1
|
Tang J, Luo Y, Wang Q, Wu J, Wei Y. Stimuli-Responsive Delivery Systems for Intervertebral Disc Degeneration. Int J Nanomedicine 2024; 19:4735-4757. [PMID: 38813390 PMCID: PMC11135562 DOI: 10.2147/ijn.s463939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
As a major cause of low back pain, intervertebral disc degeneration is an increasingly prevalent chronic disease worldwide that leads to huge annual financial losses. The intervertebral disc consists of the inner nucleus pulposus, outer annulus fibrosus, and sandwiched cartilage endplates. All these factors collectively participate in maintaining the structure and physiological functions of the disc. During the unavoidable degeneration stage, the degenerated discs are surrounded by a harsh microenvironment characterized by acidic, oxidative, inflammatory, and chaotic cytokine expression. Loss of stem cell markers, imbalance of the extracellular matrix, increase in inflammation, sensory hyperinnervation, and vascularization have been considered as the reasons for the progression of intervertebral disc degeneration. The current treatment approaches include conservative therapy and surgery, both of which have drawbacks. Novel stimuli-responsive delivery systems are more promising future therapeutic options than traditional treatments. By combining bioactive agents with specially designed hydrogels, scaffolds, microspheres, and nanoparticles, novel stimuli-responsive delivery systems can realize the targeted and sustained release of drugs, which can both reduce systematic adverse effects and maximize therapeutic efficacy. Trigger factors are categorized into internal (pH, reactive oxygen species, enzymes, etc.) and external stimuli (photo, ultrasound, magnetic, etc.) based on their intrinsic properties. This review systematically summarizes novel stimuli-responsive delivery systems for intervertebral disc degeneration, shedding new light on intervertebral disc therapy.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yuexin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qirui Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Juntao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yulong Wei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Alavarse AC, Silva JB, Ulrich H, Petri DFS. Poly(vinyl alcohol)/sodium alginate/magnetite composites: magnetic force microscopy for tracking magnetic domains. SOFT MATTER 2023; 19:2612-2622. [PMID: 36951357 DOI: 10.1039/d3sm00053b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogels of poly(vinyl alcohol) (PVA)/sodium alginate (SA), and magnetic nanoparticles (MNPs) were prepared by solvent casting in the absence and in the presence of magnets, in order to obtain MNPs distributed randomly (PVA/SA-rMNP) and magnetically oriented MNPs (PVA/SA-gMNP) in the polymer matrix. Atomic force microscopy (AFM) and magnetic force microscopy (MFM) techniques were used to evaluate the topography and to map the distribution of magnetic domains in the polymer matrix, respectively. The tip-surface distance (lift distance) of 50 nm during the MFM analyses facilitated the mapping of magnetic domains because the van der Waals forces were minimized. The magnetic signal stemming from clusters of MNPs were more easily identified than that from isolated MNPs. PVA and SA, PVA/SA, PVA/SA-rMNP, and PVA/SA-gMNP coatings with surface roughness (Ra) values of 3.8 nm, 28.7 nm, and 49.8 nm, respectively, were tested for the proliferation of mouse hippocampal HT-22 cells. While PVA/SA, PVA/SA-rMNP, and PVA/SA-gMNP coatings preserved cell viability >70% in comparison to the control (plastic plate) over 48 h, cell proliferation tended to decrease on surfaces with higher Ra values (PVA/SA-gMNP). These findings showed that the orientation of magnetic domains led to an increase of surface roughness, which decreased the viability of HT-22 cells. Thus, these results might be interesting for situations, where the control of cell proliferation is necessary.
Collapse
Affiliation(s)
- Alex Carvalho Alavarse
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil.
| | - Jean Bezerra Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Denise Freitas Siqueira Petri
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
3
|
Rasel MSI, Mohona FA, Akter W, Kabir S, Chowdhury AA, Chowdhury JA, Hassan MA, Al Mamun A, Ghose DK, Ahmad Z, Khan FS, Bari MF, Rahman MS, Amran MS. Exploration of Site-Specific Drug Targeting-A Review on EPR-, Stimuli-, Chemical-, and Receptor-Based Approaches as Potential Drug Targeting Methods in Cancer Treatment. JOURNAL OF ONCOLOGY 2022; 2022:9396760. [PMID: 36284633 PMCID: PMC9588330 DOI: 10.1155/2022/9396760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Cancer has been one of the most dominant causes of mortality globally over the last few decades. In cancer treatment, the selective targeting of tumor cells is indispensable, making it a better replacement for conventional chemotherapies by diminishing their adverse side effects. While designing a drug to be delivered selectively in the target organ, the drug development scientists should focus on various factors such as the type of cancer they are dealing with according to which drug, targeting moieties, and pharmaceutical carriers should be targeted. All published articles have been collected regarding cancer and drug-targeting approaches from well reputed databases including MEDLINE, Embase, Cochrane Library, CENTRAL and ClinicalTrials.gov, Science Direct, PubMed, Scopus, Wiley, and Springer. The articles published between January 2010 and December 2020 were considered. Due to the existence of various mechanisms, it is challenging to choose which one is appropriate for a specific case. Moreover, a combination of more than one approach is often utilized to achieve optimal drug effects. In this review, we have summarized and highlighted central mechanisms of how the targeted drug delivery system works in the specific diseased microenvironment, along with the strategies to make an approach more effective. We have also included some pictorial illustrations to have a precise idea about different types of drug targeting. The core contribution of this work includes providing a cancer drug development scientist with a broad preliminary idea to choose the appropriate approach among the various targeted drug delivery mechanisms. Also, the study will contribute to improving anticancer treatment approaches by providing a pathway for lesser side effects observed in conventional chemotherapeutic techniques.
Collapse
Affiliation(s)
- Md. Shamiul Islam Rasel
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Farhana Afrin Mohona
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Wahida Akter
- College of Pharmacy, University of Houston, Houston, USA
| | - Shaila Kabir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Abu Asad Chowdhury
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Jakir Ahmed Chowdhury
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Md. Abul Hassan
- Department of Science & Technology, Tokushima University Graduate School, Tokushima, Japan
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Dipayon Krisna Ghose
- Department of Biochemistry and Molecular Biology, Jagannath University, Dhaka 1100, Bangladesh
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia
- Department of Biology, College of Arts and Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Department of Biology, College of Arts and Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Md. Fazlul Bari
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| |
Collapse
|
4
|
Biomedical applications of mesoporous silica nanoparticles as a drug delivery carrier. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev 2022; 51:5365-5451. [PMID: 35642539 PMCID: PMC9252171 DOI: 10.1039/d1cs00659b] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/12/2022]
Abstract
The present review details a chronological description of the events that took place during the development of mesoporous materials, their different synthetic routes and their use as drug delivery systems. The outstanding textural properties of these materials quickly inspired their translation to the nanoscale dimension leading to mesoporous silica nanoparticles (MSNs). The different aspects of introducing pharmaceutical agents into the pores of these nanocarriers, together with their possible biodistribution and clearance routes, would be described here. The development of smart nanocarriers that are able to release a high local concentration of the therapeutic cargo on-demand after the application of certain stimuli would be reviewed here, together with their ability to deliver the therapeutic cargo to precise locations in the body. The huge progress in the design and development of MSNs for biomedical applications, including the potential treatment of different diseases, during the last 20 years will be collated here, together with the required work that still needs to be done to achieve the clinical translation of these materials. This review was conceived to stand out from past reports since it aims to tell the story of the development of mesoporous materials and their use as drug delivery systems by some of the story makers, who could be considered to be among the pioneers in this area.
Collapse
Affiliation(s)
- María Vallet-Regí
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Daniel Lozano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Montserrat Colilla
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Miguel Manzano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
6
|
Zhang M, Hu W, Cai C, Wu Y, Li J, Dong S. Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Mater Today Bio 2022; 14:100223. [PMID: 35243298 PMCID: PMC8881671 DOI: 10.1016/j.mtbio.2022.100223] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
|
7
|
Siddiqui S, Rather RA, Siddiqui ZN. Bovine serum albumin‐silica functionalized γ‐Fe
2
O
3
nanoparticles (BSA‐Si@Fe
2
O
3
): A highly efficient and magnetically recoverable heterogeneous catalyst for the synthesis of substituted pyrrole derivatives. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|
9
|
Kamali S, Yu E, Bates B, McBride JR, Johnson CE, Taufour V, Stroeve P. Magnetic properties of γ-Fe 2O 3 nanoparticles in a porous SiO 2 shell for drug delivery. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 33:065301. [PMID: 33231198 DOI: 10.1088/1361-648x/abc403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A method is presented for synthesizing core-shell nanoparticles with a magnetic core and a porous shell suitable for drug delivery and other medical applications. The core contains multiple γ-Fe2O3 nanoparticles (∼15 nm) enclosed in a SiO2 (∼100-200 nm) matrix using either methyl (denoted TMOS-γ-Fe2O3) or ethyl (TEOS-γ-Fe2O3) template groups. Low-temperature Mössbauer spectroscopy showed that the magnetic nanoparticles have the maghemite structure, γ-Fe2O3, with all the vacancies in the octahedral sites. Saturation magnetization measurements revealed that the density of γ-Fe2O3 was greater in the TMOS-γ-Fe2O3 nanoparticles than TEOS-γ-Fe2O3 nanoparticles, presumably because of the smaller methyl group. Magnetization measurements showed that the blocking temperature is around room temperature for the TMOS-γ-Fe2O3 and around 250 K for the TEOS-γ-Fe2O3. Three dimensional topography analysis shows clearly that the magnetic nanoparticles are not only at the surface but have penetrated deep in the silica to form the core-shell structure.
