1
|
Shakeri A, Wang Y, Zhao Y, Landau S, Perera K, Lee J, Radisic M. Engineering Organ-on-a-Chip Systems for Vascular Diseases. Arterioscler Thromb Vasc Biol 2023; 43:2241-2255. [PMID: 37823265 PMCID: PMC10842627 DOI: 10.1161/atvbaha.123.318233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Vascular diseases, such as atherosclerosis and thrombosis, are major causes of morbidity and mortality worldwide. Traditional in vitro models for studying vascular diseases have limitations, as they do not fully recapitulate the complexity of the in vivo microenvironment. Organ-on-a-chip systems have emerged as a promising approach for modeling vascular diseases by incorporating multiple cell types, mechanical and biochemical cues, and fluid flow in a microscale platform. This review provides an overview of recent advancements in engineering organ-on-a-chip systems for modeling vascular diseases, including the use of microfluidic channels, ECM (extracellular matrix) scaffolds, and patient-specific cells. We also discuss the limitations and future perspectives of organ-on-a-chip for modeling vascular diseases.
Collapse
Affiliation(s)
- Amid Shakeri
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Ying Wang
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Yimu Zhao
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Shira Landau
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Kevin Perera
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jonguk Lee
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Milica Radisic
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto; Ontario, M5S 3E5; Canada
| |
Collapse
|
2
|
Zhang X, Zheng Y, Wang Z, Gan J, Yu B, Lu B, Jiang X. Melatonin as a therapeutic agent for alleviating endothelial dysfunction in cardiovascular diseases: Emphasis on oxidative stress. Biomed Pharmacother 2023; 167:115475. [PMID: 37722190 DOI: 10.1016/j.biopha.2023.115475] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
The vascular endothelium is vital in maintaining cardiovascular health by regulating vascular permeability and tone, preventing thrombosis, and controlling vascular inflammation. However, when oxidative stress triggers endothelial dysfunction, it can lead to chronic cardiovascular diseases (CVDs). This happens due to oxidative stress-induced mitochondrial dysfunction, inflammatory responses, and reduced levels of nitric oxide. These factors cause damage to endothelial cells, leading to the acceleration of CVD progression. Melatonin, a natural antioxidant, has been shown to inhibit oxidative stress and stabilize endothelial function, providing cardiovascular protection. The clinical application of melatonin in the prevention and treatment of CVDs has received widespread attention. In this review, based on bibliometric studies, we first discussed the relationship between oxidative stress-induced endothelial dysfunction and CVDs, then summarized the role of melatonin in the treatment of atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, and other CVDs. Finally, the potential clinical use of melatonin in the treatment of these diseases is discussed.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujia Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Bin Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Bin Lu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
3
|
Na JT, Chun-Dong Xue, Wang YX, Li YJ, Wang Y, Liu B, Qin KR. Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity. Talanta 2023; 253:123933. [PMID: 36113333 DOI: 10.1016/j.talanta.2022.123933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022]
Abstract
Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology.
Collapse
Affiliation(s)
- Jing-Tong Na
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Chun-Dong Xue
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Yan-Xia Wang
- School of Rehabilitation Medicine, Weifang Medical University, Weifang 261053, China
| | - Yong-Jiang Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Yu Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Kai-Rong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China; School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Meng F, Cheng H, Qian J, Dai X, Huang Y, Fan Y. In vitro fluidic systems: Applying shear stress on endothelial cells. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
5
|
Sangha GS, Goergen CJ, Prior SJ, Ranadive SM, Clyne AM. Preclinical techniques to investigate exercise training in vascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1566-H1600. [PMID: 33385323 PMCID: PMC8260379 DOI: 10.1152/ajpheart.00719.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a dynamic process starting with endothelial dysfunction and inflammation and eventually leading to life-threatening arterial plaques. Exercise generally improves endothelial function in a dose-dependent manner by altering hemodynamics, specifically by increased arterial pressure, pulsatility, and shear stress. However, athletes who regularly participate in high-intensity training can develop arterial plaques, suggesting alternative mechanisms through which excessive exercise promotes vascular disease. Understanding the mechanisms that drive atherosclerosis in sedentary versus exercise states may lead to novel rehabilitative methods aimed at improving exercise compliance and physical activity. Preclinical tools, including in vitro cell assays, in vivo animal models, and in silico computational methods, broaden our capabilities to study the mechanisms through which exercise impacts atherogenesis, from molecular maladaptation to vascular remodeling. Here, we describe how preclinical research tools have and can be used to study exercise effects on atherosclerosis. We then propose how advanced bioengineering techniques can be used to address gaps in our current understanding of vascular pathophysiology, including integrating in vitro, in vivo, and in silico studies across multiple tissue systems and size scales. Improving our understanding of the antiatherogenic exercise effects will enable engaging, targeted, and individualized exercise recommendations to promote cardiovascular health rather than treating cardiovascular disease that results from a sedentary lifestyle.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education, and Clinical Center, Baltimore, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
6
|
Li P, Cai Q, Wang H, Li S, Cheng J, Li H, Yu Q, Wu S. Hydrogen peroxide homeostasis provides beneficial micro-environment for SHR-mediated periclinal division in Arabidopsis root. THE NEW PHYTOLOGIST 2020; 228:1926-1938. [PMID: 32706394 DOI: 10.1111/nph.16824] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The precise regulation of asymmetric cell division (ACD) is essential for plant organogenesis. In Arabidopsis roots, SHORT-ROOT (SHR) functions to promote periclinal division in cortex/endodermis initials, which generate the ground tissue patterning. Although multiple downstream transcription factors and interplaying hormone pathways have been reported, the cellular mechanism that affects SHR-mediated periclinal division remains largely unclear. Here, we found that SHR can substantially elevate reactive oxygen species (ROS) levels in Arabidopsis roots by activating respiratory burst oxidase homologs (RBOHs). Among the ROS products, hydrogen peroxide (H2 O2 ) rather than superoxide (O2- ) was shown to play a critical role in SHR-mediated periclinal division. Scavenging H2 O2 could markedly impair the ability of SHR to induce periclinal division. We also show that salicylic acid (SA) can promote H2 O2 production by repressing CAT expression, which greatly increased periclinal division in root endodermis. As a result, middle cortex was more frequently formed in the endodermis of snc1, a mutant with accumulated endogenous SA and H2 O2 . In addition to RBOHs, SHR also activated the SA pathway, which might contribute to the elevated H2 O2 level induced by SHR. Thus, our data suggest a mechanism by which SHR creates the optimal micro-environment for periclinal division by maintaining ROS homeostasis in Arabidopsis roots.
Collapse
Affiliation(s)
- Pengxue Li
- College of Horticulture, College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Cai
- College of Horticulture, College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Wang
- College of Horticulture, College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuang Li
- College of Horticulture, College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jie Cheng
- College of Horticulture, College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haiyang Li
- College of Horticulture, College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiaozhi Yu
- College of Horticulture, College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuang Wu
- College of Horticulture, College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
7
|
Bittner KR, Jiménez JM, Peyton SR. Vascularized Biomaterials to Study Cancer Metastasis. Adv Healthc Mater 2020; 9:e1901459. [PMID: 31977160 PMCID: PMC7899188 DOI: 10.1002/adhm.201901459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/07/2019] [Indexed: 12/15/2022]
Abstract
Cancer metastasis, the spread of cancer cells to distant organs, is responsible for 90% of cancer-related deaths. Cancer cells need to enter and exit circulation in order to form metastases, and the vasculature and endothelial cells are key regulators of this process. While vascularized 3D in vitro systems have been developed, few have been used to study cancer, and many lack key features of vessels that are necessary to study metastasis. This review focuses on current methods of vascularizing biomaterials for the study of cancer, and three main factors that regulate intravasation and extravasation: endothelial cell heterogeneity, hemodynamics, and the extracellular matrix of the perivascular niche.
