1
|
Xu D, Wang XN, Wang L, Dai L, Yang C. Investigations on the Synthesis of Chiral Ionic-Liquid-Supported Ligands and Corresponding Transition-Metal Catalysts: Strategy and Experimental Schemes. Molecules 2024; 29:5661. [PMID: 39683819 DOI: 10.3390/molecules29235661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Ionic liquids have been utilized in numerous significant applications within the field of chemistry, particularly in organic chemistry, due to their unique physical and chemical properties. In the realm of asymmetric transition-metal-catalyzed transformations, chiral ionic-liquid-supported ligands and their corresponding transition-metal complexes have facilitated these processes in unconventional solvents, especially ionic liquids and water. These innovative reaction systems enable the recycling of transition-metal catalysts while producing optically active organic molecules with comparable or even higher levels of chemo-, regio-, and stereoselectivity compared to their parent catalysts. In this short review, we aim to provide an overview of the structures of chiral ionic-liquid-supported ligands and the synthetic pathways for these ligands and catalysts. Various synthetic methodologies are demonstrated based on the conceptual frameworks of diverse chiral ionic-liquid-supported ligands. We systematically present the structures and comprehensive synthetic pathways of the chiral ionic-liquid-supported ligands and the typical corresponding transition-metal complexes that have been readily applied to asymmetric processes, categorized by their parent ligand framework. Notably, the crucial experimental procedures are delineated in exhaustive detail, with the objective of enhancing comprehension of the pivotal aspects involved in constructing chiral ionic-liquid-tagged ligands and compounds for both scholars and readers. Considering the current limitations of such ligands and catalysts, we conclude with remarks on several potential research directions for future breakthroughs in the synthesis and application of these intriguing ligands.
Collapse
Affiliation(s)
- Di Xu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Xin-Ning Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Li Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Li Dai
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
- Collaborative Innovation Center for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Chen Yang
- Collaborative Innovation Center for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| |
Collapse
|
2
|
Bhandari R, Rai R, Kaleem M, Pratap R, Shraogi N, Patnaik S, Bhattacharya S, Misra A. Boron-Salphen Conjugate based Molecular Probe Exhibiting Fluorescence On-Off-On Response in Detection of Cu 2+ and ATP through Displacement Approach. Chem Asian J 2024; 19:e202400398. [PMID: 38775649 DOI: 10.1002/asia.202400398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Indexed: 06/27/2024]
Abstract
Synthesis and photophysical properties of a fluorescent probe HBD is described. Probe upon interaction with metal ions, anions and nucleoside pyrophosphates (NPPs) showed fluorescence quenching with Cu2+ due to chelation enhanced quenching effect (CHEQ). Moreover, interaction of ensemble HBD.Cu2+ with anions and NPPs showed fluorescence "turn-On" response with ATP selectively. "On-Off-On" responses observed with Cu2+ and ATP is attributed to an interplay between ESIPT and TICT processes. Cyclic voltammogram of probe exhibited quasi-reversible redox behaviour with three oxidation and two reduction potentials and the change in band gaps of probe suggested the interaction with Cu2+ and ATP. The 2 : 1 and 1 : 1 binding stoichiometry for an interaction between probe and Cu2+ (LOD, 62 nM) and ensemble, HBD.Cu2+ with ATP (LOD, 0.4 μM) respectively are realised by Job's plot and HRMS data. Cell imaging studies carried out to detect Cu2+ and ATP in HeLa cells. Also, the output emission observed with Cu2+ and ATP is utilized to construct an implication (IMP) logic gate. Test paper strips showed naked-eye visible color responses to detect Cu2+ and ATP. In real water samples probe successfully detected copper (0.03 μM) between 5-6.5 ppb level (ICP-MS method).
Collapse
Affiliation(s)
- Rimpi Bhandari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Ravisen Rai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Mohammed Kaleem
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Rajesh Pratap
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Nikita Shraogi
- Nano Laboratory, Drug and Chemical Toxicology Group, FEST Division, Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Satyakam Patnaik
- Nano Laboratory, Drug and Chemical Toxicology Group, FEST Division, Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subrato Bhattacharya
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Arvind Misra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| |
Collapse
|
3
|
Pocock E, Diefenbach M, Hood TM, Nunn M, Richards E, Krewald V, Webster RL. Synthetic and Mechanistic Studies into the Reductive Functionalization of Nitro Compounds Catalyzed by an Iron(salen) Complex. J Am Chem Soc 2024; 146:19839-19851. [PMID: 38995168 PMCID: PMC11273354 DOI: 10.1021/jacs.4c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
We report on the use of a simple, bench-stable [Fe(salen)2]-μ-oxo precatalyst in the reduction of nitro compounds. The reaction proceeds at room temperature across a range of substrates, including nitro aromatics and aliphatics. By changing the reducing agent from pinacol borane (HBpin) to phenyl silane (H3SiPh), we can chemoselectively reduce nitro compounds while retaining carbonyl functionality. Our mechanistic studies, which include kinetics, electron paramagnetic resonance (EPR), mass spectrometry, and quantum chemistry, indicate the presence of a nitroso intermediate and the generation of an on-cycle iron hydride as a key catalytic intermediate. Based on this mechanistic insight, we were able to extend the chemistry to hydroamination and identified a simple substrate feature (alkene lowest unoccupied molecular orbital (LUMO) energy) that could be used to predict which alkenes would result in productive catalysis.
Collapse
Affiliation(s)
- Emily Pocock
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | | | - Thomas M. Hood
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Michael Nunn
- Early
Chemical Development, Pharmaceutical Sciences,
Biopharmaceuticals R&D, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Emma Richards
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Vera Krewald
- Department
of Chemistry, TU Darmstadt, Darmstadt 64287, Germany
| | - Ruth L. Webster
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
4
|
Jia Z, Cao J, Chen W, Yu Z, Song Y, Dong Y. Synthesis, Crystal Structure, Fluorescence and Theoretical Calculations of Three Zn(II)/Cd(II) Complexes with Bis-dentate N,N-Quinoline Schiff Base. J Fluoresc 2024:10.1007/s10895-024-03786-7. [PMID: 38958906 DOI: 10.1007/s10895-024-03786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Three d10 metal complexes, ZnL(OAc)2 (1), CdL(OAc)2 (2) and [CdL2(NO3)2]·CH3CN (3) were synthesized using the ligand (E)-N-(3-methoxy-4-methylphenyl)-1-(quinolin-2-yl)methanimine (L) and characterized by FT-IR spectra, NMR spectra, and CHN elemental analysis. Single-crystal X-ray diffraction analysis revealed that complexes 1 and 2 are isostructural, with the central metal adopting a hexacoordinate octahedral geometry, while complex 3 adopts a triangular dodecahedron geometry. Thermal gravimetric analysis showed that these complexes exhibit good thermal stability. Solid-state fluorescence spectroscopy measurements demonstrated that complexes 1-3 exhibit bright yellow-green fluorescence (λem = 564 nm for 1; 524 nm for 2; 542 nm for 3), suggesting their potential as photoluminescent materials. Furthermore, DFT calculations, including frontier molecular orbitals, energy levels, and surface electrostatic potential, provided insights into the structural and electronic spectral properties of complexes 1-3.