Collapse
Affiliation(s)
- S Kamali
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388, United States of America. Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, TN 37132, United States of America
| | | | | | | | | | | | | |
Collapse
|
10
|
Sattary M, Amini J, Hallaj R. Antifungal activity of the lemongrass and clove oil encapsulated in mesoporous silica nanoparticles against wheat's take-all disease. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104696. [PMID: 32980050 DOI: 10.1016/j.pestbp.2020.104696] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 05/27/2023]
Abstract
Combined application of plant essential oils (EOs) with known antimicrobial effects and silica nanocapsules with high loading capacity and protection capability of the EOs make them proper candidates for creating environmentally friendly fungicides. In this study, EOs of the Lemongrass (LGO) and Clove (CO) were used against Gaeumannomyces graminis var. tritici (Ggt), a causal agent of take-all disease of wheat. To provide controlled delivery of the EOs, they were encapsulated into mesoporous silica nanoparticles (MSNPs) and then compared to the effects of pure EOs both in- vitro and in- vivo. MSNPs were synthesized via the sol-gel process. Various techniques such as Fourier transform infrared spectroscopy (FTIR), the Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), and UV-Vis spectroscopy were used to evaluate the successful loading of the EOs into the pore of MSNPs. The encapsulation efficiency (EE) was calculated as high as 84.24% for LGO and 80.69% for CO, while loading efficiency (LE) was determined 36% and 29% for LGO and CO, respectively. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) displayed spherical shapes and porous structures with average diameters of 50-70 nm. Recognition of the main components of the EOs via gas chromatographic-mass spectrometry (GC-MS) before and after the EO loading, detected eugenol and citral as the most frequent compounds in LGO and CO, respectively. For antifungal test in- vitro, selected concentrations of the pure EOs, EOs loaded in MSNPs (EOs- MSNPs) and Mancozeb ® fungicide based on pre-tests were mixed using potato dextrose agar (PDA). The inhibition percentage (IP) of fungal growth at each concentration, as well as minimum inhibition concentration (MIC) and minimum fungicidal concentrations (MFC) were obtained. The results indicated that antifungal effects in the encapsulated form increased by up to three times. In- vivo, the sterile wheat seeds were treated with pure EOs, EOs-MSNPs, and mancozeb at MFC concentration. Also, in order to keep on the EOs-MSNPs around the seeds, sodium alginate was used. The consequences of in- vivo experiments indicated that rate of disease control in presence of EOs-MSNPs and mancozeb was the same (~70%) and higher than pure EOs (LGO: 57.44%, CO: 49%). Also, improving the growth parameters in wheat plant, the covering of the EOs-MSNPs in alginate, had better control (84%) than that of EOs-MSNPs alone. Further, the release kinetics studies showed a gradual release of LGO and CO from MSNPs for four weeks in water and for five weeks in the soil-plant system. To the best of our knowledge, this is the first report of the control effect of LGO, CO, and their nanocapsule in MSNPs against the take-all disease of wheat. These results showed that the EOs-MSNPs can be a safe product for the efficient control of take-all disease in wheat crop.
Collapse
Affiliation(s)
- Maryam Sattary
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Jahanshir Amini
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Rahman Hallaj
- Department of Chemistry, Faculty of Sciences, University of Kurdistan, Sanandaj, Iran; Nanotechnology Research Center, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| |
Collapse
|
11
|
Ha HT, Huong NT, Lee BK, Duc DS, Dan LL, bao Trung V, Kien TT, Anh NH, Minh NQ, Minh TD. Ternary magnetic polymer cross-coupled in [γ-APTES]-dispersion to remove azole compound: economic research and educational policy management. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04238-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Yue Q, Sun J, Kang Y, Deng Y. Advances in the Interfacial Assembly of Mesoporous Silica on Magnetite Particles. Angew Chem Int Ed Engl 2020; 59:15804-15817. [DOI: 10.1002/anie.201911690] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Qin Yue
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China
| | - Jianguo Sun
- Eye Institute of Eye and ENT Hospital Fudan University NHC Key Laboratory of Myopia (Fudan University) Shanghai 200031 China
| | - Yijin Kang
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China
| | - Yonghui Deng
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
- State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
| |
Collapse
|
13
|
Yue Q, Sun J, Kang Y, Deng Y. Advances in the Interfacial Assembly of Mesoporous Silica on Magnetite Particles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qin Yue
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China
| | - Jianguo Sun
- Eye Institute of Eye and ENT Hospital Fudan University NHC Key Laboratory of Myopia (Fudan University) Shanghai 200031 China
| | - Yijin Kang
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China
| | - Yonghui Deng
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
- State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
| |
Collapse
|
14
|
White BD, Duan C, Townley HE. Nanoparticle Activation Methods in Cancer Treatment. Biomolecules 2019; 9:E202. [PMID: 31137744 PMCID: PMC6572460 DOI: 10.3390/biom9050202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022] Open
Abstract
In this review, we intend to highlight the progress which has been made in recent years around different types of smart activation nanosystems for cancer treatment. Conventional treatment methods, such as chemotherapy or radiotherapy, suffer from a lack of specific targeting and consequent off-target effects. This has led to the development of smart nanosystems which can effect specific regional and temporal activation. In this review, we will discuss the different methodologies which have been designed to permit activation at the tumour site. These can be divided into mechanisms which take advantage of the differences between healthy cells and cancer cells to trigger activation, and those which activate by a mechanism extrinsic to the cell or tumour environment.
Collapse
Affiliation(s)
- Benjamin D White
- Department of Engineering Science, Oxford University, Parks Road, OX1 3PJ, Oxford, UK.
| | - Chengchen Duan
- Nuffield department of Women's and Reproductive Health, Oxford University John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.
| | - Helen E Townley
- Department of Engineering Science, Oxford University, Parks Road, OX1 3PJ, Oxford, UK.
- Nuffield department of Women's and Reproductive Health, Oxford University John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.
| |
Collapse
|
15
|
Ribes À, Aznar E, Santiago-Felipe S, Xifre-Perez E, Tormo-Mas MÁ, Pemán J, Marsal LF, Martínez-Máñez R. Selective and Sensitive Probe Based in Oligonucleotide-Capped Nanoporous Alumina for the Rapid Screening of Infection Produced by Candida albicans. ACS Sens 2019; 4:1291-1298. [PMID: 31020831 DOI: 10.1021/acssensors.9b00169] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A robust, sensitive, and time-competitive system to detect Candida albicans in less than 30 min in clinical samples based in capped nanoporous anodic alumina (NAA) is developed. In the proposed design, NAA pores are loaded with rhodamine B and then blocked with an oligonucleotide that is able to recognize C. albicans DNA. The capped material shows negligible cargo release, whereas dye delivery is selectively accomplished when genomic DNA from C. albicans is present. This procedure has been successfully applied to detect C. albicans in clinical samples from patients infected with this yeast. When compared with classical C. albicans detection methods, the proposed probe has a short assay time, high sensitivity and selectivity, demonstrating the high potential of this simple design for the diagnosis of infection produced by C. albicans.
Collapse
Affiliation(s)
- Àngela Ribes
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Sara Santiago-Felipe
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Elisabet Xifre-Perez
- Departamento de Ingeniería Electrónica, Eléctrica y Automática, Universidad Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain
| | - María Ángeles Tormo-Mas
- Grupo acreditado de investigación Infección Grave, IIS La Fe, Avenida Fernando Abril Martorell, 126, 46026 Valencia, Spain
| | - Javier Pemán
- Grupo acreditado de investigación Infección Grave, IIS La Fe, Avenida Fernando Abril Martorell, 126, 46026 Valencia, Spain
- Servicio de Microbiología, Hospital Politècnic i Universitari La Fe, Avenida Fernando Abril Martorell, 126, 46026 Valencia, Spain
| | - Lluis F. Marsal
- Departamento de Ingeniería Electrónica, Eléctrica y Automática, Universidad Rovira i Virgili, Avda. Països Catalans 26, 43007 Tarragona, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
16
|
Abstract
Stimuli-responsive materials undergo triggered changes when presented with specific environmental cues. These dynamic systems can leverage biological signals found locally within the body as well as exogenous cues administered with spatiotemporal control, providing powerful opportunities in next-generation diagnostics and personalized medicine. Here, we review the synthetic and strategic advances used to impart diverse responsiveness to a wide variety of biomaterials. Categorizing systems on the basis of material type, number of inputs, and response mechanism, we examine past and ongoing efforts toward endowing biomaterials with customizable sensitivity. We draw an analogy to computer science, whereby a stimuli-responsive biomaterial transduces a set of inputs into a functional output as governed by a user-specified logical operator. We discuss Boolean and non-Boolean operations, as well as the various chemical and physical modes of signal transduction. Finally, we examine current limitations and promising directions in the ongoing development of programmable stimuli-responsive biomaterials.
