatory-driven angiogenesis can accelerate atherosclerotic plaque and tumour growth. Angiogenesis-associated diseases are highly prevalent globally, with cardiovascular-related disorders and cancer being the leading causes of mortality worldwide. A vast amount of research has been conducted on the vasculoprotective effects of high-density lipoproteins (HDLs) and while current HDL-raising therapies to date have not yielded the desired benefits clinically, its role in angiogenesis is yet to be fully elucidated. Epidemiological studies report positive correlations between elevated HDL levels and improved prognosis in both ischaemia- and inflammatory-driven pathologies, in which angiogenesis plays a key role. This review focuses on current evidence from epidemiological and prospective studies, coupled with animal models and mechanistic studies that highlight the ability of HDL to conditionally regulate angiogenesis.
Collapse
Affiliation(s)
- Joanne T M Tan
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, New South Wales 2042, Australia Sydney Medical School, University of Sydney, Sydney, Australia
| | - Martin K C Ng
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, New South Wales 2042, Australia Sydney Medical School, University of Sydney, Sydney, Australia Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Christina A Bursill
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, New South Wales 2042, Australia Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW To summarize recent publications in the field of apolipoprotein mimetics. RECENT FINDINGS Apolipoprotein mimetic peptides continue to show efficacy in a number of animal models of disease and demonstrate properties that make them attractive as potential therapeutic agents. A number of new apolipoprotein mimetics have been described recently. A major site of action of apolipoprotein mimetic peptides was found to be in the small intestine in which they decrease the levels of proinflammatory bioactive lipids. A major problem related to the use of apolipoprotein mimetic peptides is their cost, particularly those that need to be generated by solid phase synthesis with chemical addition of end-blocking groups. Novel approaches to apolipoprotein mimetic therapy have emerged recently that show promise in overcoming these barriers. SUMMARY Despite the recent failure of therapies designed to raise HDL-cholesterol in humans, an approach to therapy using mimetics of HDL and its components continues to show promise.
Collapse
Affiliation(s)
- Srinivasa T. Reddy
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles CA 90095
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles CA 90095
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Mohamad Navab
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles CA 90095
| | | | - Alan M. Fogelman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles CA 90095
- Corresponding Author: Department of Medicine, 10833 Le Conte Avenue, Box 951736, Los Angele, CA 90095-1736, Telephone: 310-825-6058, Fax: 310-206-3489,
| |
Collapse
|
47
|
Smyth SS, Mueller P, Yang F, Brandon JA, Morris AJ. Arguing the case for the autotaxin-lysophosphatidic acid-lipid phosphate phosphatase 3-signaling nexus in the development and complications of atherosclerosis. Arterioscler Thromb Vasc Biol 2014; 34:479-86. [PMID: 24482375 DOI: 10.1161/atvbaha.113.302737] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The structurally simple glycero- and sphingo-phospholipids, lysophosphatidic acid (LPA) and sphingosine-1-phosphate, serve as important receptor-active mediators that influence blood and vascular cell function and are positioned to influence the events that contribute to the progression and complications of atherosclerosis. Growing evidence from preclinical animal models has implicated LPA, LPA receptors, and key enzymes involved in LPA metabolism in pathophysiologic events that may underlie atherosclerotic vascular disease. These observations are supported by genetic analysis in humans implicating a lipid phosphate phosphatase as a novel risk factor for coronary artery disease. In this review, we summarize current understanding of LPA production, metabolism, and signaling as may be relevant for atherosclerotic and other vascular disease.
Collapse
Affiliation(s)
- Susan S Smyth
- From the Veterans Affairs Medical Center, Cardiovascular Medicine Service, Lexington, KY (S.S.S., A.J.M.); and Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY (S.S.S., P.M., F.Y., J.A.B., A.J.M.)
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Wang B, Yuan Y, Han L, Ye L, Shi X, Feng M. Recombinant lipoproteins reinforce cytotoxicity of doxorubicin to hepatocellular carcinoma. J Drug Target 2013; 22:76-85. [PMID: 24093636 DOI: 10.3109/1061186x.2013.839687] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cancer nanotherapeutics are changing the landscape of tumor treatment and used to circumvent limitations of conventional chemotherapy, such as non-specificity and low bioavailability. Reconstituted high density lipoproteins (rHDL) system is one of the most promising targeting delivery systems of chemotherapeutic drugs toward tumors. Here, we developed recombined high-density lipoprotein which can be functionalized to deliver doxorubicin intracellular with a higher efficiency. The cellular viability assay showed that the rHDL/Dox nanovectors had an enhanced efficiency in inhibiting the cell viability of hepatocellular carcinoma cell lines HepG2 and SMMC-7721. FACS and confocal microscopy was used to observe the doxorubicin delivery into cancer cells. Intracellular drug accumulation analysis confirmed that treatment of rHDL/Dox nanovectors resulted in higher intracellular doxorubicin concentration to the levels exceeding that of free drug. On the premise of efficient drug delivery, rHDL/Dox nanovectors have been preliminarily demonstrated effective inducing of cytotoxic effect and cell apoptosis to both of the cell lines in vitro. Tissue distribution experiment showed that rHDL/Dox nanovectors could also deliver doxorubicin to liver effectively. So, we proposed that this lipoprotein-based strategy holds promise for a safer and more efficient delivery of chemotherapeutic agents in the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Baolong Wang
- School of Pharmacy, Fudan University , Shanghai , China
| | | | | | | | | | | |
Collapse
|
50
|
Hariprasad G, Hariprasad R, Kumar L, Srinivasan A, Kola S, Kaushik A. Apolipoprotein A1 as a potential biomarker in the ascitic fluid for the differentiation of advanced ovarian cancers. Biomarkers 2013; 18:532-41. [PMID: 23902290 DOI: 10.3109/1354750x.2013.822561] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONTEXT Primary ovarian cancer and ovarian metastasis from non-ovarian cancers in advanced stage are closely mimicking conditions whose therapeutics and prognosis are different. OBJECTIVE To identify biomarkers that can differentiate the two variants of advanced ovarian cancers. METHODS Gel-based proteomics and antibody-based assays were used to study the differentially expressed proteins in the ascitic fluid of fourteen patients with advanced ovarian cancers. RESULTS Programmed Cell Death 1-Ligand 2, apolipoprotein A1, apolipoprotein A4 and anti-human fas antibody are differentially expressed proteins. CONCLUSIONS Apolipoprotein A1 with a 61.8 ng/ml cut-off is a potential biomarker with the best differentiating statistical parameters.
Collapse
Affiliation(s)
- Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences , Ansari nagar, New Delhi, 110029 , India
| | | | | | | | | | | |
Collapse
|