1
|
Zhang K, Li S, Li J, Zhou X, Qin Y, Wu L, Ling J. Ultra-pH-sensitive nanoplatform for precise tumor therapy. Biomaterials 2025; 314:122858. [PMID: 39366182 DOI: 10.1016/j.biomaterials.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
The emergence of precision cancer treatment has triggered a paradigm shift in the field of oncology, facilitating the implementation of more effective and personalized therapeutic approaches that enhance patient outcomes. The pH of the tumor microenvironment (TME) plays a pivotal role in both the initiation and progression of cancer, thus emerging as a promising focal point for precision cancer treatment. By specifically targeting the acidic conditions inherent to the tumor microenvironment, innovative therapeutic interventions have been proposed, exhibiting significant potential in augmenting treatment efficacy and ameliorating patient prognosis. The concept of ultra-pH-sensitive (UPS) nanoplatform was proposed several years ago, demonstrating exceptional pH sensitivity and an adjustable pH transition point. Subsequently, diverse UPS nanoplatforms have been actively explored for biomedical applications, enabling the loading of fluorophores, therapeutic drugs, and photosensitizers. This review aims to elucidate the design strategy and response mechanism of the UPS nanoplatform, with a specific emphasis on its applications in surgical therapy, immunotherapy, drug delivery, photodynamic therapy, and photothermal therapy. The potential and challenges of translating in the clinic on UPS nanoplatforms are finally explored. Thanks to its responsive and easily modifiable nature, the integration of multiple functional units within a UPS nanoplatform holds great promise for future advancements in tumor precision theranositcs.
Collapse
Affiliation(s)
- Ke Zhang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Shijie Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jiaying Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xiaobo Zhou
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China; School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Jue Ling
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
2
|
Zhang X, Yao J, Yan Y, Zhang Y, Tang Y, Yang Y. Bacterial Cellulose Incorporating Multicolor Fluorescent Probes for Visual Acidity Detection in Paper-Based Cultural Relics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60902-60911. [PMID: 39257159 DOI: 10.1021/acsami.4c09598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Paper-based cultural relics often undergo acidification and deterioration during long-term preservation. Accurate detection of paper acidity is of great significance to assess aging status and extend the preservation lifetime of paper-based cultural relics. Rapid identification of the acidification degree and acid distribution across multiple regions of paper is essential. Inspired by fluorescent sensing technology, pH-sensitive cadmium telluride (CdTe) quantum dots (QDs) and rhodamine B (RB) fluorescent probes are synthesized and incorporated onto the nanofibers of a bacterial cellulose (BC) membrane to enable visual acidity detection of paper. Due to the complementary pH detection range of CdTe QDs and RB probes, the composite BC membrane exhibits a clear pH response across an acidic to neutral range (pH 3.0-7.5). Notably, the contrasting fluorescent colors of the two probes within the BC membrane allow for easy visualization of paper pH and acidity distribution with the naked eyes. A distinct color transition from red to green was observed on the fluorescent BC membrane when it is applied to a model paper with a gradient pH distribution. The feasibility of this method was verified by using the flat-headed pH electrode method. Additionally, common metal ions in most paper fillers, inks, pigments, as well as some sugars and amino acids showed minimal interference with the pH response of the composite BC membrane, highlighting its potential and broad applicability for visual acidity detection in paper-based cultural relics.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Library, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jingjing Yao
- Shanghai Institute of Quality Inspection and Technical Research, 900 Jiang Yue Road, Shanghai 201114, China
| | - Yueer Yan
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Library, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yahong Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yuliang Yang
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Library, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
3
|
Ye YX, Pan JC, Wang HC, Zhang XT, Zhu HL, Liu XH. Advances in small-molecule fluorescent probes for the study of apoptosis. Chem Soc Rev 2024; 53:9133-9189. [PMID: 39129564 DOI: 10.1039/d4cs00502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Apoptosis, as type I cell death, is an active death process strictly controlled by multiple genes, and plays a significant role in regulating various activities. Mounting research indicates that the unique modality of cell apoptosis is directly or indirectly related to different diseases including cancer, autoimmune diseases, viral diseases, neurodegenerative diseases, etc. However, the underlying mechanisms of cell apoptosis are complicated and not fully clarified yet, possibly due to the lack of effective chemical tools for the nondestructive and real-time visualization of apoptosis in complex biological systems. In the past 15 years, various small-molecule fluorescent probes (SMFPs) for imaging apoptosis in vitro and in vivo have attracted broad interest in related disease diagnostics and therapeutics. In this review, we aim to highlight the recent developments of SMFPs based on enzyme activity, plasma membranes, reactive oxygen species, reactive sulfur species, microenvironments and others during cell apoptosis. In particular, we generalize the mechanisms commonly used to design SMFPs for studying apoptosis. In addition, we discuss the limitations of reported probes, and emphasize the potential challenges and prospects in the future. We believe that this review will provide a comprehensive summary and challenging direction for the development of SMFPs in apoptosis related fields.
Collapse
Affiliation(s)
- Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Jian-Cheng Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Xing-Tao Zhang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xin-Hua Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, P. R. China.
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
4
|
Chen S, Yu W, Xing G, Song Z, Feng G. A new fluorescent probe with high selectivity and sensitivity for Cys detection in bovine serum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5248-5253. [PMID: 39011724 DOI: 10.1039/d4ay00910j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Cysteine (Cys) is one of the most basic mercaptans in the human body. As an important endogenous small molecule mercaptan, Cys plays a vital role in various physiological processes and can participate in maintaining redox balance to ensure homeostasis. Abnormal Cys levels can lead to a variety of diseases. However, the detection of cysteine may be interfered with by other small molecule biothiols. Therefore, the design of fluorescent probes based on the structural characteristics and reactivity of cysteine has become the focus of current research. In this paper, a fluorescent probe (3-(2H-benzo[d][1,2,3]triazol-2-yl)-2-oxo-2H-benzo[g]chromen-8-yl acrylate, BTAB) for Cys detection was synthesized with acrylic ester as the reaction site. Under the conditions of gradual optimization, BTAB can achieve selectivity and anti-interference ability for Cys detection. The linear range of Cys was 0.3-10 μM, and the detection limit was 0.154 μM. Finally, this probe was applied to detect the Cys content in bovine serum samples with satisfactory results.
Collapse
Affiliation(s)
- Shu Chen
- Department of Thoracic Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun City, Jilin Province, China
| | - Weiwei Yu
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China.
| | - Guangnan Xing
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China.
| | - Zhiguang Song
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China.
| | - Guodong Feng
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China.
| |
Collapse
|
5
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
6
|
Zhang Y, Xu C, Sun H, Ai J, Ren M, Kong F. A new lysosome-targeted Cys probe and its application in biology and food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123345. [PMID: 37688878 DOI: 10.1016/j.saa.2023.123345] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Cysteine (Cys) is a sulfur-containing amino acid that plays an important role in living systems. The most common way to supplement the body with exogenous Cys is through the consumption of Cys-rich foods. Therefore, it is important to detect and analyze Cys in living systems and food samples. However, most of the Cys fluorescent probes developed so far are limited to the detection of the cellular environment only, and very few probes can take into account the detection of Cys in plant roots and food samples. In this paper, a novel fluorescent probe LN-NCS targeting the detection of Cys in lysosomes was designed and synthesized by modifying the naphthalimide fluorophore. The probe LN-NCS has a large Stokes shift (140 nm), low cytotoxicity, low detection limit (16.3 nM), and high selectivity, and probe LN-NCS reacts with Cys to produce the compound LN-NH2 with good fluorescence quantum yield (Ф = 0.81). Probe LN-NCS can be used to detect Cys in cells, zebrafish, plant roots, food samples, and environmental water samples. In addition, by modeling cellular inflammation, we have demonstrated that probe LN-NCS can detect changes in Cys concentration induced by cellular inflammation, providing a potential tool to better study the cellular inflammatory environment.