Collapse
Affiliation(s)
- Barry A Badeau
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA;
| | - Cole A DeForest
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA; .,Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA.,Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, USA.,Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
17
|
Manzano M, Vallet-Regí M. Ultrasound responsive mesoporous silica nanoparticles for biomedical applications. Chem Commun (Camb) 2019; 55:2731-2740. [PMID: 30694270 PMCID: PMC6667338 DOI: 10.1039/c8cc09389j] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanotechnology, which has already revolutionised many technological areas, is expected to transform life sciences. In this sense, nanomedicine could address some of the most important limitations of conventional medicine. In general, nanomedicine includes three major objectives: (1) trap and protect a great amount of therapeutic agents; (2) carry them to the specific site of disease avoiding any leakage; and (3) release on-demand high local concentrations of therapeutic agents. This feature article will make special emphasis on mesoporous silica nanoparticles that release their therapeutic cargo in response to ultrasound.
Collapse
Affiliation(s)
- Miguel Manzano
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | | |
Collapse
|
18
|
Zhu D, Roy S, Liu Z, Weller H, Parak WJ, Feliu N. Remotely controlled opening of delivery vehicles and release of cargo by external triggers. Adv Drug Deliv Rev 2019; 138:117-132. [PMID: 30315833 DOI: 10.1016/j.addr.2018.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/23/2018] [Accepted: 10/08/2018] [Indexed: 01/11/2023]
Abstract
Tremendous efforts have been devoted to the development of future nanomedicines that can be specifically designed to incorporate responsive elements that undergo modification in structural properties upon external triggers. One potential use of such stimuli-responsive materials is to release encapsulated cargo upon excitation by an external trigger. Today, such stimuli-response materials allow for spatial and temporal tunability, which enables the controlled delivery of compounds in a specific and dose-dependent manner. This potentially is of great interest for medicine (e.g. allowing for remotely controlled drug delivery to cells, etc.). Among the different external exogenous and endogenous stimuli used to control the desired release, light and magnetic fields offer interesting possibilities, allowing defined, real time control of intracellular releases. In this review we highlight the use of stimuli-responsive controlled release systems that are able to respond to light and magnetic field triggers for controlling the release of encapsulated cargo inside cells. We discuss established approaches and technologies and describe prominent examples. Special attention is devoted towards polymer capsules and polymer vesicles as containers for encapsulated cargo molecules. The advantages and disadvantages of this methodology in both, in vitro and in vivo models are discussed. An overview of challenges associate with the successful translation of those stimuli-responsive materials towards future applications in the direction of potential clinical use is given.
Collapse
Affiliation(s)
- Dingcheng Zhu
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany
| | - Sathi Roy
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany
| | - Ziyao Liu
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany
| | - Horst Weller
- Fachbereich Chemie, Universität Hamburg, Hamburg, Germany
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany; Fachbereich Chemie, Universität Hamburg, Hamburg, Germany
| | - Neus Feliu
- Fachbereich Physik, CHyN, Universität Hamburg, Hamburg, Germany; Experimental Cancer Medicine, Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
19
|
Hossen S, Hossain MK, Basher M, Mia M, Rahman M, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res 2019; 15:1-18. [PMID: 30581608 PMCID: PMC6300464 DOI: 10.1016/j.jare.2018.06.005] [Citation(s) in RCA: 514] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 02/06/2023] Open
Abstract
Nonspecific distribution and uncontrollable release of drugs in conventional drug delivery systems (CDDSs) have led to the development of smart nanocarrier-based drug delivery systems, which are also known as Smart Drug Delivery Systems (SDDSs). SDDSs can deliver drugs to the target sites with reduced dosage frequency and in a spatially controlled manner to mitigate the side effects experienced in CDDSs. Chemotherapy is widely used to treat cancer, which is the second leading cause of death worldwide. Site-specific drug delivery led to a keen interest in the SDDSs as an alternative to chemotherapy. Smart nanocarriers, nanoparticles used to carry drugs, are at the focus of SDDSs. A smart drug delivery system consists of smart nanocarriers, targeting mechanisms, and stimulus techniques. This review highlights the recent development of SDDSs for a number of smart nanocarriers, including liposomes, micelles, dendrimers, meso-porous silica nanoparticles, gold nanoparticles, super paramagnetic iron-oxide nanoparticles, carbon nanotubes, and quantum dots. The nanocarriers are described in terms of their structures, classification, synthesis and degree of smartness. Even though SDDSs feature a number of advantages over chemotherapy, there are major concerns about the toxicity of smart nanocarriers; therefore, a substantial study on the toxicity and biocompatibility of the nanocarriers has been reported. Finally, the challenges and future research scope in the field of SDDSs are also presented. It is expected that this review will be widely useful for those who have been seeking new research directions in this field and for those who are about to start their studies in smart nanocarrier-based drug delivery.
Collapse
Affiliation(s)
- Sarwar Hossen
- Department of Physics, Khulna Govt. Mahila College, National University, Gazipur 1704, Bangladesh
| | - M. Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M.K. Basher
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M.N.H. Mia
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M.T. Rahman
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - M. Jalal Uddin
- Department of Radio Sciences and Engineering, KwangWoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
20
|
Kim D, Shin K, Kwon SG, Hyeon T. Synthesis and Biomedical Applications of Multifunctional Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802309. [PMID: 30133009 DOI: 10.1002/adma.201802309] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/04/2018] [Indexed: 05/20/2023]
Abstract
The accumulated knowledge of nanoparticle (NP) synthesis for the last 30 years has enabled the development of functional NPs for biomedical applications. Especially, NPs with multifunctional capabilities are gaining popularity as the demand for versatile and efficient NP agents increases. Various combinations of functional materials are integrated to form multicomponent NPs with designed size, structure, and multifunctionality. Their use as diagnostic and/or therapeutic tools is demonstrated, suggesting their application potentials in healthcare and medical practice. Here, the recent achievements in the synthesis and biomedical applications of multifunctional NPs are summarized. Starting with a brief overview regarding the advances in NP synthesis and accompanying progress in nanobiotechnology, various components to construct the multifunctional NP agents, which include polymers and mesoporous, magnetic, catalytic, and semiconducting NPs, are discussed together with their overall integration forms, such as NP assembly, hollow/porous structures, or hybrid/doped systems. Following the explanation of the features that multifunctional NP agents can offer, an outlook and a brief comment regarding the future research directions are provided.
Collapse
Affiliation(s)
- Dokyoon Kim
- Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Kwangsoo Shin
- Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Soon Gu Kwon
- Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
21
|
Polo L, Gómez-Cerezo N, García-Fernández A, Aznar E, Vivancos JL, Arcos D, Vallet-Regí M, Martínez-Máñez R. Mesoporous Bioactive Glasses Equipped with Stimuli-Responsive Molecular Gates for Controlled Delivery of Levofloxacin against Bacteria. Chemistry 2018; 24:18944-18951. [PMID: 30203561 DOI: 10.1002/chem.201803301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 12/21/2022]
Abstract
An increase of bone diseases incidence has boosted the study of ceramic biomaterials as potential osteo-inductive scaffolds. In particular, mesoporous bioactive glasses have demonstrated to possess a broad application in the bone regeneration field, due their osteo-regenerative capability and their ability to release drugs from the mesoporous structure. These special features have been studied as an option to fight against bone infection, which is one of the most common problems regarding bone regeneration therapies. In this work, a mesoporous bioglass functionalized with polyamines and capped with adenosine triphosphate (ATP) as the molecular gate was developed for the controlled release of the antibiotic levofloxacin. Phosphate bonds of ATP were hydrolyzed in the presence of acid phosphatase (APase), the concentration of which is significantly increased in bone infection due to the activation of bone resorption processes. The solid was characterized and tested successfully against bacteria. The final gated solid induced bacterial death only in the presence of acid phosphatase. Additionally, it was demonstrated that the solid is not toxic against human cells. The double function of the prepared material as a drug delivery system and bone regeneration enhancer confirms the possible development of a new approach in the tissue engineering field, in which controlled release of therapeutic agents can be finely tuned and, at the same time, osteoinduction is favored.