Collapse
Affiliation(s)
- Katharine R Bittner
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| | - Juan M Jiménez
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Shelly R Peyton
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
8
|
Nemcovsky Amar D, Epshtein M, Korin N. Endothelial Cell Activation in an Embolic Ischemia-Reperfusion Injury Microfluidic Model. MICROMACHINES 2019; 10:E857. [PMID: 31817733 PMCID: PMC6952880 DOI: 10.3390/mi10120857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022]
Abstract
Ischemia, lack of blood supply, is associated with a variety of life-threatening cardiovascular diseases, including acute ischemic stroke and myocardial infraction. While blood flow restoration is critical to prevent further damage, paradoxically, rapid reperfusion can increase tissue damage. A variety of animal models have been developed to investigate ischemia/reperfusion injury (IRI), however they do not fully recapitulate human physiology of IRI. Here, we present a microfluidic IRI model utilizing a vascular compartment comprising human endothelial cells, which can be obstructed via a human blood clot and then re-perfused via thrombolytic treatment. Using our model, a significant increase in the expression of the endothelial cell inflammatory surface receptors E-selectin and I-CAM1 was observed in response to embolic occlusion. Following the demonstration of clot lysis and reperfusion via treatment using a thrombolytic agent, a significant decrease in the number of adherent endothelial cells and an increase in I-CAM1 levels compared to embolic occluded models, where reperfusion was not established, was observed. Altogether, the presented model can be applied to allow better understanding of human embolic based IRI and potentially serve as a platform for the development of improved and new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Netanel Korin
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
9
|
Dervisevic E, Tuck KL, Voelcker NH, Cadarso VJ. Recent Progress in Lab-On-a-Chip Systems for the Monitoring of Metabolites for Mammalian and Microbial Cell Research. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5027. [PMID: 31752167 PMCID: PMC6891382 DOI: 10.3390/s19225027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Lab-on-a-chip sensing technologies have changed how cell biology research is conducted. This review summarises the progress in the lab-on-a-chip devices implemented for the detection of cellular metabolites. The review is divided into two subsections according to the methods used for the metabolite detection. Each section includes a table which summarises the relevant literature and also elaborates the advantages of, and the challenges faced with that particular method. The review continues with a section discussing the achievements attained due to using lab-on-a-chip devices within the specific context. Finally, a concluding section summarises what is to be resolved and discusses the future perspectives.
Collapse
Affiliation(s)
- Esma Dervisevic
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia;
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
- The Melbourne Centre for Nanofabrication, Australian National Fabrication Facility-Victorian Node, Clayton, VIC 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Victor J. Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
- The Melbourne Centre for Nanofabrication, Australian National Fabrication Facility-Victorian Node, Clayton, VIC 3800, Australia
| |
Collapse
|
10
|
Karki P, Birukov KG. Rho and Reactive Oxygen Species at Crossroads of Endothelial Permeability and Inflammation. Antioxid Redox Signal 2019; 31:1009-1022. [PMID: 31126187 PMCID: PMC6765062 DOI: 10.1089/ars.2019.7798] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Increased endothelial permeability and inflammation are two major hallmarks of the life-threatening conditions such as acute respiratory distress syndrome and sepsis. There is a growing consensus in the field that the Rho family of small guanosine triphosphates are critical regulators of endothelial function at both physiological and pathological states. A basal level of reactive oxygen species (ROS) is essential for maintaining metabolic homeostasis, vascular tone, and angiogenesis; however, excessive ROS generation impairs endothelial function and promotes lung inflammation. In this review, we will focus on the role of Rho in control of endothelial function and also briefly discuss a nexus between ROS generation and Rho activation during endothelial dysfunction. Recent Advances: Extensive studies in the past decades have established that a wide range of barrier-disruptive and proinflammatory agonists activate the Rho pathway that, ultimately, leads to endothelial dysfunction via disruption of endothelial barrier and further escalation of inflammation. An increasing body of evidence suggests that a bidirectional interplay exists between the Rho pathway and ROS generation during endothelial dysfunction. Rac, a member of the Rho family, is directly involved in ROS production and ROS, in turn, activate RhoA, Rac, and Cdc42. Critical Issues: A precise mechanism of interaction between ROS generation and Rho activation and its impact on endothelial function needs to be elucidated. Future Directions: By employing advanced molecular techniques, the sequential cascades in the Rho-ROS crosstalk signaling axis need to be explored. The therapeutic potential of the Rho pathway inhibitors in endothelial-dysfunction associated cardiopulmonary disorders needs to be evaluated.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland, Baltimore, Maryland
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Microfluidic models of physiological or pathological flow shear stress for cell biology, disease modeling and drug development. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Shi J, Tong L, Tong W, Chen H, Lan M, Sun X, Zhu Y. Current progress in long-term and continuous cell metabolite detection using microfluidics. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Morss Clyne A, Swaminathan S, Díaz Lantada A. Biofabrication strategies for creating microvascular complexity. Biofabrication 2019; 11:032001. [PMID: 30743247 DOI: 10.1088/1758-5090/ab0621] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Design and fabrication of effective biomimetic vasculatures constitutes a relevant and yet unsolved challenge, lying at the heart of tissue repair and regeneration strategies. Even if cell growth is achieved in 3D tissue scaffolds or advanced implants, tissue viability inevitably requires vascularization, as diffusion can only transport nutrients and eliminate debris within a few hundred microns. This engineered vasculature may need to mimic the intricate branching geometry of native microvasculature, referred to herein as vascular complexity, to efficiently deliver blood and recreate critical interactions between the vascular and perivascular cells as well as parenchymal tissues. This review first describes the importance of vascular complexity in labs- and organs-on-chips, the biomechanical and biochemical signals needed to create and maintain a complex vasculature, and the limitations of current 2D, 2.5D, and 3D culture systems in recreating vascular complexity. We then critically review available strategies for design and biofabrication of complex vasculatures in cell culture platforms, labs- and organs-on-chips, and tissue engineering scaffolds, highlighting their advantages and disadvantages. Finally, challenges and future directions are outlined with the hope of inspiring researchers to create the reliable, efficient and sustainable tools needed for design and biofabrication of complex vasculatures.
Collapse
Affiliation(s)
- Alisa Morss Clyne
- Vascular Kinetics Laboratory, Mechanical Engineering & Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, United States of America
| | | | | |
Collapse
|
14
|
Varma S, Voldman J. Caring for cells in microsystems: principles and practices of cell-safe device design and operation. LAB ON A CHIP 2018; 18:3333-3352. [PMID: 30324208 PMCID: PMC6254237 DOI: 10.1039/c8lc00746b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microfluidic device designers and users continually question whether cells are 'happy' in a given microsystem or whether they are perturbed by micro-scale technologies. This issue is normally brought up by engineers building platforms, or by external reviewers (academic or commercial) comparing multiple technological approaches to a problem. Microsystems can apply combinations of biophysical and biochemical stimuli that, although essential to device operation, may damage cells in complex ways. However, assays to assess the impact of microsystems upon cells have been challenging to conduct and have led to subjective interpretation and evaluation of cell stressors, hampering development and adoption of microsystems. To this end, we introduce a framework that defines cell health, describes how device stimuli may stress cells, and contrasts approaches to measure cell stress. Importantly, we provide practical guidelines regarding device design and operation to minimize cell stress, and recommend a minimal set of quantitative assays that will enable standardization in the assessment of cell health in diverse devices. We anticipate that as microsystem designers, reviewers, and end-users enforce such guidelines, we as a community can create a set of essential principles that will further the adoption of such technologies in clinical, translational and commercial applications.
Collapse
Affiliation(s)
- Sarvesh Varma
- Department of Electrical Engineering and Computer Science
, Massachusetts Institute of Technology
,
77 Massachusetts Avenue, Room 36-824
, Cambridge
, USA
.
; Fax: +617 258 5846
; Tel: +617 253 1583
| | - Joel Voldman
- Department of Electrical Engineering and Computer Science
, Massachusetts Institute of Technology
,
77 Massachusetts Avenue, Room 36-824
, Cambridge
, USA
.
; Fax: +617 258 5846
; Tel: +617 253 1583
| |
Collapse
|
15
|
Wang YX, Liu HB, Li PS, Yuan WX, Liu B, Liu ST, Qin KR. ROS and NO Dynamics in Endothelial Cells Exposed to Exercise-Induced Wall Shear Stress. Cell Mol Bioeng 2018; 12:107-120. [PMID: 31719902 DOI: 10.1007/s12195-018-00557-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023] Open
Abstract
Introduction Intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels are associated with vascular homeostasis and diseases. Exercise can modulate ROS and NO production through increasing frequency and magnitude of wall shear stress (WSS). However, the details of ROS and NO production in endothelial cells and their interplay under WSS induced by exercise at different intensities remain unclear. Methods In this study, we developed an in vitro multicomponent nonrectangular flow chamber system to simulate pulsatile WSS waveforms induced by moderate and high intensity exercise. Furthermore, the dynamic responses of ROS and NO in endothelial cells and the relationship between ROS and NO were investigated under the WSS induced by different intensity exercise. Results After exposing to WSS induced by moderate intensity exercise, endothelial cells produced more NO than those under high intensity exercise-induced WSS. In this process, ROS was found to play a dual role in the generation of intracellular NO. Under WSS induced by moderate intensity exercise, modest elevated ROS promoted NO production, whereas excessive ROS in endothelial cells exposed to WSS induced by high intensity exercise attenuated NO bioavailability. Interestingly, antioxidant N-acetylcysteine (NAC) could increase NO production under WSS induced by high intensity exercise. Conclusions Our results provide some cues for selecting appropriate exercise intensities and elevating benefits of exercise on endothelial function. Additionally, owing to the consistency of our results and some in vivo phenomena, this flow chamber system may serve as an in vitro exercise model of arterial vessel for future studies.
