1
|
González-Alfonso WL, Pavel P, Karina HM, Del Razo LM, Sanchez-Peña LC, Zepeda A, Gonsebatt ME. Chronic exposure to inorganic arsenic and fluoride induces redox imbalance, inhibits the transsulfuration pathway, and alters glutamate receptor expression in the brain, resulting in memory impairment in adult male mouse offspring. Arch Toxicol 2023; 97:2371-2383. [PMID: 37482551 PMCID: PMC10404204 DOI: 10.1007/s00204-023-03556-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Exposure to toxic elements in drinking water, such as arsenic (As) and fluoride (F), starts at gestation and has been associated with memory and learning deficits in children. Studies in which rodents underwent mechanistic single exposure to As or F showed that the neurotoxic effects are associated with their capacity to disrupt redox balance, mainly by diminishing glutathione (GSH) levels, altering glutamate disposal, and altering glutamate receptor expression, which disrupts synaptic transmission. Elevated levels of As and F are common in groundwater worldwide. To explore the neurotoxicity of chronic exposure to As and F in drinking water, pregnant CD-1 mice were exposed to 2 mg/L As (sodium arsenite) and 25 mg/L F (sodium fluoride) alone or in combination. The male litter continued to receive exposure up to 30 or 90 days after birth. The effects of chronic exposure on GSH levels, transsulfuration pathway enzymatic activity, expression of cysteine/cystine transporters, glutamate transporters, and ionotropic glutamate receptor subunits as well as behavioral performance in the object recognition memory task were assessed. Combined exposure resulted in a significant reduction in GSH levels in the cortex and hippocampus at different times, decreased transsulfuration pathway enzyme activity, as well as diminished xCT protein expression. Altered glutamate receptor expression in the cortex and hippocampus and decreased transaminase enzyme activity were observed. These molecular alterations were associated with memory impairment in the object recognition task, which relies on these brain regions.
Collapse
Affiliation(s)
- Wendy L González-Alfonso
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A. P. 70-228, Ciudad Universitaria, 04510, Mexico, CDMX, México
| | - Petrosyan Pavel
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A. P. 70-228, Ciudad Universitaria, 04510, Mexico, CDMX, México
| | - Hernández-Mercado Karina
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A. P. 70-228, Ciudad Universitaria, 04510, Mexico, CDMX, México
| | - Luz M Del Razo
- Departamento de Toxicología, Centro de Investigación Y Estudios Avanzados, Mexico, DF, Mexico
| | - Luz C Sanchez-Peña
- Departamento de Toxicología, Centro de Investigación Y Estudios Avanzados, Mexico, DF, Mexico
| | - Angélica Zepeda
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A. P. 70-228, Ciudad Universitaria, 04510, Mexico, CDMX, México
| | - María E Gonsebatt
- Departamento de Medicina Genómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A. P. 70-228, Ciudad Universitaria, 04510, Mexico, CDMX, México.
| |
Collapse
|
2
|
Filella M, Wey S, Matoušek T, Coster M, Rodríguez-Murillo JC, Loizeau JL. Arsenic in Lake Geneva (Switzerland, France): long term monitoring, and redox and methylation speciation in an As unpolluted, oligo-mesotrophic lake. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:850-869. [PMID: 36924114 DOI: 10.1039/d2em00431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Arsenic speciation was followed monthly along the spring productivity period (January-June 2021) in the Petit Lac (76 m deep) and in April and June 2021 in the Grand Lac (309.7 m deep) of Lake Geneva (Switzerland/France). Lake Geneva is presently an oligo-mesotrophic lake, and As-unpolluted. The water column never becomes anoxic but the oxygen saturation at the bottom of the Grand Lac is now below 30% owing to lack of water column mixing since 2012. Thus, this lake offers excellent conditions to study As behaviour in an unpolluted, oxic freshwater body. The following 'dissolved' As species: iAs(III), iAs(III + V), MA(III), MA(III + V), DMA(III + V), and TMAO were analysed by HG-CT-ICP-MS/MS. Water column measurements were complemented with occasional sampling in the main rivers feeding the lake and in the interstitial waters of a sediment core. The presence of MA(III) and TMAO and the predominance of iAs(V) in lake and river samples has been confirmed as well as the key role of algae in the formation of organic species. While the total 'dissolved' As concentrations showed nearly vertical profiles in the Petit Lac, As concentrations steadily increase at deeper depths in the Grand Lac due to the lack of mixing and build up in bottom waters. The evaluation of 25 years of monthly data of 'dissolved' As concentrations showed no significant temporal trends between 1997 and 2021. The observed seasonal character of the 'dissolved' As along this period coincides with a lack of seasonality in As mass inventories, pointing to a seasonal internal cycling of As species in the water column with exchanges between the 'dissolved' and 'particulate' (i.e., algae) fractions.
Collapse
Affiliation(s)
- Montserrat Filella
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland.
| | - Sebastian Wey
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland.
| | - Tomáš Matoušek
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic.
| | | | | | - Jean-Luc Loizeau
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland.