Collapse
Affiliation(s)
- Lorena Polo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Natividad Gómez-Cerezo
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Química en Ciencias Farmacéuticas, (Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,Departamento de Química en Ciencias Farmacéuticas, (Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de, Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Carrer d'Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de, Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Carrer d'Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - José-Luis Vivancos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de, Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Carrer d'Eduardo Primo Yúfera 3, 46012, Valencia, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Mantorell, 46026, Valencia, Spain
| | - Daniel Arcos
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Química en Ciencias Farmacéuticas, (Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - María Vallet-Regí
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Departamento de Química en Ciencias Farmacéuticas, (Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Spain, Av. Monforte de Lemos 3-5, 28029, Madrid, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de, Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Carrer d'Eduardo Primo Yúfera 3, 46012, Valencia, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Mantorell, 46026, Valencia, Spain
| |
Collapse
|
22
|
Heo D, Ku M, Kim JH, Yang J, Suh JS. Aptamer-Modified Magnetic Nanosensitizer for In Vivo MR Imaging of HER2-Expressing Cancer. NANOSCALE RESEARCH LETTERS 2018; 13:288. [PMID: 30229394 PMCID: PMC6143495 DOI: 10.1186/s11671-018-2682-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was the development of a human epidermal growth factor receptor 2 (HER2)-targetable contrast agent for magnetic resonance imaging (MRI) with a high magnetic sensitivity. An anti-HER2 aptamer-modified magnetic nanosensitizer (AptHER2-MNS) was prepared by conjugation with 5'-thiol-modified aptamers and maleimidylated magnetic nanocrystals (MNCs). The physicochemical characteristics and targeting ability of AptHER2-MNS were confirmed, and the binding affinity (Kd) onto HER2 protein of AptHER2-MNS was 0.57 ± 0.26 nM. In vivo MRI contrast enhancement ability was also verified at HER2+ cancer cell (NIH3T6.7)-xenograft mouse models (n = 3) at 3T clinical MRI instrument. The control experiment was carried out using non-labeled MNCs. The results indicated that up to 150% contrast enhancement was achieved at the tumor region in the T2-weighted MR images after the injection of the AptHER2-MNS agent in mice that received the NIH3T6.7 cells.
Collapse
Affiliation(s)
- Dan Heo
- Department of Radiology, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Minhee Ku
- Department of Radiology, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
- Systems Molecular Radiology at Yonsei, Seoul, 03722 Republic of Korea
| | - Jung-Hoon Kim
- Department of Radiology, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
- Systems Molecular Radiology at Yonsei, Seoul, 03722 Republic of Korea
- Brain Korea 21 plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
- Systems Molecular Radiology at Yonsei, Seoul, 03722 Republic of Korea
- Brain Korea 21 plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
- YUHS-KRIBB Medical Convergence Research Center, Yonsei University, Seoul, 03722 Republic of Korea
- Severance Biomedical Science Institute, Seoul, 03722 Republic of Korea
| | - Jin-Suck Suh
- Department of Radiology, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
- Brain Korea 21 plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
- YUHS-KRIBB Medical Convergence Research Center, Yonsei University, Seoul, 03722 Republic of Korea
- Severance Biomedical Science Institute, Seoul, 03722 Republic of Korea
| |
Collapse
|
23
|
Magnetic field triggered drug release from lipid microcapsule containing lipid-coated magnetic nanoparticles. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.06.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Teruel AH, Pérez-Esteve É, González-Álvarez I, González-Álvarez M, Costero AM, Ferri D, Parra M, Gaviña P, Merino V, Martínez-Mañez R, Sancenón F. Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. J Control Release 2018; 281:58-69. [PMID: 29753956 DOI: 10.1016/j.jconrel.2018.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/24/2022]
Abstract
Magnetic mesoporous silica microparticles were loaded with safranin O (S1) and with hydrocortisone (S2) and the outer surface functionalized with a bulky azo derivative bearing urea moieties. Aqueous suspensions of both solids at pH 7.4 showed negligible payload release whereas a marked delivery was observed in the presence of sodium dithionite due to the rupture of the azo bonds. Besides, a moderate cargo release was observed at acidic pH due to the hydrolysis of the urea bonds that linked the azo derivative onto the external surface of the inorganic scaffolds. In vitro digestion models showed that S1 and S2 microparticles could be used for the controlled release of payload in the reducing colon environment (in which azoreductase enzymes are present). On the other hand, in vivo pharmacokinetic studies in rats showed that safranine O release from S1 microparticles was concentrated in colon. The performance of S2 microparticles for the treatment of colitis in rats (induced by oral administration of a 2,4,6-trinitrobenzenesulfonic acid solution) was tested. The controlled release of hydrocortisone from S2 in the colon of injured rats induced marked reduction in colon/body weight ratio and in clinical activity score. Also, histological studies showed a marked decrease in inflammation followed by intensive regeneration and almost normal mucosal structure of the individuals treated with S2. Besides, the use of a magnetic belt increased the therapeutic performances of S2 due to an enhanced retention time of the particles in the colon.
Collapse
Affiliation(s)
- Adrián H Teruel
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Édgar Pérez-Esteve
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain
| | - Isabel González-Álvarez
- Departamento de Ingeniería, Sección de Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernandez, Alicante 03550, Spain
| | - Marta González-Álvarez
- Departamento de Ingeniería, Sección de Farmacia y Tecnología Farmacéutica, Universidad Miguel Hernandez, Alicante 03550, Spain
| | - Ana M Costero
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Valencia 46100, Spain
| | - Daniel Ferri
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Valencia 46100, Spain
| | - Margarita Parra
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Valencia 46100, Spain
| | - Pablo Gaviña
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Valencia 46100, Spain
| | - Virginia Merino
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; Departamento de Farmacia y Tecnologia Farmacéutica, Universitat de València, Valencia 46100, Spain
| | - Ramón Martínez-Mañez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Instituto de Investigación Sanitaria La Fe, Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, Valencia, Spain.
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Instituto de Investigación Sanitaria La Fe, Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
25
|
Teruel AH, Coll C, Costero AM, Ferri D, Parra M, Gaviña P, González-Álvarez M, Merino V, Marcos MD, Martínez-Máñez R, Sancenón F. Functional Magnetic Mesoporous Silica Microparticles Capped with an Azo-Derivative: A Promising Colon Drug Delivery Device. Molecules 2018; 23:E375. [PMID: 29439396 PMCID: PMC6017295 DOI: 10.3390/molecules23020375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 01/27/2023] Open
Abstract
Magnetic micro-sized mesoporous silica particles were used for the preparation of a gated material able to release an entrapped cargo in the presence of an azo-reducing agent and, to some extent, at acidic pH. The magnetic mesoporous microparticles were loaded with safranin O and the external surface was functionalized with an azo derivative 1 (bearing a carbamate linkage) yielding solid S1. Aqueous suspensions of S1 at pH 7.4 showed negligible safranin O release due to the presence of the bulky azo derivative attached onto the external surface of the inorganic scaffold. However, in the presence of sodium dithionite (azoreductive agent), a remarkable safranin O delivery was observed. At acidic pH, a certain safranin O release from S1 was also found. The pH-triggered safranin O delivery was ascribed to the acid-induced hydrolysis of the carbamate moiety that linked the bulky azo derivatives onto the mesoporous inorganic magnetic support. The controlled release behavior of S1 was also tested using a model that simulated the gastro intestinal tract.
Collapse
Affiliation(s)
- Adrián H Teruel
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, 46100 Valencia, Spain.
- CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
| | - Carmen Coll
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, 46100 Valencia, Spain.
- CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
| | - Ana M Costero
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, 46100 Valencia, Spain.
- CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
- Department of Organic Chemistry, University of Valencia, 46100 Valencia, Spain.
| | - Daniel Ferri
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, 46100 Valencia, Spain.
- Department of Organic Chemistry, University of Valencia, 46100 Valencia, Spain.
| | - Margarita Parra
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, 46100 Valencia, Spain.
- CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
- Department of Organic Chemistry, University of Valencia, 46100 Valencia, Spain.
| | - Pablo Gaviña
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, 46100 Valencia, Spain.
- CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
- Department of Organic Chemistry, University of Valencia, 46100 Valencia, Spain.
| | - Marta González-Álvarez
- Engineering Department. Pharmacy and Pharmaceutical Technology Section, Miguel Hernandez University, 03550 Alicante, Spain.
| | - Virginia Merino
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, 46100 Valencia, Spain.
- Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain.
| | - M Dolores Marcos
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, 46100 Valencia, Spain.
- CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
- Joint Research Unit in Nanomedicine and Sensors. Polytechnic University of Valencia, Health Research Institute Hospital La Fe, 46100 Valencia, Spain..