Collapse
Affiliation(s)
- Yan-Xia Wang
- Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024 China
| | - Hai-Bin Liu
- Department of Physical Education, Dalian University of Technology, Dalian, 116024 China
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024 China
| | - Peng-Song Li
- Department of Physical Education, Dalian University of Technology, Dalian, 116024 China
| | - Wen-Xue Yuan
- Department of Physical Education, Dalian University of Technology, Dalian, 116024 China
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024 China
| | - Shu-Tian Liu
- Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024 China
| | - Kai-Rong Qin
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
16
|
Investigating Effects of Fluid Shear Stress on Lymphatic Endothelial Cells. Methods Mol Biol 2018. [PMID: 30242762 DOI: 10.1007/978-1-4939-8712-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Recent studies using in vivo models have characterized lymph flow and demonstrated that lymph flow plays a key role in the later stages of lymphatic vascular development, including vascular remodeling, to create a hierarchical collecting vessel network and lymphatic valves (Sweet et al., J Clin Invest 125, 2995-3007, 2015). However, mechanistic insights into the response of lymphatic endothelial cells to fluid flow are difficult to obtain from in vivo studies because of the small size of lymphatic vessels and the technical challenge of lymphatic endothelial cell isolation. On the other hand, in vitro experiments can be tailored to isolate and test specific mechanotransduction pathways more cleanly than conditions in vivo. To measure in vitro the cellular response to flow, cultured primary lymphatic endothelial cells can be exposed to highly specific fluid forces like those believed to exist in vivo. Such in vitro studies have recently helped identify FOXC2 and GATA2 as important transcriptional regulators of lymphatic function during valve formation that are regulated by lymph flow dynamics. This chapter discusses the methods used to expose primary lymphatic endothelial cells (LECs) to lymph fluid dynamics and the relationship of these in vitro studies to in vivo lymphatic biology.
Collapse
|
17
|
Fluidic shear stress increases the anti-cancer effects of ROS-generating drugs in circulating tumor cells. Breast Cancer Res Treat 2018; 172:297-312. [PMID: 30117065 DOI: 10.1007/s10549-018-4922-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE Many anti-cancer drugs are used in chemotherapy; however, little is known about their efficacy against circulating tumor cells (CTCs). In this study, we investigated whether the pulsatile fluidic shear stress (SS) in human arteries can affect the efficacy of anti-cancer drugs. METHODS Cancer cells were circulated in our microfluidic circulatory system, and their responses to drug and SS treatments were determined using various assays. Breast and cervical cancer cells that stably expressed apoptotic sensor proteins were used to determine apoptosis in real-time by fluorescence resonance energy transfer (FRET)-based imaging microscopy. The occurrence of cell death in non-sensor cells were revealed by annexin V and propidium iodide staining. Cell viability was determined by MTT assay. Intracellular reactive oxygen species (ROS) levels were determined by staining cells with two ROS-detecting dyes: 2',7'-dichlorofluorescin diacetate and dihydroethidium. RESULTS Fluidic SS significantly increased the potency of the ROS-generating drugs doxorubicin (DOX) and cisplatin but had little effect on the non-ROS-generating drugs Taxol and etoposide. Co-treatment with SS and ROS-generating drugs dramatically elevated ROS levels in CTCs, while the addition of antioxidants abolished the pro-apoptotic effects of DOX and cisplatin. More importantly, the synergistic killing effects of SS and DOX or cisplatin were confirmed in circulated lung, breast, and cervical cancer cells, some of which have a strong metastatic ability. CONCLUSIONS These findings suggest that ROS-generating drugs are more potent than non-ROS-generating drugs for destroying CTCs under pulsatile fluidic conditions present in the bloodstream. This new information is highly valuable for developing novel therapies to eradicate CTCs in the circulation and prevent metastasis.
Collapse
|
18
|
Reprogramming the Stem Cell Behavior by Shear Stress and Electric Field Stimulation: Lab-on-a-Chip Based Biomicrofluidics in Regenerative Medicine. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0071-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Meng Q, Wang Y, Li Y, Wang H, Shen C, Sun J. Fabrication of Hydrogel Tubes with Vascular Mimicked Stiffness for Construction of in Vitro Vascular Models. ACS APPLIED BIO MATERIALS 2018; 1:237-245. [DOI: 10.1021/acsabm.8b00026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qin Meng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuyan Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huadi Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chong Shen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jinyuan Sun
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
20
|
High expression of MnSOD promotes survival of circulating breast cancer cells and increases their resistance to doxorubicin. Oncotarget 2018; 7:50239-50257. [PMID: 27384484 PMCID: PMC5226580 DOI: 10.18632/oncotarget.10360] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/14/2016] [Indexed: 12/31/2022] Open
Abstract
Understanding the survival mechanism of metastatic cancer cells in circulation will provide new perspectives on metastasis prevention and also shed new light on metastasis-derived drug resistance. In this study, we made it feasible to detect apoptosis of circulating tumor cells (CTCs) in real-time by integrating a fluorescence resonance energy transfer (FRET)-based caspase sensor into one in vitro microfluidic circulatory system, and two in vivo models: zebrafish circulation and mouse lung metastatic model. Our study demonstrated that fluid shear stresses triggered apoptosis of breast cancer cells in circulation by elevating the mitochondrial production of the primary free radical, superoxide anion. Cancer cells with high levels of manganese superoxide dismutase (MnSOD) exhibited stronger resistance to shear force-induced apoptosis and formed more lung metastases in mice. These metastasized cells further displayed higher resistance to chemotherapeutic agent doxorubicin, which also generates superoxide in mitochondria. Specific siRNA-mediated MnSOD knockdown reversed all three phenotypes. Our findings therefore suggest that MnSOD plays an important integrative role in supporting cancer cell survival in circulation, metastasis, and doxorubicin resistance. MnSOD can serve as a new biomarker for identifying metastatic CTCs and a novel therapeutic target for inhibiting metastasis and destroying doxorubicin-resistant breast cancer cells.
Collapse
|
21
|
Yoon YJ, Suh MJ, Lee HY, Lee HJ, Choi EH, Moon IS, Song K. Anti-tumor effects of cold atmospheric pressure plasma on vestibular schwannoma demonstrate its feasibility as an intra-operative adjuvant treatment. Free Radic Biol Med 2018; 115:43-56. [PMID: 29138018 DOI: 10.1016/j.freeradbiomed.2017.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022]
Abstract
Vestibular schwannoma (VS), although a benign intracranial tumor, causes morbidities by brainstem compression. Since chemotherapy is not very effective in most Nf2-negative schwannomas, surgical removal or radiation therapy is required. However, depending on the size and site of the tumor, these approaches may cause loss of auditory or vestibular functions, and severely decrease the post-surgical wellbeing. Here, we examined the feasibility of cold atmospheric pressure plasma (CAP) as an intra-operative adjuvant treatment for VS after surgery. Cell death was efficiently induced in both human HEI-193 and mouse SC4 VS cell lines upon exposure to CAP for seven minutes. Interestingly, both apoptosis and necroptosis were simultaneously induced by CAP treatment, and cell death was not completely inhibited by pan-caspase and receptor-interacting serine/threonine-protein kinase 1 (RIK1) inhibitors. Upon CAP exposure, cell death phenotype was similarly observed in patient-derived primary VS cells and tumor mass. In addition, CAP exposure after the surgical removal of primary tumor efficiently inhibited tumor recurrence in SC4-grafted mouse models. Collectively, these results strongly suggest that CAP should be developed as an efficient adjuvant treatment for VS after surgery to eliminate the possible remnant tumor cells, and to minimize the surgical area in the brain for post-surgical wellbeing.