| |
Collapse
|
3
|
Stýblo M, Venkatratnam A, Fry RC, Thomas DJ. Origins, fate, and actions of methylated trivalent metabolites of inorganic arsenic: progress and prospects. Arch Toxicol 2021; 95:1547-1572. [PMID: 33768354 PMCID: PMC8728880 DOI: 10.1007/s00204-021-03028-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022]
Abstract
The toxic metalloid inorganic arsenic (iAs) is widely distributed in the environment. Chronic exposure to iAs from environmental sources has been linked to a variety of human diseases. Methylation of iAs is the primary pathway for metabolism of iAs. In humans, methylation of iAs is catalyzed by arsenic (+ 3 oxidation state) methyltransferase (AS3MT). Conversion of iAs to mono- and di-methylated species (MAs and DMAs) detoxifies iAs by increasing the rate of whole body clearance of arsenic. Interindividual differences in iAs metabolism play key roles in pathogenesis of and susceptibility to a range of disease outcomes associated with iAs exposure. These adverse health effects are in part associated with the production of methylated trivalent arsenic species, methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII), during AS3MT-catalyzed methylation of iAs. The formation of these metabolites activates iAs to unique forms that cause disease initiation and progression. Taken together, the current evidence suggests that methylation of iAs is a pathway for detoxification and for activation of the metalloid. Beyond this general understanding of the consequences of iAs methylation, many questions remain unanswered. Our knowledge of metabolic targets for MAsIII and DMAsIII in human cells and mechanisms for interactions between these arsenicals and targets is incomplete. Development of novel analytical methods for quantitation of MAsIII and DMAsIII in biological samples promises to address some of these gaps. Here, we summarize current knowledge of the enzymatic basis of MAsIII and DMAsIII formation, the toxic actions of these metabolites, and methods available for their detection and quantification in biomatrices. Major knowledge gaps and future research directions are also discussed.
Collapse
Affiliation(s)
- Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Abhishek Venkatratnam
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David J Thomas
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
4
|
Arsenic methylation - Lessons from three decades of research. Toxicology 2021; 457:152800. [PMID: 33901604 PMCID: PMC10048126 DOI: 10.1016/j.tox.2021.152800] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 01/26/2023]
Abstract
Between 1990 and 2020, our understanding of the significance of arsenic biomethylation changed in remarkable ways. At the beginning of this period, the conversion of inorganic arsenic into mono- and di-methylated metabolites was viewed primarily as a process that altered the kinetic behavior of arsenic. By increasing the rate of clearance of arsenic, the formation of methylated metabolites reduced exposure to this toxin; that is, methylation was detoxification. By 2020, it was clear that at least some of the toxic effects associated with As exposure depended on formation of methylated metabolites containing trivalent arsenic. Because the trivalent oxidation state of arsenic is associated with increased potency as a cytotoxin and clastogen, these findings were consistent with methylation-related changes in the dynamic behavior of arsenic. That is, methylation was activation. Our current understanding of the role of methylation as a modifier of kinetic and dynamic behaviors of arsenic is the product of research at molecular, cellular, organismic, and population levels. This information provides a basis for refining our estimates of risk associated with long term exposure to inorganic arsenic in environmental media, food, and water. This report summarizes the growth of our knowledge of enzymatically catalyzed methylation of arsenic over this period and considers the prospects for new discoveries.
Collapse
|
5
|
Maimaitiyiming Y, Wang C, Xu S, Islam K, Chen YJ, Yang C, Wang QQ, Naranmandura H. Role of arsenic (+3 oxidation state) methyltransferase in arsenic mediated APL treatment: an in vitro investigation. Metallomics 2019; 10:828-837. [PMID: 29774349 DOI: 10.1039/c8mt00057c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Arsenic (+3 oxidation state) methyltransferase (AS3MT) is a key enzyme responsible for arsenic metabolism in humans, which facilitates conversion of arsenic trioxide (As2O3) to more reactive metabolites such as monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII). However, it is unclear whether the biotransformation of arsenic by AS3MT contributes to the promotion of acute promyelocytic leukemia (APL) therapy. In order to understand the probable role of AS3MT in APL patients, we evaluated the effects of arsenite (iAsIII) and three mixed arsenicals (i.e., iAsIII, MMAIII and DMAIII, to mimic active arsenic species in the blood) on NB4 cell differentiation and apoptosis. Although the mixed arsenicals exhibited about 2 fold less effect on the induction of NB4 cell differentiation and PML-RARα fusion protein degradation, they showed 5 times stronger ability to induce apoptosis when compared with iAsIII. More importantly, the proliferation of NB4 cells was significantly (p < 0.05) inhibited in a transwell system co-cultured with AS3MT-transfected HepG2 cells after exposure to iAsIII, suggesting that the generation of methylated metabolites restrained cell proliferation. These findings indicate that the therapeutic efficacy of As2O3 (i.e., iAsIII) in APL patients is probably associated with the production of methylated arsenic metabolites (i.e., MMAIII and DMAIII) by AS3MT.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Huang MC, Douillet C, Dover EN, Zhang C, Beck R, Tejan-Sie A, Krupenko SA, Stýblo M. Metabolic Phenotype of Wild-Type and As3mt-Knockout C57BL/6J Mice Exposed to Inorganic Arsenic: The Role of Dietary Fat and Folate Intake. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:127003. [PMID: 30675811 PMCID: PMC6371649 DOI: 10.1289/ehp3951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Inorganic arsenic (iAs) is a diabetogen. Interindividual differences in iAs metabolism have been linked to susceptibility to diabetes in iAs-exposed populations. Dietary folate intake has been shown to influence iAs metabolism, but to our knowledge its role in iAs-associated diabetes has not been studied. OBJECTIVE The goal of this study was to assess how folate intake, combined with low-fat (LFD) and high-fat diets (HFD), affects the metabolism and diabetogenic effects of iAs in wild-type (WT) mice and in As3mt-knockout (KO) mice that have limited capacity for iAs detoxification. METHODS Male and female WT and KO mice were exposed to 0 or [Formula: see text] iAs in drinking water. Mice were fed the LFD containing [Formula: see text] or [Formula: see text] folate for 24 weeks, followed by the HFD with the same folate levels for 13 weeks. Metabolic phenotype and iAs metabolism were examined before and after switching to the HFD. RESULTS iAs exposure had little effect on the phenotype of mice fed LFD regardless of folate intake. High folate intake stimulated iAs metabolism, but only in WT females. KO mice accumulated more fat than WT mice and were insulin resistant, with males more insulin resistant than females despite similar %fat mass. Feeding the HFD increased adiposity and insulin resistance in all mice. However, iAs-exposed male and female WT mice with low folate intake were more insulin resistant than unexposed controls. High folate intake alleviated insulin resistance in both sexes, but stimulated iAs metabolism only in female mice. CONCLUSIONS Exposure to [Formula: see text] iAs in drinking water resulted in insulin resistance in WT mice only when combined with a HFD and low folate intake. The protective effect of high folate intake may be independent of iAs metabolism, at least in male mice. KO mice were more prone to developing insulin resistance, possibly due to the accumulation of iAs in tissues. https://doi.org/10.1289/EHP3951.