Collapse
Affiliation(s)
- Yukun Zhang
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chen Xu
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Hui Sun
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jindong Ai
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mingguang Ren
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Fangong Kong
- Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| |
Collapse
|
7
|
Liu X, Yu S, Zhang Y. pH-Sensitive and Lysosome Targetable Photosensitizers Based on BODIPYs. J Fluoresc 2024:10.1007/s10895-023-03562-z. [PMID: 38170426 DOI: 10.1007/s10895-023-03562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Photodynamic therapy (PDT) is an effective and U.S. Food and Drug Administration (FDA) approved treatment for cancer and other diseases. Photosensitizer is one of the three key components that harvest the energy of light at a certain wavelength. Compared to the conventional fluorophores used as photosensitizers, boron dipyrromethene (BODIPY) derivatives have grown fast in recent years due to their low dark toxicity, versatile tunable sites, and easiness of being paired with other treatments. In this paper, two pH-sensitive BODIPY-based photosensitizers (BDC and BDBrC) were synthesized by adding carbazole moieties onto the BODIPY cores (BD and BDBr) through condensation reactions. BDBrC has two Br atoms at the BODIPY core that promote singlet oxygen generation and further red-shift the absorption maximum peak. Both compounds showed sensitivity toward pH change and generated more singlet oxygen under acidic conditions. The cellular uptake and cell imaging experiments showed that BDBrC can selectively target the lysosome organelle. The further dark cell viability and light cytotoxicity indicate the light triggered PDT treatment can be accomplished with BDBrC.
Collapse
Affiliation(s)
- Xiangshan Liu
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, University Heights, Newark, NJ, 07102, USA
| | - Shupei Yu
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, University Heights, Newark, NJ, 07102, USA
| | - Yuanwei Zhang
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, University Heights, Newark, NJ, 07102, USA.
| |
Collapse
|
8
|
Miao C, Zhou X, Huang X, Huang J, Chen Y, Liu Y, Hu X, Zeng L, Weng S, Chen H. Effectively synthesized functional Si-doped carbon dots with the applications in tyrosinase detection and lysosomal imaging. Anal Chim Acta 2023; 1279:341789. [PMID: 37827683 DOI: 10.1016/j.aca.2023.341789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
There has been significant interest in the preparation and versatile applications of carbon dots (CDs) due to their immense potential value in sensors and imaging. In this work, silicon-doped green carbon dots (Si-CDs) with high quantum yield and rich epoxypropyl were effectively synthesized. Given the clinical diagnostic importance of abnormal levels of tyrosinase (TYR), sensitive detection of TYR is significant for clinical research. A fluorescence signal-off strategy with Si-CDs as probe was constructed to determine TYR based on the oxidation of dopamine by TYR. The detection ranges of this method were 0.01-1.5 and 10-30 U/mL with the detection limit of 0.0046 U/mL, the lower limit of quantification (LLOQ) was 0.01 U/mL, and TYR was successfully and accurately monitored in human serum. Additionally, due to the role of lysosomes in cellular regulatory processes, including TYR levels and fluorescence stability characteristics of Si-CDs in acidic conditions, it was envisaged to use Si-CDs as probe to establish real-time monitoring of lysosomes. According to fluorescence colocation analysis, Si-CDs had intrinsic lysosomal targeting ability to HepG2 and L-02 (with Pearson correlation coefficients were 0.90 and 0.91, respectively). The targeting of Si-CDs to lysosomes was due to the acidophilic effect of the epoxypropyl on its surface.
Collapse
Affiliation(s)
- Chenfang Miao
- Department of Pharmacy, The 900th Hospital of Joint Logistics Team of the PLA, Fuzhou General Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Xin Zhou
- Department of Pharmacy, The 900th Hospital of Joint Logistics Team of the PLA, Fuzhou General Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Xiaoyang Huang
- Department of Pharmacy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fuzhou, 350001, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Jiyue Huang
- Department of Pharmacy, The 900th Hospital of Joint Logistics Team of the PLA, Fuzhou General Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Yanping Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yuebin Liu
- Department of Pharmacy, The 900th Hospital of Joint Logistics Team of the PLA, Fuzhou General Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Xiaomu Hu
- Department of Pharmacy, The 900th Hospital of Joint Logistics Team of the PLA, Fuzhou General Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Lingjun Zeng
- Department of Pharmacy, The 900th Hospital of Joint Logistics Team of the PLA, Fuzhou General Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Huixing Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University Cancer Center, Fuzhou, 350001, China.
| |
Collapse
|
9
|
Kim YJ, Jang M, Roh J, Lee YJ, Moon HJ, Byun J, Wi J, Ko SK, Tae J. Rhodamine-Based Cyclic Hydroxamate as Fluorescent pH Probe for Imaging of Lysosomes. Int J Mol Sci 2023; 24:15073. [PMID: 37894759 PMCID: PMC10606023 DOI: 10.3390/ijms242015073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Monitoring the microenvironment within specific cellular regions is crucial for a comprehensive understanding of life events. Fluorescent probes working in different ranges of pH regions have been developed for the local imaging of different pH environments. Especially, rhodamine-based fluorescent pH probes have been of great interest due to their ON/OFF fluorescence depending on the spirolactam ring's opening/closure. By introducing the N-alkyl-hydroxamic acid instead of the alkyl amines in the spirolactam of rhodamine, we were able to tune the pH range where the ring opening and closing of the spirolactam occurs. This six-membered cyclic hydroxamate spirolactam ring of rhodamine B proved to be highly fluorescent in acidic pH environments. In addition, we could monitor pH changes of lysosomes in live cells and zebrafish.
Collapse
Affiliation(s)
- Young Ju Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| | - Mina Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (M.J.); (J.R.)
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jongtae Roh
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (M.J.); (J.R.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Yoon Jeong Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| | - Hee Jung Moon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| | - Jimin Byun
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| | - Jihyun Wi
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| | - Sung-Kyun Ko
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (M.J.); (J.R.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Jinsung Tae
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| |
Collapse
|
10
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
11
|
Chen W, Liu H, Song F, Xin L, Zhang Q, Zhang P, Ding C. pH-Switched Near-Infrared Fluorescent Strategy for Ratiometric Detection of ONOO - in Lysosomes and Precise Imaging of Oxidative Stress in Rheumatoid Arthritis. Anal Chem 2023; 95:1301-1308. [PMID: 36576392 DOI: 10.1021/acs.analchem.2c04175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is well-known as a kind of autoimmune disease, which brings unbearable pain to the patients by multiple organ complications besides arthritis. To date, RA can be hardly cured, but early diagnosis and standard treatment can relieve symptoms and pain. Therefore, an effective tool to assist the early diagnosis of RA deserves considerable attention. On account of the overexpressed ONOO- during the early stage of RA, a near-infrared (NIR) receptor, Lyso-Cy, is proposed in this work by linker chemistry to expand the conjugated rhodamine framework by cyanine groups. Contributed by the pH-sensitive spiral ring in rhodamine, receptor Lyso-Cy has been found to be workable in lysosomes specifically, which was confirmed by the pH-dependent spectra with a narrow responding region and a well-calculated pKa value of 5.81. We presented an excellent ratiometric sensing protocol for ONOO- in an acidic environment, which was also available for targeting ONOO- in lysosomes selectively. This innovative dual-targeting responsive design is expected to be promising for assisting RA diagnosis at an early stage with respect to the joint inflammatory model established in this work at the organism level.
Collapse
Affiliation(s)
- Wenjuan Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - Haihong Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - Fuxiang Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - Liantao Xin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| |
Collapse
|
12
|
Zhu T, Cao L, Kou X, Liu Y, Dong WF, Ge M, Li L. Nitrogen-doped cyan-emissive carbon quantum dots for fluorescence tetracycline detection and lysosome imaging. RSC Adv 2022; 12:33761-33771. [PMID: 36505714 PMCID: PMC9685596 DOI: 10.1039/d2ra04945g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Tetracyclines (TCs) prevent the growth of peptide chains and the synthesis of proteins, and they are widely used to inhibit Gram-positive and -negative bacteria. For the detection of tetracyclines in cell and in vitro, a convenient and simple detection system based on nitrogen-doped cyan carbon quantum dots (C-CQDs) was developed. C-CQDs have excellent excitation-independent properties, the best optimal excitation peak is 360 nm and the best emission peak is 480 nm. Based on the inner filter effect (IFE), the fluorescence intensity of C-CQDs in solution decreases with the increase of tetracyclines. In the range of 0-100 μM, C-CQDs present a good linear relationship with three tetracyclines (CTC, TET, OCT), with R 2 all greater than 0.999. C-CQDs can detect tetracycline in milk samples with recovery in the range of 98.2-103.6%, which demonstrates their potential and broad application in real samples. Furthermore, C-CQDs exhibit excellent lysosomal targeting, as indicated by a Pearson's coefficient of 0.914 and an overlap of 0.985. The internalisation of C-CQDs was mainly affected by lipid raft-mediated endocytosis in endocytic pathway experiments. These experiments indicate that C-CQDs can be effectively used to detect TC content and target lysosomes as an alternative to commercial dyes.