- Joint Unit CIPF-UPV of Mechanisms of Diseases and Nanomedicine, Valencia, Polytechnic University of Valencia, Prince Felipe Research Center, 46100 Valencia, Spain.
| | - Ramón Martínez-Máñez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, 46100 Valencia, Spain.
- CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
- Joint Research Unit in Nanomedicine and Sensors. Polytechnic University of Valencia, Health Research Institute Hospital La Fe, 46100 Valencia, Spain..
- Joint Unit CIPF-UPV of Mechanisms of Diseases and Nanomedicine, Valencia, Polytechnic University of Valencia, Prince Felipe Research Center, 46100 Valencia, Spain.
| | - Félix Sancenón
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Polytechnic University of Valencia, University of Valencia, 46100 Valencia, Spain.
- CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
- Joint Research Unit in Nanomedicine and Sensors. Polytechnic University of Valencia, Health Research Institute Hospital La Fe, 46100 Valencia, Spain..
- Joint Unit CIPF-UPV of Mechanisms of Diseases and Nanomedicine, Valencia, Polytechnic University of Valencia, Prince Felipe Research Center, 46100 Valencia, Spain.
| |
Collapse
|
26
|
Croissant JG, Fatieiev Y, Almalik A, Khashab NM. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Adv Healthc Mater 2018; 7. [PMID: 29193848 DOI: 10.1002/adhm.201700831] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Predetermining the physico-chemical properties, biosafety, and stimuli-responsiveness of nanomaterials in biological environments is essential for safe and effective biomedical applications. At the forefront of biomedical research, mesoporous silica nanoparticles and mesoporous organosilica nanoparticles are increasingly investigated to predict their biological outcome by materials design. In this review, it is first chronicled that how the nanomaterial design of pure silica, partially hybridized organosilica, and fully hybridized organosilica (periodic mesoporous organosilicas) governs not only the physico-chemical properties but also the biosafety of the nanoparticles. The impact of the hybridization on the biocompatibility, protein corona, biodistribution, biodegradability, and clearance of the silica-based particles is described. Then, the influence of the surface engineering, the framework hybridization, as well as the morphology of the particles, on the ability to load and controllably deliver drugs under internal biological stimuli (e.g., pH, redox, enzymes) and external noninvasive stimuli (e.g., light, magnetic, ultrasound) are presented. To conclude, trends in the biomedical applications of silica and organosilica nanovectors are delineated, such as unconventional bioimaging techniques, large cargo delivery, combination therapy, gaseous molecule delivery, antimicrobial protection, and Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Jonas G. Croissant
- Chemical and Biological Engineering; University of New Mexico; 210 University Blvd NE Albuquerque NM 87131-0001 USA
- Center for Micro-Engineered Materials; Advanced Materials Laboratory; University of New Mexico; MSC04 2790, 1001 University Blvd SE Suite 103 Albuquerque NM 87106 USA
| | - Yevhen Fatieiev
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology; Thuwal Riyadh KSA 11442 Saudi Arabia
| | - Abdulaziz Almalik
- Life sciences and Environment Research Institute; Center of Excellence in Nanomedicine (CENM); King Abdulaziz City for Science and Technology (KACST); Riyadh 11461 Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology; Thuwal Riyadh KSA 11442 Saudi Arabia
| |
Collapse
|
27
|
de la Torre C, Domínguez-Berrocal L, Murguía JR, Marcos MD, Martínez-Máñez R, Bravo J, Sancenón F. ϵ
-Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C
9h
Peptide to Induce Apoptosis in Cancer Cells. Chemistry 2018; 24:1890-1897. [DOI: 10.1002/chem.201704161] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Cristina de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento, Molecular y Desarrollo Tecnológico (IDM); Universitat Politècnica de, Valencia, Universitat de València; Valencia Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina; Madrid Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
| | - Leticia Domínguez-Berrocal
- Departamento de Genómica y Proteómica; Instituto de, Biomedicina de Valencia; c/ Jaime Roig 11 46010 Valencia Spain
| | - José R. Murguía
- Instituto Interuniversitario de Investigación de Reconocimiento, Molecular y Desarrollo Tecnológico (IDM); Universitat Politècnica de, Valencia, Universitat de València; Valencia Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina; Madrid Spain
| | - M. Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento, Molecular y Desarrollo Tecnológico (IDM); Universitat Politècnica de, Valencia, Universitat de València; Valencia Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina; Madrid Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento, Molecular y Desarrollo Tecnológico (IDM); Universitat Politècnica de, Valencia, Universitat de València; Valencia Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina; Madrid Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
| | - Jerónimo Bravo
- Departamento de Genómica y Proteómica; Instituto de, Biomedicina de Valencia; c/ Jaime Roig 11 46010 Valencia Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento, Molecular y Desarrollo Tecnológico (IDM); Universitat Politècnica de, Valencia, Universitat de València; Valencia Camino de Vera s/n 46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina; Madrid Spain
- Departamento de Química; Universidad Politécnica de Valencia; Camino de Vera s/n 46022 Valencia Spain
| |
Collapse
|
28
|
Bhat R, García I, Aznar E, Arnaiz B, Martínez-Bisbal MC, Liz-Marzán LM, Penadés S, Martínez-Máñez R. Lectin-gated and glycan functionalized mesoporous silica nanocontainers for targeting cancer cells overexpressing Lewis X antigen. NANOSCALE 2017; 10:239-249. [PMID: 29210428 DOI: 10.1039/c7nr06415b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gated mesoporous silica nanoparticles can deliver payload upon the application of a predefined stimulus, and therefore are promising drug delivery systems. Despite their important role, relatively low emphasis has been placed on the design of gating systems that actively target carbohydrate tumor cell membrane receptors. We describe herein a new Lewis X (Lex) antigen-targeted delivery system comprising mesoporous silica nanoparticles (MSNs) loaded with ATTO 430LS dye, functionalized with a Lex derivative (1) and capped with a fucose-specific carbohydrate-binding protein (Aleuria aurantia lectin (AAL)). This design takes advantage of the affinity of AAL for Lex overexpressed receptors in certain cancer cells. In the proximity of the cells, AAL is detached from MSNs to bind Lex, and selectins in the cells bind Lex in the gated MSNs, thereby inducing cargo delivery. Gated MSNs are nontoxic to colon cancer DLD-1 cells, and ATTO 430LS dye delivered correlated with the amount of Lex antigen overexpressed at the DLD-1 cell surface. This is one of the few examples of MSNs using biologically relevant glycans for both capping (via interaction with AAL) and targeting (via interaction with overexpressed Lex at the cell membrane).
Collapse
Affiliation(s)
- R Bhat
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chang Z, Mi Y, Zheng X. Study of the controlled assembly of DNA gated PEI/Chitosan/SiO 2 fluorescent sensor. LUMINESCENCE 2017; 33:399-409. [PMID: 29235238 DOI: 10.1002/bio.3427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/04/2017] [Accepted: 10/07/2017] [Indexed: 01/22/2023]
Abstract
In this paper, polyethylenimine (PEI) and Chitosan were simultaneously one-step doped into silicon dioxide (SiO2 ) nanoparticles to synthesize PEI/Chitosan/SiO2 composite nanoparticles. The polymer PEI contained a large amount of amino groups, which can realize the amino functionalized SiO2 nanoparticles. And, the good pore forming effect of Chitosan was introduced into SiO2 nanoparticles, and the resulting composite nanoparticles also had a porous structure. In pH 7.4 phosphate buffer solution (PBS), the amino groups of PEI had positive charges, and therefore the fluorescein sodium dye molecule can be loaded into the channels of PEI/Chitosan/SiO2 composite nanoparticles by electrostatic adsorption. Furthermore, utilizing the diversity of DNA molecular conformation, we designed a high sensitive controllable assembly of DNA gated fluorescent sensor based on PEI/Chitosan/SiO2 composite nanoparticles as loading materials. The factors affecting the sensing performance of the sensor were investigated, and the sensing mechanism was also further studied.
Collapse
Affiliation(s)
- Zheng Chang
- Department of Applied Chemistry of College of Science, Xi'an University of Technology, Xi'an, P. R. China
| | - Yinghao Mi
- Department of Applied Chemistry of College of Science, Xi'an University of Technology, Xi'an, P. R. China
| | - Xingwang Zheng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, P. R. China
| |
Collapse
|
30
|
Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017; 6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Indexed: 12/13/2022]
Abstract
In order to translate nanotechnology into medical practice, magnetic nanoparticles (MNPs) have been presented as a class of non-invasive nanomaterials for numerous biomedical applications. In particular, MNPs have opened a door for simultaneous diagnosis and brisk treatment of diseases in the form of theranostic agents. This review highlights the recent advances in preparation and utilization of MNPs from the synthesis and functionalization steps to the final design consideration in evading the body immune system for therapeutic and diagnostic applications with addressing the most recent examples of the literature in each section. This study provides a conceptual framework of a wide range of synthetic routes classified mainly as wet chemistry, state-of-the-art microfluidic reactors, and biogenic routes, along with the most popular coating materials to stabilize resultant MNPs. Additionally, key aspects of prolonging the half-life of MNPs via overcoming the sequential biological barriers are covered through unraveling the biophysical interactions at the bio-nano interface and giving a set of criteria to efficiently modulate MNPs' physicochemical properties. Furthermore, concepts of passive and active targeting for successful cell internalization, by respectively exploiting the unique properties of cancers and novel targeting ligands are described in detail. Finally, this study extensively covers the recent developments in magnetic drug targeting and hyperthermia as therapeutic applications of MNPs. In addition, multi-modal imaging via fusion of magnetic resonance imaging, and also innovative magnetic particle imaging with other imaging techniques for early diagnosis of diseases are extensively provided.