Collapse
Affiliation(s)
- Madelyn C Huang
- Curriculum in Toxicology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christelle Douillet
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ellen N Dover
- Curriculum in Toxicology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Chongben Zhang
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rowan Beck
- Curriculum of Genetics and Molecular Biology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ahmad Tejan-Sie
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sergey A Krupenko
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Miroslav Stýblo
- Curriculum in Toxicology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Huang MC, Douillet C, Dover EN, Stýblo M. Prenatal arsenic exposure and dietary folate and methylcobalamin supplementation alter the metabolic phenotype of C57BL/6J mice in a sex-specific manner. Arch Toxicol 2018; 92:1925-1937. [PMID: 29721587 DOI: 10.1007/s00204-018-2206-z/figures/7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/25/2018] [Indexed: 05/22/2023]
Abstract
Inorganic arsenic (iAs) is an established environmental diabetogen. The link between iAs exposure and diabetes is supported by evidence from adult human cohorts and adult laboratory animals. The contribution of prenatal iAs exposure to the development of diabetes and underlying mechanisms are understudied. The role of factors that modulate iAs metabolism and toxicity in adults and their potential to influence diabetogenic effects of prenatal iAs exposure are also unclear. The goal of this study was to determine if prenatal exposure to iAs impairs glucose metabolism in mice and if maternal supplementation with folate and methylcobalamin (B12) can modify this outcome. C57BL/6J dams were exposed to iAs in drinking water (0, 100, and 1000 µg As/L) and fed a folate/B12 adequate or supplemented diet from before mating to birth of offspring. After birth, dams and offspring drank deionized water and were fed the folate/B12 adequate diet. The metabolic phenotype of offspring was assessed over the course of 14 weeks. Male offspring from iAs-exposed dams fed the folate/B12-adequate diet developed fasting hyperglycemia and insulin resistance. Maternal folate/B12 supplementation rescued this phenotype but had only marginal effects on iAs metabolism in dams. The diabetogenic effects of prenatal iAs exposure in male offspring were not associated with changes in global DNA methylation in the liver. Only minimal effects of prenatal iAs exposure or maternal supplementation were observed in female offspring. These results suggest that prenatal iAs exposure impairs glucose metabolism in a sex-specific manner and that maternal folate/B12 supplementation may improve the metabolic phenotype in offspring. Further studies are needed to identify the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Madelyn C Huang
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, CB# 7461, Chapel Hill, NC, USA
| | - Ellen N Dover
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miroslav Stýblo
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, CB# 7461, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Huang MC, Douillet C, Dover EN, Stýblo M. Prenatal arsenic exposure and dietary folate and methylcobalamin supplementation alter the metabolic phenotype of C57BL/6J mice in a sex-specific manner. Arch Toxicol 2018; 92:1925-1937. [PMID: 29721587 DOI: 10.1007/s00204-018-2206-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
Inorganic arsenic (iAs) is an established environmental diabetogen. The link between iAs exposure and diabetes is supported by evidence from adult human cohorts and adult laboratory animals. The contribution of prenatal iAs exposure to the development of diabetes and underlying mechanisms are understudied. The role of factors that modulate iAs metabolism and toxicity in adults and their potential to influence diabetogenic effects of prenatal iAs exposure are also unclear. The goal of this study was to determine if prenatal exposure to iAs impairs glucose metabolism in mice and if maternal supplementation with folate and methylcobalamin (B12) can modify this outcome. C57BL/6J dams were exposed to iAs in drinking water (0, 100, and 1000 µg As/L) and fed a folate/B12 adequate or supplemented diet from before mating to birth of offspring. After birth, dams and offspring drank deionized water and were fed the folate/B12 adequate diet. The metabolic phenotype of offspring was assessed over the course of 14 weeks. Male offspring from iAs-exposed dams fed the folate/B12-adequate diet developed fasting hyperglycemia and insulin resistance. Maternal folate/B12 supplementation rescued this phenotype but had only marginal effects on iAs metabolism in dams. The diabetogenic effects of prenatal iAs exposure in male offspring were not associated with changes in global DNA methylation in the liver. Only minimal effects of prenatal iAs exposure or maternal supplementation were observed in female offspring. These results suggest that prenatal iAs exposure impairs glucose metabolism in a sex-specific manner and that maternal folate/B12 supplementation may improve the metabolic phenotype in offspring. Further studies are needed to identify the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Madelyn C Huang
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, CB# 7461, Chapel Hill, NC, USA
| | - Ellen N Dover
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miroslav Stýblo
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, CB# 7461, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Matoušek T, Wang Z, Douillet C, Musil S, Stýblo M. Direct Speciation Analysis of Arsenic in Whole Blood and Blood Plasma at Low Exposure Levels by Hydride Generation-Cryotrapping-Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2017; 89:9633-9637. [PMID: 28809551 PMCID: PMC6611167 DOI: 10.1021/acs.analchem.7b01868] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A method for analysis of toxicologically important arsenic species in blood plasma and whole blood by selective hydride generation with cryotrapping (HG-CT) coupled either to atomic absorption spectrometry (AAS) with a quartz multiatomizer or to inductively coupled plasma mass spectrometry (ICPMS) has been validated. Sample preparation, which involved only 5 times dilution with addition of Triton X-100, Antifoam B, and l-cysteine, suppressed excessive foaming in a hydride generator. Calibration slopes for whole blood and blood plasma spiked with arsenate, monomethylarsonate, and dimethylarsinate at 0.25-1 μg L-1 As and 0.025-0.1 μg L-1 As for AAS and ICPMS detection, respectively, did not differ from slopes in aqueous solutions. HG-CT-AAS was used to analyze samples with elevated levels of arsenic species-blood plasma from patients treated with arsenic trioxide for acute promyelocytic leukemia and whole blood from mice fed an arsenic-containing diet. A good agreement between results of the direct analysis and analysis after mild digestion in phosphoric acid proved the good efficiency of the direct HG-CT procedure for the arsenic species in these types of biological samples. In the next step, plasma and whole blood from healthy donors that were spiked with the plasma from leukemia patients at levels of 0.15-0.4 μg L-1 As were analyzed by direct HG-CT-ICPMS. Good recoveries for all species even at these low levels (88-104%) were obtained. Limits of detection in blood and plasma were 0.014 μg L-1 for inorganic arsenic and below 0.002 μg L-1 As for methylated arsenic species. Thus, the ultrasensitive direct HG-CT-ICPMS method is uniquely suited for analyses of blood plasma and whole blood from individuals at low exposure levels.