Collapse
Affiliation(s)
- Yeo Jun Yoon
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Michelle J Suh
- Department of Otorhinolaryngology, College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Hyun Young Lee
- Department of Electrical Engineering, Pusan National University, Pusan 46269, Korea
| | - Hae June Lee
- Department of Electrical Engineering, Pusan National University, Pusan 46269, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center and Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - In Seok Moon
- Department of Otorhinolaryngology, College of Medicine, Yonsei University, Seoul 03722, Korea.
| | - Kiwon Song
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
22
|
Sharp J, Spitters TW, Vermette P. A factorial design to identify process parameters affecting whole mechanically disrupted rat pancreata in a perfusion bioreactor. Biotechnol Prog 2017; 34:432-444. [PMID: 29193874 DOI: 10.1002/btpr.2589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/20/2017] [Indexed: 11/07/2022]
Abstract
Few studies report whole pancreatic tissue culture, as it is a difficult task using traditional culture methods. Here, a factorial design was used to investigate the singular and combinational effects of flow, dissolved oxygen concentration (D.O.) and pulsation on whole mechanically disrupted rat pancreata in a perfusion bioreactor. Whole rat pancreata were cultured for 72 h under defined bioreactor process conditions. Secreted insulin was measured and histological (haematoxylin and eosin (H&E)) as well as immunofluorescent insulin staining were performed and quantified. The combination of flow and D.O. had the most significant effect on secreted insulin at 5 h and 24 h. The D.O. had the biggest effect on tissue histological quality, and pulsation had the biggest effect on the number of insulin-positive structures. Based on the factorial design analysis, bioreactor conditions using high flow, low D.O., and pulsation were selected to further study glucose-stimulated insulin secretion. Here, mechanically disrupted rat pancreata were cultured for 24 h under these bioreactor conditions and were then challenged with high glucose concentration for 6 h and high glucose + IBMX (an insulin secretagogue) for a further 6 h. These cultures secreted insulin in response to high glucose concentration in the first 6 h, however stimulated-insulin secretion was markedly weaker in response to high glucose concentration + IBMX thereafter. After this bioreactor culture period, higher tissue metabolic activity was found compared to that of non-bioreacted static controls. More insulin- and glucagon-positive structures, and extensive intact endothelial structures were observed compared to non-bioreacted static cultures. H&E staining revealed more intact tissue compared to static cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:432-444, 2018.
Collapse
Affiliation(s)
- Jamie Sharp
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, Canada, J1K 2R1.,Faculté de médecine et des sciences de la santé, Pharmacology Inst. of Sherbrooke, 3001 12ième Avenue Nord, Sherbrooke, Québec, Canada, J1H 5N4.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, Canada, J1H 4C4
| | - Tim Wgm Spitters
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, Canada, J1K 2R1.,Faculté de médecine et des sciences de la santé, Pharmacology Inst. of Sherbrooke, 3001 12ième Avenue Nord, Sherbrooke, Québec, Canada, J1H 5N4.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, Canada, J1H 4C4
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Dept. of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, Canada, J1K 2R1.,Faculté de médecine et des sciences de la santé, Pharmacology Inst. of Sherbrooke, 3001 12ième Avenue Nord, Sherbrooke, Québec, Canada, J1H 5N4.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, Canada, J1H 4C4
| |
Collapse
|
23
|
Islam MM, Beverung S, Steward R. Bio-Inspired Microdevices that Mimic the Human Vasculature. MICROMACHINES 2017; 8:mi8100299. [PMID: 30400489 PMCID: PMC6190335 DOI: 10.3390/mi8100299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/17/2022]
Abstract
Blood vessels may be found throughout the entire body and their importance to human life is undeniable. This is evident in the fact that a malfunctioning blood vessel can result in mild symptoms such as shortness of breath or chest pain to more severe symptoms such as a heart attack or stroke, to even death in the severest of cases. Furthermore, there are a host of pathologies that have been linked to the human vasculature. As a result many researchers have attempted to unlock the mysteries of the vasculature by performing studies that duplicate the physiological structural, chemical, and mechanical properties known to exist. While the ideal study would consist of utilizing living, blood vessels derived from human tissue, such studies are not always possible since intact human blood vessels are not readily accessible and there are immense technical difficulties associated with such studies. These limitations have opened the door for the development of microdevices modeled after the human vasculature as it is believed by many researchers in the field that such devices can one day replace tissue models. In this review we present an overview of microdevices developed to mimic various types of vasculature found throughout the human body. Although the human body contains a diverse array of vascular systems for this review we limit our discussion to the cardiovascular system and cerebrovascular system and discuss such systems that have been fabricated in both 2D and 3D configurations.
Collapse
Affiliation(s)
- Md Mydul Islam
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - Sean Beverung
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - Robert Steward
- Departments of Mechanical and Aerospace Engineering, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
24
|
Shi YZ, Xiong S, Chin LK, Yang Y, Zhang JB, Ser W, Wu JH, Chen TN, Yang ZC, Hao YL, Liedberg B, Yap PH, Zhang Y, Liu AQ. High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip. LAB ON A CHIP 2017. [PMID: 28634603 DOI: 10.1039/c7lc00484b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
An optofluidic chip is demonstrated in experiments for high-resolution and multi-range particle separation through the optically-induced microscopic vibration effect, where nanoparticles are trapped in loosely overdamped optical potential wells created with combined optical and fluidic constraints. It is the first demonstration of separating single nanoparticles with diameters ranging from 60 to 100 nm with a resolution of 10 nm. Nanoparticles vibrate with an amplitude of 3-7 μm in the loosely overdamped potential wells in the microchannel. The proposed optofluidic device is capable of high-resolution particle separation at both nanoscale and microscale without reconfiguring the device. The separation of bacteria from other larger cells is accomplished using the same chip and operation conditions. The unique trapping mechanism and the superb performance in high-resolution and multi-range particle separation of the proposed optofluidic chip promise great potential for a diverse range of biomedical applications.
Collapse
Affiliation(s)
- Y Z Shi
- School of Mechanical Engineering, Xi'an Jiao Tong University, Xian 710049, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zheng C, Zhang X, Li C, Pang Y, Huang Y. Microfluidic Device for Studying Controllable Hydrodynamic Flow Induced Cellular Responses. Anal Chem 2017; 89:3710-3715. [DOI: 10.1021/acs.analchem.7b00013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chunhong Zheng
- Beijing Advanced Innovation
Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC),
School of Life Sciences, College of Engineering, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiannian Zhang
- Beijing Advanced Innovation
Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC),
School of Life Sciences, College of Engineering, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chunmei Li
- Beijing Advanced Innovation
Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC),
School of Life Sciences, College of Engineering, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuhong Pang
- Beijing Advanced Innovation
Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC),
School of Life Sciences, College of Engineering, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yanyi Huang
- Beijing Advanced Innovation
Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC),
School of Life Sciences, College of Engineering, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
26
|
Hemodynamic shear stress stimulates migration and extravasation of tumor cells by elevating cellular oxidative level. Cancer Lett 2017; 388:239-248. [DOI: 10.1016/j.canlet.2016.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 11/22/2022]
|
27
|
Chen Y, Chan HN, Michael SA, Shen Y, Chen Y, Tian Q, Huang L, Wu H. A microfluidic circulatory system integrated with capillary-assisted pressure sensors. LAB ON A CHIP 2017; 17:653-662. [PMID: 28112765 DOI: 10.1039/c6lc01427e] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The human circulatory system comprises a complex network of blood vessels interconnecting biologically relevant organs and a heart driving blood recirculation throughout this system. Recreating this system in vitro would act as a bridge between organ-on-a-chip and "body-on-a-chip" and advance the development of in vitro models. Here, we present a microfluidic circulatory system integrated with an on-chip pressure sensor to closely mimic human systemic circulation in vitro. A cardiac-like on-chip pumping system is incorporated in the device. It consists of four pumping units and passive check valves, which mimic the four heart chambers and heart valves, respectively. Each pumping unit is independently controlled with adjustable pressure and pump rate, enabling users to control the mimicked blood pressure and heartbeat rate within the device. A check valve is located downstream of each pumping unit to prevent backward leakage. Pulsatile and unidirectional flow can be generated to recirculate within the device by programming the four pumping units. We also report an on-chip capillary-assisted pressure sensor to monitor the pressure inside the device. One end of the capillary was placed in the measurement region, while the other end was sealed. Time-dependent pressure changes were measured by recording the movement of the liquid-gas interface in the capillary and calculating the pressure using the ideal gas law. The sensor covered the physiologically relevant blood pressure range found in humans (0-142.5 mmHg) and could respond to 0.2 s actuation time. With the aid of the sensor, the pressure inside the device could be adjusted to the desired range. As a proof of concept, human normal left ventricular and arterial pressure profiles were mimicked inside this device. Human umbilical vein endothelial cells (HUVECs) were cultured on chip and cells can respond to mechanical forces generated by arterial-like flow patterns.