Collapse
Affiliation(s)
- Zhiyu Jia
- Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China
| | - Jiahui Cao
- Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China
| | - Wei Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China
| | - Zhou Yu
- Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China
| | - Yangyang Song
- Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China.
| | - Yuwei Dong
- Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, P. R. China.
| |
Collapse
|
5
|
Enríquez-Palacios E, Robledo-Patiño AV, Zelada-Guillén GA. Zn-Salphen Acrylic Films Powered by Aggregation-Induced Enhanced Emission for Sensing Applications. J Fluoresc 2024; 34:1903-1912. [PMID: 37665511 PMCID: PMC11249402 DOI: 10.1007/s10895-023-03399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Zn(II) complexes possess attractive characteristics for supramolecular chemistry, catalysis, and optoelectronic applications, while Zn-Salphen counterparts are also suitable as chemical sensors, although limited by solution-based to date. In this study, we report the synthesis of new polymers from methyl methacrylate, n-butyl acrylate, and a non-symmetrical Zn-Salphen complex. We show that this low-fluorescent complex exhibits aggregation-induced emission enhancement (AIEE) properties and that, the incorporation of AIEE complexes into a polymeric matrix make it possible to achieve fluorescent films with enhanced fluorescence suitable for sensing applications. As a proof of concept, these films could detect acetic acid, showing a decrease of up to 73% in the original fluorescence. Host/guest studies showed a subtle disruption of the emission in aggregates upon treatment with anion guests. These results indicate that an interaction between the guest and Zn-Salphen complex may occur, stabilizing or destabilizing the complex and causing a concomitant increase or decrease in emission.
Collapse
Affiliation(s)
- Ernesto Enríquez-Palacios
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico.
| | - Ana Victoria Robledo-Patiño
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Gustavo A Zelada-Guillén
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico.
| |
Collapse
|
6
|
Awasthi A, Mallojjala SC, Kumar R, Eerlapally R, Hirschi JS, Draksharapu A. Altering the Localization of an Unpaired Spin in a Formal Ni(V) Species. Chemistry 2024; 30:e202302824. [PMID: 37903027 PMCID: PMC10841873 DOI: 10.1002/chem.202302824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
The participation of both ligand and the metal center in the redox events has been recognized as one of the ways to attain the formal high valent complexes for the late 3d metals, such as Ni and Cu. Such an approach has been employed successfully to stabilize a Ni(III) bisphenoxyl diradical species in which there exist an equilibrium between the ligand and the Ni localized resultant spin. The present work, however, broadens the scope of the previously reported three oxidized equivalent species by conveying the approaches that tend to affect the reported equilibrium in CH3 CN at 233 K. Various spectroscopic characterization revealed that employing exogenous N-donor ligands like 1-methyl imidazole and pyridine favors the formation of the Ni centered localized spin though axial binding. In contrast, due to its steric hinderance, quinoline favors an exclusive ligand localized radical species. DFT studies shed light on the novel intermediates' complex electronic structure. Further, the three oxidized equivalent species with the Ni centered spin was examined for its hydrogen atom abstraction ability stressing their key role in alike reactions.
Collapse
Affiliation(s)
- Ayushi Awasthi
- Southern Laboratories-208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | | | - Rakesh Kumar
- Southern Laboratories-208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Raju Eerlapally
- Southern Laboratories-208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York, 13902, USA
| | - Apparao Draksharapu
- Southern Laboratories-208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
7
|
Adriyani TR, Ensafi AA, Rezaei B. Flexible and sewable electrode based on Ni-Co@PANI-salphen composite-coated on textiles for wearable supercapacitor. Sci Rep 2023; 13:19772. [PMID: 37957225 PMCID: PMC10643400 DOI: 10.1038/s41598-023-47067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023] Open
Abstract
Flexible electrodes with high deformability and energy density are critical for electronic textiles. The key factor for achieving high-performance supercapacitors with superior power and energy density is the evaluation of materials that exhibit exceptional capacitive performance. Herein, we have prepared Ni-Co nanoparticles at the surface of polyaniline-salphen (Ni-Co@PS). Then, followed by casting Ni-Co@PS on a conductive carbon cloth (CC) as a substrate through a facile in-situ polymerization strategy. The morphologies of Ni-Co@PS composite were characterized by different methods such as FE-SEM, XPS, XRD, BET, and electrochemical methods. This nanocomposite showed high tolerability and a large surface area with excellent behavior as a new nanomaterial for supercapacitor application. Thus, the optimum composite designed with a metal ratio (nickel-cobalt 3:1 w/w) satisfactorily possesses a specific capacitance of up to 549.994 C g-1 (1447.2 F g-1) under 0.5 A g-1 and long-term cyclic stability featuring capacity retention of 95.9% after 5000 cycles at a current density of 9.0 A g-1. The Ni-Co@PS-CC, is a material with great potential as an electrode in asymmetric wearable supercapacitor (AWSC) apparatus, demonstrating a remarkable specific capacity of 70.01, and accompanied by an energy density of 23.46 Wh k g-1 at a power density of 800 W k g-1.
Collapse
Affiliation(s)
- Touba Rezaee Adriyani
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - B Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
8
|
Lemon CM. Diversifying the functions of heme proteins with non-porphyrin cofactors. J Inorg Biochem 2023; 246:112282. [PMID: 37320889 DOI: 10.1016/j.jinorgbio.2023.112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Heme proteins perform diverse biochemical functions using a single iron porphyrin cofactor. This versatility makes them attractive platforms for the development of new functional proteins. While directed evolution and metal substitution have expanded the properties, reactivity, and applications of heme proteins, the incorporation of porphyrin analogs remains an underexplored approach. This review discusses the replacement of heme with non-porphyrin cofactors, such as porphycene, corrole, tetradehydrocorrin, phthalocyanine, and salophen, and the attendant properties of these conjugates. While structurally similar, each ligand exhibits distinct optical and redox properties, as well as unique chemical reactivity. These hybrids serve as model systems to elucidate the effects of the protein environment on the electronic structure, redox potentials, optical properties, or other features of the porphyrin analog. Protein encapsulation can confer distinct chemical reactivity or selectivity of artificial metalloenzymes that cannot be achieved with the small molecule catalyst alone. Additionally, these conjugates can interfere with heme acquisition and uptake in pathogenic bacteria, providing an inroad to innovative antibiotic strategies. Together, these examples illustrate the diverse functionality that can be achieved by cofactor substitution. The further expansion of this approach will access unexplored chemical space, enabling the development of superior catalysts and the creation of heme proteins with emergent properties.
Collapse
Affiliation(s)
- Christopher M Lemon
- Department of Chemistry and Biochemistry, Montana State University, PO Box 173400, Bozeman, MT 59717, United States.
| |
Collapse
|
9
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
10
|
Cabrera DJ, Lewis RD, Díez-Poza C, Álvarez-Miguel L, Mosquera MEG, Hamilton A, Whiteoak CJ. Group 13 salphen compounds (In, Ga and Al): a comparison of their structural features and activities as catalysts for cyclic carbonate synthesis. Dalton Trans 2023; 52:5882-5894. [PMID: 36852925 DOI: 10.1039/d3dt00089c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Many complexes based on group 13 elements have been successfully applied as catalysts for the synthesis of cyclic carbonates from epoxides and CO2 and to date these have provided some of the most active catalysts developed. It is notable that most reports have focused on the use of aluminium-based compounds likely because of the well-established Lewis acidity of this element and its cost. In comparison, relatively little attention has been paid to the development of catalysts based on the heavier group 13 elements, despite their known Lewis acidic properties. This study describes the synthesis of aluminium, gallium and indium compounds supported by a readily prepared salphen ligand and explores both their comparative structures and also their potential as catalysts for the synthesis of cyclic carbonates. In addition, the halide ligand which forms a key part of the compound has been systematically varied and the effect of this change on the structure and catalytic activity is also discussed. It is demonstrated that the indium compounds are actually, and unexpectedly, the most active for cyclic carbonate synthesis, despite their lower Lewis acidity when compared to their aluminium congeners. The experimental observations from this work are fully supported by a Density Functional Theory (DFT) study, which provides important insights into the reasons as to why the indium catalyst with bromide, [InBr(salphen)], is most active.