Collapse
Affiliation(s)
- Tomáš Matoušek
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří97, Brno 602 00, Czech Republic
| | - Zhifeng Wang
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2302 MHRC, Chapel Hill, North Carolina 27599-7461, United States
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2302 MHRC, Chapel Hill, North Carolina 27599-7461, United States
| | - Stanislav Musil
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří97, Brno 602 00, Czech Republic
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2302 MHRC, Chapel Hill, North Carolina 27599-7461, United States
| |
Collapse
|
10
|
Huber CS, Vale MGR, Dessuy MB, Svoboda M, Musil S, Dědina J. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection. Talanta 2017; 175:406-412. [PMID: 28842009 DOI: 10.1016/j.talanta.2017.07.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/18/2022]
Abstract
A slurry sampling procedure for arsenic speciation analysis in baby food by arsane generation, cryogenic trapping and detection with atomic absorption spectrometry is presented. Several procedures were tested for slurry preparation, including different reagents (HNO3, HCl and tetramethylammonium hydroxide - TMAH) and their concentrations, water bath heating and ultrasound-assisted agitation. The best results for inorganic arsenic (iAs) and dimethylarsinate (DMA) were reached when using 3molL-1 HCl under heating and ultrasound-assisted agitation. The developed method was applied for the analysis of five porridge powder and six baby meal samples. The trueness of the method was checked with a certified reference material (CRM) of total arsenic (tAs), iAs and DMA in rice (ERM-BC211). Arsenic recoveries (mass balance) for all samples and CRM were performed by the determination of the tAs by inductively coupled plasma mass spectrometry (ICP-MS) after microwave-assisted digestion and its comparison against the sum of the results from the speciation analysis. The relative limits of detection were 0.44, 0.24 and 0.16µgkg-1 for iAs, methylarsonate and DMA, respectively. The concentrations of the most toxic arsenic species (iAs) in the analyzed baby food samples ranged between 4.2 and 99µgkg-1 which were below the limits of 300, 200 and 100µgkg-1 set by the Brazilian, Chinese and European legislation, respectively.
Collapse
Affiliation(s)
- Charles S Huber
- Instituto Federal Sul-rio-grandense, Campus Pelotas, Praça Vinte de Setembro 455, Centro, 96015-360 Pelotas, RS, Brazil; Universidade Federal do Rio Grande do Sul, Instituto de Química, Av. Bento Gonçalves 9500, Agronomia, 91509-900 Porto Alegre, RS, Brazil; Institute of Analytical Chemistry of the CAS, v. v. i., Veveří 97, 602 00 Brno, Czech Republic.
| | - Maria Goreti R Vale
- Universidade Federal do Rio Grande do Sul, Instituto de Química, Av. Bento Gonçalves 9500, Agronomia, 91509-900 Porto Alegre, RS, Brazil
| | - Morgana B Dessuy
- Universidade Federal do Rio Grande do Sul, Instituto de Química, Av. Bento Gonçalves 9500, Agronomia, 91509-900 Porto Alegre, RS, Brazil
| | - Milan Svoboda
- Institute of Analytical Chemistry of the CAS, v. v. i., Veveří 97, 602 00 Brno, Czech Republic
| | - Stanislav Musil
- Institute of Analytical Chemistry of the CAS, v. v. i., Veveří 97, 602 00 Brno, Czech Republic
| | - Jiři Dědina
- Institute of Analytical Chemistry of the CAS, v. v. i., Veveří 97, 602 00 Brno, Czech Republic
| |
Collapse
|
11
|
Douillet C, Huang MC, Saunders RJ, Dover EN, Zhang C, Stýblo M. Knockout of arsenic (+3 oxidation state) methyltransferase is associated with adverse metabolic phenotype in mice: the role of sex and arsenic exposure. Arch Toxicol 2017; 91:2617-2627. [PMID: 27847981 PMCID: PMC5432424 DOI: 10.1007/s00204-016-1890-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022]
Abstract
Susceptibility to toxic effects of inorganic arsenic (iAs) depends, in part, on efficiency of iAs methylation by arsenic (+3 oxidation state) methyltransferase (AS3MT). As3mt-knockout (KO) mice that cannot efficiently methylate iAs represent an ideal model to study the association between iAs metabolism and adverse effects of iAs exposure, including effects on metabolic phenotype. The present study compared measures of glucose metabolism, insulin resistance and obesity in male and female wild-type (WT) and As3mt-KO mice during a 24-week exposure to iAs in drinking water (0.1 or 1 mg As/L) and in control WT and As3mt-KO mice drinking deionized water. Results show that effects of iAs exposure on fasting blood glucose (FBG) and glucose tolerance in either WT or KO mice were relatively minor and varied during the exposure. The major effects were associated with As3mt KO. Both male and female control KO mice had higher body mass with higher percentage of fat than their respective WT controls. However, only male KO mice were insulin resistant as indicated by high FBG, and high plasma insulin at fasting state and 15 min after glucose challenge. Exposure to iAs increased fat mass and insulin resistance in both male and female KO mice, but had no significant effects on body composition or insulin resistance in WT mice. These data suggest that As3mt KO is associated with an adverse metabolic phenotype that is characterized by obesity and insulin resistance, and that the extent of the impairment depends on sex and exposure to iAs, including exposure to iAs from mouse diet.