Collapse
Affiliation(s)
- Tongtong Zhu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230026P. R. China,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS)Suzhou 215163P. R. China
| | - Lei Cao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230026P. R. China,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS)Suzhou 215163P. R. China
| | - Xinyue Kou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230026P. R. China,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS)Suzhou 215163P. R. China
| | - Yulu Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230026P. R. China,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS)Suzhou 215163P. R. China
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230026P. R. China,CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS)Suzhou 215163P. R. China
| | - Mingfeng Ge
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS)Suzhou 215163P. R. China
| | - Li Li
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS)Suzhou 215163P. R. China,Chongqing Guoke Medical Technology Development Co., LtdChongqing 401122China,Zhengzhou Institute of Biomedical Engineering and TechnologyZhengzhouHenan 450001China
| |
Collapse
|
13
|
A chemodosimeter for the detection of hydroxide using an anthraquinone-based receptor: Photophysical properties and X-ray crystallography. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
In situ generation of micrometer-sized tumor cell-derived vesicles as autologous cancer vaccines for boosting systemic immune responses. Nat Commun 2022; 13:6534. [PMID: 36319625 PMCID: PMC9626595 DOI: 10.1038/s41467-022-33831-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 10/05/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer vaccine, which can promote tumor-specific immunostimulation, is one of the most important immunotherapeutic strategies and holds tremendous potential for cancer treatment/prevention. Here, we prepare a series of nanoparticles composed of doxorubicin- and tyrosine kinase inhibitor-loaded and hyaluronic acid-coated dendritic polymers (termed HDDT nanoparticles) and find that the HDDT nanoparticles can convert various cancer cells to micrometer-sized vesicles (1.6-3.2 μm; termed HMVs) with ~100% cell-to-HMV conversion efficiency. We confirm in two tumor-bearing mouse models that the nanoparticles can restrain tumor growth, induce robust immunogenic cell death, and convert the primary tumor into an antigen depot by producing HMVs in situ to serve as personalized vaccines for cancer immunotherapy. Furthermore, the HDDT-healed mice show a strong immune memory effect and the HDDT treatment can realize long-term protection against tumor rechallenge. Collectively, the present work provides a general strategy for the preparation of tumor-associated antigen-containing vesicles and the development of personalized cancer vaccines.
Collapse
|
15
|
Wang Z, Pan T, Tian Y, Liao J. A near-infrared probe for the real-time detection of lysosomal pH in living cells under "wash free" conditions. J Mater Chem B 2022; 10:7045-7051. [PMID: 36044015 DOI: 10.1039/d2tb01441f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysosomal pH is an important indicator for the physiological state of eukaryotic cells. The real-time detection of intracellular lysosomal pH is critical for understanding and studying many physiological and pathological processes of cells. Herein, we designed and synthesized a series of novel pH sensors, namely W1, W2 and W3. By comparing the spectroscopic properties of the three molecules and their ability to target lysosomes in living cells, a specific probe W1 was selected for the quantitative analysis of lysosomal pH changes in live cells. W1 shows a fast, sensitive and highly selective red fluorescence response to an acidic pH value. The pKa value of W1 is 5.84, and the fluorescence intensity ratios of I743/I680 under acidic conditions show a good linear relationship with the pH value. In addition, W1 shows a 100-fold difference in fluorescence from an extracellular environment to an intracellular environment, allowing it to be used as a "wash free" staining probe to visualize the pH change of lysosomes. W1 was further applied to detect the changes of lysosomal pH during apoptosis and mitophagy. Thus, W1 is expected to be a potentially useful tool for monitoring the changes of lysosomal pH in cell-related physiological or pathological states.
Collapse
Affiliation(s)
- Ziqiang Wang
- School of Medicine, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Tingting Pan
- Department of Pediatric Neurology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518038, China.
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong, 518055, China.
| | - Jianxiang Liao
- Department of Pediatric Neurology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518038, China.
| |
Collapse
|
16
|
Liu C, Jin Y, Ji X, Zhao W, Dong X. Access to Pyridinyl or Pyridinium Aza‐BODIPYs with Tunable Near‐Infrared Fluorescence through ICT from 4‐Pyridinyl Pyrroles**. Chemistry 2022; 28:e202201503. [DOI: 10.1002/chem.202201503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Chang Liu
- Department of Medicinal Chemistry School of Pharmacy Fudan University Shanghai 201203 P. R. China
| | - Yue Jin
- Key Laboratory for Special Functional Materials of the Ministry of Education School of Materials Science and Engineering Henan University Kaifeng 475004 P. R. China
| | - Xin Ji
- Department of Medicinal Chemistry School of Pharmacy Fudan University Shanghai 201203 P. R. China
| | - Weili Zhao
- Department of Medicinal Chemistry School of Pharmacy Fudan University Shanghai 201203 P. R. China
- Key Laboratory for Special Functional Materials of the Ministry of Education School of Materials Science and Engineering Henan University Kaifeng 475004 P. R. China
| | - Xiaochun Dong
- Department of Medicinal Chemistry School of Pharmacy Fudan University Shanghai 201203 P. R. China
| |
Collapse
|
17
|
Mamontova AV, Simonyan TR, Lukyanov KA, Bogdanov AM. Circular Permutants of BrUSLEE Protein as Fluorescent pH Indicators. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s106816202204015x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract—
Two variants of circularly permuted BrUSLEE, a green fluorescent protein with a short fluorescence lifetime, have been engineered. We characterized the pH-dependence of fluorescence decay kinetics of these fluorophores. It was shown that both permutants (cpBrUS and cpBrUS-145) exhibit three-component fluorescence decay kinetics, with the lifetime of the one component varying within the ~3000–300 ps range upon pH shift from 5.5 to 9.0. At the same time, the original BrUSLEE does not show a significant change in the fluorescence decay kinetics within the physiologically relevant pH-range of 6.0–8.5. The described pH-dependence allows considering the BrUSLEE permutants as pH indicators with the fluorescence lifetime readout.
Collapse
|
18
|
Jia C, Wang X, Zan Q, Yang Q, Wang Y, Yu X, Zhang Y, Dong C, Fan L. A water-soluble 1, 8-naphthalimide-based fluorescent pH probe for distinguishing tumorous tissues and inflammation mice. LUMINESCENCE 2022; 37:1395-1403. [PMID: 35724987 DOI: 10.1002/bio.4312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/12/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
A water-soluble fluorescent probe BPN, by introducing a piperazine as the pH-sensitive fluorescence signaling motif to the hydrophilic propionic acid-substituted 1, 8-naphthalimide fluorophore, is highly sensitive to pH changes within cytoplasm matrix in living cells, as well as pH-related diseases models. Owing to the protonation-induced inhibition of the photoinduced electron transfer (PET) from piperazine to naphthalimide fluorophore, BPN displayed a significant fluorescence enhancement (more than 131-fold) upon the pH decreasing from 11.0 to 3.0. The linear rang was between pH 6.4 to 8.0 with a pKa value of 6.69 near the physiological pH, which was suitable for cytosolic pH research. Furthermore, BPN exhibited a large Stokes shift (142 nm), good water solubility, excellent photostability, high selectivity and low cytotoxicity. All these advantages were particularly beneficial for intracellular pH imaging. Using BPN, we demonstrated the real-time monitoring of cytosolic pH changes in living cells. Most importantly, BPN has not only been successfully applied for distinguishing inflammation mice, but also the surgical specimens of cancer tissue, making it of great potential application in the cancer diagnosis.