Collapse
Affiliation(s)
- Yangfan Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Ho Nam Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Sean A Michael
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Yusheng Shen
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yin Chen
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qian Tian
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Lu Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China. and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China and HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
28
|
High Shear Stresses under Exercise Condition Destroy Circulating Tumor Cells in a Microfluidic System. Sci Rep 2017; 7:39975. [PMID: 28054593 PMCID: PMC5215453 DOI: 10.1038/srep39975] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/29/2016] [Indexed: 01/24/2023] Open
Abstract
Circulating tumor cells (CTCs) are the primary targets of cancer treatment as they cause distal metastasis. However, how CTCs response to exercise-induced high shear stress is largely unknown. To study the effects of hemodynamic microenvironment on CTCs, we designed a microfluidic circulatory system that produces exercise relevant shear stresses. We explore the effects of shear stresses on breast cancer cells with different metastatic abilities, cancer cells of ovarian, lung and leukemic origin. Three major findings were obtained. 1) High shear stress of 60 dynes/cm2 achievable during intensive exercise killed more CTCs than low shear stress of 15 dynes/cm2 present in human arteries at the resting state. 2) High shear stress caused necrosis in over 90% of CTCs within the first 4 h of circulation. More importantly, the CTCs that survived the first 4 h-circulation, underwent apoptosis during 16-24 h of post-circulation incubation. 3) Prolonged high shear stress treatment effectively reduced the viability of highly metastatic and drug resistant breast cancer cells. As high shear stress had much less damaging effects on leukemic cells mimicking the white blood cells, we propose that intensive exercise may be a good strategy for generating high shear stress that can destroy CTCs and prevent cancer metastasis.
Collapse
|
29
|
Wang YX, Xiang C, Liu B, Zhu Y, Luan Y, Liu ST, Qin KR. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells. Biomed Eng Online 2016; 15:154. [PMID: 28155716 PMCID: PMC5259904 DOI: 10.1186/s12938-016-0273-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. METHODS The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. RESULTS Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition. CONCLUSION The parallel-plate flow chamber system can well reproduce wall shear stress waveforms acquired from the common carotid artery in resting and immediately after exercise states. Furthermore, it can be used for studying the endothelial cells responses under resting and exercise-induced wall shear stress environments in vitro.
Collapse
Affiliation(s)
- Yan-Xia Wang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Cheng Xiang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Bo Liu
- Department of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Yong Zhu
- Department of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Yong Luan
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shu-Tian Liu
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Kai-Rong Qin
- Department of Biomedical Engineering, Dalian University of Technology, Dalian, China.
| |
Collapse
|
30
|
Chou TY, Sun YS, Hou HS, Wu SY, Zhu Y, Cheng JY, Lo KY. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli. J Vis Exp 2016. [PMID: 27584698 DOI: 10.3791/54397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microfluidic devices are capable of creating a precise and controllable cellular micro-environment of pH, temperature, salt concentration, and other physical or chemical stimuli. They have been commonly used for in vitro cell studies by providing in vivo like surroundings. Especially, how cells response to chemical gradients, electrical fields, and shear stresses has drawn many interests since these phenomena are important in understanding cellular properties and functions. These microfluidic chips can be made of glass substrates, silicon wafers, polydimethylsiloxane (PDMS) polymers, polymethylmethacrylate (PMMA) substrates, or polyethyleneterephthalate (PET) substrates. Out of these materials, PMMA substrates are cheap and can be easily processed using laser ablation and writing. Although a few microfluidic devices have been designed and fabricated for generating multiple, coexisting chemical and electrical stimuli, none of them was considered efficient enough in reducing experimental repeats, particular for screening purposes. In this report, we describe our design and fabrication of two PMMA-based microfluidic chips for investigating cellular responses, in the production of reactive oxygen species and the migration, under single or coexisting chemical/electrical/shear stress stimuli. The first chip generates five relative concentrations of 0, 1/8, 1/2, 7/8, and 1 in the culture regions, together with a shear stress gradient produced inside each of these areas. The second chip generates the same relative concentrations, but with five different electric field strengths created within each culture area. These devices not only provide cells with a precise, controllable micro-environment but also greatly increase the experimental throughput.
Collapse
Affiliation(s)
- Tzu-Yuan Chou
- Department of Agricultural Chemistry, National Taiwan University
| | | | - Hsien-San Hou
- Research Center for Applied Sciences, Academia Sinica
| | - Shang-Ying Wu
- Department of Agricultural Chemistry, National Taiwan University
| | - Yun Zhu
- Department of Agricultural Chemistry, National Taiwan University
| | - Ji-Yen Cheng
- Research Center for Applied Sciences, Academia Sinica
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University;
| |
Collapse
|
31
|
A Novel Fabrication Technique for Liquid-Tight Microchannels by Combination of a Paraffin Polymer and a Photo-Curable Silicone Elastomer. MATERIALS 2016; 9:ma9080621. [PMID: 28773742 PMCID: PMC5509039 DOI: 10.3390/ma9080621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/11/2016] [Accepted: 07/25/2016] [Indexed: 11/16/2022]
Abstract
The development and growth of microfluidics has been mainly based on various novel fabrication techniques for downsizing and integration of the micro/nano components. Especially, an effective fabrication technique of three-dimensional structures still continues to be strongly required in order to improve device performance, functionality, and device packing density because the conventional lamination-based technique for integrating several two-dimensional components is not enough to satisfy the requirement. Although three-dimensional printers have a high potential for becoming an effective tool to fabricate a three-dimensional microstructure, a leak caused by the roughness of a low-precision structure made by a 3D printer is a critical problem when the microfluidic device is composed of several parts. To build a liquid-tight microchannel on such a low-precision structure, we developed a novel assembly technique in which a paraffin polymer was used as a mold for a microchannel of photo-curable silicone elastomer on a rough surface. The shape and roughness of the molded microchannel was in good agreement with the master pattern. Additionally, the seal performance of the microchannel was demonstrated by an experiment of electrophoresis in the microchannel built on a substrate which has a huge roughness and a joint.
Collapse
|
32
|
Chin LK, Lee CH, Chen BC. Imaging live cells at high spatiotemporal resolution for lab-on-a-chip applications. LAB ON A CHIP 2016; 16:2014-24. [PMID: 27121367 DOI: 10.1039/c5lc01556a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Conventional optical imaging techniques are limited by the diffraction limit and difficult-to-image biomolecular and sub-cellular processes in living specimens. Novel optical imaging techniques are constantly evolving with the desire to innovate an imaging tool that is capable of seeing sub-cellular processes in a biological system, especially in three dimensions (3D) over time, i.e. 4D imaging. For fluorescence imaging on live cells, the trade-offs among imaging depth, spatial resolution, temporal resolution and photo-damage are constrained based on the limited photons of the emitters. The fundamental solution to solve this dilemma is to enlarge the photon bank such as the development of photostable and bright fluorophores, leading to the innovation in optical imaging techniques such as super-resolution microscopy and light sheet microscopy. With the synergy of microfluidic technology that is capable of manipulating biological cells and controlling their microenvironments to mimic in vivo physiological environments, studies of sub-cellular processes in various biological systems can be simplified and investigated systematically. In this review, we provide an overview of current state-of-the-art super-resolution and 3D live cell imaging techniques and their lab-on-a-chip applications, and finally discuss future research trends in new and breakthrough research areas of live specimen 4D imaging in controlled 3D microenvironments.
Collapse
Affiliation(s)
- Lip Ket Chin
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Chau-Hwang Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan. and Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan and Department of Physics, National Taiwan University, Taipei 10671, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
33
|
Liu PY, Chin LK, Ser W, Chen HF, Hsieh CM, Lee CH, Sung KB, Ayi TC, Yap PH, Liedberg B, Wang K, Bourouina T, Leprince-Wang Y. Cell refractive index for cell biology and disease diagnosis: past, present and future. LAB ON A CHIP 2016; 16:634-44. [PMID: 26732872 DOI: 10.1039/c5lc01445j] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell refractive index is a key biophysical parameter, which has been extensively studied. It is correlated with other cell biophysical properties including mechanical, electrical and optical properties, and not only represents the intracellular mass and concentration of a cell, but also provides important insight for various biological models. Measurement techniques developed earlier only measure the effective refractive index of a cell or a cell suspension, providing only limited information on cell refractive index and hence hindering its in-depth analysis and correlation. Recently, the emergence of microfluidic, photonic and imaging technologies has enabled the manipulation of a single cell and the 3D refractive index of a single cell down to sub-micron resolution, providing powerful tools to study cells based on refractive index. In this review, we provide an overview of cell refractive index models and measurement techniques including microfluidic chip-based techniques for the last 50 years, present the applications and significance of cell refractive index in cell biology, hematology, and pathology, and discuss future research trends in the field, including 3D imaging methods, integration with microfluidics and potential applications in new and breakthrough research areas.