Collapse
Affiliation(s)
- Christelle Douillet
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Madelyn C Huang
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Jesse Saunders
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Ellen N Dover
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chongben Zhang
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Miroslav Stýblo
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA.
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Currier JM, Douillet C, Drobná Z, Stýblo M. Oxidation state specific analysis of arsenic species in tissues of wild-type and arsenic (+3 oxidation state) methyltransferase-knockout mice. J Environ Sci (China) 2016; 49:104-112. [PMID: 28007165 PMCID: PMC5369650 DOI: 10.1016/j.jes.2016.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/09/2016] [Accepted: 06/01/2016] [Indexed: 05/19/2023]
Abstract
Arsenic methyltransferase (As3mt) catalyzes the conversion of inorganic arsenic (iAs) to its methylated metabolites, including toxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII). Knockout (KO) of As3mt was shown to reduce the capacity to methylate iAs in mice. However, no data are available on the oxidation states of As species in tissues of these mice. Here, we compare the oxidation states of As species in tissues of male C57BL/6 As3mt-KO and wild-type (WT) mice exposed to arsenite (iAsIII) in drinking water. WT mice were exposed to 50mg/L As and As3mt-KO mice that cannot tolerate 50mg/L As were exposed to 0, 15, 20, 25 or 30mg/L As. iAsIII accounted for 53% to 74% of total As in liver, pancreas, adipose, lung, heart, and kidney of As3mt-KO mice; tri- and pentavalent methylated arsenicals did not exceed 10% of total As. Tissues of WT mice retained iAs and methylated arsenicals: iAsIII, MAsIII and DMAsIII represented 55%-68% of the total As in the liver, pancreas, and brain. High levels of methylated species, particularly MAsIII, were found in the intestine of WT, but not As3mt-KO mice, suggesting that intestinal bacteria are not a major source of methylated As. Blood of WT mice contained significantly higher levels of As than blood of As3mt-KO mice. This study is the first to determine oxidation states of As species in tissues of As3mt-KO mice. Results will help to design studies using WT and As3mt-KO mice to examine the role of iAs methylation in adverse effects of iAs exposure.
Collapse
Affiliation(s)
- Jenna M Currier
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zuzana Drobná
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Miroslav Stýblo
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
González-Horta C, Ballinas-Casarrubias L, Sánchez-Ramírez B, Ishida MC, Barrera-Hernández A, Gutiérrez-Torres D, Zacarias OL, Saunders RJ, Drobná Z, Mendez MA, García-Vargas G, Loomis D, Stýblo M, Del Razo LM. A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:4587-601. [PMID: 25918912 PMCID: PMC4454927 DOI: 10.3390/ijerph120504587] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/11/2015] [Accepted: 03/31/2015] [Indexed: 11/29/2022]
Abstract
Inorganic arsenic (iAs) and fluoride (F-) are naturally occurring drinking water contaminants. However, co-exposure to these contaminants and its effects on human health are understudied. The goal of this study was examined exposures to iAs and F- in Chihuahua, Mexico, where exposure to iAs in drinking water has been associated with adverse health effects. All 1119 eligible Chihuahua residents (>18 years) provided a sample of drinking water and spot urine samples. iAs and F- concentrations in water samples ranged from 0.1 to 419.8 µg As/L and from 0.05 to 11.8 mg F-/L. Urinary arsenic (U-tAs) and urinary F- (U-F-) levels ranged from 0.5 to 467.9 ng As/mL and from 0.1 to 14.4 µg F-/mL. A strong positive correlation was found between iAs and F- concentrations in drinking water (rs = 0.741). Similarly, U-tAs levels correlated positively with U-F- concentrations (rs = 0.633). These results show that Chihuahua residents exposed to high iAs concentrations in drinking water are also exposed to high levels of F-, raising questions about possible contribution of F- exposure to the adverse effects that have so far been attributed only to iAs exposure. Thus, investigation of possible interactions between iAs and F- exposures and its related health risks deserves immediate attention.
Collapse
Affiliation(s)
- Carmen González-Horta
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico.
| | | | - Blanca Sánchez-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico.
| | - María C Ishida
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico.
| | - Angel Barrera-Hernández
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Mexico D. F. 07360, Mexico.
| | | | - Olga L Zacarias
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico.
| | - R Jesse Saunders
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| | - Zuzana Drobná
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| | - Michelle A Mendez
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| | - Gonzalo García-Vargas
- Facultad de Medicina, Universidad Juárez del Estado de Durango (UJED), Gómez Palacio, Durango 35050, Mexico.
| | - Dana Loomis
- IARC Monographs Section, IARC/WHO, Lyon Cedex 69372, France.