Collapse
Affiliation(s)
- Jalal Mosayebi
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Mehdi Kiyasatfar
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging; University of Mons; Mons Belgium
| |
Collapse
|
31
|
Rascol E, Daurat M, Da Silva A, Maynadier M, Dorandeu C, Charnay C, Garcia M, Lai-Kee-Him J, Bron P, Auffan M, Liu W, Angeletti B, Devoisselle JM, Guari Y, Gary-Bobo M, Chopineau J. Biological Fate of Fe₃O₄ Core-Shell Mesoporous Silica Nanoparticles Depending on Particle Surface Chemistry. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E162. [PMID: 28665317 PMCID: PMC5535228 DOI: 10.3390/nano7070162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 12/14/2022]
Abstract
The biological fate of nanoparticles (NPs) for biomedical applications is highly dependent of their size and charge, their aggregation state and their surface chemistry. The chemical composition of the NPs surface influences their stability in biological fluids, their interaction with proteins, and their attraction to the cell membranes. In this work, core-shell magnetic mesoporous silica nanoparticles (Fe₃O₄@MSN), that are considered as potential theranostic candidates, are coated with polyethylene glycol (PEG) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer. Their biological fate is studied in comparison to the native NPs. The physicochemical properties of these three types of NPs and their suspension behavior in different media are investigated. The attraction to a membrane model is also evaluated using a supported lipid bilayer. The surface composition of NPs strongly influences their dispersion in biological fluids mimics, protein binding and their interaction with cell membrane. While none of these types of NPs is found to be toxic on mice four days after intravenous injection of a dose of 40 mg kg-1 of NPs, their surface coating nature influences the in vivo biodistribution. Importantly, NP coated with DMPC exhibit a strong accumulation in liver and a very low accumulation in lung in comparison with nude or PEG ones.
Collapse
Affiliation(s)
- Estelle Rascol
- Institut Charles Gerhardt de Montpellier (ICGM), Montpellier University-Campus Triolet (CNRS UMR 5253/UM/ENSCM), Place Eugène Bataillon, CEDEX 5, 34095 Montpellier, France.
| | - Morgane Daurat
- NanoMedSyn, 15 Avenue Charles Flahault, 34093 Montpellier, France.
- IBMM, CNRS UMR 5247/UM/ENSCM Faculty of de Pharmaceutical Sciences of Montpellier 15, Avenue Charles Flahault, CEDEX 05, 34093 Montpellier, France.
| | - Afitz Da Silva
- NanoMedSyn, 15 Avenue Charles Flahault, 34093 Montpellier, France.
- IBMM, CNRS UMR 5247/UM/ENSCM Faculty of de Pharmaceutical Sciences of Montpellier 15, Avenue Charles Flahault, CEDEX 05, 34093 Montpellier, France.
| | - Marie Maynadier
- NanoMedSyn, 15 Avenue Charles Flahault, 34093 Montpellier, France.
| | - Christophe Dorandeu
- Institut Charles Gerhardt de Montpellier (ICGM), Montpellier University-Campus Triolet (CNRS UMR 5253/UM/ENSCM), Place Eugène Bataillon, CEDEX 5, 34095 Montpellier, France.
| | - Clarence Charnay
- Institut Charles Gerhardt de Montpellier (ICGM), Montpellier University-Campus Triolet (CNRS UMR 5253/UM/ENSCM), Place Eugène Bataillon, CEDEX 5, 34095 Montpellier, France.
| | - Marcel Garcia
- IBMM, CNRS UMR 5247/UM/ENSCM Faculty of de Pharmaceutical Sciences of Montpellier 15, Avenue Charles Flahault, CEDEX 05, 34093 Montpellier, France.
| | - Joséphine Lai-Kee-Him
- Center of Structural Biochemistry (CNRS UMR 5048/INSERM U 1054/UM), 29 rue de Navacelles, 34090 Montpellier, France.
| | - Patrick Bron
- Center of Structural Biochemistry (CNRS UMR 5048/INSERM U 1054/UM), 29 rue de Navacelles, 34090 Montpellier, France.
| | - Mélanie Auffan
- Aix-Marseille Université, CNRS, IRD, Coll de France, CEREGE, 13001 Aix en Provence, France.
| | - Wei Liu
- Aix-Marseille Université, CNRS, IRD, Coll de France, CEREGE, 13001 Aix en Provence, France.
| | - Bernard Angeletti
- Aix-Marseille Université, CNRS, IRD, Coll de France, CEREGE, 13001 Aix en Provence, France.
| | - Jean-Marie Devoisselle
- Institut Charles Gerhardt de Montpellier (ICGM), Montpellier University-Campus Triolet (CNRS UMR 5253/UM/ENSCM), Place Eugène Bataillon, CEDEX 5, 34095 Montpellier, France.
| | - Yannick Guari
- Institut Charles Gerhardt de Montpellier (ICGM), Montpellier University-Campus Triolet (CNRS UMR 5253/UM/ENSCM), Place Eugène Bataillon, CEDEX 5, 34095 Montpellier, France.
| | - Magali Gary-Bobo
- IBMM, CNRS UMR 5247/UM/ENSCM Faculty of de Pharmaceutical Sciences of Montpellier 15, Avenue Charles Flahault, CEDEX 05, 34093 Montpellier, France.
| | - Joël Chopineau
- Institut Charles Gerhardt de Montpellier (ICGM), Montpellier University-Campus Triolet (CNRS UMR 5253/UM/ENSCM), Place Eugène Bataillon, CEDEX 5, 34095 Montpellier, France.
- Université de Nîmes, Rue Georges Salan, Nîmes 30000, France.
| |
Collapse
|
32
|
Mertz D, Sandre O, Bégin-Colin S. Drug releasing nanoplatforms activated by alternating magnetic fields. Biochim Biophys Acta Gen Subj 2017; 1861:1617-1641. [PMID: 28238734 DOI: 10.1016/j.bbagen.2017.02.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 02/05/2023]
Abstract
The use of an alternating magnetic field (AMF) to generate non-invasively and spatially a localized heating from a magnetic nano-mediator has become very popular these last years to develop magnetic hyperthermia (MH) as a promising therapeutic modality already used in the clinics. AMF has become highly attractive this last decade over others radiations, as AMF allows a deeper penetration in the body and a less harmful ionizing effect. In addition to pure MH which induces tumor cell death through local T elevation, this AMF-generated magneto-thermal effect can also be exploited as a relevant external stimulus to trigger a drug release from drug-loaded magnetic nanocarriers, temporally and spatially. This review article is focused especially on this concept of AMF induced drug release, possibly combined with MH. The design of such magnetically responsive drug delivery nanoplatforms requires two key and complementary components: a magnetic mediator which collects and turns the magnetic energy into local heat, and a thermoresponsive carrier ensuring thermo-induced drug release, as a consequence of magnetic stimulus. A wide panel of magnetic nanomaterials/chemistries and processes are currently developed to achieve such nanoplatforms. This review article presents a broad overview about the fundamental concepts of drug releasing nanoplatforms activated by AMF, their formulations, and their efficiency in vitro and in vivo. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
Collapse
Affiliation(s)
- Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23, rue du Loess, 67034 Strasbourg, France.
| | - Olivier Sandre
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607, Cedex, France
| | - Sylvie Bégin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23, rue du Loess, 67034 Strasbourg, France
| |
Collapse
|
33
|
Song Y, Li Y, Xu Q, Liu Z. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook. Int J Nanomedicine 2016; 12:87-110. [PMID: 28053526 PMCID: PMC5191581 DOI: 10.2147/ijn.s117495] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With the development of nanotechnology, the application of nanomaterials in the field of drug delivery has attracted much attention in the past decades. Mesoporous silica nanoparticles as promising drug nanocarriers have become a new area of interest in recent years due to their unique properties and capabilities to efficiently entrap cargo molecules. This review describes the latest advances on the application of mesoporous silica nanoparticles in drug delivery. In particular, we focus on the stimuli-responsive controlled release systems that are able to respond to intracellular environmental changes, such as pH, ATP, GSH, enzyme, glucose, and H2O2. Moreover, drug delivery induced by exogenous stimuli including temperature, light, magnetic field, ultrasound, and electricity is also summarized. These advanced technologies demonstrate current challenges, and provide a bright future for precision diagnosis and treatment.