Collapse
Affiliation(s)
- Chunmiao Jia
- Shanxi Coal Central Hospital, Taiyuan, P. R. China
| | - Xiaodong Wang
- Institute of Environmental Science, Shanxi University, Taiyuan, P. R. China
| | - Qi Zan
- Institute of Environmental Science, Shanxi University, Taiyuan, P. R. China
| | - Qianqian Yang
- Institute of Environmental Science, Shanxi University, Taiyuan, P. R. China
| | - Yubin Wang
- Institute of Environmental Science, Shanxi University, Taiyuan, P. R. China
| | - Xue Yu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin, China
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, P. R. China
| | - Li Fan
- Institute of Environmental Science, Shanxi University, Taiyuan, P. R. China
| |
Collapse
|
19
|
Wang L, Zhou Q, Yang H. A Facile Fabrication of Lysosome-Targeting pH Fluorescent Nanosensor Based on PEGylated Polyester Block Copolymer. Polymers (Basel) 2022; 14:2420. [PMID: 35745996 PMCID: PMC9231249 DOI: 10.3390/polym14122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
A novel lysosome-targeting PEGylated polyester-based fluorescent pH nanosensor is fabricated by the combination of ring-opening copolymerization (ROCOP), side-group modification and subsequent self-assembly. First, a key target amphiphilic copolymer carrier for rhodamine (Rh) pH indicator is synthesized in a facile manner by the ROCOP of phthalic anhydride with allyl glycidyl ether using mPEG-OH and t-BuP1/Et3B as the macroinitiator and binary catalyst, respectively. Subsequently, Rh moieties are covalently attached on the polymer chain with controllable grafting degree via an efficient thiol-ene click reaction. Concurrently, the effect of catalyst systems and reaction conditions on the catalytic copolymerization performance is presented, and the quantitative introduction of Rh is described in detail. Owing to its amphiphilic characteristics, the rhodamine-functionalized polyester-based block copolymer can self-assemble into micelles. With the covalent incorporation of Rh moieties, the as-formed micelles exhibit excellent absorption and fluorescence-responsive sensitivity and selectivity towards H+ in the presence of various metal cations. Moreover, the as-prepared micelles with favorable water dispersibility, good pH sensitivity and excellent biocompatibility also display appreciable cell-membrane permeability, staining ability and pH detection capability for lysosomes in living cells. This work provides a new strategy for the facile synthesis of novel biocompatible polymeric fluorescent pH nanosensors for the fluorescence imaging of lysosomal pH changes.
Collapse
Affiliation(s)
- Lijun Wang
- School of Materials Science and Engineering, Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China
| | - Qiang Zhou
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; (Q.Z.); (H.Y.)
| | - Haiyang Yang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; (Q.Z.); (H.Y.)
| |
Collapse
|
20
|
Gui L, Wang K, Wang Y, Yan J, Liu X, Guo J, Liu J, Deng D, Chen H, Yuan Z. Monitoring the pH fluctuation of lysosome under cell stress using a near-infrared ratiometric fluorescent probe. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Liu Q, Liu C, Cai S, He S, Zhao L, Zeng X, Zhou J, Gong J. A new near-infrared fluorescent probe for sensing extreme acidity and bioimaging in lysosome. Methods Appl Fluoresc 2022; 10. [PMID: 35073535 DOI: 10.1088/2050-6120/ac4e73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022]
Abstract
Since the intracellular pH plays an important role in the physiological and pathological processes, however, the probes that can be used for monitoring pH fluctuation under extreme acidic conditions are currently rare, so it is necessary to construct fluorescent probes for sensing pH less than 4. In this work, we developed a new near-infrared (NIR) fluorescent probe Cy-SNN for sensing pH fluctuation under extremely acidic conditions. For the preparation of this probe, benzothiozolium moiety was chosen as lysosomal targeting unit and NIR fluorophore, and barbituric acid moiety was fused in the polymethine chain of probe to introduce protonation center. Surprisingly, on the basis of the balance of quaternary ammonium salts and free amines, the pKa value of Cy-SNN was calculated as low as 2.96, implying that Cy-SNN can be used in acidic conditions with pH < 4. Moreover, Cy-SNN exhibited highly selective response to H+ over diverse analytes in real-time with dependable reversibility. Importantly, Cy-SNN can be used to specifically target lysosome, providing potential tools for monitoring the function of lysosome in autophagy process.
Collapse
Affiliation(s)
- Qiuchen Liu
- Tianjin University of Technology, Tianjin, 300384,, Tianjin, 300191, CHINA
| | - Chang Liu
- Tianjin University of Technology, Tianjin, 300384, Tianjin, 300191, CHINA
| | - Songtao Cai
- Shenzhen University, Shenzhen 518060, Shenzhen, Guangdong, 518060, CHINA
| | - Song He
- Tianjin University of Technology, Tianjin, 300384, Tianjin, 300384, CHINA
| | - Liancheng Zhao
- School of Material Science and Engineering, Harbin Institute of Technology, PO Box 433, 92 West Dazhi Street, Harbin 150001, Harbin, 150001, CHINA
| | - Xianshun Zeng
- Tianjin University of Technology, Tianjin, Tianjin, 300384, CHINA
| | - Jin Zhou
- Weifang Medical University, Baotong West Street 7166, Weifang, 261053, CHINA
| | - Jin Gong
- Weifang Medical University, Baotong West Street 7166, Weifang, Shandong, 261053, CHINA
| |
Collapse
|
22
|
Hong J, Li Q, Xia Q, Feng G. Real-Time and High-Fidelity Tracking of Lysosomal Dynamics with a Dicyanoisophorone-Based Fluorescent Probe. Anal Chem 2021; 93:16956-16964. [PMID: 34874697 DOI: 10.1021/acs.analchem.1c04341] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development of high-performance probes that can visualize and track the dynamic changes of lysosomes is very important for the in-depth study of lysosomes. Herein, we report that a dicyanoisophorone-based probe (named DCIP) can be used for high-fidelity imaging of lysosomes and lysosomal dynamics. DCIP can be easily prepared and shows strong far-red to near-infrared emissions centered at 653 nm in water with a huge Stokes shift (224 nm), high quantum yield (Φ = 0.15), high pKa value (∼8.79), and good biocompatibility. DCIP also shows good cell permeability and can label lysosomes rapidly with bright fluorescence without a time-consuming washing process before imaging. DCIP also possesses good photostability and negligible background, making it effective for long-term and high spatiotemporal resolution (0.44 s of exposure) imaging of lysosomes. Moreover, DCIP achieved high-fidelity tracking of lysosomal dynamics at an extremely low concentration (1 nM). Finally, we also demonstrated that DCIP could real-time track the interactions of lysosomes with other organelles (damaged mitochondria as a model) and image the drug-escape processes from lysosomes. All of the results show that DCIP holds broad prospects in lysosome-related research.
Collapse
Affiliation(s)
- Jiaxin Hong
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Qianhua Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Qingfeng Xia
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Guoqiang Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| |
Collapse
|
23
|
Grabarnick (Portnoy) E, Andriyanov AV, Han H, Eyal S, Barenholz Y. PEGylated Liposomes Remotely Loaded with the Combination of Doxorubicin, Quinine, and Indocyanine Green Enable Successful Treatment of Multidrug-Resistant Tumors. Pharmaceutics 2021; 13:pharmaceutics13122181. [PMID: 34959462 PMCID: PMC8708987 DOI: 10.3390/pharmaceutics13122181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Multidrug resistance (MDR) of cancer cells remains a major obstacle to favorable outcomes of treatment with many drugs, including doxorubicin. Most of the clinical trials failed to demonstrate the benefit of the drug efflux transporter P-glycoprotein (P-gp) inhibitors to circumvent P-gp-mediated drug resistance in vivo. The present study explored the therapeutic potential of combined treatment with liposomal doxorubicin, P-gp inhibitor quinine, and the photodynamic therapy (PDT) using indocyanine green (ICG) in the adenocarcinoma drug-resistant tumor model. Liposomes were actively co-remotely loaded with doxorubicin and quinine, and ICG was passively adsorbed. The liposomes were characterized by differential scanning calorimetry (DSC) and cryogenic transmission microscopy (Cryo-TEM). We found that quinine impaired the crystalline structure of doxorubicin. In vitro, treatment with single agents themselves was insufficient to inhibit the growth of HT-29 MDR1 cells. However, pegylated liposomal doxorubicin and quinine (PLDQ) significantly diminished HT-29 MDR1 cell survival. Furthermore, survival inhibition intensified by the addition of ICG to the PLDQ (ICG + PLDQ). In vivo, ICG + PLDQ significantly decreased tumor growth when combined with tumor irradiation with NIR light (** p < 0.01). ICG + PLDQ + irradiation was superior to single treatments or combinational treatments without irradiation. These findings suggest that ICG + PLDQ can overcome P-gp-mediated MDR in cancer cells.
Collapse
Affiliation(s)
- Emma Grabarnick (Portnoy)
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University, P.O. Box 12272, Jerusalem 9112102, Israel; (E.G.); (A.V.A.)
| | - Alexander V. Andriyanov
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University, P.O. Box 12272, Jerusalem 9112102, Israel; (E.G.); (A.V.A.)
| | - Hadas Han
- Institute for Drug Research, Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel; (H.H.); (S.E.)
| | - Sara Eyal
- Institute for Drug Research, Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel; (H.H.); (S.E.)
| | - Yechezkel Barenholz
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University, P.O. Box 12272, Jerusalem 9112102, Israel; (E.G.); (A.V.A.)