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| | - Luz M Del Razo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Mexico D. F. 07360, Mexico.
| |
Collapse
|
14
|
Musil S, Matoušek T, Currier JM, Stýblo M, Dědina J. Speciation analysis of arsenic by selective hydride generation-cryotrapping-atomic fluorescence spectrometry with flame-in-gas-shield atomizer: achieving extremely low detection limits with inexpensive instrumentation. Anal Chem 2014; 86:10422-8. [PMID: 25300934 PMCID: PMC4204903 DOI: 10.1021/ac502931k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work describes the method of a selective hydride generation-cryotrapping (HG-CT) coupled to an extremely sensitive but simple in-house assembled and designed atomic fluorescence spectrometry (AFS) instrument for determination of toxicologically important As species. Here, an advanced flame-in-gas-shield atomizer (FIGS) was interfaced to HG-CT and its performance was compared to a standard miniature diffusion flame (MDF) atomizer. A significant improvement both in sensitivity and baseline noise was found that was reflected in improved (4 times) limits of detection (LODs). The yielded LODs with the FIGS atomizer were 0.44, 0.74, 0.15, 0.17 and 0.67 ng L(-1) for arsenite, total inorganic, mono-, dimethylated As and trimethylarsine oxide, respectively. Moreover, the sensitivities with FIGS and MDF were equal for all As species, allowing for the possibility of single species standardization with arsenate standard for accurate quantification of all other As species. The accuracy of HG-CT-AFS with FIGS was verified by speciation analysis in two samples of bottled drinking water and certified reference materials, NRC CASS-5 (nearshore seawater) and SLRS-5 (river water) that contain traces of methylated As species. As speciation was in agreement with results previously reported and sums of all quantified species corresponded with the certified total As. The feasibility of HG-CT-AFS with FIGS was also demonstrated by the speciation analysis in microsamples of exfoliated bladder epithelial cells isolated from human urine. The results for the sums of trivalent and pentavalent As species corresponded well with the reference results obtained by HG-CT-ICPMS (inductively coupled plasma mass spectrometry).
Collapse
Affiliation(s)
- Stanislav Musil
- Institute of Analytical Chemistry of the ASCR , v. v. i., Veveří 97, 602 00 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
15
|
Currier JM, Ishida MC, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Gutiérrez-Torres DS, Cerón RH, Morales DV, Terrazas FAB, Del Razo LM, García-Vargas GG, Saunders RJ, Drobná Z, Fry RC, Matoušek T, Buse JB, Mendez MA, Loomis D, Stýblo M. Associations between arsenic species in exfoliated urothelial cells and prevalence of diabetes among residents of Chihuahua, Mexico. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:1088-94. [PMID: 25000461 PMCID: PMC4181927 DOI: 10.1289/ehp.1307756] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 06/26/2014] [Indexed: 05/14/2023]
Abstract
BACKGROUND A growing number of studies link chronic exposure to inorganic arsenic (iAs) with the risk of diabetes. Many of these studies assessed iAs exposure by measuring arsenic (As) species in urine. However, this approach has been criticized because of uncertainties associated with renal function and urine dilution in diabetic individuals. OBJECTIVES Our goal was to examine associations between the prevalence of diabetes and concentrations of As species in exfoliated urothelial cells (EUC) as an alternative to the measures of As in urine. METHODS We measured concentrations of trivalent and pentavalent iAs methyl-As (MAs) and dimethyl-As (DMAs) species in EUC from 374 residents of Chihuahua, Mexico, who were exposed to iAs in drinking water. We used fasting plasma glucose, glucose tolerance tests, and self-reported diabetes diagnoses or medication to identify diabetic participants. Associations between As species in EUC and diabetes were estimated using logistic and linear regression, adjusting for age, sex, and body mass index. RESULTS Interquartile-range increases in trivalent, but not pentavalent, As species in EUC were positively and significantly associated with diabetes, with ORs of 1.57 (95% CI: 1.19, 2.07) for iAsIII, 1.63 (1.24, 2.15) for MAsIII, and 1.31 (0.96, 1.84) for DMAsIII. DMAs/MAs and DMAs/iAs ratios were negatively associated with diabetes (OR = 0.62; 95% CI: 0.47, 0.83 and OR = 0.72; 95% CI: 0.55, 0.96, respectively). CONCLUSIONS Our data suggest that uncertainties associated with measures of As species in urine may be avoided by using As species in EUC as markers of iAs exposure and metabolism. Our results provide additional support to previous findings suggesting that trivalent As species may be responsible for associations between diabetes and chronic iAs exposure.
Collapse
Affiliation(s)
- Jenna M Currier
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kalman DA, Dills RL, Steinmaus C, Yunus M, Khan AF, Prodhan MM, Yuan Y, Smith AH. Occurrence of trivalent monomethyl arsenic and other urinary arsenic species in a highly exposed juvenile population in Bangladesh. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2014; 24:113-120. [PMID: 23549402 DOI: 10.1038/jes.2013.14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/19/2013] [Indexed: 06/02/2023]
Abstract
Following reports of high cytotoxicity and mutagenicity of monomethyl arsonous acid (MMA(III)) and early reports of urinary MMA(III) in arsenic-exposed individuals, MMA(III) has often been included in population studies. Use of urinary MMA(III) as an indicator of exposure and/or health risk is challenged by inconsistent results from field studies and stability studies, which indicate potential artifacts. We measured urinary arsenic species in children chronically exposed to arsenic in drinking water, using collection, storage, and analysis methods shown to conserve MMA(III). MMA(III) was easily oxidized in sample storage and processing, but recoveries of 80% or better in spiked urine samples were achieved. Attempts to preserve the distribution of MMA between trivalent and pentavalent forms using complexing agents were unsuccessful and MMA(III) spiked into treated urine samples actually showed lower stability than in untreated samples. In 643 urine samples from a highly exposed population from the Matlab district in Bangladesh stored for 3-6 months at ≤-70 °C, MMA(III) was detected in 41 samples, with an estimated median value of 0.3 μg/l, and levels of MMA(III) above 1 μg/l in only two samples. The low urinary concentrations in highly exposed individuals and known difficulties in preserving sample oxidation state indicate that urinary MMA(III) is not suitable for use as an epidemiological biomarker.