Collapse
Affiliation(s)
- Diego Jaraba Cabrera
- Universidad de Alcalá, Grupo SOSCATCOM, Departamento de Química Orgánica y Química Inorgánica, Facultad de Farmacia and Instituto de Investigación Química Andrés M. del Río (IQAR), Campus Universitario, Ctra. Madrid-Barcelona Km. 33, 600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Ryan D Lewis
- Sheffield Hallam University, Biomolecular Sciences Research Centre (BMRC) and Department of Biosciences and Chemistry, College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | - Carlos Díez-Poza
- Universidad de Alcalá, Grupo SOSCATCOM, Departamento de Química Orgánica y Química Inorgánica, Facultad de Farmacia and Instituto de Investigación Química Andrés M. del Río (IQAR), Campus Universitario, Ctra. Madrid-Barcelona Km. 33, 600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Lucía Álvarez-Miguel
- Universidad de Alcalá, Grupo SOSCATCOM, Departamento de Química Orgánica y Química Inorgánica, Facultad de Farmacia and Instituto de Investigación Química Andrés M. del Río (IQAR), Campus Universitario, Ctra. Madrid-Barcelona Km. 33, 600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Marta E G Mosquera
- Universidad de Alcalá, Grupo SOSCATCOM, Departamento de Química Orgánica y Química Inorgánica, Facultad de Farmacia and Instituto de Investigación Química Andrés M. del Río (IQAR), Campus Universitario, Ctra. Madrid-Barcelona Km. 33, 600, 28871 Alcalá de Henares, Madrid, Spain.
| | - Alex Hamilton
- Sheffield Hallam University, Biomolecular Sciences Research Centre (BMRC) and Department of Biosciences and Chemistry, College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | - Christopher J Whiteoak
- Universidad de Alcalá, Grupo SOSCATCOM, Departamento de Química Orgánica y Química Inorgánica, Facultad de Farmacia and Instituto de Investigación Química Andrés M. del Río (IQAR), Campus Universitario, Ctra. Madrid-Barcelona Km. 33, 600, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
11
|
Lewis Acidic Zinc(II) Complexes of Tetradentate Ligands as Building Blocks for Responsive Assembled Supramolecular Structures. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This review presents representative examples illustrating how the Lewis acidic character of the Zn(II) metal center in Zn(salen)-type complexes, as well as in complexes of other tetradentate ligands, and the nature of the medium govern their supramolecular aggregation, leading to the formation of a variety of supramolecular structures, either in solution or in the solid state. Stabilization of these Lewis acidic complexes is almost always reached through an axial coordination of a Lewis base, leading to a penta-coordinated square-pyramidal geometry around the metal center. The coverage is not exhaustive, mainly focused on their crystallographic structures, but also on their aggregation and sensing properties in solution, and on their self-assembled and responsive nanostructures, summarizing their salient aspects. The axial ligands can easily be displaced, either in solution or in the solid state, with suitable Lewis bases, thus being responsive supramolecular structures useful for sensing. This contribution represents the first attempt to relate some common features of the chemistry of different families of Zn(II) complexes of tetradentate ligands to their intrinsic Lewis acidic character.
Collapse
|
12
|
Unprecedented bi- and trinuclear palladium(II)-sodium complexes from a salophen-type Schiff base: Synthesis, characterization, thermal behavior, and in vitro biological activities. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Hernández-Pacheco P, Zelada-Guillen GA, Flores-Alamo M, Escárcega-Bobadilla MV. Supramolecular host-guest and fluorescence studies on Ni-Salphen complex as a binding unit on edge oxidised graphene oxide grafted nanomaterial. Supramol Chem 2022. [DOI: 10.1080/10610278.2022.2159824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Marcos Flores-Alamo
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | |
Collapse
|
14
|
Zinc– and Copper–Salicyaldimine complexes: Simultaneous observation of both metal–ligand coordination and weak CH⋯N contact about a single N-donor and the transmetallation reactions. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Zhou W, Tan Y, Ma J, Wang X, Yang L, Li Z, Liu C, Wu H, Sun L, Deng W. Ultrasensitive NO Sensor Based on a Nickel Single-Atom Electrocatalyst for Preliminary Screening of COVID-19. ACS Sens 2022; 7:3422-3429. [PMID: 36315489 DOI: 10.1021/acssensors.2c01597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new coronavirus, SARS-CoV-2, has caused the coronavirus disease-2019 (COVID-19) epidemic. A rapid and economical method for preliminary screening of COVID-19 may help to control the COVID-19 pandemic. Here, we report a nickel single-atom electrocatalyst that can be printed on a paper-printing sensor for preliminary screening of COVID-19 suspects by efficient detection of fractional exhaled nitric oxide (FeNO). The FeNO value is confirmed to be related to COVID-19 in our exploratory clinical study, and a machine learning model that can accurately classify healthy subjects and COVID-19 patients is established based on FeNO and other features. The nickel single-atom electrocatalyst consists of a single nickel atom with N2O2 coordination embedded in porous acetylene black (named Ni-N2O2/AB). A paper-printed sensor was fabricated with the material and showed ultrasensitive response to NO in the range of 0.3-180 ppb. This ultrasensitive sensor could be applied to preliminary screening of COVID-19 in everyday life.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Yi Tan
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Jing Ma
- Department of Critical Care Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430070, Hubei, China
| | - Xiao Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Li Yang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Zhen Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Chengcheng Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Hao Wu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Lei Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Weiqiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| |
Collapse
|
16
|
Kurahashi T. Variation of the Emission Efficiency and Wavelength from Fluorescent Zinc Salen Complexes upon Systematic Structural Modifications. ACS OMEGA 2022; 7:30642-30654. [PMID: 36061697 PMCID: PMC9435038 DOI: 10.1021/acsomega.2c04714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 05/14/2023]
Abstract
Understanding the photophysical properties of metal salen complexes is not straightforward because the emission efficiency is altered irregularly upon structural modifications. The present study prepared zinc salen complexes with systematic structural variations to pinpoint critical factors to determine the emission efficiency. One of the important experimental observations is the regiochemistry of a phenolate substituent affecting emission efficiency from a salicylidene fluorophore, which is nicely assigned as arising from the photoexcited electronic structure of metal salen complexes. Another significant finding is the thermal fluctuation of a salen ligand arising from the mismatched ligand-metal interaction, which has a significant impact on fluorescence lifetime. The present study sheds light on hidden factors that alter photophysical properties of a metal salen complex, which provide valuable insights into designing new photoactive salen ligands.