- Correspondence:
| |
Collapse
|
24
|
Abstract
Fluorescent tools have emerged as an important tool for studying the distinct chemical microenvironments of organelles, due to their high specificity and ability to be used in non-destructive, live cellular studies. These tools fall largely in two categories: exogenous fluorescent dyes, or endogenous labels such as genetically encoded fluorescent proteins. In both cases, the probe must be targeted to the organelle of interest. To date, many organelle-targeted fluorescent tools have been reported and used to uncover new information about processes that underpin health and disease. However, the majority of these tools only apply a handful of targeting groups, and less-studied organelles have few robust targeting strategies. While the development of new, robust strategies is difficult, it is essential to develop such strategies to allow for the development of new tools and broadening the effective study of organelles. This review aims to provide a comprehensive overview of the major targeting strategies for both endogenous and exogenous fluorescent cargo, outlining the specific challenges for targeting each organelle type and as well as new developments in the field.
Collapse
Affiliation(s)
- Jiarun Lin
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia
| | - Kylie Yang
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
25
|
Abeywickrama CS, Baumann HJ, Pang Y. Simultaneous Visualization of Mitochondria and Lysosome by a Single Cyanine Dye: The Impact of the Donor Group (-NR 2) Towards Organelle Selectivity. J Fluoresc 2021; 31:1227-1234. [PMID: 34297321 DOI: 10.1007/s10895-021-02786-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
A benzothiazolium-based hemicyanine dye (probe 3) has been synthesized by attaching a morpholine group into a phenyl benzothiazolium skeleton. Probe 3 exhibited interesting photophysical characteristics including red emission (λem ≈600 nm), enhanced Stokes shift (Δλ ≈80 nm) and sensitivity to solvent polarity. Although the probe 3 exhibited almost no emission in aqueous environments (φfl ≈0.002), its fluorescence could be increased by ≈50 fold in organic solvents (φfl ≈0.10), making it possible for live cell imaging under wash-free conditions. Probe 3 exhibited excellent ability to visualize cellular mitochondria and lysosomes simultaneously, as observed from fluorescence confocal microscopy. In addition, probe 3 also exhibited good biocompatibility (calculated LC50 > 20 µM) and high photostability.
Collapse
Affiliation(s)
- Chathura S Abeywickrama
- Department of Chemistry and Maurice Morton Institute of Polymer Science, University of Akron, Akron, OH, 44325, USA
| | - Hannah J Baumann
- Department of Chemistry and Maurice Morton Institute of Polymer Science, University of Akron, Akron, OH, 44325, USA
| | - Yi Pang
- Department of Chemistry and Maurice Morton Institute of Polymer Science, University of Akron, Akron, OH, 44325, USA.
| |
Collapse
|
26
|
Shi L, Dong X, Zhang G, Zhang Y, Zhang C, Dong C, Shuang S. Lysosome targeting, Cr(vi) and l-AA sensing, and cell imaging based on N-doped blue-fluorescence carbon dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3561-3568. [PMID: 34313265 DOI: 10.1039/d1ay00977j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
N-doped blue-fluorescence carbon dots (N-CDs) were fabricated via a one-pot hydrothermal method using folic acid and p-phenylenediamine. The obtained N-CDs exhibited strong fluorescence (FL) with a considerable quantum yield (QY) of 21.8% and exceptional optical stability under different conditions. Upon introducing Cr(vi), blue FL of N-CDs was distinctly quenched. On subsequent addition of l-AA, the FL of N-CDs could be partially recovered. The fluorescence changes of N-CDs have been utilized to detect Cr(vi) and l-AA in aqueous solutions with linear ranges of 0.10-150 μM and 0.75-2.25 mM, respectively, as well as limit of detection values of 9.4 nM and 25 μM, respectively. Furthermore, as-obtained N-CDs can be extended to monitor the fluctuation of intracellular Cr(vi) and l-AA. More intriguingly, N-CDs can target lysosomes with a satisfactory Pearson correction coefficient of 0.87, which indicates a promising application prospect in the biomedical field.
Collapse
Affiliation(s)
- Lihong Shi
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Biswas S, Dutta T, Silswal A, Bhowal R, Chopra D, Koner AL. Strategic engineering of alkyl spacer length for a pH-tolerant lysosome marker and dual organelle localization. Chem Sci 2021; 12:9630-9644. [PMID: 34349935 PMCID: PMC8293980 DOI: 10.1039/d1sc00542a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/13/2021] [Indexed: 11/25/2022] Open
Abstract
Long-term visualization of lysosomal properties is extremely crucial to evaluate diseases related to their dysfunction. However, many of the reported lysotrackers are less conducive to imaging lysosomes precisely because they suffer from fluorescence quenching and other inherent drawbacks such as pH-sensitivity, polarity insensitivity, water insolubility, slow diffusibility, and poor photostability. To overcome these limitations, we have utilized an alkyl chain length engineering strategy and synthesized a series of lysosome targeting fluorescent derivatives namely NIMCs by attaching a morpholine moiety at the peri position of the 1,8-naphthalimide (NI) ring through varying alkyl spacers between morpholine and 1,8-naphthalimide. The structural and optical properties of the synthesized NIMCs were explored by 1H-NMR, single-crystal X-ray diffraction, UV-Vis, and fluorescence spectroscopy. Afterward, optical spectroscopic measurements were carefully performed to identify a pH-tolerant, polarity sensitive, and highly photostable fluoroprobes for further live-cell imaging applications. NIMC6 displayed excellent pH-tolerant and polarity-sensitive properties. Consequently, all NIMCs were employed in kidney fibroblast cells (BHK-21) to investigate their applicability for lysosome targeting and probing lysosomal micropolarity. Interestingly, a switching of localization from lysosomes to the endoplasmic reticulum (ER) was also achieved by controlling the linker length and this phenomenon was subsequently applied in determining ER micropolarity. Additionally, the selected probe NIMC6 was also employed in BHK-21 cells for 3-D spheroid imaging and in Caenorhabditis elegans (C. elegans) for in vivo imaging, to evaluate its efficacy for imaging animal models.
Collapse
Affiliation(s)
- Suprakash Biswas
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| | - Tanoy Dutta
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| | - Akshay Silswal
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| | - Rohit Bhowal
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| | - Deepak Chopra
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| | - Apurba L Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh India
| |
Collapse
|
28
|
Meng F, Niu J, Zhang H, Yang R, Lu Q, Niu G, Liu Z, Yu X. A pH-Sensitive Spirocyclization Strategy for Constructing a Single Fluorescent Probe Simultaneous Two-Color Visualizing of Lipid Droplets and Lysosomes and Monitoring of Lipophagy. Anal Chem 2021; 93:11729-11735. [PMID: 34229431 DOI: 10.1021/acs.analchem.1c01842] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lipid droplets (LDs) and lysosomes are crucial for maintaining intracellular homeostasis. But single fluorescent probes (SFPs) capable of simultaneous and discriminative visualizing of two organelles above and their interaction in living cells are still challenging due to the lack of rational design strategies. To break this bottleneck, herein, we develop a reliable strategy based on a pH-sensitive intramolecular spirocyclization. As a proof of concept, an SFP CMHCH, which possesses a switchable hemicyanine/spiro-oxazine moiety induced by pH, has been designed and synthesized. In acidic environments, the ring-open form CMHCH exhibits red-shift emission and low logP value, whereas the ring-closed form CMHC displays blue-shift emission and high logP value in neutral or basic environments. Thus, the distinct different hydrophilicity/hydrophobicity and absorption/emission properties of these two forms enable targeting LDs and lysosomes simultaneously and discriminatingly. Very importantly, the dynamic process of lipophagy can be directly monitored with CMHCH. The success of CMHCH indicated that the spirocyclization strategy is efficient for constructing SFPs to LDs and lysosomes.