Collapse
Affiliation(s)
- Yuanhui Song
- Wenzhou Institute of Biomaterials and Engineering (WIBE), Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yihong Li
- Wenzhou Institute of Biomaterials and Engineering (WIBE), Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Qien Xu
- Wenzhou Institute of Biomaterials and Engineering (WIBE), Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Zhe Liu
- Wenzhou Institute of Biomaterials and Engineering (WIBE), Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
34
|
Karimi M. Immobilization of lipase onto mesoporous magnetic nanoparticles for enzymatic synthesis of biodiesel. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Baeza A, Ruiz-Molina D, Vallet-Regí M. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks. Expert Opin Drug Deliv 2016; 14:783-796. [DOI: 10.1080/17425247.2016.1229298] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Alejandro Baeza
- Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), GIBI_UCM group, Madrid, Spain
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Madrid, Spain
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - María Vallet-Regí
- Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), GIBI_UCM group, Madrid, Spain
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Madrid, Spain
| |
Collapse
|
36
|
Poly-paclitaxel/cyclodextrin-SPION nano-assembly for magnetically guided drug delivery system. J Control Release 2016; 231:68-76. [DOI: 10.1016/j.jconrel.2016.01.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 01/21/2023]
|
37
|
Yang F, Li M, Liu Y, Wang T, Feng Z, Cui H, Gu N. Glucose and magnetic-responsive approach toward in situ nitric oxide bubbles controlled generation for hyperglycemia theranostics. J Control Release 2016; 228:87-95. [PMID: 26951926 DOI: 10.1016/j.jconrel.2016.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 01/01/2023]
Abstract
Stimuli-responsive devices that deliver drugs or imaging contrast agents in spatial-, temporal- and dosage-controlled fashions have emerged as the most promising and valuable platform for targeted and controlled drug delivery. However, implementing high performance of these functions in one single delivery carrier remains extremely challenging. Herein, we have developed a sequential strategy for developing glucose and magnetic-responsive microvesicle delivery system, which regulates the glucose levels and spatiotemporally controls the generation of nitric oxide gas free bubbles. It is observed that such injectable microvesicles loaded with enzyme and magnetic nanoparticles can firstly regulate hyperglycemic level based on the enzymatic reactions between glucose oxidase and glucose. In a sequential manner, concomitant magnetic field stimuli enhance the shell permeability while prompts the reaction between H2O2 and l-arginine to generate the gasotransmitters nitric oxide, which can be imaged by ultrasound and further delivered for diabetic nephropathy therapy. Therefore, magnetic microvesicles with glucose oxidase may be designed as a novel theranostic approach for restoring glucose homeostasis and spatiotemporally control NO release for maintaining good overall diabetic health.
Collapse
Affiliation(s)
- Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Mingxi Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yang Liu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tuantuan Wang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhenqiang Feng
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Huating Cui
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
38
|
Ultimo A, Giménez C, Bartovsky P, Aznar E, Sancenón F, Marcos MD, Amorós P, Bernardo AR, Martínez-Máñez R, Jiménez-Lara AM, Murguía JR. Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry 2016; 22:1582-6. [PMID: 26641630 DOI: 10.1002/chem.201504629] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 12/21/2022]
Abstract
We describe herein a Toll-like receptor 3 (TLR3) targeting delivery system based on mesoporous silica nanoparticles capped with the synthetic double stranded RNA polyinosinic-polycytidylic acid (poly(I:C)) for controlled cargo delivery in SK-BR-3 breast carcinoma cells. Our results show that poly(I:C)-conjugated nanoparticles efficiently targeted breast cancer cells due to dsRNA-TLR3 interaction. Such interaction also triggered apoptotic pathways in SK-BR-3, significantly decreasing cells viability. Poly(I:C) cytotoxic effect in breast carcinoma cells was enhanced by loading nanoparticles' mesopores with the anthracyclinic antibiotic doxorubicin, a commonly used chemotherapeutic agent.
Collapse
Affiliation(s)
- Amelia Ultimo
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Cristina Giménez
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Pavel Bartovsky
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Elena Aznar
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Félix Sancenón
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - M Dolores Marcos
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Pedro Amorós
- Instituto de Ciencia de los Materiales (ICMUV), Universitad de Valencia, Valencia, Spain
| | - Ana R Bernardo
- Instituto de Investigaciones Biomédicas A. Sols CSIC-UAM, Arturo Duperier, 4, 28029, Madrid, Spain
| | - Ramón Martínez-Máñez
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Ana M Jiménez-Lara
- Instituto de Investigaciones Biomédicas A. Sols CSIC-UAM, Arturo Duperier, 4, 28029, Madrid, Spain.
| | - José R Murguía
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
39
|
Aznar E, Oroval M, Pascual L, Murguía JR, Martínez-Máñez R, Sancenón F. Gated Materials for On-Command Release of Guest Molecules. Chem Rev 2016; 116:561-718. [DOI: 10.1021/acs.chemrev.5b00456] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elena Aznar
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Mar Oroval
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Lluís Pascual
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Jose Ramón Murguía
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- Departamento
de Biotecnología, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- Departamento
de Química, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- Departamento
de Química, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|
40
|
Nyalosaso JL, Rascol E, Pisani C, Dorandeu C, Dumail X, Maynadier M, Gary-Bobo M, Kee Him JL, Bron P, Garcia M, Devoisselle JM, Prat O, Guari Y, Charnay C, Chopineau J. Synthesis, decoration, and cellular effects of magnetic mesoporous silica nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra09017f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis of magnetic core@shell nanoparticles with different coatings and the study of their uptake by cells.
Collapse
|
41
|
Chen Y, Zhang H, Cai X, Ji J, He S, Zhai G. Multifunctional mesoporous silica nanocarriers for stimuli-responsive target delivery of anticancer drugs. RSC Adv 2016. [DOI: 10.1039/c6ra18062k] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
By modifying the outer surface of MSNs with various functional groups or/and using a combination with other nanomaterials, stimuli-responsive and active targeting nanosystems can be designed for stimuli-responsive target delivery of anticancer drugs.
Collapse
Affiliation(s)
- Yujuan Chen
- Department of Pharmaceutics
- College of Pharmacy
- Shandong University
- Jinan 250012
- China
| | - Hui Zhang
- Department of Pharmaceutics
- College of Pharmacy
- Shandong University
- Jinan 250012
- China
| | - Xiaoqing Cai
- Department of Pharmaceutics
- College of Pharmacy
- Shandong University
- Jinan 250012
- China
| | - Jianbo Ji
- Department of Pharmaceutics
- College of Pharmacy
- Shandong University
- Jinan 250012
- China
| | - Shuwang He
- Department of Pharmaceutical Development
- Shandong Dyne Marine Biopharmaceutical Limited Corporation
- Rongcheng 264300
- China
| | - Guangxi Zhai
- Department of Pharmaceutics
- College of Pharmacy
- Shandong University
- Jinan 250012
- China
| |
Collapse
|
42
|
Hauser AK, Wydra RJ, Stocke NA, Anderson KW, Hilt JZ. Magnetic nanoparticles and nanocomposites for remote controlled therapies. J Control Release 2015; 219:76-94. [PMID: 26407670 PMCID: PMC4669063 DOI: 10.1016/j.jconrel.2015.09.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/19/2015] [Indexed: 12/17/2022]
Abstract
This review highlights the state-of-the-art in the application of magnetic nanoparticles (MNPs) and their composites for remote controlled therapies. Novel macro- to nano-scale systems that utilize remote controlled drug release due to actuation of MNPs by static or alternating magnetic fields and magnetic field guidance of MNPs for drug delivery applications are summarized. Recent advances in controlled energy release for thermal therapy and nanoscale energy therapy are addressed as well. Additionally, studies that utilize MNP-based thermal therapy in combination with other treatments such as chemotherapy or radiation to enhance the efficacy of the conventional treatment are discussed.