Collapse
|
17
|
Ikeshita M, Yamamoto T, Watanabe S, Kitahara M, Imai Y, Tsuno T. Circularly Polarized Luminescence of Chiral Platinum(II) Complexes with Tetradentate Salen Ligands. CHEM LETT 2022. [DOI: 10.1246/cl.220224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masahiro Ikeshita
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan
| | - Takuho Yamamoto
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan
| | - Shinya Watanabe
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan
| | - Maho Kitahara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Takashi Tsuno
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan
| |
Collapse
|
18
|
Ghosh S, Ghosh S, Raza R, Ghosh K. Progress of 3-aminopyridine-based amide, urea, imine and azo derivatives in supramolecular gelation. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Nath BD, Islam MM, Karim MR, Rahman S, Shaikh MAA, Georghiou PE, Menelaou M. Recent Progress in Metal‐Incorporated Acyclic Schiff‐Base Derivatives: Biological Aspects. ChemistrySelect 2022. [DOI: 10.1002/slct.202104290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bikash Dev Nath
- Chemical Research Division Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka 1205 Bangladesh
| | - Md. Monarul Islam
- Chemical Research Division Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka 1205 Bangladesh
| | - Md. Rezaul Karim
- Chemical Research Division Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka 1205 Bangladesh
| | - Shofiur Rahman
- Department of Chemistry Memorial University of Newfoundland St. John's Newfoundland and Labrador A1B 3X7 Canada
| | - Md. Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka 1205 Bangladesh
- Department of Chemistry University of Dhaka Dhaka 1000 Bangladesh
| | - Paris E. Georghiou
- Department of Chemistry Memorial University of Newfoundland St. John's Newfoundland and Labrador A1B 3X7 Canada
| | | |
Collapse
|
20
|
Uhrmacher F, Elbert SM, Rominger F, Mastalerz M. Synthesis of Large [2+3] Salicylimine Cages with Embedded Metal‐Salphen Units. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fabian Uhrmacher
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sven M. Elbert
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
21
|
Zhao C, Meng S, Chan HN, Wang X, Li HW, Chan MCW. Saccharide‐Functionalized Poly(Zn‐salphen)‐alt‐(m‐ and p‐phenyleneethynylene)s as Dynamic Helical Metallopolymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Zhao
- City University of Hong Kong Chemistry HONG KONG
| | | | - Hei-Nga Chan
- The Chinese University of Hong Kong Chemistry HONG KONG
| | - Xueli Wang
- Hong Kong Baptist University Chemistry HONG KONG
| | - Hung-Wing Li
- The Chinese University of Hong Kong Chemistry HONG KONG
| | - Michael C. W. Chan
- City University of Hong Kong Department of Chemistry Tat Chee Avenue - Kowloon HONG KONG
| |
Collapse
|
22
|
Zhao C, Meng S, Chan HN, Wang X, Li HW, Chan MCW. Saccharide-Functionalized Poly(Zn-salphen)-alt-(m- and p-phenyleneethynylene)s as Dynamic Helical Metallopolymers. Angew Chem Int Ed Engl 2021; 61:e202115712. [PMID: 34968004 DOI: 10.1002/anie.202115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 11/08/2022]
Abstract
The study of metallopolymers with controllable helical sense remains in its infancy. We report arabinose-functionalized (Zn-salphen)-based conjugated polymers that display mirror-image circular dichroism spectra for L- and D-sugar sidechains respectively, signifying ordered (helical) coiling of the polymer backbone with opposite screw-sense preferences. The observation of different spectroscopic behavior and Cotton effects for a variety of solvents (in a reversible manner) and temperatures, ascribed to changes in the extent of intrachain (Zn⋅⋅⋅O(salphen) and π-stacking) interactions between Zn-salphen moieties, thus indicate the flexible, responsive and dynamic nature of the folded helical conformation in these systems. An application study signifying that activity can be governed by the structure and helical sense of the polymer is described.
Collapse
Affiliation(s)
- Chao Zhao
- City University of Hong Kong, Chemistry, HONG KONG
| | | | - Hei-Nga Chan
- The Chinese University of Hong Kong, Chemistry, HONG KONG
| | - Xueli Wang
- Hong Kong Baptist University, Chemistry, HONG KONG
| | - Hung-Wing Li
- The Chinese University of Hong Kong, Chemistry, HONG KONG
| | - Michael C W Chan
- City University of Hong Kong, Department of Chemistry, Tat Chee Avenue, -, Kowloon, HONG KONG
| |
Collapse
|
23
|
Qiong Wu, Huang M, Jiao L, Xu X, Li T, Tian H, Ma X, Hua L, Yang X. Synthesis, Crystal Structure, and Theoretical Studies of a Novel Salen Type Schiff Base N,N '-Bis(4-Bromo-Salicylidene)-Diamine. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521070117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Wang LL, Zhang WD, Li T, Yan X, Gao J, Chen YX, Shi YX, Gu ZG. 2D Salphen-based heteropore covalent organic frameworks for highly efficient electrocatalytic water oxidation. Chem Commun (Camb) 2021; 57:13162-13165. [PMID: 34812801 DOI: 10.1039/d1cc04369b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of heteroporous covalent organic frameworks (COFs) is still a challenge. Herein, a series of 2D COFs with hexagonal and quadrilateral pores were constructed via in situ salphen or metal salphen formation. Metallized salphen-based COFs can be used as electrocatalysts towards water oxidation with an overpotential of 266 mV at 10 mA cm-2.
Collapse
Affiliation(s)
- Lin-Lin Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Tao Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Jie Gao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Yu-Xuan Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Ya-Xiang Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China. .,International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
25
|
Yang HQ, Chen ZX. Theoretical Studies on Bimetallic Salen Complexes Catalyzed Epoxide Hydration: Effects of Metal Centers, Substrates, and Ligands. J Phys Chem A 2021; 125:10155-10164. [PMID: 34793164 DOI: 10.1021/acs.jpca.1c07707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To provide guiding information for developing efficient and stable catalysts for epoxide hydration, we investigated the mechanism of propylene oxide (PO) to 1,2-propylene glycol (PG) using density functional theory (DFT) calculations. The mechanism was identified to follow the cooperative bimetallic mechanism in which a metal-salen complex activated H2O attacks the middle carbon atom of a metal-salen complex activated PO from the oxygen side of three-membered ring. Analyses reveal that the distortion energy correlates linearly with the barrier, and the hydrogen bonding between H2O and PO increases from reaction precursors to transition states. A nice linear relationship exists between the ratio of square root of ionic potential to the square of the distance from the metal ion spherical surface to the oxygen atom center of PO. It is demonstrated that the substrates with larger polarizability tend to have lower hydration barriers and the influence of ligands is less than that of metal centers and substrates. Modifying metal ions is the first choice for developing metal-salen catalysts, and metal ions with more formal charges and larger radius are expected to exhibit high activity. These findings shed lights on the mechanism and provide guiding information for developing efficient metal-salen catalysts for epoxide hydration.