Collapse
Affiliation(s)
- Fangfang Meng
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Jie Niu
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Huamiao Zhang
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Rui Yang
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Qing Lu
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Guangle Niu
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Zhiqiang Liu
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China
| | - Xiaoqiang Yu
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P.R. China.,Advanced Medical Research Institute, Shandong University, Jinan 250012, P.R. China
| |
Collapse
|
29
|
Podder A, Joseph MM, Biswas S, Samanta S, Maiti KK, Bhuniya S. Amphiphilic fluorescent probe self-encored in plasma to detect pH fluctuations in cancer cell membranes. Chem Commun (Camb) 2021; 57:607-610. [PMID: 33346278 DOI: 10.1039/d0cc06694j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed an amphiphilic pH probe (P1CS) to detect pH levels in the plasma membrane in cancer cells. An elevated fluorescence signal at 550 nm at the cell surface of cancer cells (MDA-MB-231, HeLa cells) prompted the application of P1CS as a pH marker for the cancer cell surface, discriminating it from normal cells (WI-38). Moreover, the probe enables labeling of the surface of multilayered tumor spheroids, which promotes its use as a marker for the surface of tumor tissue.
Collapse
Affiliation(s)
- Arup Podder
- Amrita Centre for Industrial Research and Innovation, Amrita School of engineering, Coimbatore, Amrita Vishwa Vidyapeetham 641-112, India.
| | - Manu M Joseph
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala 695019, India.
| | - Shayeri Biswas
- Centre for Interdisciplinary Science, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, 700091, India. spbhuniya@jisiasr@org
| | - Sanjib Samanta
- Centre for Interdisciplinary Science, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, 700091, India. spbhuniya@jisiasr@org
| | - Kaustabh K Maiti
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala 695019, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sankarprasad Bhuniya
- Centre for Interdisciplinary Science, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, 700091, India. spbhuniya@jisiasr@org
| |
Collapse
|
30
|
Xia Q, Feng S, Hong J, Feng G. Real-time tracking lysosomal pH changes under heatstroke and redox stress with a novel near-infrared emissive probe. Talanta 2021; 228:122184. [PMID: 33773708 DOI: 10.1016/j.talanta.2021.122184] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 02/04/2023]
Abstract
Lysosomes are important subcellular organelles with acidic pH. The change of lysosomal pH can affect the normal function and activity of cells. To conveniently detect and visualize lysosomal pH changes, we designed herein a novel fluorescent probe NIR-Rh-LysopH. The probe is based on a Rhodamine 101 derivative, which was modified to include a fused tetrahydroquinoxaline ring to obtain near-infrared fluorescence and a methylcarbitol moiety to locate the lysosome. Based on the proton-induced spirolactam ring-opening mechanism, NIR-Rh-LysopH showed rapid, selective, sensitive, and reversible near-infrared fluorescence responses around 686 nm (Stokes shift 88 nm) with a pKa value of 5.70. From pH 7.4 to 4.0, about 285 folds of fluorescence enhancement was observed. Cell experiments showed that NIR-Rh-LysopH has low cytotoxicity and excellent lysosome-targeting ability. Moreover, NIR-Rh-LysopH was applied successfully to track lysosomal pH changes induced by drugs (such as chloroquine and dexamethasone), heatstroke, and redox stress. Thus, NIR-Rh-LysopH is very promising for conveniently tracking lysosomal pH changes and studying the related life processes.
Collapse
Affiliation(s)
- Qingfeng Xia
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, 430079, PR China
| | - Shumin Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, 430079, PR China
| | - Jiaxin Hong
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, 430079, PR China
| | - Guoqiang Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, 430079, PR China.
| |
Collapse
|
31
|
Banerjee SL, Saha P, Ganguly R, Bhattacharya K, Kalita U, Pich A, Singha NK. A dual thermoresponsive and antifouling zwitterionic microgel with pH triggered fluorescent “on-off” core. J Colloid Interface Sci 2021; 589:110-126. [DOI: 10.1016/j.jcis.2020.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022]
|
32
|
Chao X, Qi Y, Zhang Y. Highly Photostable Fluorescent Tracker with pH-Insensitivity for Long-Term Imaging of Lysosomal Dynamics in Live Cells. ACS Sens 2021; 6:786-796. [PMID: 33378157 DOI: 10.1021/acssensors.0c01588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Visualizing and tracking lysosomal dynamic changes is crucially important in the fields of physiology and pathology. Most currently used pH-dependent small-molecule lysotrackers and sensors usually fail to visualize and track the changes due to (1) their leakage from lysosomes when the lysosomal pH increases and (2) their low photostability. Therefore, it is of significant interest to develop lysosomal probes for visualizing and tracking lysosomal dynamics independent of pH fluctuations and with high photostability. Herein, we found that the popular dicyanomethylene-4H-pyran (DCM) derivative DCM-NH2 can selectively target and label lysosomes with bright red fluorescence regardless of pH changes. The fluorescence enhancement in lysosomes has probably resulted from their microenvironment of polarity and viscosity. Compared with the commonly used commercial lysosomal molecular probes (LysoTracker Deep Red (LTDR) and LysoTracker Red DND-99), DCM-NH2 was demonstrated to exhibit a much stronger tolerance in lysosomes against various treatments and microenvironmental changes, and lysosomal membrane permeability could not cause DCM-NH2 to lose imaging of their targets as well. Moreover, DCM-NH2 exhibited a superior anti-photobleaching ability and low (photo-) cytotoxicity, which, along with pH-insensitivity, ensured its capability of long-term visualizing and tracking lysosomal dynamics. Lysosomal dynamic events such as the kiss-and-run process, fusion-fission, and mitophagy were successfully recorded with DCM-NH2. Our study thus confirms that DCM-NH2 is highly competitive for lysosomal imaging by overcoming the limitations of the commercial LysoTrackers and highlights the unexplored application of DCM-NH2 in bioimaging.
Collapse
Affiliation(s)
- Xijuan Chao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
33
|
Yang Y, Guo Z, Ye J, Gao CY, Liu J, Duan L. Sulfonate substituted rhodamine hydrophilic fluorescent probes: Application to specific detection of Fe 3+ and imaging in living fish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119238. [PMID: 33307348 DOI: 10.1016/j.saa.2020.119238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/01/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Two Sulfonate substituted rhodamine hydrophilic fluorescent probes RbS1 and RbS2 were designed and synthesized for specific detection of Fe3+. It was found that the probe RbS2 was stronger than RbS1 in the water solubility test. Both of them displayed responses to Fe3+ with a apparent fluorescence enhancement at 585 nm, accompanied with a distinct fluorescence change to pink. Upon addition of Fe3+ ions (0-16 μM), the emission intensity of RbS1 and RbS2 increased to 40 and 70 fold, which exhibited a good linear relationship with the concentration of Fe3+. The detection limits of RbS1 and RbS2 for sensing Fe3+ were 0.64 μM and 0.56 μM, respectively. The binding ratios of the RbS1 and RbS2 to Fe3+ were 1:1 and the recycling ability for Fe3+ was reasonable. RbS1 and RbS2 have been successfully applied to the determination of Fe3+ in real water samples with satisfactory recovery and accuracy. In further living fish imaging test, the probe RbS2 was distributed into abdomen, which exhibited better fluorescence imaging ability than that of RbS1.
Collapse
Affiliation(s)
- Yang Yang
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China.
| | - Zhenli Guo
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China
| | - Jinting Ye
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China
| | - Chao-Ying Gao
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China
| | - Jinglin Liu
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China.
| | - Limei Duan
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China
| |
Collapse
|
34
|
Tannert A, Garcia Lopez J, Petkov N, Ivanova A, Peneva K, Neugebauer U. Lysosome-targeting pH indicator based on peri-fused naphthalene monoimide with superior stability for long term live cell imaging. J Mater Chem B 2021; 9:112-124. [DOI: 10.1039/d0tb02208j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lysosomal pH is altered in many pathophysiological conditions. We describe synthesis and spectral properties of a new lysosomal fluorescent marker dye suitable for microscopic evaluation of lysosomal distribution and pH changes.
Collapse
Affiliation(s)
- Astrid Tannert
- Leibniz Institute of Photonic Technology
- 07745 Jena
- Germany
- Center for Sepsis Control and Care
- Jena University Hospital
| | - Javier Garcia Lopez
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center of Soft Matter (JCSM)
| | - Nikolay Petkov
- Faculty of Chemistry and Pharmacy
- Sofia University “St. Kliment Ohridski”
- Sofia
- Bulgaria
| | - Anela Ivanova
- Faculty of Chemistry and Pharmacy
- Sofia University “St. Kliment Ohridski”
- Sofia
- Bulgaria
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center of Soft Matter (JCSM)
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology
- 07745 Jena
- Germany
- Center for Sepsis Control and Care
- Jena University Hospital
| |
Collapse
|
35
|
|
36
|
Taniguchi N, Naito M, Miyagawa S, Tokunaga Y. Base-induced multi-state fluorescence of a trefoil-shaped salicylaldehyde azine derivative. RSC Adv 2021; 11:24022-24026. [PMID: 35479037 PMCID: PMC9036653 DOI: 10.1039/d1ra02627e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/26/2021] [Indexed: 11/21/2022] Open
Abstract
Base-induced four-state fluorescence is demonstrated in a trefoil-shaped salicylaldehyde azine derivative bearing multiple acidic protons.