Collapse
Affiliation(s)
- P Y Liu
- Université Paris-Est, UPEM, F-77454 Marne-la-Vallée, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mina SG, Wang W, Cao Q, Huang P, Murray BT, Mahler GJ. Shear stress magnitude and transforming growth factor-βeta 1 regulate endothelial to mesenchymal transformation in a three-dimensional culture microfluidic device. RSC Adv 2016. [DOI: 10.1039/c6ra16607e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel microfluidic device with a three-dimensional cell culture chamber was developed to study the role of shear stress magnitude and transforming growth factor-beta 1 (TGF-β1) on endothelial to mesenchymal transformation (EndMT).
Collapse
Affiliation(s)
- Sara G. Mina
- Department of Biomedical Engineering
- Binghamton University
- Binghamton
- USA
| | - Wei Wang
- Department of Mechanical Engineering
- Binghamton University
- Binghamton
- USA
| | - Qingfeng Cao
- Department of Mechanical Engineering
- Binghamton University
- Binghamton
- USA
| | - Peter Huang
- Department of Mechanical Engineering
- Binghamton University
- Binghamton
- USA
| | - Bruce T. Murray
- Department of Mechanical Engineering
- Binghamton University
- Binghamton
- USA
| | | |
Collapse
|
35
|
Kurth F, Franco-Obregón A, Casarosa M, Küster SK, Wuertz-Kozak K, Dittrich PS. Transient receptor potential vanilloid 2-mediated shear-stress responses in C2C12 myoblasts are regulated by serum and extracellular matrix. FASEB J 2015. [PMID: 26207028 DOI: 10.1096/fj.15-275396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The developmental sensitivity of skeletal muscle to mechanical forces is unparalleled in other tissues. Calcium entry via reputedly mechanosensitive transient receptor potential (TRP) channel classes has been shown to play an essential role in both the early proliferative stage and subsequent differentiation of skeletal muscle myoblasts, particularly TRP canonical (TRPC) 1 and TRP vanilloid (TRPV) 2. Here we show that C2C12 murine myoblasts respond to fluid flow-induced shear stress with increments in cytosolic calcium that are largely initiated by the mechanosensitive opening of TRPV2 channels. Response to fluid flow was augmented by growth in low extracellular serum concentration (5 vs. 20% fetal bovine serum) by greater than 9-fold and at 18 h in culture, coincident with the greatest TRPV2 channel expression under identical conditions (P < 0.02). Fluid flow responses were also enhanced by substrate functionalization with laminin, rather than with fibronectin, agreeing with previous findings that the gating of TRPV2 is facilitated by laminin. Fluid flow-induced calcium increments were blocked by ruthenium red (27%) and SKF-96365 (38%), whereas they were unaltered by 2-aminoethoxydiphenyl borate, further corroborating that TRPV2 channels play a predominant role in fluid flow mechanosensitivity over that of TRPC1 and TRP melastatin (TRPM) 7.
Collapse
Affiliation(s)
- Felix Kurth
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Alfredo Franco-Obregón
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Marco Casarosa
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Simon K Küster
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Karin Wuertz-Kozak
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| | - Petra S Dittrich
- *Department of Biosystems and Science Engineering and Institute for Biomechanics, Eidgenössische Technische Hochschule Zürich, Switzerland; Department of Surgery, Yong Loo Lin School of Medicine, and Department of Physiology, National University of Singapore, Singapore; and National University Hospital Sports Centre, Singapore
| |
Collapse
|
36
|
Pongkan W, Chattipakorn SC, Chattipakorn N. Chronic testosterone replacement exerts cardioprotection against cardiac ischemia-reperfusion injury by attenuating mitochondrial dysfunction in testosterone-deprived rats. PLoS One 2015; 10:e0122503. [PMID: 25822979 PMCID: PMC4379072 DOI: 10.1371/journal.pone.0122503] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/18/2015] [Indexed: 12/03/2022] Open
Abstract
Background Although testosterone deficiency is associated with increased risks of heart disease, the benefits of testosterone therapy are controversial. Moreover, current understanding on the cardiac effect of testosterone during cardiac ischemia-reperfusion (I/R) periods is unclear. We tested the hypothesis that testosterone replacement attenuates the impairment of left ventricular (LV) function and heart rate variability (HRV), and reduces the infarct size and arrhythmias caused by I/R injury in orchiectomized (ORX) rats. Methodology ORX or sham-operated male Wistar rats (n = 24) were randomly divided and received either testosterone (2 mg/kg, subcutaneously administered) or the vehicle for 8 weeks. The ejection fraction (EF) and HRV were determined at baseline and the 4th and 8th week. I/R was performed by left anterior descending coronary artery ligation for 30 minutes, followed by a 120-minute reperfusion. LV pressure, arrhythmia scores, infarct size and cardiac mitochondrial function were determined. Results Prior to I/R, EF and HRV were impaired in the ORX group, but were restored in the testosterone-treated group. During I/R, arrhythmia scores and the infarct size were greater, and cardiac mitochondrial function was impaired, whereas the time to 1st VT/VF onset and the LV end-systolic pressure were decreased in the ORX group when compared to the sham group. Testosterone replacement attenuated the impairment of these parameters in ORX rats during I/R injury, but did not show any benefit or adverse effect in non-ORX rats. Conclusions Testosterone replacement restores cardiac function and autonomic regulation, and exerts cardioprotective effects during the I/R period via mitochondrial protection in ORX rats.
Collapse
Affiliation(s)
- Wanpitak Pongkan
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| |
Collapse
|
37
|
Ding Z, Liu S, Wang X, Deng X, Fan Y, Sun C, Wang Y, Mehta JL. Hemodynamic shear stress via ROS modulates PCSK9 expression in human vascular endothelial and smooth muscle cells and along the mouse aorta. Antioxid Redox Signal 2015; 22:760-71. [PMID: 25490141 PMCID: PMC4361218 DOI: 10.1089/ars.2014.6054] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIMS To investigate a possible link between hemodynamic shear stress, reactive oxygen species (ROS) generation, and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression. RESULTS Using a parallel-plate flow chamber, we observed that PCSK9 expression in vascular smooth muscle cells (SMCs) and endothelial cells (ECs) reached maximal value at low shear stress (3-6 dynes/cm(2)), and then began to decline with an increase in shear stress. PCSK9 expression increased when cells were treated with lipopolysaccharide. PCSK9 expression was always greater in SMCs than in ECs. ROS generation followed the same pattern as PCSK9 expression. Aortic branching and aorta-iliac bifurcation regions of mouse aorta that express low shear stress were also found to have greater PCSK9 expression (vs. other regions). To determine a relationship between ROS and PCSK9 expression, ECs and SMCs were treated with ROS inhibitors diphenylene-iodonium chloride and apocynin, and both markedly reduced PCSK9 expression. Relationship between PCSK9 and ROS was further studied in p47(phox) and gp91(phox) knockout mice; both mice strains revealed low PCSK9 levels in serum and mRNA levels in aorta-iliac bifurcation regions (vs. wild-type mice). Other studies showed that ROS and NF-κB activation plays a bridging role in PCSK9 expression via lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). INNOVATION Low shear stress induces PCSK9 expression, which is mediated by NADPH oxidase-dependent ROS production. CONCLUSIONS This study provides evidence that low shear stress enhances PCSK9 expression in concert with ROS generation in vascular ECs and SMCs. ROS seem to regulate PCSK9 expression. We propose that PCSK9-ROS interaction may be important in the development of atherosclerosis in arterial channels with low shear stress.
Collapse
Affiliation(s)
- Zufeng Ding
- 1 Central Arkansas Veterans Healthcare System and the Departments of Medicine, and Physiology and Biophysics, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hielscher A, Gerecht S. Hypoxia and free radicals: role in tumor progression and the use of engineering-based platforms to address these relationships. Free Radic Biol Med 2015; 79:281-91. [PMID: 25257256 PMCID: PMC4339408 DOI: 10.1016/j.freeradbiomed.2014.09.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 08/11/2014] [Accepted: 09/15/2014] [Indexed: 12/23/2022]
Abstract
Hypoxia is a feature of all solid tumors, contributing to tumor progression and therapy resistance. Through stabilization of the hypoxia-inducible factor 1 alpha (HIF-1α), hypoxia activates the transcription of a number of genes that sustain tumor progression. Since the seminal discovery of HIF-1α as a hypoxia-responsive master regulator of numerous genes and transcription factors, several groups have reported a novel mechanism whereby hypoxia mediates stabilization of HIF-1α. This process occurs as a result of hypoxia-generated reactive oxygen species (ROS), which, in turn, stabilize the expression of HIF-1α. As a result, a number of genes regulating tumor growth are expressed, fueling ongoing tumor progression. In this review, we outline a role for hypoxia in generating ROS and additionally define the mechanisms contributing to ROS-induced stabilization of HIF-1α.We further explore how ROS-induced HIF-1α stabilization contributes to tumor growth, angiogenesis, metastasis, and therapy response. We discuss a future outlook, describing novel therapeutic approaches for attenuating ROS production while considering how these strategies should be carefully selected when combining with chemotherapeutic agents. As engineering-based approaches have been more frequently utilized to address biological questions, we discuss opportunities whereby engineering techniques may be employed to better understand the physical and biochemical factors controlling ROS expression. It is anticipated that an improved understanding of the mechanisms responsible for the hypoxia/ROS/HIF-1α axis in tumor progression will yield the development of better targeted therapies.