Collapse
Affiliation(s)
- Hui-Qing Yang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhao-Xu Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
26
|
Nakamura T. Development of Artificial Receptors Based on Assembly of Metal Complex Units and Desymmetrization of Molecular Components. CHEM LETT 2021. [DOI: 10.1246/cl.210418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Takashi Nakamura
- Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
27
|
Ullmann S, Börner M, Kahnt A, Abel B, Kersting B. Green‐Emissive Zn
2+
Complex Supported by a Macrocyclic Schiff‐Base/Calix[4]arene‐Ligand: Crystallographic and Spectroscopic Characterization. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Steve Ullmann
- Institut für Anorganische Chemie Universität Leipzig Johannisallee 29 04103 Leipzig Germany
- Institut für Nichtklassische Chemie e.V. Permoserstraße. 15 04318 Leipzig
| | - Martin Börner
- Institut für Anorganische Chemie Universität Leipzig Johannisallee 29 04103 Leipzig Germany
- Leibniz Institute of Surface Engineering (IOM) Department of Functional Surfaces Permoserstr. 15 04318 Leipzig Germany
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM) Department of Functional Surfaces Permoserstr. 15 04318 Leipzig Germany
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM) Department of Functional Surfaces Permoserstr. 15 04318 Leipzig Germany
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie Universität Leipzig Linnéstraße 2 04103 Leipzig Germany
| | - Berthold Kersting
- Institut für Anorganische Chemie Universität Leipzig Johannisallee 29 04103 Leipzig Germany
| |
Collapse
|
28
|
Tsai M, Su Y, Wu J. Anion Effect on the Formation of Zinc‐Salicyaldimine Compounds in Neutral and Anionic Complex Forms: Synthesis, Characterization,
1
H NMR Studies, and Photophysical Properties. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Meng‐Jung Tsai
- Department of Applied Chemistry National Chi Nan University Nantou 545 Taiwan
| | - Yo‐Ting Su
- Department of Applied Chemistry National Chi Nan University Nantou 545 Taiwan
| | - Jing‐Yun Wu
- Department of Applied Chemistry National Chi Nan University Nantou 545 Taiwan
| |
Collapse
|
29
|
Xu T, Chen N, He Z, Yu P, Shen W, Akasaka T, Lu X. Morphology Engineering of Fullerene[C 70 ] Microcrystals: From Perfect Cubes, Defective Hoppers to Novel Cruciform-Pillars. Chemistry 2021; 27:10387-10393. [PMID: 33899282 DOI: 10.1002/chem.202100958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 11/09/2022]
Abstract
Controlled crystallization of fullerene molecules into ordered molecular assemblies is important for their applications. However, the morphology engineering of fullerene[C70 ] assemblies is challenging, and complicated architectures have rarely been reported due to the low molecular symmetry of C70 molecules, which makes their crystallization difficult to control and the low production yield as well. Herein, with the assistance of solvent intercalation, a general reprecipitation approach is reported to prepare morphologically controllable C70 microcrystals with mesitylene as a good solvent and n-propanol as a poor solvent in one solvent system without replacing specific solvents. A series of C70 microcrystals with high uniformity from perfect cubes and defective hoppers to novel cruciform-pillars are obtained by intentionally tuning C70 concentration and the volume ratio of mesitylene to n-propanol. Among them, novel cruciform-pillar-shaped microcrystals are obtained for the first time by further decreasing the amount of mesitylene in the solvent-intercalated microcrystals. Notably, the C70 concentration is a key parameter for the selective growth of C70 hopper, rather than the volume ratio of mesitylene to n-propanol. Interestingly, the hopper-shaped microcrystals exhibit excellent photoluminescence properties relative to those of cubes and cruciform-pillars owing to the enhanced light absorption, proving their potential applications in optoelectronic devices. This study offers new insights into the morphology-controlled synthesis of other micro/nanostructured organic microcrystals and the fine tuning of photoluminescence properties of organic crystals.
Collapse
Affiliation(s)
- Ting Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ning Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhimin He
- State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Pengwei Yu
- State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wangqiang Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Takeshi Akasaka
- State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
30
|
Di Bella S. Lewis acidic zinc(II) salen-type Schiff-base complexes: sensing properties and responsive nanostructures. Dalton Trans 2021; 50:6050-6063. [PMID: 33876173 DOI: 10.1039/d1dt00949d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this frontier article some peculiar characteristics of Zn(salen)-type Schiff-base complexes are reviewed. The paper is mainly focused on the most recent and relevant achievements on responsive supramolecular nanostructures and sensing properties, both of them related to the Lewis acidic character of the ZnII centre in these molecular species, providing an interpretation of these features. The sensing properties of Zn(salen)-type complexes mainly originate from optical spectroscopic changes associated with the formation of the adducts upon addition of a Lewis base (analyte), either by deaggregation of dimeric species or displacement of the solvent coordinated to the metal centre. In both cases the direct sensing is related either to the Lewis acidic character of the complex as well as to the Lewis basicity of the analyte. The formation of responsive nanostructures with fluorescent, and/or vapochromic, mechanochromic, and thermochromic characteristics is driven by non-mutual intermolecular ZnO interactions, further stabilized by π-π stacking interactions and/or interdigitation of the alkyl side groups. The Lewis acidic character is not a prerogative of Zn(salen)-type complexes of tetradentate Schiff-bases. Many other classes of ZnII complexes can possess this property. A correct interpretation of their chemistry is certainly useful for further development of these classical coordination compounds as new molecular materials.
Collapse
Affiliation(s)
- Santo Di Bella
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| |
Collapse
|
31
|
Hylland KT, Gerz I, Wragg DS, Øien‐Ødegaard S, Tilset M. The Reactivity of Multidentate Schiff Base Ligands Derived from Bi‐ and Terphenyl Polyamines towards M(II) (M=Ni, Cu, Zn, Cd) and M(III) (M=Co, Y, Lu). Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Knut Tormodssønn Hylland
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| | - Isabelle Gerz
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| | - David S. Wragg
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| | - Sigurd Øien‐Ødegaard
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| | - Mats Tilset
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| |
Collapse
|
32
|
Wu YH, Ye L, Sun YN, Han WJ, Zhao T. Synthesis and Pyrolysis of Soluble Cyclic Hf-Schiff Base Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2566-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Lacaze M, Saffon-Merceron N, Silly F, Bonvoisin J. Synthesis and characterization of iodo derivatives of bis-salphen complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Zheng Y, Wang X, Liu C, Yu B, Li W, Wang H, Sun T, Jiang J. Triptycene-supported bimetallic salen porous organic polymers for high efficiency CO2 fixation to cyclic carbonates. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00163a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Triptycene units in bimetallic salen POPs are envisaged to support the alignment of bimetallic salen macrocycles in side walls of channels for exposing more metal active sites resulting in the high efficiency coupling reaction of epoxides with CO2.
Collapse
Affiliation(s)
- Yingting Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
| | - Xiqian Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
| | - Chao Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
| | - Wenliang Li
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
| | - Tingting Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials
- Department of Chemistry and Chemical Engineering
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
| |
Collapse
|
35
|
Hashimoto PK, Oliveira LF, Riga-Rocha BA, Machado AEH, Santana VT, Nascimento OR, Carvalho-Jr VP, Goi BE. Manganese( ii) Schiff-base-mediated reversible deactivation controlled radical polymerization of vinyl acetate. NEW J CHEM 2021. [DOI: 10.1039/d1nj00493j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The manganese Schiff-base complexes were applied in the OMRP of vinyl acetate.