Collapse
Affiliation(s)
- Noriho Taniguchi
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Masaya Naito
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Shinobu Miyagawa
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Fukui 910-8507
- Japan
| |
Collapse
|
37
|
Gong J, Liu C, Jiao X, He S, Zhao L, Zeng X. A novel near-infrared fluorescent probe with large stokes shifts for sensing extreme acidity and its application in bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118821. [PMID: 32829162 DOI: 10.1016/j.saa.2020.118821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
In this work, we reported a novel near-infrared (NIR) fluorescent probe RQNN with large Stokes shift (98 nm) for monitoring pH under extremely acidic conditions. For the preparation of this probe, a 1,4-diethylpiperazine moiety was introduced in rhodamine scaffold to tune the electron-donating character, and an o-phenylenediamine was introduced in spironolactone to provide larger steric hindrance. The deprotonated-protonated equilibrium between RQNN, RQNN-H+ and RQNN-H++ were evaluated in different pH by absorption and emission spectra. As expected, RQNN exhibited lower pka values (pka1 = 4.83, pka2 = 2.99), indicating that the probe can be used in extremely acidic pH. Moreover, RQNN possessed highly selective response to H+ over essential metal ions and biologically related redox molecules, high photo-stability, rapid response time, and excellent reversibility. Importantly, the probe had excellent cell membrane permeability and was further applied successfully to monitor pH fluctuations in live cells.
Collapse
Affiliation(s)
- Jin Gong
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaojie Jiao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Liancheng Zhao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
38
|
Gao YG, Huangfu SY, Patil S, Tang Q, Sun W, Li Y, Lu ZL, Qian A. [12]aneN 3-based multifunctional compounds as fluorescent probes and nucleic acids delivering agents. Drug Deliv 2020; 27:66-80. [PMID: 31858838 PMCID: PMC6968532 DOI: 10.1080/10717544.2019.1704943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022] Open
Abstract
A series of multifunctional compounds (MFCs) 1a-1e based on 1,8-naphthalimide and [12]aneN3 building blocks were designed and synthesized. They were used as not only fluorescent probes for recognition of Cu2+ ions but also as non-viral gene vectors for DNA and RNA delivery. Furthermore, their complexes with Cu2+ (1-Cu) could also selectively stain lysosome in HeLa cells. In order to achieve high performance multifunctional materials, structure-performance relationship of MFCs 1a-1e was studied. It was found that MFCs 1a-1e exhibited highly selective fluorescence turn-off for Cu2+, without interference by other metal ions in aqueous solution. The fluorescence emission of 1a-1e was quenched by a factor of 10-fold, 47-fold, 6-fold, 64-fold, and 15-fold respectively in the presence of Cu2+ ions. Due to high sensitivity, good water solubility, and low cytotoxicity, MFCs 1a-1d were successfully applied in the recognition of Cu2+ and selectively staining lysosome in HeLa cells. Most importantly, MFCs 1a and 1b had excellent HeLa cell selectivity in RNA delivery, and their performances were far better than lipofectamine 2000 and 25 kDa PEI.
Collapse
Affiliation(s)
- Yong-Guang Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Shu-Yuan Huangfu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Suryaji Patil
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Quan Tang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Wan Sun
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yu Li
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Zhong-Lin Lu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
39
|
Han D, Yi J, Liu C, Liang L, Huang K, Jing L, Qin D. A fluoran-based viscosity probe with high-performance for lysosome-targeted fluorescence imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118405. [PMID: 32403072 DOI: 10.1016/j.saa.2020.118405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
A new fluorescent probe Lyso-Fl has been facilely prepared by an esterification reaction of spironolactone fluoran dye Rdi with ethanol, which shows viscosity-selective response by fluorescence. The new probe delivers obvious fluorescence signal enhancement when environmental viscosity changes from 1.01 cP (water) to 1256 cP (98% glycerol). And, both the emission intensity (575 nm) and fluorescence lifetime of Lyso-Fl exhibit individually good linear relationships with the solution viscosity. Besides, Lyso-Fl gives a selective response to viscosity among various biological species and exhibits pH-independent (1-10) fluorescent signals towards viscosity. More importantly, Lyso-Fl shows low cytotoxicity and can be utilized for monitoring of dexamethasone-stimulated viscosity enhancement by cell imaging with excellent lysosome-targeted performance, promoting it a promising fluorescent probe for lysosomal viscosity detection.
Collapse
Affiliation(s)
- Defang Han
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Jundan Yi
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Chang Liu
- School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Lijuan Liang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Linhai Jing
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Dabin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
40
|
Zheng J, Xu Y, Fan L, Qin S, Li H, Sang M, Li R, Chen H, Yuan Z, Li B. A Bioresponsive Near-Infrared Fluorescent Probe for Facile and Persistent Live-Cell Tracking. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002211. [PMID: 32686298 DOI: 10.1002/smll.202002211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Molecular imaging significantly transforms the field of biomedical science and facilitates the visualization, characterization, and quantification of biologic processes. However, it is still challenging to monitor cell localization in vivo, which is essential to the study of tumor metastasis and in the development of cell-based therapies. While most conventional small-molecule fluorescent probes cannot afford durable cell labeling, transfection of cells with fluorescent proteins is limited by their fixed fluorescence, poor tissue penetration, and interference of autofluorescence background. Here, a bioresponsive near-infrared fluorescent probe is reported as facile and reliable tool for real-time cell tracking in vivo. The design of this probe relies on a new phenomenon observed upon fluorobenzene-conjugated fluorescent dyes, which can form complexes with cytosolic glutathione and actively translocates to lysosomes, exhibiting enhanced and stable cell labeling. Fluorobenzene-coupled hemicyanine, a near-infrared fluorophore manifests to efficiently staining tumor cells without affecting their invasive property and enables persistent monitoring of cell migration in metastatic tumor murine models at high resolution for one week. The method of fluorobenzene functionalization also provides a simple and universal "add-on" strategy to render ordinary fluorescent probes suitable for long-term live-cell tracking, for which currently there is a deficit of suitable molecular tools.
Collapse
Affiliation(s)
- Jinrong Zheng
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
- Sanyi Biotechnology Co., Ltd., 228 East Tianyuan Road, Jiangning District, Nanjing, 211100, China
| | - Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
| | - Lixue Fan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
| | - Shuheng Qin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
| | - Hua Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
| | - Mangmang Sang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
| | - Ruixi Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
| | - Bowen Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
41
|
Chang S, Chen BB, Lv J, Fodjo EK, Qian RC, Li DW. Label-free chlorine and nitrogen-doped fluorescent carbon dots for target imaging of lysosomes in living cells. Mikrochim Acta 2020; 187:435. [PMID: 32647994 DOI: 10.1007/s00604-020-04412-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/23/2020] [Indexed: 11/24/2022]
Abstract
Lysosomes with a single-layered membrane structure are mainly involved in the scavenging of foreign substances and play an important role in maintaining normal physiological functions of living cells. In this work, near-neutrally charged fluorescent carbon dots (CDs) were prepared with lipophilicity through a facile one-pot hydrothermal carbonization of chloranil and triethylenetetramine at 160 °C for 3 h. The as-obtained CDs are proved to have good photostability, low cost, and excellent biocompatibility. Importantly, the as-prepared CDs with high quantum yield of 30.8% show excitation-dependent emission with great stability, and thus, they can be well used for the long-term target imaging of lysosomes in living cells without further modification. Meanwhile, the CDs can quickly enter into the lysosomes within 30 min, and the green fluorescence (FL) of CDs reaches the plateau when incubated for 60 min. By comparing the fluorescent intensity, the information about distribution and amount of lysosomes in different cells can be obtained. The proposed CD-based strategy demonstrates great promise for label-free target imaging of lysosomes in living cells. Graphical abstract The near-neutral carbon dots (CDs) with lipophilicity are used as label-free fluorescent nanoprobes for the long-term imaging of lysosomes in living cells.