Collapse
Affiliation(s)
- Abigail Hielscher
- Department of Biomedical Sciences, Georgia Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, USA; Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Sharon Gerecht
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
39
|
Mogi K, Hashimoto Y, Tsukahara T, Terano M, Yoshino M, Yamamoto T. Nanometer-level high-accuracy molding using a photo-curable silicone elastomer by suppressing thermal shrinkage. RSC Adv 2015. [DOI: 10.1039/c4ra12062k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The photocured elastomer presented here provided extremely high replication accuracy due to its thermal shrinkage of less than 0.02%, compared to 2.91% in the heat-cured elastomer.
Collapse
Affiliation(s)
- Katsuo Mogi
- Tokyo Institute of Technology
- Department of Mechanical and Control Engineering
- Tokyo 152-8550
- Japan
| | - Yuki Hashimoto
- Tokyo Institute of Technology
- Department of Mechanical and Control Engineering
- Tokyo 152-8550
- Japan
| | - Takeshi Tsukahara
- Tokyo Institute of Technology
- Department of Mechanical and Control Engineering
- Tokyo 152-8550
- Japan
| | - Motoki Terano
- Tokyo Institute of Technology
- Department of Mechanical and Control Engineering
- Tokyo 152-8550
- Japan
| | - Masahiko Yoshino
- Tokyo Institute of Technology
- Department of Mechanical and Control Engineering
- Tokyo 152-8550
- Japan
| | - Takatoki Yamamoto
- Tokyo Institute of Technology
- Department of Mechanical and Control Engineering
- Tokyo 152-8550
- Japan
| |
Collapse
|
40
|
Liu XF, Yu JQ, Dalan R, Liu AQ, Luo KQ. Biological factors in plasma from diabetes mellitus patients enhance hyperglycaemia and pulsatile shear stress-induced endothelial cell apoptosis. Integr Biol (Camb) 2014; 6:511-22. [PMID: 24643402 DOI: 10.1039/c3ib40265g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
People suffering from Diabetes Mellitus (DM) are prone to an array of vascular complications leading to end organ damage. The hallmark of these vascular complications is endothelium dysfunction, which is caused by endothelial cell (EC) apoptosis. Although the endothelial cell (EC) dysfunction induced by hyperglycaemia and fluid shear stress has been studied, the effects of biological factors in the blood of DM patients on EC integrity have not been reported in the in vitro models that mimic the physiological pulsatile nature of the vascular system. This study reports the development of a hemodynamic lab-on-a-chip system to investigate this issue. The pulsatile flow was applied to a monolayer of endothelial cells expressing a fluorescence resonance energy transfer (FRET)-based biosensor that changes colour from green to blue in response to caspase-3 activation during apoptosis. Plasma samples from healthy volunteers and DM patients were compared to identify biological factors that are critical to endothelial disruption. Three types of microchannels were designed to simulate the blood vessels under healthy and partially blocked pathological conditions. The results showed that EC apoptosis rates increased with increasing glucose concentration and levels of shear stress. The rates of apoptosis further increased by a factor of 1.4-2.3 for hyperglycaemic plasma under all dynamic conditions. Under static conditions, little difference was detected in the rate of EC apoptosis between experiments using plasma from DM patients and glucose medium, suggesting that the effects of hyperglycaemia and biological factors on the induction of EC apoptosis are all shear flow-dependent. A proteomics study was then conducted to identify biological factors, demonstrating that the levels of eight proteins, including haptoglobin and clusterin, were significantly down-regulated, while six proteins, including apolipoprotein C-III, were significantly up-regulated in the plasma of DM patients compared to healthy volunteers. This hemodynamic lab-on-a-chip system can serve as a high throughput platform to assess the risk of vascular complications of DM patients and to determine the effects of therapeutics or other interventions on EC apoptosis.
Collapse
Affiliation(s)
- X F Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457.
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Patibandla PK, Rogers AJ, Giridharan GA, Pallero MA, Murphy-Ullrich JE, Sethu P. Hyperglycemic Arterial Disturbed Flow Niche as an In Vitro Model of Atherosclerosis. Anal Chem 2014; 86:10948-54. [DOI: 10.1021/ac503294p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Phani K. Patibandla
- Division
of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department
of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Aaron J. Rogers
- Division
of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department
of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Guruprasad A. Giridharan
- Department
of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, Kentucky 40292, United States
| | - Manuel A. Pallero
- Departments
of Pathology and Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Joanne E. Murphy-Ullrich
- Departments
of Pathology and Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Palaniappan Sethu
- Division
of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department
of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
43
|
Yu JQ, Huang W, Chin LK, Lei L, Lin ZP, Ser W, Chen H, Ayi TC, Yap PH, Chen CH, Liu AQ. Droplet optofluidic imaging for λ-bacteriophage detection via co-culture with host cell Escherichia coli. LAB ON A CHIP 2014; 14:3519-24. [PMID: 25008551 DOI: 10.1039/c4lc00042k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bacteriophages are considered as attractive indicators for determining drinking water quality since its concentration is strongly correlated with virus concentrations in water samples. Previously, bacteriophage detection was based on a plague assay that required a complicated labelling technique and a time-consuming culture assay. Here, for the first time, a label-free bacteriophage detection is reported by using droplet optofluidic imaging, which uses host-cell-containing microdroplets as reaction carriers for bacteriophage infection due to a higher contact ratio. The optofluidic imaging is based on the effective refractive index changes in the microdroplet correlated with the growth rate of the infected host cells, which is highly sensitive, i.e. can detect one E. coli cell. The droplet optofluidic system is not only used in drinking water quality monitoring, but also has high potential applications for pathogenic bacteria detection in clinical diagnosis and food industry.
Collapse
Affiliation(s)
- J Q Yu
- School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function. J Biosci Bioeng 2014; 118:327-32. [DOI: 10.1016/j.jbiosc.2014.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/17/2014] [Accepted: 02/10/2014] [Indexed: 12/11/2022]
|
45
|
Sato K, Sasaki N, Svahn HA, Sato K. Microfluidics for nano-pathophysiology. Adv Drug Deliv Rev 2014; 74:115-21. [PMID: 24001983 DOI: 10.1016/j.addr.2013.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/02/2013] [Accepted: 08/22/2013] [Indexed: 01/30/2023]
Abstract
Nanotechnology-based drug delivery systems hold promise for innovative medical treatment of cancers. While drug materials are constantly under development, there are no practical cell-based models to assess whether these materials can reach the target tissue. Recently developed microfluidic systems have revolutionized cell-based experiments. In these systems, vascular endothelial cells and interstitium are set in microchannels that mimic microvessels. Drug permeability can be assayed in these blood vessel models under fluidic conditions that mimic blood flow. In this review, we describe device fabrication, disease model development, nanoparticle permeability assays, and the potential utility of these systems in the future.
Collapse
|
46
|
Bharath LP, Mueller R, Li Y, Ruan T, Kunz D, Goodrich R, Mills T, Deeter L, Sargsyan A, Anandh Babu PV, Graham TE, Symons JD. Impairment of autophagy in endothelial cells prevents shear-stress-induced increases in nitric oxide bioavailability. Can J Physiol Pharmacol 2014; 92:605-12. [PMID: 24941409 DOI: 10.1139/cjpp-2014-0017] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Autophagy is a lysosomal catabolic process by which cells degrade or recycle their contents to maintain cellular homeostasis, adapt to stress, and respond to disease. Impairment of autophagy in endothelial cells studied under static conditions results in oxidant stress and impaired nitric oxide (NO) bioavailability. We tested the hypothesis that vascular autophagy is also important for induction of NO production caused by exposure of endothelial cells to shear stress (i.e., 3 h × ≈20 dyn/cm(2)). Atg3 is a requisite autophagy pathway mediator. Control cells treated with non-targeting control siRNA showed increased autophagy, reactive oxygen species (ROS) production, endothelial NO synthase (eNOS) phosphorylation, and NO production upon exposure to shear stress (p < 0.05 for all). In contrast, cells with >85% knockdown of Atg3 protein expression (via Atg3 siRNA) exhibited a profound impairment of eNOS phosphorylation, and were incapable of increasing NO in response to shear stress. Moreover, ROS accumulation and inflammatory cytokine production (MCP-1 and IL-8) were exaggerated (all p < 0.05) in response to shear stress. These findings reveal that autophagy not only plays a critical role in maintaining NO bioavailability, but may also be a key regulator of oxidant-antioxidant balance and inflammatory-anti-inflammatory balance that ultimately regulate endothelial cell responses to shear stress.