Collapse
Affiliation(s)
- Patricia K. Hashimoto
- Faculdade de Ciências e Tecnologia
- UNESP – Univ. Estadual Paulista
- Presidente Prudente
- Brazil
| | - Larissa F. Oliveira
- Faculdade de Ciências e Tecnologia
- UNESP – Univ. Estadual Paulista
- Presidente Prudente
- Brazil
| | - Beatriz A. Riga-Rocha
- Faculdade de Ciências e Tecnologia
- UNESP – Univ. Estadual Paulista
- Presidente Prudente
- Brazil
| | | | - Vinicius T. Santana
- CEITEC – Central European Institute of Technology
- Brno University of Technology
- 61200 Brno
- Czech Republic
| | | | | | - Beatriz E. Goi
- Faculdade de Ciências e Tecnologia
- UNESP – Univ. Estadual Paulista
- Presidente Prudente
- Brazil
| |
Collapse
|
36
|
Savchuk M, Vertueux S, Cauchy T, Loumaigne M, Zinna F, Di Bari L, Zigon N, Avarvari N. Schiff-base [4]helicene Zn(II) complexes as chiral emitters. Dalton Trans 2021; 50:10533-10539. [PMID: 34259673 DOI: 10.1039/d1dt01752g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The controlled preparation of chiral emissive transition metal complexes is fundamental in the field of circularly polarized luminescence (CPL) active molecular materials. For this purpose, enantiopure Zn(ii) complexes 1 and 2 based on a tetradentate salen ligand surrounded by [4]helicene moieties, together with their racemic counterpart 3, have been herein synthesized. Chirality is primarily brought about by chiral 1,2-cyclohexane-diamines. Alternatively, achiral complex 4 based on ortho-phenylene-diamine has been prepared as well. Single crystal X-ray diffraction analyses have been performed on helicenic intermediates 8 and 9 and complexes 1 and 4. Complexes 1 and 4 display the typical tetradentate O,N,N,O coordination around Zn(ii) characteristic of salen ligands, and bear two [4]helicene moieties. The zinc complexes are luminescent in the visible range around 560 nm at room temperature in aerated solutions with the QY reaching ca. 15% for a luminescence lifetime of 5.5 ns. The optical activities of these complexes have been assessed by CD and CPL, and compared to DFT calculations.
Collapse
Affiliation(s)
- Mariia Savchuk
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France.
| | - Steven Vertueux
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France.
| | - Thomas Cauchy
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France.
| | | | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi, 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi, 13, 56124, Pisa, Italy
| | - Nicolas Zigon
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France.
| | - Narcis Avarvari
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France.
| |
Collapse
|
37
|
Ibrahim AB, Mahmoud GA, Meurer F, Bodensteiner M. Preparation and crystallographic studies of a new mercuric salicylaldimine complex for fabrication of microscaled and nanoscaled mercuric sulfide as antimicrobial agents against human pathogenic yeasts and filamentous fungi. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ahmed B.M. Ibrahim
- Department of Chemistry, Faculty of Science Assiut University Assiut 71516 Egypt
| | | | - Florian Meurer
- Faculty of Chemistry and Pharmacy University of Regensburg Regensburg Germany
| | | |
Collapse
|
38
|
Sun Y, Lu Y, Bian M, Yang Z, Ma X, Liu W. Pt(II) and Au(III) complexes containing Schiff-base ligands: A promising source for antitumor treatment. Eur J Med Chem 2020; 211:113098. [PMID: 33348237 DOI: 10.1016/j.ejmech.2020.113098] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
The effective application of cisplatin in the clinic as an antitumor treatment has stimulated widespread interest in inorganic metal drugs. In particular, complexes containing the transition metals platinum and gold have attracted considerable attention due to their antitumor effects. The Pt(II) and Au(III) Schiff-base complexes are potential antitumor agents because of their remarkable biological activities and good stability, lipophilicity, and electroluminescent properties. These complexes act via various antitumor mechanisms that are unlike those of the classic platinum drugs, providing a feasible solution for improving the serious side effects caused by metal chemotherapy. In this review, promising antitumor agents based on Pt(II) and Au(III) complexes containing Schiff-base ligands, and their biological targets, including G-quadruplex DNA and thioredoxin reductase, are comprehensively summarized.
Collapse
Affiliation(s)
- Ying Sun
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mianli Bian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhibin Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
39
|
Zelada-Guillén GA, Hernández-Pacheco P, Romero-Ávila M, Cañas-Alonso RC, Flores-Álamo M, Escárcega-Bobadilla MV. Acrylic Polymers Containing a Nickel Salphen Complex: An Approach to Supramolecular and Macromolecular Systems. Chempluschem 2020; 85:2546-2556. [PMID: 32945594 DOI: 10.1002/cplu.202000471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Indexed: 11/10/2022]
Abstract
The synthesis, characterization and crystallographic analysis is reported of a new Nickel Salphen complex and its radical copolymerization with n-butyl acrylate and methyl methacrylate to produce novel host macromolecules with tunable association against guest anions. Spectrophotometric titrations of the complex and of the polymers revealed that a supramolecular regulation of guest-binding accessibility was enabled by the number of Ni-Salphen units per chain. The latter content in turn, determined the chain size and molecular weight uniformity upon polymerization, and likely increased the strength in interchain/intrachain non-covalent interactions over the nickel center and the acrylic domains. The study also showed that incorporation of the monomer into the acrylic polymer backbone opened the possibility for the nickel binding site to gain access to host:guest stoichiometric discrimination, switching from 1 : 1 (major) and 1 : 2 (minor) both coexisting for the host when in the free form, to mostly 1 : 2 when in the polymerized version.
Collapse
Affiliation(s)
- Gustavo A Zelada-Guillén
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Paulina Hernández-Pacheco
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Margarita Romero-Ávila
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Roberto Carlos Cañas-Alonso
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Marcos Flores-Álamo
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Martha V Escárcega-Bobadilla
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, Mexico City, 04510, Mexico
| |
Collapse
|
40
|
Anion-Dominated Copper Salicyaldimine Complexes-Structures, Coordination Mode of Nitrate and Decolorization Properties toward Acid Orange 7 Dye. Polymers (Basel) 2020; 12:polym12091910. [PMID: 32847151 PMCID: PMC7563566 DOI: 10.3390/polym12091910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/02/2022] Open
Abstract
A salicyaldimine ligand, 3-tert-butyl-4-hydroxy-5-(((pyridin-2-ylmethyl)imino)methyl)benzoic acid (H2Lsalpyca) and two Cu(II)−salicylaldimine complexes, [Cu(HLsalpyca)Cl] (1) and [Cu(HLsalpyca)(NO3)]n (2), have been synthesized. Complex 1 has a discrete mononuclear structure, in which the Cu(II) center is in a distorted square-planar geometry made up of one HLsalpyca− monoanion in an NNO tris-chelating mode and one Cl− anion. Complex 2 adopts a neutral one-dimensional zigzag chain structure propagating along the crystallographic [010] direction, where the Cu(II) center suits a distorted square pyramidal geometry with a τ value of 0.134, consisted of one HLsalpyca− monoanion as an NNO tris-chelator and two NO3− anions. When the Cu∙∙∙O semi coordination is taken into consideration, the nitrato ligand bridges two Cu(II) centers in an unsymmetrical bridging-tridentate with a μ, κ4O,O′:O′,O″ coordination. Clearly, anion herein plays a critical role in dominating the formation of discrete and polymeric structures of copper salicyaldimine complexes. Noteworthy, complex 2 is insoluble but highly stable in H2O and various organic solvents (CH3OH, CH3CN, acetone, CH2Cl2 and THF). Moreover, complex 2 shows good photocatalytic degradation activity and recyclability to accelerate the decolorization rate and enhance the decolorization performance of acid orange 7 (AO7) dye by hydrogen peroxide (H2O2) under daylight.