Collapse
Affiliation(s)
- Shuai Chang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Bin Bin Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Essy Kouadio Fodjo
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ruo Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Da Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
42
|
Tian M, Liu XY, He H, Ma XZ, Liang C, Liu Y, Jiang FL. Real-Time Imaging of Intracellular Glutathione Levels Based on a Ratiometric Fluorescent Probe with Extremely Fast Response. Anal Chem 2020; 92:10068-10075. [PMID: 32538069 DOI: 10.1021/acs.analchem.0c01881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glutathione (GSH), the most abundant nonprotein thiol found in living organisms, are involved in the etiology and progression of many human diseases including cancer. So, monitoring changes of cellular GSH levels has an important guiding significance. To date, however, majority of probes can only qualitatively detect GSH in living cells. Herein, with coumarin as the read-out fluorophore and Michael addition as the sensing mechanism, six fluorescent probes were designed and synthesized. Among them, RP-2 exhibited a reversible and extremely fast response toward GSH (half time: ∼3 s), which endowed RP-2 the capacity of real-time imaging. Among the reversible probes based on Michael addition, RP-2 had both the largest forward and reverse rate constants thus far. The reaction between RP-2 and GSH was studied in detail by density functional theory and fluorescence spectroscopy. Real-time imaging of GSH levels in living cells was achieved with a temporal resolution of seconds. To simplify the processing of images, a program was developed and validated. RP-2 was expected to serve as a new fluorescent imaging tool to understand the function of intracellular GSH in the future.
Collapse
Affiliation(s)
- Ming Tian
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xing-Yu Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Huan He
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Ma
- National Engineering Research Center for Multimedia Software (NERCMS), School of Computer Science, Wuhan University, Wuhan 430072, P. R. China
| | - Chao Liang
- National Engineering Research Center for Multimedia Software (NERCMS), School of Computer Science, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,Hubei Province Key Laboratory for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.,Guangxi Key Laboratory of Natural Polymer Chemistry, College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
43
|
Abeywickrama CS, Bertman KA, Pang Y. From nucleus to mitochondria to lysosome selectivity switching in a cyanine probe: The phenolic to methoxy substituent conversion affects probe’s selectivity. Bioorg Chem 2020; 99:103848. [DOI: 10.1016/j.bioorg.2020.103848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022]
|
44
|
Qin H, Sun Y, Geng X, Zhao K, Meng H, Yang R, Qu L, Li Z. A wash-free lysosome targeting carbon dots for ultrafast imaging and monitoring cell apoptosis status. Anal Chim Acta 2020; 1106:207-215. [DOI: 10.1016/j.aca.2020.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/26/2019] [Accepted: 02/02/2020] [Indexed: 12/26/2022]
|
45
|
Huang M, Liang X, Zhang Z, Wang J, Fei Y, Ma J, Qu S, Mi L. Carbon Dots for Intracellular pH Sensing with Fluorescence Lifetime Imaging Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E604. [PMID: 32218205 PMCID: PMC7221822 DOI: 10.3390/nano10040604] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
The monitoring of intracellular pH is of great importance for understanding intracellular trafficking and functions. It has various limitations for biosensing based on the fluorescence intensity or spectra study. In this research, pH-sensitive carbon dots (CDs) were employed for intracellular pH sensing with fluorescence lifetime imaging microscopy (FLIM) for the first time. FLIM is a highly sensitive method that is used to detect a microenvironment and it can overcome the limitations of biosensing methods based on fluorescence intensity. The different groups on the CDs surfaces changing with pH environments led to different fluorescence lifetime values. The CDs aqueous solution had a gradual change from 1.6 ns to 3.7 ns in the fluorescence lifetime with a pH range of 2.6-8.6. Similar fluorescence lifetime changes were found in pH buffer-treated living cells. The detection of lysosomes, cytoplasm, and nuclei in living cells was achieved by measuring the fluorescence lifetime of CDs. In particular, a phasor FLIM analysis was used to improve the pH imaging. Moreover, the effects of the coenzymes, amino acids, and proteins on the fluorescence lifetime of CDs were examined in order to mimic the complex microenvironment inside the cells.
Collapse
Affiliation(s)
- Maojia Huang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai 200433, China; (M.H.); (X.L.); (Z.Z.); (Y.F.)
| | - Xinyue Liang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai 200433, China; (M.H.); (X.L.); (Z.Z.); (Y.F.)
| | - Zixiao Zhang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai 200433, China; (M.H.); (X.L.); (Z.Z.); (Y.F.)
| | - Jing Wang
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai 200433, China; (M.H.); (X.L.); (Z.Z.); (Y.F.)
| | - Jiong Ma
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai 200433, China; (M.H.); (X.L.); (Z.Z.); (Y.F.)
- Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, Shanghai 200433, China
- The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Lan Mi
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai 200433, China; (M.H.); (X.L.); (Z.Z.); (Y.F.)
| |
Collapse
|
46
|
Dong Y, Xiao H, Xing L, Wu C, Zhou J, Zhou Z, Liu Y, Zhuo S, Li P. Two-photon fluorescence visualization of lysosomal pH changes during mitophagy and cell apoptosis. Talanta 2020; 209:120549. [DOI: 10.1016/j.talanta.2019.120549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/28/2019] [Accepted: 11/09/2019] [Indexed: 01/24/2023]
|
47
|
Wang H, Wei J, Zhang C, Zhang Y, Zhang Y, Li L, Yu C, Zhang P, Chen J. Red carbon dots as label-free two-photon fluorescent nanoprobes for imaging of formaldehyde in living cells and zebrafishes. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Hande PE, Mishra M, Ali F, Kapoor S, Datta A, Gharpure SJ. Design and Expeditious Synthesis of Quinoline‐Pyrene‐Based Ratiometric Fluorescent Probes for Targeting Lysosomal pH. Chembiochem 2020; 21:1492-1498. [DOI: 10.1002/cbic.201900728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Pankaj E. Hande
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Manjari Mishra
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Fariyad Ali
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Shobhna Kapoor
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Anindya Datta
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Santosh J. Gharpure
- Department of ChemistryIndian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
49
|
Shi X, Yan N, Niu G, Sung SHP, Liu Z, Liu J, Kwok RTK, Lam JWY, Wang WX, Sung HHY, Williams ID, Tang BZ. In vivo monitoring of tissue regeneration using a ratiometric lysosomal AIE probe. Chem Sci 2020; 11:3152-3163. [PMID: 34122820 PMCID: PMC8157324 DOI: 10.1039/c9sc06226b] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Tissue regeneration is a crucial self-renewal capability involving many complex biological processes. Although transgenic techniques and fluorescence immunohistochemical staining have promoted our understanding of tissue regeneration, simultaneous quantification and visualization of tissue regeneration processes is not easy to achieve. Herein, we developed a simple and quantitative method for the real-time and non-invasive observation of the process of tissue regeneration. The synthesized ratiometric aggregation-induced-emission (AIE) probe exhibits high selectivity and reversibility for pH responses, good ability to map lysosomal pH both in vitro and in vivo, good biocompatibility and excellent photostability. The caudal fin regeneration of a fish model (medaka larvae) was monitored by tracking the lysosomal pH change. It was found that the mean lysosomal pH is reduced during 24-48 hpa to promote the autophagic activity for cell debris degradation. Our research can quantify the changes in mean lysosomal pH and also exhibit its distribution during the caudal fin regeneration. We believe that the AIE-active lysosomal pH probe can also be potentially used for long-term tracking of various lysosome-involved biological processes, such as tracking the stress responses of tissue, tracking the inflammatory responses, and so on.
Collapse
Affiliation(s)
- Xiujuan Shi
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Neng Yan
- Department of Ocean Science, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Guangle Niu
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Simon H P Sung
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Zhiyang Liu
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Junkai Liu
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ryan T K Kwok
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Jacky W Y Lam
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Wen-Xiong Wang
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong Kowloon Hong Kong China
| | - Herman H-Y Sung
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ian D Williams
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute Hong Kong China
- Centre for Aggregation-Induced Emission, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
50
|
Zhang Y, Bu F, Zhao Y, Zhao B, Wang L, Song B. A hemicyanine fluorescent probe with intramolecular charge transfer (ICT) mechanism for highly sensitive and selective detection of acidic pH and its application in living cells. Anal Chim Acta 2020; 1098:155-163. [DOI: 10.1016/j.aca.2019.11.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023]
|