Collapse
Affiliation(s)
- David A Kalman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Russell L Dills
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Craig Steinmaus
- Arsenic Health Effects Research Group, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Md Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Al Fazal Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Md Mofijuddin Prodhan
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Yan Yuan
- Arsenic Health Effects Research Group, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Allan H Smith
- Arsenic Health Effects Research Group, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
17
|
Cohen SM, Arnold LL, Beck BD, Lewis AS, Eldan M. Evaluation of the carcinogenicity of inorganic arsenic. Crit Rev Toxicol 2013; 43:711-52. [DOI: 10.3109/10408444.2013.827152] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Matoušek T, Currier JM, Trojánková N, Saunders RJ, Ishida MC, González-Horta C, Musil S, Mester Z, Stýblo M, Dědina J. Selective hydride generation- cryotrapping- ICP-MS for arsenic speciation analysis at picogram levels: analysis of river and sea water reference materials and human bladder epithelial cells. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY 2013; 28:1456-1465. [PMID: 24014931 PMCID: PMC3763853 DOI: 10.1039/c3ja50021g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An ultra sensitive method for arsenic (As) speciation analysis based on selective hydride generation (HG) with preconcentration by cryotrapping (CT) and inductively coupled plasma- mass spectrometry (ICP-MS) detection is presented. Determination of valence of the As species is performed by selective HG without prereduction (trivalent species only) or with L-cysteine prereduction (sum of tri- and pentavalent species). Methylated species are resolved on the basis of thermal desorption of formed methyl substituted arsines after collection at -196°C. Limits of detection of 3.4, 0.04, 0.14 and 0.10 pg mL-1 (ppt) were achieved for inorganic As, mono-, di- and trimethylated species, respectively, from a 500 μL sample. Speciation analysis of river water (NRC SLRS-4 and SLRS-5) and sea water (NRC CASS-4, CASS-5 and NASS-5) reference materials certified to contain 0.4 to 1.3 ng mL-1 total As was performed. The concentrations of methylated As species in tens of pg mL-1 range obtained by HG-CT-ICP-MS systems in three laboratories were in excellent agreement and compared well with results of HG-CT-atomic absorption spectrometry and anion exchange liquid chromatography- ICP-MS; sums of detected species agreed well with the certified total As content. HG-CT-ICP-MS method was successfully used for analysis of microsamples of exfoliated bladder epithelial cells isolated from human urine. Here, samples of lysates of 25 to 550 thousand cells contained typically tens pg up to ng of iAs species and from single to hundreds pg of methylated species, well within detection power of the presented method. A significant portion of As in the cells was found in the form of the highly toxic trivalent species.
Collapse
Affiliation(s)
- Tomáš Matoušek
- Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno, Czech Republic
| | - Jenna M. Currier
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Nikola Trojánková
- Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno, Czech Republic
- Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - R. Jesse Saunders
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - María C. Ishida
- Faculty of Chemical Sciences, Autonomous University of Chihuahua, Chihuahua, Mexico
| | | | - Stanislav Musil
- Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno, Czech Republic
| | - Zoltán Mester
- National Research Council of Canada, Ottawa, Ontario, K1A 0R6 Canada
| | - Miroslav Stýblo
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Jiří Dědina
- Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno, Czech Republic
| |
Collapse
|
19
|
Currier J, Saunders RJ, Ding L, Bodnar W, Cable P, Matoušek T, Creed JT, Stýblo M. Comparative oxidation state specific analysis of arsenic species by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry and hydride generation-cryotrapping-atomic absorption spectrometry. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY 2013; 28:843-852. [PMID: 23687401 PMCID: PMC3655785 DOI: 10.1039/c3ja30380b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The formation of methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII) in the course of inorganic arsenic (iAs) metabolism plays an important role in the adverse effects of chronic exposure to iAs. High-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) and hydride generation-cryotrapping-atomic absorption spectrometry (HG-CT-AAS) have been frequently used for the analysis of MAsIII and DMAsIII in biological samples. While HG-CT-AAS has consistently detected MAsIII and DMAsIII, HPLC-ICP-MS analyses have provided inconsistent and contradictory results. This study compares the capacities of both methods to detect and quantify MAsIII and DMAsIII in an in vitro methylation system consisting of recombinant human arsenic (+3 oxidation state) methyltransferase (AS3MT), S-adenosylmethionine as a methyl donor, a non-thiol reductant tris(2-carboxyethyl)phosphine, and arsenite (iAsIII) or MAsIII as substrate. The results show that reversed-phase HPLC-ICP-MS can identify and quantify MAsIII and DMAsIII in aqueous mixtures of biologically relevant arsenical standards. However, HPLC separation of the in vitro methylation mixture resulted in significant losses of MAsIII, and particularly DMAsIII with total arsenic recoveries below 25%. Further analyses showed that MAsIII and DMAsIII bind to AS3MT or interact with other components of the methylation mixture, forming complexes that do not elute from the column. Oxidation of the mixture with H2O2 which converted trivalent arsenicals to their pentavalent analogs prior to HPLC separation increased total arsenic recoveries to ~95%. In contrast, HG-CT-AAS analysis found large quantities of methylated trivalent arsenicals in mixtures incubated with either iAsIII or MAsIII and provided high (>72%) arsenic recoveries. These data suggest that an HPLC-based analysis of biological samples can underestimate MAsIII and DMAsIII concentrations and that controlling for arsenic species recovery is essential to avoid artifacts.