Collapse
|
41
|
Liang C. Organic polymorphs based on an AEE-active tetraphenylethene salicylaldehyde Schiff-base derivative: the effect of molecular conformation on luminescence properties. RSC Adv 2020; 10:29043-29050. [PMID: 35520070 PMCID: PMC9055955 DOI: 10.1039/d0ra00118j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
An aggregation-enhanced emission (AEE)-active tetraphenylethene salicylaldehyde Schiff-base derivative, TPE-Nap, was prepared using a facile synthesis. The AEE property of TPE-Nap was studied by luminescence and absorption spectra, and was attributed to the C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
N isomerization restriction and the excited-state intramolecular proton transfer (ESIPT) process. Polymorphs TPE-Nap-Y and TPE-Nap-O were prepared from TPE-Nap, and their emission color and intensity were compared. TPE-Nap-Y is a yellow block crystal with a very weak yellow emission, with its main peak at 565 nm, while TPE-Nap-O is an orange plate crystal that gave a stronger orange emission, with its main peak at 583 nm. Single crystal diffraction data were used to demonstrate the structure–property relationship. The most unique feature was that the torsion angle of TPE-Nap-Y between the benzene ring of the TPE unit and the Nap unit was 54.08°, while that of TPE-Nap-O was 14.19°. Interestingly, the TPE unit assumed propeller-like nonplanar conformations that likely led to different intermolecular interactions, such as C–H⋯O interactions (2.529 Å and 2.617 Å) in TPE-Nap-O and C–H⋯π interactions (3.224 Å and 3.791 Å) in TPE-Nap-Y. These were influenced by the torsion angle, although the molecules in both crystals were arranged in a similar end-to-end slip-stacking mode. These results inferred that the molecular conformation was evidently affected by luminescent properties. Crystals possessing a slightly twisted molecular conformation exhibited stronger emission than those possessing a heavily twisted molecular conformation. These investigations will expand the research on the relationship between the molecular conformation and the emission properties of organic solids, and might provide a new development strategy for organic polymorphs. Organic polymorphs displaying different emission colors and intensities were obtained from aggregation-enhanced emission (AEE)-active tetraphenylethene derivatives, and their luminescent properties were affected mainly by molecular conformation.![]()
Collapse
Affiliation(s)
- Chunshuang Liang
- Institute of Petrochemical Technology, Jilin Institute of Chemical Technology Jilin China
| |
Collapse
|
42
|
Ababneh TS, Al-Shboul TMA, Jazzazi TMA, Alomari MI, Görls H, Westerhausen M. Crystallographic and computational study of the structure of copper(II) 2,2′-bis(2-oxidobenzylideneamino)-4,4′-dimethyl-1,1′-biphenyl. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00395-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Gholizadeh Dogaheh S, Barbero S, Barrientos J, Janczak J, Soleimannejad J, Sañudo EC. Cathecol and Naphtol Groups in Salphen-Type Schiff Bases for the Preparation of Polynuclear Complexes. Int J Mol Sci 2020; 21:ijms21103574. [PMID: 32443650 PMCID: PMC7278923 DOI: 10.3390/ijms21103574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023] Open
Abstract
In this paper, we show a strategy to modify salphen-type Schiff base ligands with naphtol (SYML1) and pyrocathecol (2,3-dihydroxyphenyl) groups (SYML2), or a combination of both (ASYML). Each of these ligands can be used to obtain polynuclear metal complexes following two different strategies. One relies on using metals that are either too large for the N2O2 cavity or not fond of coordination number 4 and the other one relies on forcing the polynuclear species by adding functional groups to the hydroxybenzaldehayde in order to have extra coordination sites in the ligand. We report and characterize the mononuclear complexes SYML1-Cu and SYML1-Ce, along with the dinuclear complex SYML1-Fe and the tetranuclear species SYML2-Mn. The asymmetric ligand ASYML routinely hydrolyzes into the symmetric ligands in the reaction mixtures. SYML1-Fe displays a nearly linear Fe-O-Fe bridge with very strong antiferromagnetic coupling between the Fe(III) ions.
Collapse
Affiliation(s)
- Samira Gholizadeh Dogaheh
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran 1417466191, Iran;
| | - Sara Barbero
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, C/MArtí i Franqués 1-11, Universitat de Barcelona, 08028 Barcelona, Spain; (S.B.); (J.B.)
| | - Joel Barrientos
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, C/MArtí i Franqués 1-11, Universitat de Barcelona, 08028 Barcelona, Spain; (S.B.); (J.B.)
| | - Jan Janczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw, Poland;
| | - Janet Soleimannejad
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran 1417466191, Iran;
- Correspondence: (J.S.); (E.C.S.)
| | - E. Carolina Sañudo
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, C/MArtí i Franqués 1-11, Universitat de Barcelona, 08028 Barcelona, Spain; (S.B.); (J.B.)
- Institut de Nanociència i Nanotecnologia, IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence: (J.S.); (E.C.S.)
| |
Collapse
|
44
|
Miroslaw B. Homo- and Hetero-Oligonuclear Complexes of Platinum Group Metals (PGM) Coordinated by Imine Schiff Base Ligands. Int J Mol Sci 2020; 21:E3493. [PMID: 32429112 PMCID: PMC7278988 DOI: 10.3390/ijms21103493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Chemistry of Schiff base (SB) ligands began in 1864 due to the discovery made by Hugo Schiff (Schiff, H., Justus Liebigs Ann. der Chemie 1864, 131 (1), 118-119). However, there is still a vivid interest in coordination compounds based on imine ligands. The aim of this paper is to review the most recent concepts on construction of homo- and hetero-oligonuclear Schiff base coordination compounds narrowed down to the less frequently considered complexes of platinum group metals (PGM). The combination of SB and PGM in oligonuclear entities has several advantages over mononuclear or polynuclear species. Such complexes usually exhibit better electroluminescent, magnetic and/or catalytic properties than mononuclear ones due to intermetallic interactions and frequently have better solubility than polymers. Various construction strategies of oligodentate imine ligands for coordination of PGM are surveyed including simple imine ligands, non-innocent 1,2-diimines, chelating imine systems with additional N/O/S atoms, classic N2O2-compartmental Schiff bases and their modifications resulting in acyclic fused ligands, macrocycles such as calixsalens, metallohelical structures, nano-sized molecular wheels and hybrid materials incorporating mesoionic species. Co-crystallization and formation of metallophilic interactions to extend the mononuclear entities up to oligonuclear coordination species are also discussed.
Collapse
Affiliation(s)
- Barbara Miroslaw
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| |
Collapse
|
45
|
Lamb KJ, Dowsett MR, North M, Parker RR, Whitwood AC. Unprecedented reductive cyclisation of salophen ligands to tetrahydroquinoxalines during metal complex formation. Chem Commun (Camb) 2020; 56:4844-4847. [PMID: 32236256 DOI: 10.1039/d0cc01192d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of novel tetrahydroquinoxalines by a metal induced one-electron reductive cyclisation of salophen ligands was found to occur when a salophen ligand was treated with chromium(ii) chloride or decamethylcobaltocene.
Collapse
Affiliation(s)
- Katie J Lamb
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | | | | | | | | |
Collapse
|
46
|
Gayen FR, Ali AA, Bora D, Roy S, Saha S, Saikia L, Goswamee RL, Saha B. A ferrocene functionalized Schiff base containing Cu(ii) complex: synthesis, characterization and parts-per-million level catalysis for azide alkyne cycloaddition. Dalton Trans 2020; 49:6578-6586. [PMID: 32342974 DOI: 10.1039/d0dt00915f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atom economy is one of the major factors in developing catalysis chemistry. Using the minimum amount of catalyst to obtain the maximum product yield is of the utmost priority in catalysis, which drives us to use parts-per-million (ppm) levels of catalyst loadings in syntheses. In this context, a new ferrocene functionalized Schiff base and its copper(ii) complex have been synthesized and characterized. This Cu(ii) complex is employed as a catalyst for popular 'click chemistry', where 1,2,3-triazoles are the end product. As low as 5 ppm catalyst loading is enough to produce gram scale product, and highest turnover number (TON) and turnover frequency (TOF) values of 140 000 and 70 000 h-1 are achieved, respectively. Furthermore, this highly efficient protocol has been successfully applied to the preparation of diverse functionalized materials with pharmaceutical, labelling and supramolecular properties.