Collapse
Affiliation(s)
- Anastasia K Hauser
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Robert J Wydra
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Nathanael A Stocke
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Kimberly W Anderson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
43
|
Yu E, Galiana I, Martínez-Máñez R, Stroeve P, Marcos MD, Aznar E, Sancenón F, Murguía JR, Amorós P. Poly(N-isopropylacrylamide)-gated Fe3O4/SiO2 core shell nanoparticles with expanded mesoporous structures for the temperature triggered release of lysozyme. Colloids Surf B Biointerfaces 2015; 135:652-660. [DOI: 10.1016/j.colsurfb.2015.06.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/08/2015] [Accepted: 06/24/2015] [Indexed: 11/26/2022]
|
44
|
In-vitro Optimization of Nanoparticle-Cell Labeling Protocols for In-vivo Cell Tracking Applications. Sci Rep 2015; 5:15400. [PMID: 26507853 PMCID: PMC4623670 DOI: 10.1038/srep15400] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/22/2015] [Indexed: 12/19/2022] Open
Abstract
Recent advances in theranostic nanomedicine can promote stem cell and immune cell-based therapy. Gold nanoparticles (GNPs) have been shown to be promising agents for in-vivo cell-tracking in cell-based therapy applications. Yet a crucial challenge is to develop a reliable protocol for cell upload with, on the one hand, sufficient nanoparticles to achieve maximum visibility of cells, while on the other hand, assuring minimal effect of particles on cell function and viability. Previous studies have demonstrated that the physicochemical parameters of GNPs have a critical impact on their efficient uptake by cells. In the current study we have examined possible variations in GNP uptake, resulting from different incubation period and concentrations in different cell-lines. We have found that GNPs effectively labeled three different cell-lines - stem, immune and cancer cells, with minimal impairment to cell viability and functionality. We further found that uptake efficiency of GNPs into cells stabilized after a short period of time, while GNP concentration had a significant impact on cellular uptake, revealing cell-dependent differences. Our results suggest that while heeding the slight variations within cell lines, modifying the loading time and concentration of GNPs, can promote cell visibility in various nanoparticle-dependent in-vivo cell tracking and imaging applications.
Collapse
|
45
|
Baek S, Singh RK, Khanal D, Patel KD, Lee EJ, Leong KW, Chrzanowski W, Kim HW. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. NANOSCALE 2015; 7:14191-216. [PMID: 26260245 DOI: 10.1039/c5nr02730f] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanomedicine seeks to apply nanoscale materials for the therapy and diagnosis of diseased and damaged tissues. Recent advances in nanotechnology have made a major contribution to the development of multifunctional nanomaterials, which represents a paradigm shift from single purpose to multipurpose materials. Multifunctional nanomaterials have been proposed to enable simultaneous target imaging and on-demand delivery of therapeutic agents only to the specific site. Most advanced systems are also responsive to internal or external stimuli. This approach is particularly important for highly potent drugs (e.g. chemotherapeutics), which should be delivered in a discreet manner and interact with cells/tissues only locally. Both advances in imaging and precisely controlled and localized delivery are critically important in cancer treatment, and the use of such systems - theranostics - holds great promise to minimise side effects and boost therapeutic effectiveness of the treatment. Among others, mesoporous silica nanoparticles (MSNPs) are considered one of the most promising nanomaterials for drug delivery. Due to their unique intrinsic features, including tunable porosity and size, large surface area, structural diversity, easily modifiable chemistry and suitability for functionalization, and biocompatibility, MSNPs have been extensively utilized as multifunctional nanocarrier systems. The combination or hybridization with biomolecules, drugs, and other nanoparticles potentiated the ability of MSNPs towards multifunctionality, and even smart actions stimulated by specified signals, including pH, optical signal, redox reaction, electricity and magnetism. This paper provides a comprehensive review of the state-of-the-art of multifunctional, smart drug delivery systems centered on advanced MSNPs, with special emphasis on cancer related applications.
Collapse
Affiliation(s)
- Seonmi Baek
- Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang K, Xu H, Chen H, Jia X, Zheng S, Cai X, Wang R, Mou J, Zheng Y, Shi J. CO2 bubbling-based 'Nanobomb' System for Targetedly Suppressing Panc-1 Pancreatic Tumor via Low Intensity Ultrasound-activated Inertial Cavitation. Am J Cancer Res 2015; 5:1291-302. [PMID: 26379793 PMCID: PMC4568455 DOI: 10.7150/thno.12691] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/05/2015] [Indexed: 01/22/2023] Open
Abstract
Noninvasive and targeted physical treatment is still desirable especially for those cancerous patients. Herein, we develop a new physical treatment protocol by employing CO2 bubbling-based 'nanobomb' system consisting of low-intensity ultrasound (1.0 W/cm2) and a well-constructed pH/temperature dual-responsive CO2 release system. Depending on the temperature elevation caused by exogenous low-intensity therapeutic ultrasound irradiation and the low pH caused by the endogenous acidic-environment around/within tumor, dual-responsive CO2 release system can quickly release CO2 bubbles, and afterwards, the generated CO2 bubbles waves will timely explode before dissolution due to triggering by therapeutic ultrasound waves. Related bio-effects (e.g., cavitation, mechanical, shock waves, etc) caused by CO2 bubbles' explosion effectively induce instant necrosis of panc-1 cells and blood vessel destruction within panc-1 tumor, and consequently inhibit the growth of panc-1 solid tumor, simultaneously minimizing the side effects to normal organs. This new physiotherapy employing CO2 bubbling-based 'nanobomb' system promises significant potentials in targetedly suppressing tumors, especially for those highly deadly cancers.
Collapse
|
47
|
Lu CH, Willner I. Stimuli-Responsive DNA-Functionalized Nano-/Microcontainers for Switchable and Controlled Release. Angew Chem Int Ed Engl 2015; 54:12212-35. [DOI: 10.1002/anie.201503054] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 01/04/2023]
|
48
|
Lu CH, Willner I. Stimuliresponsive DNA-funktionalisierte Nano- und Mikrocontainer zur schaltbaren und kontrollierten Freisetzung. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Giret S, Wong Chi Man M, Carcel C. Mesoporous-Silica-Functionalized Nanoparticles for Drug Delivery. Chemistry 2015; 21:13850-65. [PMID: 26250991 DOI: 10.1002/chem.201500578] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ever-growing interest for finding efficient and reliable methods for treatment of diseases has set a precedent for the design and synthesis of new functional hybrid materials, namely porous nanoparticles, for controlled drug delivery. Mesoporous silica nanoparticles (MSNPs) represent one of the most promising nanocarriers for drug delivery as they possess interesting chemical and physical properties, thermal and mechanical stabilities, and are biocompatibile. In particular, their easily functionalizable surface allows a large number of property modifications further improving their efficiency in this field. This Concept article deals with the advances on the novel methods of functionalizing MSNPs, inside or outside the pores, as well as within the walls, to produce efficient and smart drug carriers for therapy.
Collapse
Affiliation(s)
- Simon Giret
- Institut Charles Gerhardt Montpellier, UMR-5253, ENSCM, Université Montpellier, CNRS, 8 Rue de l'École Normale, 34296 Montpellier cedex 5 (France)
| | - Michel Wong Chi Man
- Institut Charles Gerhardt Montpellier, UMR-5253, ENSCM, Université Montpellier, CNRS, 8 Rue de l'École Normale, 34296 Montpellier cedex 5 (France)
| | - Carole Carcel
- Institut Charles Gerhardt Montpellier, UMR-5253, ENSCM, Université Montpellier, CNRS, 8 Rue de l'École Normale, 34296 Montpellier cedex 5 (France).
| |
Collapse
|
50
|
Giménez C, de la Torre C, Gorbe M, Aznar E, Sancenón F, Murguía JR, Martínez-Máñez R, Marcos MD, Amorós P. Gated mesoporous silica nanoparticles for the controlled delivery of drugs in cancer cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3753-62. [PMID: 25742160 DOI: 10.1021/acs.langmuir.5b00139] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In recent years, mesoporous silica nanoparticles (MSNs) have been used as effective supports for the development of controlled-release nanodevices that are able to act as multifunctional delivery platforms for the encapsulation of therapeutic agents, enhancing their bioavailability and overcoming common issues such as poor water solubility and poor stability of some drugs. In particular, redox-responsive delivery systems have attracted the attention of scientists because of the intracellular reductive environment related to a high concentration of glutathione (GSH). In this context, we describe herein the development of a GSH-responsive delivery system based on poly(ethylene glycol)- (PEG-) capped MSNs that are able to deliver safranin O and doxorubicin in a controlled manner. The results showed that the PEG-capped systems designed in this work can be maintained closed at low GSH concentrations, yet the cargo can be delivered when the concentration of GSH is increased. Moreover, the efficacy of the PEG-capped system in delivering the cytotoxic agent doxorubicin in cells was also demonstrated.
Collapse
Affiliation(s)
- Cristina Giménez
- ‡CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - Cristina de la Torre
- ‡CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - Mónica Gorbe
- ‡CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - Elena Aznar
- ‡CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - Félix Sancenón
- ‡CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - Jose R Murguía
- ‡CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - Ramón Martínez-Máñez
- ‡CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - M Dolores Marcos
- ‡CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain
| | - Pedro Amorós
- ⊥Institut de Ciència dels Materials (ICMUV), Universitat de València, P.O. Box 2085, E-46071 Valencia, Spain
| |
Collapse
|