Collapse
Affiliation(s)
- Jenna Currier
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - R. Jesse Saunders
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Lan Ding
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Wanda Bodnar
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Peter Cable
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Tomáš Matoušek
- Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno, Czech Republic
| | - John T. Creed
- Microbiological and Chemical Exposure Assessment Research Division, NERL, US EPA, Cincinnati, OH 45628, USA
| | - Miroslav Stýblo
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
- Corresponding Author: Tel: (+1) 919-966-5721; Fax: (+1) 919-843-0776;
| |
Collapse
|
20
|
Abstract
Arsenic has received considerable attention in the world, since it can lead to a multitude of toxic effects and has been recognized as a human carcinogen causing cancers. Here, we focus on the current state of knowledge regarding the proposed mechanisms of arsenic biotransformation, with a little about cellular uptake, toxicity and clinical utilization of arsenicals. Since pentavalent methylated metabolites were found in animal urine after exposure to iAs(III), methylation was considered to be a detoxification process, but the discovery of methylated trivalent intermediates and thioarsenicals in urine has diverted the view and gained much interest regarding arsenic biotransformation. To further investigate the partially understood phenomena relating to arsenic toxicity and the uses of arsenic as a drug, it is important to elucidate the exact pathways involved in metabolism of this metalloid, as the toxicity and the clinical uses of arsenic can be best recognized in context of its biotransformation. Thereby, in this perspective, we have focused on arsenic metabolic pathways including three proposed mechanisms: a classic pathway by Challenger in 1945, followed by a new metabolic pathway proposed by Hayakawa in 2005 involving arsenic-glutathione complexes, while the third is a new reductive methylation pathway that is proposed by our group involving As-protein complexes. According to previous and present in vivo and in vitro experiments, we conclude that the methylation reaction takes place with simultaneous reductive rather than stepwise oxidative methylation. In addition, production of pentavalent methylated arsenic metabolites are suggested to be as the end product of metabolism, rather than intermediates.
Collapse
Affiliation(s)
- Kanwal Rehman
- Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310561, China
| | | |
Collapse
|
21
|
Tsang V, Fry RC, Niculescu MD, Rager JE, Saunders J, Paul DS, Zeisel SH, Waalkes MP, Stýblo M, Drobná Z. The epigenetic effects of a high prenatal folate intake in male mouse fetuses exposed in utero to arsenic. Toxicol Appl Pharmacol 2012; 264:439-50. [PMID: 22959928 DOI: 10.1016/j.taap.2012.08.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 12/17/2022]
Abstract
Inorganic arsenic (iAs) is a complete transplacental carcinogen in mice. Previous studies have demonstrated that in utero exposure to iAs promotes cancer in adult mouse offspring, possibly acting through epigenetic mechanisms. Humans and rodents enzymatically convert iAs to its methylated metabolites. This reaction requires S-adenosylmethionine (SAM) as methyl group donor. SAM is also required for DNA methylation. Supplementation with folate, a major dietary source of methyl groups for SAM synthesis, has been shown to modify iAs metabolism and the adverse effects of iAs exposure. However, effects of gestational folate supplementation on iAs metabolism and fetal DNA methylation have never been thoroughly examined. In the present study, pregnant CD1 mice were fed control (i.e. normal folate, or 2.2 mg/kg) or high folate diet (11 mg/kg) from gestational day (GD) 5 to 18 and drank water with 0 or 85 ppm of As (as arsenite) from GD8 to 18. The exposure to iAs significantly decreased body weight of GD18 fetuses and increased both SAM and S-adenosylhomocysteine (SAH) concentrations in fetal livers. High folate intake lowered the burden of total arsenic in maternal livers but did not prevent the effects of iAs exposure on fetal weight or hepatic SAM and SAH concentrations. In fact, combined folate-iAs exposure caused further significant body weight reduction. Notably, iAs exposure alone had little effect on DNA methylation in fetal livers. In contrast, the combined folate-iAs exposure changed the CpG island methylation in 2,931 genes, including genes known to be imprinted. Most of these genes were associated with neurodevelopment, cancer, cell cycle, and signaling networks. The canonical Wnt-signaling pathway, which regulates fetal development, was among the most affected biological pathways. Taken together, our results suggest that a combined in utero exposure to iAs and a high folate intake may adversely influence DNA methylation profiles and weight of fetuses, compromising fetal development and possibly increasing the risk for early-onset of disease in offspring.
Collapse
Affiliation(s)
- Verne Tsang
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Luo JH, Qiu ZQ, Zhang L, Shu WQ. Arsenite exposure altered the expression of NMDA receptor and postsynaptic signaling proteins in rat hippocampus. Toxicol Lett 2012; 211:39-44. [PMID: 22421273 DOI: 10.1016/j.toxlet.2012.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 01/22/2023]
Abstract
Chronic arsenic exposure has an adverse effect on neurobehavioral function. Our previous study demonstrated an elevated arsenic level, ultra-structure changes and reduced NR2A gene expression in hippocampus, and impaired spatial learning in arsenite-exposed rats. The NMDA receptor and the postsynaptic signaling proteins CaMKII, postsynaptic density protein 95 (PSD-95), synaptic Ras GTPase-activating protein (SynGAP) and nuclear activated extracellular-signal regulated kinase (ERK1/2) play important roles in synaptic plasticity, learning and memory. We hypothesized that the above molecular expression changes may contribute to arsenic neurotoxicity. In present study, the expression of NMDA receptor and postsynaptic signaling proteins in hippocampus were evaluated in rats exposed to 0, 2.72, 13.6 and 68 mg/L sodium arsenite for 3 months. Decreased protein expression of NR2A, PSD-95 and p-CaMKII α in the hippocampus of arsenite-exposed rats was observed, while the expression of SynGAP, a negative regulator of Ras-MAPK activity, was increased when compared with the controls. Additionally, decreased p-ERK1/2 activity was found in the hippocampus of arsenite-exposed rats. These data suggest that altered expression of NMDA receptor complex and postsynaptic signaling proteins may explain arsenic-induced neurotoxicity.
Collapse
Affiliation(s)
- Jiao-hua Luo
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | |
Collapse
|