Collapse
Affiliation(s)
- Firdaus Rahaman Gayen
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam - 785006, India.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Consiglio G, Oliveri IP, Cacciola S, Maccarrone G, Failla S, Di Bella S. Dinuclear zinc(ii) salen-type Schiff-base complexes as molecular tweezers. Dalton Trans 2020; 49:5121-5133. [PMID: 32219249 DOI: 10.1039/d0dt00494d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this contribution, the synthesis and the unusual aggregation/deaggregation properties in solution of two dinuclear ZnII Schiff-base complexes of tetradentate Schiff-base units, having non-conjugated spacers between each molecular unit, are reported in comparison to the mononuclear model complex. Through detailed 1H NMR, DOSY NMR, optical absorption, fluorescence emission, and multivariate analysis of optical absorption data, emerge some interesting findings. In solution of non-coordinating solvents, these Lewis acidic species are characterized as monomers stabilized by formation of intramolecular aggregates, having distinct spectroscopic properties in comparison to intermolecular aggregates derived from the mononuclear model analogue. Instead, in coordinating solvents they exhibit a typical behaviour, with formation of stable adducts showing a strong fluorescence. Deaggregation studies using pyridine as reference Lewis base allowed establishing a larger thermodynamic stability of these intramolecular aggregates, in comparison to intermolecular aggregates, even larger than that of aggregates of conjugated multinuclear complexes. The combined analysis of spectroscopic data upon deaggregation with ditopic Lewis bases unambiguously demonstrated the formation of stable 1 : 1 adducts, with higher binding constants in comparison to those related to monotopic species. Therefore, the present Lewis acidic, dinuclear complexes behave as molecular tweezers of ditopic guests having a strong Lewis basicity.
Collapse
Affiliation(s)
- Giuseppe Consiglio
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Ivan Pietro Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Salvatore Cacciola
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Giuseppe Maccarrone
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Salvatore Failla
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy.
| |
Collapse
|
48
|
Andelescu A, Heinrich B, Spirache MA, Voirin E, La Deda M, Di Maio G, Szerb EI, Donnio B, Costisor O. Playing with Pt
II
and Zn
II
Coordination to Obtain Luminescent Metallomesogens. Chemistry 2020; 26:4850-4860. [DOI: 10.1002/chem.202000124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Adelina‐Antonia Andelescu
- “Coriolan Dragulescu” Institute of ChemistryRomanian Academy 24 Mihai Viteazu Bvd. 300223 Timisoara Romania
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)UMR7504CNRS-Université de Strasbourg 67034 Strasbourg France
| | - Maria Angela Spirache
- “Coriolan Dragulescu” Institute of ChemistryRomanian Academy 24 Mihai Viteazu Bvd. 300223 Timisoara Romania
| | - Emilie Voirin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)UMR7504CNRS-Université de Strasbourg 67034 Strasbourg France
| | - Massimo La Deda
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della Calabria via P. Bucci, Cubo 14/C 87036 Arcavacata di Rende (CS) Italy
| | - Giuseppe Di Maio
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della Calabria via P. Bucci, Cubo 14/C 87036 Arcavacata di Rende (CS) Italy
| | - Elisabeta I. Szerb
- “Coriolan Dragulescu” Institute of ChemistryRomanian Academy 24 Mihai Viteazu Bvd. 300223 Timisoara Romania
| | - Bertrand Donnio
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)UMR7504CNRS-Université de Strasbourg 67034 Strasbourg France
| | - Otilia Costisor
- “Coriolan Dragulescu” Institute of ChemistryRomanian Academy 24 Mihai Viteazu Bvd. 300223 Timisoara Romania
| |
Collapse
|
49
|
Fu C, Mikšátko J, Assies L, Vrkoslav V, Orlandi S, Kalbáč M, Kovaříček P, Zeng X, Zhou B, Muccioli L, Perepichka DF, Orgiu E. Surface-Confined Macrocyclization via Dynamic Covalent Chemistry. ACS NANO 2020; 14:2956-2965. [PMID: 32068388 DOI: 10.1021/acsnano.9b07671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-confined synthesis is a promising approach to build complex molecular nanostructures including macrocycles. However, despite the recent advances in on-surface macrocyclization under ultrahigh vacuum, selective synthesis of monodisperse and multicomponent macrocycles remains a challenge. Here, we report on an on-surface formation of [6 + 6] Schiff-base macrocycles via dynamic covalent chemistry. The macrocycles form two-dimensional crystalline domains on the micrometer scale, enabled by dynamic conversion of open-chain oligomers into well-defined ∼3.0 nm hexagonal macrocycles. We further show that by tailoring the length of the alkyl substituents, it is possible to control which of three possible products-oligomers, macrocycles, or polymers-will form at the surface. In situ scanning tunneling microscopy imaging combined with density functional theory calculations and molecular dynamics simulations unravel the synergistic effect of surface confinement and solvent in leading to preferential on-surface macrocyclization.
Collapse
Affiliation(s)
- Chaoying Fu
- Center Lab of Longhua Branch and Department of Infectious disease, Shenzhen People's Hospital, second Clinical Medical College of Jinan University, Shenzhen 518120, Guangdong Province, China
- INRS, Énergie Matériaux Télécommunications Centre, 1650 boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
- Department of Chemistry, McGill University, 801 Sherbrooke Street W., Montreal, Quebec, Canada H3A 0B8
| | - Jiří Mikšátko
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha, Czech Republic
| | - Lea Assies
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha, Czech Republic
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo námĕstí 542/2, 166 10 Praha, Czech Republic
| | - Silvia Orlandi
- Dipartimento di Chimica Industriale " Toso Montanari ", Università di Bologna, 40136 Bologna, Italy
| | - Martin Kalbáč
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha, Czech Republic
| | - Petr Kovaříček
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha, Czech Republic
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious disease, Shenzhen People's Hospital, second Clinical Medical College of Jinan University, Shenzhen 518120, Guangdong Province, China
| | - Boping Zhou
- Center Lab of Longhua Branch and Department of Infectious disease, Shenzhen People's Hospital, second Clinical Medical College of Jinan University, Shenzhen 518120, Guangdong Province, China
| | - Luca Muccioli
- Dipartimento di Chimica Industriale " Toso Montanari ", Università di Bologna, 40136 Bologna, Italy
- Institut des Sciences Moléculaires, UMR 5255, University of Bordeaux, 33405 Talence, France
| | - Dmitrii F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street W., Montreal, Quebec, Canada H3A 0B8
| | - Emanuele Orgiu
- INRS, Énergie Matériaux Télécommunications Centre, 1650 boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
| |
Collapse
|
50
|
Hwang S, Ryu JY, Jung SH, Park HR, Lee J. Cobalt complexes containing salen-type pyridoxal ligand and DMSO for cycloaddition of carbon dioxide to propylene oxide. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|