Collapse
Affiliation(s)
- Leena P Bharath
- a College of Health, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
A microfluidic-based multi-shear device for investigating the effects of low fluid-induced stresses on osteoblasts. PLoS One 2014; 9:e89966. [PMID: 24587156 PMCID: PMC3937402 DOI: 10.1371/journal.pone.0089966] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/23/2014] [Indexed: 01/09/2023] Open
Abstract
Interstitial fluid flow (IFF) within the extracellular matrix (ECM) produces low magnitude shear stresses on cells. Fluid flow-induced stress (FSS) plays an important role during tissue morphogenesis. To investigate the effect of low FSS generated by IFF on cells, we developed a microfluidic-based cell culture device that can generate multiple low shear stresses. By changing the length and width of the flow-in channels, different continuous low level shear stresses could be generated in individual cell culture chambers. Numerical calculations demonstrate uniform shear stress distributions of the major cell culture area of each chamber. This calculation is further confirmed by the wall shear stress curves. The effects of low FSS on MC3T3-E1 proliferation and differentiation were studied using this device. It was found that FSS ranging from 1.5 to 52.6 µPa promoted MC3T3-E1 proliferation and differentiation, but FSS over 412 µPa inhibited the proliferation and differentiation of MC3T3-E1 cells. FSS ranging from 1.5 to 52.6 µPa also increased the expression of Runx2, a key transcription factor regulating osteoblast differentiation. It is suggested that Runx2 might be an important regulator in low FSS-induced MC3T3-E1 differentiation. This device allows for detailed study of the effect of low FSS on the behaviors of cells; thus, it would be a useful tool for analysis of the effects of IFF-induced shear stresses on cells.
Collapse
|
48
|
Smith Q, Gerecht S. Going with the flow: microfluidic platforms in vascular tissue engineering. Curr Opin Chem Eng 2014; 3:42-50. [PMID: 24644533 DOI: 10.1016/j.coche.2013.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vascularization of tissue-engineered constructs, requiring the transport of oxygen, nutrients and waste through a thick and cellular dense meshwork, continues to hamper the success of the technology in addressing the donor organ shortage crisis. Microfluidic technology has emerged as a viable alternative to traditional in vitro platforms utilized by tissue engineers, to understand how the complex cellular microenvironment directs vascular cell behavior and functionality. In this review, the essence of microfluidic technology and transport phenomenon that make them unique for vascular tissue engineering will be briefly introduced. The main scope of this review is to expose how new and innovative microfluidic fabrication techniques are being utilized for exciting applications that have allowed insight into the spatio/temporal dynamics of vascular cell behavior. Specifically, microfluidic devices which range in functionality from simultaneously controlling oxygen and shear stress levels to perfusable biopolymer networks, will be discussed in the context of how they bolster traditional in vitro platforms, by providing greater data output, accessibility, and physiological relevance.
Collapse
Affiliation(s)
- Quinton Smith
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences - Oncology Center and Institute for NanoBioTechnology, Baltimore, MD 21218, United States
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences - Oncology Center and Institute for NanoBioTechnology, Baltimore, MD 21218, United States ; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| |
Collapse
|
49
|
Sripetchwandee J, KenKnight SB, Sanit J, Chattipakorn S, Chattipakorn N. Blockade of mitochondrial calcium uniporter prevents cardiac mitochondrial dysfunction caused by iron overload. Acta Physiol (Oxf) 2014; 210:330-41. [PMID: 24034353 DOI: 10.1111/apha.12162] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/15/2013] [Accepted: 08/29/2013] [Indexed: 12/24/2022]
Abstract
AIM Iron overload in the heart can lead to iron-overload cardiomyopathy and cardiac arrhythmia. In the past decades, growing evidence has suggested that cardiac mitochondrial dysfunction is associated with the development of cardiac dysfunction and lethal arrhythmias. Despite these facts, the effect of iron overload on cardiac mitochondrial function is still unclear. In this study, we determined the effects of iron overload on the cardiac mitochondrial function and the routes of cardiac mitochondrial iron uptake. We tested the hypothesis that iron overload can lead to cardiac mitochondrial dysfunction and that mitochondrial calcium uniporter (MCU) plays a major role for cardiac mitochondrial iron uptake under iron-overload condition. Cardiac mitochondrial function was assessed via the determination of mitochondrial swelling, mitochondrial reactive oxygen species (ROS) production and mitochondrial membrane potential changes. METHODS Isolated cardiac mitochondria from male Wistar rats were used in this study. To determine the routes for cardiac mitochondrial iron uptake, isolated mitochondria were exposed to MCU blocker (Ru360), mitochondrial permeability transition pore (mPTP) blocker (cyclosporin A) and an iron chelator (deferoxamine). RESULTS We found that (i) iron overload caused cardiac mitochondrial dysfunction, indicated by increased ROS production, mitochondrial membrane depolarization and mitochondrial swelling; and (ii) only MCU blocker completely protected cardiac mitochondrial dysfunction caused by iron overload. CONCLUSIONS These findings strongly suggest that MCU could be the major route for iron uptake into cardiac mitochondria. The inhibition of MCU could be the novel pharmacological intervention for preventing iron-overload cardiomyopathy.
Collapse
Affiliation(s)
- J. Sripetchwandee
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| | - S. B. KenKnight
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| | - J. Sanit
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| | - S. Chattipakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - N. Chattipakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Biomedical Engineering Center; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
50
|
Hsieh HJ, Liu CA, Huang B, Tseng AH, Wang DL. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci 2014; 21:3. [PMID: 24410814 PMCID: PMC3898375 DOI: 10.1186/1423-0127-21-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/02/2014] [Indexed: 12/26/2022] Open
Abstract
Hemodynamic shear stress, the blood flow-generated frictional force acting on the vascular endothelial cells, is essential for endothelial homeostasis under normal physiological conditions. Mechanosensors on endothelial cells detect shear stress and transduce it into biochemical signals to trigger vascular adaptive responses. Among the various shear-induced signaling molecules, reactive oxygen species (ROS) and nitric oxide (NO) have been implicated in vascular homeostasis and diseases. In this review, we explore the molecular, cellular, and vascular processes arising from shear-induced signaling (mechanotransduction) with emphasis on the roles of ROS and NO, and also discuss the mechanisms that may lead to excessive vascular remodeling and thus drive pathobiologic processes responsible for atherosclerosis. Current evidence suggests that NADPH oxidase is one of main cellular sources of ROS generation in endothelial cells under flow condition. Flow patterns and magnitude of shear determine the amount of ROS produced by endothelial cells, usually an irregular flow pattern (disturbed or oscillatory) producing higher levels of ROS than a regular flow pattern (steady or pulsatile). ROS production is closely linked to NO generation and elevated levels of ROS lead to low NO bioavailability, as is often observed in endothelial cells exposed to irregular flow. The low NO bioavailability is partly caused by the reaction of ROS with NO to form peroxynitrite, a key molecule which may initiate many pro-atherogenic events. This differential production of ROS and RNS (reactive nitrogen species) under various flow patterns and conditions modulates endothelial gene expression and thus results in differential vascular responses. Moreover, ROS/RNS are able to promote specific post-translational modifications in regulatory proteins (including S-glutathionylation, S-nitrosylation and tyrosine nitration), which constitute chemical signals that are relevant in cardiovascular pathophysiology. Overall, the dynamic interplay between local hemodynamic milieu and the resulting oxidative and S-nitrosative modification of regulatory proteins is important for ensuing vascular homeostasis. Based on available evidence, it is proposed that a regular flow pattern produces lower levels of ROS and higher NO bioavailability, creating an anti-atherogenic environment. On the other hand, an irregular flow pattern results in higher levels of ROS and yet lower NO bioavailability, thus triggering pro-atherogenic effects.
Collapse
Affiliation(s)
| | | | | | | | - Danny Ling Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|